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ABSTRACT  
Traditional design and analysis of mechanical metamaterials are complex and time-consuming, 
owing to their nonlinear characteristics. This paper proposes a computationally efficient inverse 
design framework to predict the nonlinear strain–stress response considering the buckling 
behaviour under a tensile load. Design and simulation processes of the structures are based on 
the reduced order model (ROM) of flexible structures, all within a single software environment, 
MATLAB/Simscape, using the flexible beam blocks. The physical-enhanced neural network 
(PENN) design is implemented in MATLAB, utilising the results of the ROM model for training 
and testing. The ROM model takes 4.5 min on average on a 12-core CPU, whereas the trained 
PENN predicts the stiffness curve in a fraction of a second on a single-core CPU. After training 
the model, it was utilised to inverse design the metamaterial structure based on a desired 
stiffness response. Evolutionary optimisation is employed to iteratively feed various structural 
parameters into the model to find the optimised parameters of a metamaterial structure that 
can achieve the desired strain–stress response. The proposed metamaterial structure was 
experimentally validated through three-dimensional (3D) printing using flexible thermoplastic 
polyurethane (TPU) filament, demonstrating the efficiency and effectiveness of the proposed 
methodology.
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1. Introduction

Researchers use metamaterials to solve several chal-
lenges with creating mechanical structures, such as 
designing vibration-damping mechanisms, reducing 
the weight, attenuating energy/shock, designing 
auxetic structures, miniaturising mechanical structures, 
and devising tuneable mechanical properties [1–4]. 
The diverse mechanical reactions of metamaterials, 
which are engineered structures designed to present 
properties that are not inherited from the base material 
but from the specific structural/geometrical configur-
ations, and its elements are usually arranged in a 

repeating pattern, can be utilised to overcome these 
obstacles [5]. Depending on the external stimuli, they 
can transition between elastic-dominated and 
damping-dominated regimes with variable average 
stiffness under dynamic loading [2]. Additionally, they 
provide a wide range of mechanical characteristics 
through the recombination of fundamental materials 
and configuration [6]. The potential advantages of meta-
materials, specifically their non-linear characteristics, are 
significant. In the context of electromagnetic fields, for 
instance, the engineered geometric structure can 
produce exceptional phase-matching conditions and 
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substantial local field amplification in order to optimise a 
specified nonlinear mechanism [7]. The growth and 
advancement of computational methods have facili-
tated enhanced exploration of the realm of potential 
configurations and more potent strategies for the 
logical design of metamaterials [5] (Table 1).

Mechanical Metamaterials characteristics come from 
their engineered structures rather than the original 
materials themselves [8–11]. Modifying the geometry 
and form of these structures, like quadrilateral cell 
shapes, allows for the implementation of a wide 
variety of nonlinear mechanical reactions [12]. Metama-
terial structure design and fabrication are intricate pro-
cesses. The design methods of metamaterials have 
been expanded, and additive manufacturing (AM) tech-
niques, also known as three-dimensional (3D) printing, 
have facilitated the fabrication of those complex struc-
tures [5]. They facilitate the generation of structures 
and materials of diverse length scales and materials, 
exhibiting unprecedented complexity in their distri-
butions within a single process [5]. This methodology 
has been used in the fabrication of intricate structures 
with a desired mechanical property. Design methods 
involve a range of techniques for optimising mechanical 
response [13], topology [14], and shape [15], with peri-
odic and aperiodic [16] structures, based on various 
models including ML algorithms [17]. In order to con-
struct metamaterial structures with nonlinear responses, 
ML approaches have been reported [18,19]. However, 
these approaches have yet to be implemented in mech-
anical metamaterials characterised by variable sizes, and 
a broad variety of nonlinear responses, particularly with 
the capability of bucking or snapping through behaviour 
consideration. This design deficiency provides a poten-
tial path for more investigation and advancement in 
the design of metamaterials.

To get the required response by direct design of a 
metamaterial structure, which is a highly nonlinear 
problem and almost impossible to locate the optimal 

point in traditional ways, several solutions based on 
optimisation algorithms have been proposed, such as 
particle swarm optimisation [20,21] and other evolution 
strategies [19,22]. In some instances, these algorithms 
must be iterated hundreds of times; hence, system simu-
lations and experiments are quite costly. Researchers 
have effectively applied various machine learning 
methods to enhance accuracy and efficiency when 
designing mechanical metamaterials inversely. In one 
study, Zeng et al. developed a deep neural network 
architecture trained by topology optimisation generated 
dataset, allowing for fast and very precise predictions 
[23]. Abu-Mualla and Huang created a neural network 
model that demonstrated superior computational 
efficiency and prediction accuracy over traditional 
methods [24]. Hussain et al. proposed an artificial 
neural network model to represent the larger-scale 
mechanical behaviour of metamaterials within a three- 
dimensional space [25]. Deng et al. combined an artificial 
neural network with the whale optimisation algorithm 
for the inverse design of metamaterials exhibiting non-
linear stress–strain behaviours, achieving high perform-
ance with an R2 value of 0.981 [26]. Recent work has 
shown the potential of swarm-based algorithms such 
as grey wolf optimisation for improving mechanical per-
formance in fused deposition modelling processes 
through rapid convergence and effective parameter 
search [27]. Alderete et al. employed two deep neural 
networks to predict deformations based on ABAQUS 
simulations for the inverse design of kirigami metama-
terials and predicting metamaterials deformation [28]. 
Pahlavani et al. focused on multi-material metamaterials 
using machine learning models for inverse design [29]. 
Soo Ha et al. utilised a deep neural network to inversely 
design lattice structures based on desired stress–strain 
curves, achieving 90% similarity between intended and 
experimental results using 3D printing [30]. Even 
though much significant research has been done 
recently on the inverse design of metamaterials based 
on ML algorithms [19,22], knowledge gaps exist in the 
design and analysis of these structures that are 
addressed in this research. Design methods based on 
finite element analysis (FEA) and ROM are quicker than 
experiments, but they are still complex and time-con-
suming. While these methods have demonstrated 
success, they often demand extensive computational 
resources.

