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Abstract—The increasing complexity of real-time healthcare
necessitates intelligent systems for dynamic data management
and personalized assistance. This paper proposes a novel dual-
LLM framework that integrates large language models (LLMs)
into wireless healthcare networks. The first LLM powers an
interactive artificial intelligence module (IAIM) embedded within
a mobile edge computing (MEC) environment, which dynamically
optimizes user-specific data routing and reconfigurable intelligent
surface (RIS) configurations via a modified proximal policy
optimization (PPO) algorithm. A novel Greedy Look-Ahead
Algorithm (GLAA) is introduced for real-time path selection
based on signal strength, emergency factors, and user-specific
parameters. The second LLM, utilizing a retrieval-augmented
generation (RAG) approach, serves as a personalized healthcare
chat assistant that delivers context-aware patient support using
real-time and historical data. Simulation results demonstrate that
the proposed IAIM achieves a 9.6% reduction in network over-
head compared to manual modeling and reduces latency by up
to 52.5% over baseline PPO approaches, thus enabling enhanced
user experience and responsiveness in healthcare systems.

Index Terms—Deep reinforcement learning, Interactive artifi-
cial intelligence, Large language models, Mobile edge computing,
Reconfigurable intelligent surfaces, Retrieval-augmented genera-
tion, Health management.

I. INTRODUCTION

LARGE language models (LLMs) have emerged as trans-
formative tools in wireless communication, particularly

within 5G, the forthcoming 6G, and broader wireless tech-
nologies. These sophisticated models, such as GPT-4 and
its successors, possess unparalleled capabilities to process
and comprehend vast volumes of textual data [1]–[4]. The
transition from 4G to 5G marked a vital moment, intro-
ducing unprecedented data speeds and connectivity. As we
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advance to 6G networks, intelligent and adaptive solutions
are crucial to meet escalating demands while ensuring net-
work resilience. LLMs, with their real-time decision-making
capabilities, are well-positioned to address these challenges
by ensuring optimal network performance under evolving
conditions [5]–[7]. The advantages of integrating LLMs into
wireless communications are manifold. They can anticipate
and mitigate environmental impacts on network performance,
predict network congestion, identify straggler nodes, and adapt
to adverse weather conditions, enabling networks to operate at
peak efficiency [8]. Moreover, LLMs excel in the dynamic
allocation of network resources, optimizing connectivity in
both high-demand and low-connectivity areas [9].

As LLMs continue to redefine artificial intelligence (AI)
and natural language understanding, their potential extends
far beyond current applications. The shift from rule-based
inferences to advanced learning models necessitates more
sophisticated AI solutions to manage the growing complexity
of data. Enhancing LLMs with interactive AI (IAI) enables
more dynamic and user-responsive networking solutions [10].
Combining IAI with LLMs allows systems to react to changes
and proactively manage resources through direct interactions
with users and real-time data feeds. Developing LLM-based
chatbots for healthcare utilizes patient data and advanced
techniques like retrieval-augmented generation (RAG) to pro-
vide personalized, context-aware interactions, revolutionizing
patient support [11]. Applications of LLMs and IAI in wire-
less communications include network optimization, predictive
maintenance, improved security, and personalized user ex-
periences. Integrating IAI with technologies like RAG and
LangChain enriches AI responses by extracting information
from vast databases, offering tailored solutions that align with
user needs [11]. This combination enhances flexibility, mini-
mizes human bias, and optimizes network resource utilization,
paving the way for significant advancements in AI-driven
networking.

In wireless communications, routing mechanisms determine
optimal paths for data transmission between source and desti-
nation nodes, ensuring timely information delivery. Traditional
methods, such as proactive protocols like optimized link state
routing (OLSR) and reactive protocols like ad-hoc on-demand
distance vector (AODV), have been widely used in dynamic
networks [12].Proactive protocols maintain up-to-date routing
information but generate significant overhead due to con-
stant control message exchanges. Reactive protocols reduce
overhead by initiating route discovery only when needed,
though this often results in delayed route establishment due
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to on-demand setup. Hybrid routing mechanisms combine
the strengths of both approaches, offering the persistent con-
nectivity of proactive methods while mitigating overhead
through reactive features. However, their complexity poses
implementation and maintenance challenges. This adaptability
is crucial in modern wireless systems, including internet of
things (IoT) devices and reconfigurable intelligent surfaces
(RIS), where network dynamics and performance requirements
vary significantly.

A. Literature review

In this paper, we explore both LLM and wireless
communication-based approaches.