This work is motivated by the need for faster, more 
efficient inverse design of nonlinear mechanical meta-
materials, especially those exhibiting complex beha-
viours such as buckling. A significant challenge in this 
work is predicting the buckling effect in the stiffness 
curve of metamaterials using machine learning models, 

Table 1. Table of abbreviations.
Abbreviation Definition

ROM reduced order model
PENN physical-enhanced neural network
3D three-dimensional
TPU thermoplastic polyurethane
AM additive manufacturing
FEA finite element analysis
2D two-dimensional
FE finite-element
MAE mean absolute error
RMSE root mean squared error
ReLU rectified linear unit
SGDM stochastic gradient descent with momentum
NN neural network

2 M. MOHAMMADI ET AL.



which is effectively tackled by the proposed approach. 
Furthermore, the model automates the optimisation 
and fabrication processes through AM and reduces com-
putational resources with the use of PENN. A novel loss 
function is introduced to enhance neural network per-
formance and improve training efficiency. The input 
data for the neural network is derived from a down- 
sampled stiffness curve, which reduces the number of 
parameters in the machine learning model, thus 
decreasing calculation costs and time.

The key novel aspects of this study are: (1) a physics- 
enhanced neural network (PENN) trained on ROM data; 
(2) a customised loss function for capturing buckling; 
and (3) an integrated design-to-fabrication pipeline 
using GA and 3D printing. The significance of this 
research lies in its potential to substantially decrease 
the time and computational resources required for the 
inverse design of metamaterial samples and the custo-
misation of the buckling effect under tensile force for 
various applications. Traditional neural networks rely 
solely on data to identify patterns and use conventional 
loss functions to measure discrepancies between the 
model’s output and the labels. In contrast, this research 
integrates related physics knowledge and insights into 
the learning process, model architecture, and loss func-
tion of the machine learning model. In PENN, the 
stiffness curve is predicted to exhibit spatial dependen-
cies based on the mechanical structure’s stiffness 
response. This dependency suggests that each value 
on the curve is influenced by preceding values and the 
rate of change along the curve. This physical rule is 
incorporated into the last layer of the neural network, 
and the loss function is modified to ensure that the 
values of the stiffness curve follow an increasing trend. 
This modification helps the model train more efficiently 
and results in higher precision compared to traditional 
deep neural networks, especially in predicting the buck-
ling effect in the stiffness curve. Additionally, the study is 
further validated through experimental testing of the 
strain–stress response of the inverse-designed structure 
using AM with TPU filament, ensuring the practical appli-
cability of the proposed design paradigm.

This study focuses on parameterised bistable and 
linear unit-cell designs simulated with ROM, modelled 
using a PENN, and optimised through genetic algor-
ithms, with validation via 3D printing. A methodology 
is presented for the design and fabrication of metama-
terials in this article, demonstrating a wide range of non-
linear strain–stress responses. Our structures’ base cells 
are illustrated in Figure 1(a) (each cell is structured as 
either an F-shape or an X-shape entity), which can 
have variable stiffness on different scales. Furthermore, 
the Poisson ratio of the structure may display a variety 

of ranges depending on the various parameters taken 
into account. Mathematical models and simulation 
findings allow us to first show that different mechanical 
responses are produced by different configurations of 
the cell components. After that, we use PENN to find 
the exact relationship between the geometry of the 
metamaterials and their stress–strain parameters. In 
the end, we find the geometries of a structure with the 
appropriate nonlinear stress–strain properties by com-
bining the trained PENN with an optimisation technique. 
Designing systems for energy and shock absorption, 
flexible electronics, and robotics are just a few examples 
of the numerous possible applications of the suggested 
method, which is based on ML models. Afterwards, the 
structure is fabricated through additive manufacturing. 
The structure’s behaviour is evaluated via experimental 
tests (Figure 1b). Unlike topology optimisation, which 
focuses on free-form material distribution, our method 
uses a parameterised design space of snapping- 
enabled unit cells to efficiently predict and optimise 
nonlinear stiffness responses. The F  – and X-unit frame-
works were chosen to validate the inverse design 
workflow using physically enhanced neural networks. 
While the number of unit cells and parameters is 
limited compared to full-scale topology optimisation, 
this setup effectively demonstrates the feasibility and 
robustness of the proposed method for linear and non-
linear response design.

2. Methodology

The design and fabrication of non-linear stiffness struc-
tures by considering two different structures are 
depicted in Figure 1. Both structures include 48 flexible 
links, but with different configurations. In Figure 1(a), 
the structure is made by repeating a cell four times 
which is highlighted in light green. The mentioned cell 
is shaped by an F-unit structure four times, and they 
are rotated 90 degrees compared to each other. This F- 
unit cell has 6 parameters, including the length of its 
links and the links’ thickness and height. By changing 
these parameters, we are able to obtain a broad range 
of structures that will provide various stiffnesses. The 
length of the body link can change from 10 mm to 40 
mm, and the head and hand links’ length range from 5 
to 40 mm. The minimum value for the head of the struc-
ture to its hand distance is 5 mm, which is more than the 
maximum value for link thickness to avoid any collision 
between the head and hand links. The maximum value 
for that distance is the length of the body link to cover 
the full range. Also, all the links’ thicknesses and 
heights are between 1–5 mm.
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The F-unit cell can show various vlaues of Poisson’s 
ratio, including positive and negative values and 
approximately linear stiffness (fabricated with linear 
stiffness material). On the other hand, the X-unit struc-
ture shows linear and nonlinear force versus displace-
ment based on the configuration of the links. It can 
also perform as a positive or negative Poisson ratio meta-
material. This simple structure is fabricated based on 12 
X-unit cells that are arranged in 4 rows. In each row, 
the cells are identical, but they have different configur-
ations compared to the adjacent rows. The X-unit cell 
has six parameters to be set, including its leg link, hand 
link, their deviation from the axis of symmetry, and the 

links’ thickness and height. The deviation of the leg 
links (alpha angle) of the cell can vary from p10 to p6 and 
beta angle. The length of the leg link can change from 
20 to 40 mm. The minimum value for the hand link is 
the long link length multiplied by the sinus angle of 
alpha, and its maximum is 0.8 of the leg length. The 
beta angle can be calculated depending on the other 
parameter, but still, it can be an acute or obtuse 
angle randomly as the width of the cell must remain 
the same due to manufacturing constraints. These 
values and their limits are chosen based on the mech-
anical constraints (avoid overlapping of the beams) of 
the structure and the constraints of the fabrication 

Figure 1.  (a) Various cells of the framework and their variable parameter. (b) The workflow of inverse design of metamaterials.
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process, including the size and capabilities of the 3D 
printer. Figure 2(b) depicts different configurations of 
this structure in 12 different formats as examples, 
while retaining key details.

These geometries are selected intentionally 
because of their varied applications and complement-
ing mechanical characteristics. The ‘F’ shape is perfect 
for applications needing constant resistance to defor-
mation because of its linear stiffness response, which 
provides predictable and stable performance. The ‘X’ 
form, on the other hand, exhibits nonlinear mechan-
ical reactions due to geometric nonlinearities, such 
as large deformations and buckling. These elastic non-
linearities, which are distinct from material effects like 
plasticity or hysteresis, stemming instead from the 
structural configuration, are essential for adaptive 
systems like shock isolation, vibration dampening, 
and energy absorption. Due to their adjustable link 
lengths, thicknesses, and angles, both unit cells offer 
a great deal of design freedom and allow for exact 
control over stiffness and Poisson’s ratio. Configur-
ations with positive or negative Poisson’s ratios and 
customised mechanical responses for a range of appli-
cations are made possible by this adaptability. The ‘F’ 
and ‘X’ forms’ opposing characteristics, which handle 
both linear and nonlinear responses, verify the 
approach. Furthermore, their simple yet adaptable 
designs offer excellent experimental validation 
through practical 3D printing and reduced-order mod-
elling (ROM) simulations.

2.1. Mathematical model

To determine the stiffness of a structure composed of 
interconnected flexible components, we can use 
assumptions to build mathematical models. Each 
flexible component in the structure is assumed to 
follow Hooke’s law, where deformation is directly pro-
portional to the applied load within the material’s 
elastic range. The links are assumed to have a slender 
form, so deformation from bending rather than stretch-
ing or compression is primarily considered, allowing sim-
plification by focusing solely on bending deformation. 
The structure is assumed to lie within a two-dimensional 
(2D) plane, simplifying the analysis to a 2D problem. 
Here are the steps to develop a mathematical model 
for determining the structure’s stiffness. The structure’s 
geometric details are specified (link sizes, connection 
nodes), which is shown in Figure 1, along with the 
material properties of the flexible components, TPU 
(Young’s modulus and density). Then equilibrium prin-
ciples are applied at each node to generate equations 
balancing forces and moments. The boundary conditions 
like fixed or pinned link connections are also defined to 
determine system constraints. While structural design 
plays a crucial role in determining the behaviour of meta-
materials, the performance is significantly influenced by 
the intrinsic properties of the base materials. Properties 
such as Young’s modulus, damping coefficient, and 
strain-rate sensitivity directly affect how the structure 
responds to dynamic or large-strain loading. A well- 

Figure 2. Various configurations of X-unit structures.
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tuned synergy between structural geometry and material 
choice enables metamaterials to achieve tailored 
stiffness, controlled energy absorption, and even 
auxetic responses. This study focuses on TPU due to its 
elasticity and printability, which are well-suited for 
capturing snap-through and bistable behaviour.

Here, we develop the mathematical equation for a 
general structure, which is the basis of Simscape calcu-
lation for flexible bodies in MATLAB software. The Sims-
cape calculation of flexible bodies is based on the ROM, 
which is calculated based on the finite-element (FE) 
model, which divides the body into a polygonal mesh 
with many nodes (Supplementary Figure 1), each 
having up to six degrees of freedom. All FEM operations 
used default settings provided by MATLAB Simscape’s 
flexible body environment, including mesh density and 
integration schemes, to ensure consistency and stability 
across simulations. The mesh is governed by the 
equation of motion [31,32].

Müd + Lu̇d + Kud = f (1) 

The matrix M represents the discretised body’s mass 
and matrices L and K refer to its damping and 
stiffness, respectively. The nodal degrees of freedom 
are shown by ud and f is the array of the external 
loads at each node of the body. The second-order differ-
ential equation is replaced with a system of first-order 
equations known as the state-space representation. 
The following equation is our state equation:

ẋ = Ax + Bu (2) 

Our output equation is:

y = Cx + Du (3) 

where x represents the state vector, and u and y are 
input and output. Also, the state-space representation 
matrices are defined as A (state matrix), B (input 
matrix), C (output matrix), and D (direct feedthrough 
matrix). The state-space representation matrices A, B, 
C, and D are determined using the mass, damping, 
and stiffness matrices derived from the FE model and 
calculated as follows [31,32]:

A = O I
− M̂− 1

mmK̂mm − M̂− 1
mmL̂mm

􏼔 􏼕

B = O O O
− M̂− 1

mmK̂mb − M̂− 1
mmL̂mb − M̂− 1

mmM̂mb

􏼔 􏼕

C = − (K̂bm − M̂bmM̂− 1
mmK̂mm) − (L̂bm − M̂bmM̂− 1

mmL̂mm)
􏼂 􏼃

D =
− (K̂bb − M̂bmM̂− 1

mmK̂mb) − (L̂bb − M̂bmM̂− 1
mmL̂mb)

− (M̂bb − M̂bmM̂− 1
mmM̂mb)

􏼢 􏼣

(4) 

The details of the outlined equations are discussed in 
supplementary document  – S1.

In addition to the ROM-based dynamic formulation, 
we reference classical Euler buckling theory to establish 
a theoretical baseline for the critical buckling load of 
individual flexible links. Assuming each link behaves as 
a slender, axially loaded beam with pinned-pinned 
boundary conditions, the critical buckling force Pcr can 
be approximated using the Euler formula [33]:

Pcr =
p2EI

(Keff L)2 (5) 

where, E is the Young’s modulus of the material (TPU), I is 
the second moment of area for a rectangular cross- 
section of width b and height h, L is the effective 
length of the beam (link), and Keff is the effective 
length factor, taken as 1.0 for pinned-pinned conditions. 
This analytical result serves as a simplified estimate for 
the onset of buckling, against which the ROM-based 
deformation behaviour can be qualitatively compared. 
While the multibody ROM model used in Simscape cap-
tures more complex dynamics – such as geometric non-
linearity, snapping, and joint coupling – this classical 
solution provides useful insight into local buckling 
behaviour within a single link and validates that the criti-
cal loads observed in simulation are within physically 
realistic bounds.

2.2. Simulation

In Simulink, the structures of the mentioned frameworks 
are simulated mainly based on a general flexible body. 
The motion equation of the proposed frameworks is 
based on the outlined equation above. The modelling 
framework is modular and can be generalised to simu-
late other structures, assuming the material properties 
and structural parameters are adapted to the new task. 
For each link in our frameworks, one single flexible 
body is imported into our model. The material par-
ameters, including density, Young’s modulus, and Pois-
son’s ratio, are set based on TPU features. It is 
important to note that TPU does not have a truly 
linear Young’s modulus. In this study, a constant value 
was assumed to reduce computational complexity. 
This simplification is justified by experimental obser-
vations, where the maximum strain in the beams 
remained below 5%, a range in which TPU exhibits 
approximately linear behaviour. In this regime, defor-
mation is primarily driven by beam reconfiguration 
rather than material stretching, making the linear 
approximation reasonably valid. However, during 
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buckling events, localised strains may exceed this 
threshold, potentially reducing simulation accuracy. 
This contributes to simulation-experimental discrepan-
cies, which average 6.8% error, with peaks of 35.7% 
during buckling regions (Figure 8a). In addition to 
material simplification, idealised joint modelling further 
contributes to this deviation. To improve reliability, 
future models will incorporate hyperelastic material 
properties and advanced joint representations. Links’ 
cross section is valued to change their height and thick-
ness, and their length is determined based on the value 
in the length field. Various joints and transformations are 
used to form the whole structure. To calculate the frame-
work’s stiffness, the framework is stretched through a 
prismatic joint, and the required force is measured. 
The stiffness curve is fed to a PENN model to train it, 
and due to the nonlinearity of the structures’ stiffness, 
a large amount of data is required to train the model 
properly.

The Simulink model is run 5000 times for the X-unit 
framework and 4000 times for the F-unit metamaterial. 
We incrementally increased the number of simulations 
and monitored the PENN’s performance on a separate 
validation set. Once RMSE plateaued across multiple 
random seeds, we considered the dataset size 
sufficient for training. The difference between the 
numbers is due to the stiffness curve of the structures, 
which is more complex for the X-unit framework, and 
to reduce the evaluation and testing error of the PENN 
model, more data collected on that specific framework. 
The simulation results of the stiffness curves are 
depicted in Figure 3. The stiffness of the F-unit structure 
(Figure 3a) is mainly linear; however, its distribution is 
not uniform throughout the range. The structure distri-
bution of stiffness for various configurations is depicted 
on the left side histogram of Figure 3(a). Thus, to collect 
more curves with higher stiffness, the simulation is run 
4000 times, and some of the curves in the lower range 
are discarded randomly to balance the data in the train-
ing stage. Figure 3(b) indicates stiffness curves for the X- 
unit framework, and it shows that in most cases, the 
structure experiences buckling, which leads to various 
stiffness and nonlinearity. The stiffness distribution of 
the structures before and after buckling is depicted on 
the left and right sides of Figure 3(b), respectively, 
which clearly shows the structure represents higher 
stiffness in the first mode on average. The stiffness distri-
bution of this framework is close to the normal distri-
bution (skewed in the second state), which is proper to 
train our physics-informed model. Even though nonli-
nearity is not ideal, in some applications like soft robotics 
and energy absorption is required. To map the input par-
ameters to the resulting stiffness curves efficiently, we 

train a PENN using the simulated data, following a 
series of preprocessing steps described below.

2.3. PENN

Several important preprocessing steps must be 
implemented when preparing the data to train a DNN. 
This network has a complex architecture, including mul-
tiple dense layers and a large output layer, and these 
preprocessing steps will help optimise how well the 
model performs. The initial dataset contains around 
9,000 (as outlined above, 4000 for the F-unit and 5000 
simulation data for the X-unit framework) time series 
outputs from Simulink that represent different configur-
ations of the frameworks. The first step is to standardise 
the sample rates of all the time series data through a 
process called resampling. This ensures uniformity and 
mitigates potential differences in temporal resolution 
from the variable sampling steps of Simulink’s solver. 
After resampling, down sampling is performed on the 
stress-stress curve to lessen the computational workload 
without jeopardising important information. To ensure 
that valuable information of the curve is saved, the 
power spectrum of the signals is analysed to confirm 
that aliasing does not occur. From the thousands of 
samples in each stiffness curve, only 50 samples are 
saved to train the PENN, based on a trade-off between 
model accuracy and computational efficiency. We 
tested sampling resolutions of 25, 50, 75, and 100 
points. While 100 points offered slightly better accuracy, 
50 points provided a comparable performance with sig-
nificantly reduced training time. It is important to use 
down sampling rates that keep essential features while 
removing excess data, preserving the integrity of the 
time series information. Lastly, normalisation is applied 
to scale the data within a consistent range. This aids 
model training convergence and improves generalis-
ation. While the simulations are deterministic, PENN is 
used to learn complex nonlinear mappings – especially 
around buckling – rather than to model randomness.

Here, an 80:20 ratio is used to divide the data into 
training and test subsets. This allocates enough data 
for model learning while retaining a sizable portion for 
robust evaluation. This partitioning is conducted 
through the cross-validation methods that k-fold is per-
formed here, which can improve reliability when asses-
sing the model. K-fold repeatedly partitions the 
dataset into training and testing sets, and this iterative 
process provides insights into how well the model gen-
eralises across different data samples. We utilise a 5-fold 
validation method (80% for training and 20% for testing) 
to make sure that the model is not biased and provides 
more reliable performance evaluations. Various methods 
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are used to evaluate a PENN and based on the task invol-
ving various feature input and predicting the stress– 
strain curve (including 50 points on the curve with a 
unified sampling rate), we used root mean squared 
error (RMSE) to evaluate the model’s performance.

Following this evaluation strategy, we detail the 
architecture of the PENN model designed to incorporate 
domain-specific physical rules into its learning frame-
work. The model’s architecture includes a feature input 
layer that is defined based on the input data dimensions, 
excluding dimensions related to our frameworks. Initial 
differences between PENN predicted values and simu-
lation outcomes were discovered, related to the neural 
network’s performance. These were addressed systema-
tically by fine-tuning the neural network’s parameters, 
such as the architecture, learning rate, and loss function, 
to improve the model’s prediction accuracy. This is fol-
lowed by four fully connected layers with rectified 
linear unit (ReLU) activation. This architecture is selected 
empirically by evaluating several layer configurations 
and monitoring validation errors. The first layer has 
128 nodes, then 256 nodes for the second layer, and 
512 nodes for the third and fourth layers. The final 

fully connected layer contains 50 nodes matching the 
dimensions of the stiffness curve. Physical enhancement 
in the PENN model is introduced through both the archi-
tecture and the loss function to embed known mechan-
ical behaviours. First, a customised layer is added to the 
architecture to integrate physics knowledge from the 
mechanical structure into the ML model. In this layer, 
the value of each node represents one of the 50 
samples on the stiffness curve. To add the spatial depen-
dency that is present in the stiffness curve, each node 
has an input from the upper node that represents the 
preceding sample. To add the changing rate information 
(which is the stiffness of the structure) to the layer, the 
penultimate node is connected; therefore, the PENN 
model can learn the local stable stiffness to predict the 
next sample with more precision (Figure 4). This 
network configuration, mimicking the temporal and 
physical dependency of mechanical systems, allows 
the model to discover complex relationships between 
input features and the target output, supporting the pre-
diction of lattice stiffness values.

Secondly, the loss function incorporates two physics- 
based constraints. The trendloss term mathematically 

Figure 3. Simulation results and stiffness distribution for (a) F-unit framework and (b) X-unit framework.
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enforces the physical condition of positive stiffness 
during stable loading. This penalises any portion of the 
predicted stiffness curve where force decreases with 
increasing strain – violating basic stability in elastic 
behaviour. In Equation (6), yi is the output of the ith 

node of the model which represents ith sample of the 
curve. Therefore, the formula implies that when the 
one sample (yi) is bigger than the next sample (yi+1), 
an extra cost is added to the total loss of the model. Fur-
thermore, a buckling loss (reflects the physical behaviour 
of snap-through buckling, where a sudden decrease in 
stiffness occurs over a localised region) term is defined 
to improve the PENN in learning the snapping effect 
more effectively. In this term, the average of the decreas-
ing trend is calculated only if that local downward trend 
is more than a margin (a coefficient) to avoid small 
amplitude noises. If the downward trend is lower than 
the buckling coefficient (Cbuckling), an extra loss value is 
added to the total loss function. This additional term 
enhances the utilised PENN performance (the perform-
ance is compared to a normal DNN in Supplementary 
Figure 3 to Supplementary Figure 6). Together, custo-
mised NN layer and customised loss function com-
ponents encode the physical behaviours of stiffness 
continuity and buckling-induced transitions into the 
neural network, guiding learning in a way that respects 
the mechanical context of the problem.

Trendloss =
􏽘49

i=1

max(0, yi − yi+1)2Bucklingloss

=max(0, Cbuckling − mean[ (yi − yi+1) IF (yi − yi+1) . a ])2 

Totalloss =MSEloss+ trendloss+ Bucklingloss (6) 

Stochastic gradient descent with momentum (SGDM) 
optimisation is used to train the network along with a 

specified mini-batch size. Model performance is moni-
tored on a validation dataset during training. This 
network structure is tailored to adequately capture the 
underlying patterns in the input data and generate 
precise predictions of framework stiffness values. 
Twenty percent of the data from Simulink is reserved 
for testing the trained model, as mentioned before. 
After training the model (the training error is depicted 
in Supplementary Figure 3 and Supplementary Figure 
5 in the supplementary document), its performance is 
tested on the test data. Figure 5 shows the average 
error and its standard deviation for the proposed struc-
ture. In Figure 5(a), the error for the X-cell structure is 
less than 0.03, but it exceeds this line in the range of 
4% to 12% strain. The buckling in various configurations 
happens in this range, which is harder to recall by the NN 
model and leads to more errors in its performance. The 
maximum of the mean and standard deviation of the 
error of the DNN in this region have decreased by 25% 
and 43%, respectively. Additionally, an ablation study 
was performed to assess the buckling loss term’s 
impact. Without it, the MAE in the buckling region was 
0.039; with it, the MAE decreased to 0.032, a ∼18% 
improvement, confirming its role in enhancing buckling 
prediction accuracy. While, the PENN model was trained 
on synthetic ROM data for efficiency, loss function is 
designed with physical rules to avoid overfitting to simu-
lation noises, and the result is validated with experimen-
tal data. In Figure 5(b), the error of the F-cell structure is 
illustrated, and it is higher than the error for other struc-
tures, despite its linear behaviour. While this range of 
error remains acceptable for this application, the error 
comes from the relatively smaller size of the model 
that is used for the F-cell structure. This model has 4 
layers with 64, 128, 50 nodes, and the last customised 
layer that is explained above. The smaller model is 
designed to avoid overfitting and decrease the 

Figure 4. PENN architecture with the customised last layer to integrate the physical rules into the model.
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computational cost. The error of the PENN in this study is 
within an acceptable range and is comparable to other 
studies, which have reported MAE values of 0.31[34], 
4.3 × 10−3 [29], and a reconstruction error of 0.3% [19]. 
Regularisation methods such as dropout and L2 
weight decay were tested in preliminary trials but did 
not significantly improve performance, so we opted for 
simpler architectures with validation-based performance 
monitoring instead. All models were trained with early 
stopping based on validation loss and evaluated using 
separate test data to ensure generalisation.

2.4. Optimisation

In this study, the GA was used to iteratively improve 
lattice parameters based on natural selection and vari-
ation. Initially, a population of randomly generated 
potential parameter configurations was created, repre-
senting diverse structural characteristics. The potential 
parameter configurations were input to the PENN, 
which trained to predict lattice stiffness curves from par-
ameters. Fitness scores were calculated by comparing 
predicted (pi) to desired (di) stiffness curves with MAE 
formula in Equation (7), where the desired curve was 
randomly selected, and it can be set based on research-
ers’ need to design various structures. The difference 
quantified the fitness for each parameter configuration 
in the genetic algorithm population. The GA framework 
iteratively optimised the parameter configurations 
across generations using selection, crossover, and 
mutation operations. This minimised the difference 
between predicted stiffness curves from the neural 
network (NN) and the desired stiffness curves.

MAE =
1
N
S(| pi − di|) (7) 

Upon completing the GA optimisation process, the 
final optimised parameter configuration underwent 
thorough evaluation using simulation techniques, 
especially within Simulink. The optimised lattice struc-
ture was implemented in Simulink to simulate behaviour 
under different scenarios. The key performance metric, 
mechanical response, was evaluated through simulation 
to determine the effectiveness of the optimisation 
process in enhancing the lattice’s overall performance. 
Additionally, comparisons were made between the 
optimised lattice and the desired stiffness curve to 
measure improvements from the GA-based parameter 
optimisation. By integrating GA optimisation, PENN 
modelling and simulation, this study provides an all- 
encompassing method for advancing lattice structure 
design and performance optimisation. Our PENN runs 
in under a second, highlighting its computational 
efficiency versus the simulation solution which is 275 
s (4.5 mins) on average. This major reduction in 
runtime underscores PENNs’ ability to lower compu-
tational complexity, providing a promising way to 
speed up optimisation processes and quicken engin-
eering analyses.

The GA algorithm is implemented based on gamultiobj 
function on Matlab with the following parameter: 50 
population, 100 generations, 80% crossover, adaptive 
mutation, tournament selection, stopping at function 
tolerance or max generations. The result of the GA 
search is depicted in Figure 6. In each figure, the 
desired stiffness curve (dashed blue line) is compared 
to the output of the optimisation process (dotted red 
line). Then, the optimised structure is simulated in 
Simulink to evaluate the optimisation process, and 
the simulated structures’ picture is added to each 
figure. In Figure 6(a), four samples of the X-cell struc-
ture are depicted, that buckling happens at various 

Figure 5. Mean and standard deviation of the error (mean absolute error (MAE)) of the trained PENN (a) for X-cell simulation results 
and (b) for F-cell structures.
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points and they have various stiffnesses before and 
after buckling. As is shown, the simulation results 
show the GA’s output configuration follows the 
desired curve with negligible error. The same process 
is repeated for the F-cell framework based on its 
linear response. The final simulation model response 
has less error regarding the desired stiffness, which is 
shown in Figure 6(b). Overall, the average error for all 
the samples including, F-cells and X-cells, doesn’t 
exceed 0.1, which was set as the error margin. After 
identifying the optimal design parameters through 
GA and PENN modelling, the next step is to physically 
realise and validate the structure via 3D printing.

2.5. Fabrication

In this study, an innovative methodology linking GA, 
PENN, and 3D printing was applied to create an opti-
mised metamaterial structure on one platform. The opti-
mised parameters from the GA were used to model the 
design precisely in Fusion 360, confirming its desired 
target performance. The digital model was then sliced 
into printable layers using Cura slicing software, carefully 
adjusting settings suited to the properties of TPU 
filament and the abilities of the Snapmaker 2 3D 
printer. Special attention was paid to Cura’s slicing set-
tings to account for the specific properties of the TPU 

Figure 6. Comparison of the desired stiffness curve and the optimisation process output, validated by simulation (a) four samples of 
the X-cell framework and (b) four samples of the F-cells utilised in the framework.
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filament diameter of 1.75 mm and ensure high print 
quality and structural strength. Due to some differences 
between the results of the 3D printing process, fabrica-
tion parameters such as extrusion temperature, printing 
speed, and retraction settings were optimised to mini-
mise material inconsistencies and improve structural 
reliability. These parameters were held constant across 
all prints to maintain comparability between samples. 
This procedure was repeated until the algorithm dis-
played effective performance, with small differences 
between simulation and experimental results, so 
proving the robustness of the proposed method.

Optimal extrusion and adhesion of the elastic 
filament required a printing temperature of 205°C and 
a heated bed temperature of 55°C. To mitigate the risk 
of printing unwanted material such as stringing or 
leaking, a conservative printing speed of 5 mm/s and a 
retraction speed of 60 mm/s were chosen, providing 
ample time for the TPU material to solidify between suc-
cessive layers. All samples were printed horizontally with 
layers aligned to the loading direction to ensure consist-
ent mechanical performance. Inter-layer bonding was 
optimised via controlled extrusion temperature and 
speed, and no post-processing steps were applied. 
Figure 7 depicts the printed structures for two samples 
of the F-unit and X-unit framework. (videos of the tests 
– included simulations and experiments  – are provided 
in Supplementary Video 1–4). As shown in Figure 7, 
those links that are going through snapping in the 

X-unit framework were narrowed near joints (thickness 
to 1 mm over 1–2 mm) to match simulation joints 
which are idealised joints in just one points.

3. Results and discussions

Compared to traditional ROM-based optimisation, which 
takes approximately 275 s per evaluation in MATLAB in 
the mentioned condition, the PENN predicts stiffness 
curves in under one second (running the PENN takes 
0.011sec in average). For an optimisation run with 
1000 evaluations, this translates to a reduction from 
∼76.4 h to ∼11sec. This efficiency enables rapid 
inverse design iterations. While this study focuses on 
two representative unit-cell geometries and one 
material system (TPU), the framework is extensible. 
Different geometries can be encoded through parame-
terisation, and the model can be retrained or fine- 
tuned for other base materials or boundary conditions. 

Figure 7. Simulated and fabricated geometry of the optimised 
structure for predefined stiffness (top: X-cell framework, down: 
F-cell framework with a highlighted cell).

Figure 8. Comparison of the desired stiffness with the output of 
the PENN, simulation, and experimental results (a) Stiffness of 
the X-unit metamaterial (b) Stiffness of the F-unit metamaterial.
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However, generalisation across vastly different materials 
or nonlinear behaviours not present in the training data 
may require domain-specific retraining or the inclusion 
of material descriptors as input features. The mechanical 
tests on the 3D-printed structures (including X-unit and 
F-unit structures) revealed promising findings seen in 
their stress–strain graphs (Figure 8). At first, under 
lighter loads, the X-unit designed structures showed 
high rigidity, pointing to its proficiency, to support 
forces effectively.

As the load increased further, a snap through buck-
ling response developed. Parts of the structure under-
went snapping, causing an abrupt decrease in rigidity, 
while other portions maintained their form. It is note-
worthy that in both states of stiffness, the stress–strain 
relation remains approximately linear. The notable 
stiffness initially detected can be connected to the 
organised alignment of components within the frame-
work, providing rigidity against external forces. Snap- 
through buckling in the X-unit structure triggers a 
sudden configuration shift, reducing rigidity. This is 
modelled via flexible beams and nonlinear solvers in 
Simscape and observed experimentally as a stress– 
strain drop. The nonlinearity arises from geometric 
reconfiguration, which alters the load path and 
decreases effective stiffness during the transition from 
high to low stiffness phases. On the other hand, the F- 
unit structure remains linear and holds its stiffness 
throughout the full testing process. This difference in 
performance indicates an involved interplay of factors 
inside the metamaterial design, including its geometric 
setups. The F-unit framework provides tuneable linear 
stiffness and adjustable Poisson’s ratio, while the X- 
unit can exhibit responses ranging from nearly linear 
to highly nonlinear bistable behaviour depending on 
its configuration. This range, achievable within two- 
unit types, demonstrates the generality and adaptability 
of the proposed inverse design approach using PENN. 
Although the current structure includes a limited 
number of units, it demonstrates geometry-driven non-
linear behaviour – such as bistability and stiffness 
tuning – which are defining traits of metamaterials. 
This study serves as a proof-of-concept on the snap- 
through design of such structures while the future 
work will extend the approach to larger periodic arrays 
for scalable applications.

Differences between experimental and simulation 
testing can originate from several aspects intrinsic to 
both methods. A reason for these variations can arises 
from the performance of the NN in the buckling 
region. Several steps were included in this study that 
improved the performance of the algorithm in this chal-
lenging region, but further improvements can be made. 

For example, applying a nonuniform sampling rate to 
generate more data points specifically from the buckling 
region could help the PENN to capture the highly non-
linear behaviour of our data, which remains a challenge 
for the network. One clear restriction in simulations is 
the simplification of elaborate designs such as mechan-
ical metamaterials, which may not completely represent 
real-world performance. For example, portraying the 
joints between structure’s links as single points can sim-
plify the real behaviour, disregarding intricacies in load 
allocation and stress distribution. This simplification 
reduces simulation complexity and facilitates the gener-
ation of large-scale datasets. It focuses on the dominant 
bending and buckling responses, which drive global 
stiffness trends. Nonetheless, adding rotational compli-
ance or hinge friction could improve local accuracy. In 
some designs, the thickness of the links has been 
modified around the structure’s joint to fabricate the 
structure with similar features as the simulated structure.

Additionally, the nonlinear nature of TPU presents 
difficulties in precisely predicting its mechanical reaction 
under large extensions, while it has been assumed linear 
in the simulation. This matter can be addressed by 
defining the non-linear stiffness of the material in the 
simulation section. Additionally, imperfections inherent 
in TPU printing, for example, inconsistencies in layer 
adhesion or voids inside the material, can further 
widen gaps between simulation and real testing out-
comes. As it was mentioned before, one of the main 
differences is the joint formation; therefore, some of 
them are edited. To keep the changes minimum, only 
those links with obtuse angle (where buckling happens 
in the structure) in X-cell frameworks (Figure 1) are 
modified. The links are narrowed at both ends, which 
is shown in Figure 7 to make the simulated joints and 
the printed joints act similarly. These joint adjustments 
aligned the model with the simulation, with stiffness 
deviations under 5%. This study intentionally used TPU 
to focus on reliably capturing buckling and snap- 
through behaviour in a flexible, printable medium. 
While recent work [35,36] has explored tougher architec-
tures emphasising sound absorption and elastic resili-
ence, our approach complements these by targeting 
the inverse design of bistable or snapping metamater-
ials. Future work could combine these directions by 
incorporating tougher materials and resilient architec-
tures with tuneable nonlinear responses using the pro-
posed design framework. While the current work 
focuses on TPU to ensure feasibility with accessible 3D 
printing, materials with higher damping (e.g. viscoelastic 
polymers) or greater yield strength could be considered 
for applications like impact mitigation or durable struc-
tural elements. A strategic material selection process 
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could thus complement structural optimisation to fully 
exploit metamaterial design potential. Although this 
study explores single-scale buckling behaviour, the pro-
posed framework lays the groundwork for future 
research into hierarchical and multi-scale metamaterial 
systems.

Addressing these issues may necessitate further 
investigation with more accurate models. Firstly, 
refining simulation techniques to encompass intricate 
aspects of the metamaterial’s architecture, for example, 
multi-point joints and diverse materials, can augment 
accuracy. Sophisticated computational methods, includ-
ing FEA, coupled with testing, offer promising potential 
to heighten simulation precision. Moreover, technologi-
cal developments in 3D printing involving updated 
material formulations and parameters could diminish 
imperfections, strengthening constitution and function-
ality. Further enhancing properties and decreasing 
inconsistency between virtual modelling and trials 
demands thorough quality measures during printing 
and post-refinement, like annealing. Beyond experimen-
tal validation, the versatility of the proposed metamater-
ial designs opens pathways for a range of real-world 
applications, as illustrated in the following examples.

The metamaterials show promise for various appli-
cations that with the proposed method the structure 
and functionality can be customised. Two notable 
examples include wearable hand tremor dampers and 
suspension systems for vehicles (Figure 9). A tremor- 
reducing device could harness the engineered metama-
terial’s ability to alternately change between flexible 
(after buckling in the metamaterial that shows lower 
stiffness) and rigid (before the snapping effect that the 
framework shows higher stiffness) configurations, and 
by transitioning between these states, it could optimise 
the user experience by providing more flexibility or 
resistance based on the users’ desires. Individuals with 
tremor experience vibration in their hands in various 
situations, depending on their condition (such as 

Parkinson’s disease or essential tremor). Tremor force is 
less than voluntary force, therefore the structure stays 
at less strain rate and acts in a high stiffness phase 
(Figure 3), when individuals apply higher force (volun-
tary motion), the structure’s strain is higher (after buck-
ling) causing the structure to respond in lower stiffness 
(second phase in Figure 3). Therefore, these wearable 
devices can be flexible in the absence of tremors, 
giving the subject more comfort. The proposed appli-
cation is not just limited to tremor mitigation devices. 
But it can also be utilised in rehabilitation or physical 
training applications. The stiffness of this metamaterial 
in both states is customisable and could be designed 
based on the individual’s conditions. This ability and its 
other features, such as being lightweight and having a 
low volume, make this structure a great candidate for 
wearable devices.

Suspension systems for vehicles are quite important 
across different driving situations. They help smooth 
out the ride to improve passenger comfort while main-
taining stability and control, no matter the road con-
ditions. These systems can adjust to suit varying needs. 
A variable stiffness metamaterial structure could be 
built into suspension parts of bikes like shock absorbers 
or springs. This would allow the mechanical structure to 
alter its rigidity. The structure retains a higher stiffness 
(first phase, Figure 3) for the best possible vehicle 
support and stability when driving on smooth roads. 
However, buckling occurs when it encounters bumps, 
potholes, or uneven roadways because of the heavy 
load that leads to higher strain, which reduces the rigid-
ity (transition to lower stiffness phase, Figure 3). By 
doing this, the suspension system’s total stiffness is 
decreased, improving its ability to manage uneven 
terrain. This ability to adapt allows the bike to better 
absorb and reduce impact forces, improving comfort 
for the rider while lessening vibrations. Additionally, 
the ability to dynamically adjust stiffness based on 
riding conditions enhances bike agility and handling, 

Figure 9. Designed metamaterial application. (a) Wearable hand tremor attenuator. (b) Bicycle suspension system.
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providing a smoother, more controlled experience for 
the rider.

The proposed framework allows stiffness customisa-
tion by defining an application-specific target curve – 
such as user-specific hand dynamics for tremor 
damping or suspension performance profiles for 
vehicles – as the objective for the genetic algorithm. 
The PENN model then rapidly identifies structural par-
ameters that reproduce the desired behaviour, 
enabling tailored metamaterial designs without high 
simulation costs. From a manufacturing perspective, 
consistent performance may be challenged by vari-
ations in filament quality, printer calibration, or 
environmental conditions. To address this, quality 
assurance methods such as layer-wise monitoring, 
process standardisation, and post-print validation can 
be applied. While our method is well-suited for person-
alised or small-batch applications, future work will 
focus on ensuring reproducibility and investigating 
scalability for broader manufacturing.

4. Conclusions

This study established and verified a unique method for 
the inverse design of 3D-printed mechanical metamater-
ial structures with the desired behaviour by combining 
machine learning techniques. The basis of the flexible 
body simulation in MATLAB/Simscape was first estab-
lished using the mathematical model of the structure. 
The enhanced NN was then trained using a large 
dataset that was obtained from 9000 stress–strain simu-
lations of two different metamaterial cell designs. This 
training made it easier to create a thorough relationship 
between the design parameters and the mechanical 
reactions of metamaterials, such as the range of the 
stress–strain responses and nonlinear snap through 
buckling.

A customised NN was designed by integrating the 
physical rules governing the stiffness of metamaterials. 
The PENN was tailored in both architecture and loss 
function to enhance its training efficiency for learning 
the buckling effect. The loss function was updated 
with two new terms to enhance the model’s efficiency 
in predicting the stiffness curve, especially the nonlinear 
section (buckling effect) that was challenging for DNN. 
The effectiveness of the PENN was demonstrated by 
their ability to predict stiffness curves rapidly and with 
reasonable accuracy. Compared with the simulation 
methods, the proposed method is slightly less accurate 
which reflects a trade-off between computational cost 
and precision.

Subsequently, an inverse design methodology was 
implemented using genetic algorithms. This method 

proved capable of optimising metamaterial designs to 
effectively satisfy predefined mechanical responses 
effectively. The optimised designs were then fabricated 
using 3D printing techniques, specifically employing 
TPU to experimentally validate the strain–stress 
responses under tensile force. The experimental results 
were observed to closely aligned with both the simu-
lations and predictions made by the PENNs, thereby 
confirming the practical applicability of the proposed 
design paradigm. Challenges such as the simplification 
of complex designs and the linear approximation of 
Young’s modulus of the TPU material were acknowl-
edged as limitations that could impact the fidelity of 
simulations and experimental outputs. To overcome 
these obstacles, future research will incorporate more 
thorough joint mechanics modelling and delve deeper 
into the nonlinear properties of materials. Furthermore, 
it is recommended that more research be conducted 
to convert the existing 2D metamaterial designs into 
3D structures. This might improve functionality and 
increase the range of applications in industries including 
adaptive robots, wearable technology, and automotive 
safety systems.

Overall, the integrated approach presented in this 
study not only validates the feasibility of using custo-
mised NNs and GAs for the design and fabrication of 
mechanical metamaterials but also demonstrates the 
efficiency of conducting the entire workflow within 
one computational environment. The method opens 
up new avenues for the development of intelligent 
material systems capable of complex, programmable 
responses. We anticipate that this work will pave the 
way for the engineering of functional metamaterial pat-
terns, enabling the development of structures with 
shape-shifting and variable stiffness. By collecting 
reliable simulation results and altering the architecture 
of the PENN, the proposed method can be utilised for 
developing materials in various shapes such as beams, 
sheets, while being committed to the assumption on 
this study including the negligible strain in the material. 
With the suggested framework, designers can identify 
the best geometric factors given a set of limits and non-
linear requirements.
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