Under LLM based approach, we comment on existing litera-
ture focusing on the broader aspects of the current topic. In the
area of chatbots, the AI-powered medical chatbot [13] aims to
improve healthcare access and reduce costs by offering prelim-
inary disease diagnosis and information using techniques like
n-gram, term frequency-inverse document frequency (TFIDF),
and cosine similarity. Complex queries are handled by a third-
party expert system, enhancing initial medical consultations.
The “CataractBot” study [14] developed with an eye hospital
in India, uses AI and expert verification to provide accurate,
multilingual information about cataract surgery, enhancing
the trustworthiness and accessibility of health information.
A trial with 49 participants demonstrated its effectiveness in
making health information accessible and trustworthy, thereby
easing the burden on healthcare professionals. Comparatively,
both CataractBot and the general AI medical chatbot [13]
enhance access to healthcare information, with CataractBot
offering expert-verified cataract surgery information, focus-
ing on building trust. The study [15] improves interactions
with RAG-based agents by developing a suggestion question
generator using dynamic contexts, such as few-shot examples
and retrieved information. Experiments show this approach
generates better questions, helping users communicate more
effectively with the system. The REALM framework [16]
enhances clinical predictions by integrating multimodal elec-
tronic health records (EHR) data with external knowledge
graphs, using an LLM to process clinical notes and a gated
recurrent unit (GRU) model for time-series data, ensuring
consistency and reducing errors. Tested on MIMIC-III mortal-
ity and readmission tasks, REALM significantly outperforms
traditional models, demonstrating its effectiveness in refining
clinical insights. Each approach tackles different aspects of
healthcare digitization with AI. Studies like [17] and [14] focus
on user acceptability and specific informational needs, while
technologies in [13] and [15] aim to enhance the efficiency
of medical consultations and user interactions with AI. The
REALM framework [16] illustrates the advanced application
of AI in processing and integrating complex healthcare data for
better clinical outcomes. Furthermore, Park et al. [18] provided
a timely analysis of generative AI’s potential in automating
knowledge-intensive tasks, particularly within the healthcare
domain. Their study positions healthcare as a key sector poised
for LLM deployment, reinforcing the rationale behind our
dual-LLM integration in smart healthcare systems. In a more

targeted clinical application, Hu et al. [19] developed a GPT-
4-powered RAG-enhanced system tailored for dementia care.
Achieving a diagnostic accuracy of 90%, their model not only
offers high clinical readability but also generates personalized
care plans reviewed by medical professionals. This closely
aligns with our proposed dual-LLM architecture, which em-
phasizes context-awareness and personalized medical support
through a collaborative model involving both cloud-based
and edge-side LLMs. Collectively, these works represent a
multifaceted advancement in healthcare digitization. While
studies such as [17] and [14] prioritize patient acceptability
and specialized health education, others like [13], [15], and
[16] focus on enhancing clinical effectiveness through AI-
powered interaction, offloading, and decision support.

To address the increasing complexity of real-time healthcare
and the growing demand for advanced IoT applications, the
integration of cutting-edge technologies such as mobile edge
computing (MEC) within 5G networks is essential [20]. MEC,
a key enabler of IoT, offers cloud computing capabilities at the
network’s edge, thereby enabling faster response times and
enhancing computational efficiency for end users [21], [22].
Under the wireless communication domain, we focus on
mobile edge computing (MEC) systems, and the relevant
literature survey is as follows: Computation offloading and
resource allocation are of paramount importance in MEC net-
works, garnering significant attention in recent years [23], [24].
Performance evaluation often considers energy consumption
[25], [26], [27] and latency [28], [29] as key criteria. Munoz
et al. [27] minimized energy consumption by optimizing
transmission time and offloaded data to a femto access point
(AP). A low-complexity Lyapunov optimization-based dy-
namic computation offloading algorithm was proposed in [28]
to reduce execution time. Yang et al. [29] designed a heuristic
method to partition users’ computation tasks to minimize
average completion time. Ni et al. [30] proposed a resource
allocation strategy using priced timed Petri nets, considering
cost and credibility evaluations of users and fog resources.
Wang et al. [31] addressed energy consumption and execution
latency minimization by optimizing computation speed and
transmission power. Several studies have explored the intricate
trade-off between energy consumption and execution latency
in mobile edge computing (MEC) systems. For instance, Hong
et al. [32] modeled data offloading scheduling as a dynamic
programming problem, introducing a weighting factor to bal-
ance the combined impact of energy usage and latency in
their optimization framework. Recent advances in artificial
intelligence (AI) and reconfigurable intelligent surfaces (RISs)
have opened up transformative possibilities for MEC networks,
enabling smarter, more adaptive resource allocation and per-
formance enhancement. Notably, Ni et al. [33] conducted
a comprehensive analytical modeling and simulation-based
outage performance analysis of RIS-assisted device-to-device
(D2D) communications tailored for healthcare IoT environ-
ments, highlighting the potential of RIS in improving link
reliability and spectral efficiency. Similarly, Mercuri et al. [34]
investigated the integration of RIS into ambient assisted living
(AAL) and smart hospital infrastructures, emphasizing its
effectiveness in enhancing radar-based indoor human monitor-
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ing. Furthermore, AI-driven techniques are increasingly being
leveraged to optimize computation offloading strategies and
resource management in MEC systems, particularly in latency-
sensitive and energy-constrained scenarios, thereby advanc-
ing the operational intelligence and responsiveness of next-
generation healthcare networks. For example, AI algorithms
can predict network congestion, dynamically adjust resource
allocation, and optimize energy consumption in real-time [35].
RIS technology leverages AI to intelligently manipulate elec-
tromagnetic waves, improving signal strength and coverage.
This enhances the efficiency of MEC systems by dynamically
adjusting phase shifts to optimize wireless communication
[36]. The integration of RIS with MEC systems allows for
better resource utilization and improved energy efficiency.
Distinct from previous studies, this paper proposes an energy-
aware offloading scheme that balances energy consumption
and execution latency by jointly optimizing central processing
unit (CPU)-cycle frequency, transmission power, and channel
resource allocation. Additionally, this work incorporates AI
and RIS technologies to further enhance the performance and
adaptability of MEC networks. The weighting factor is specif-
ically defined based on the residual energy of the IoT sensor
battery, ensuring efficient and sustainable network operations.
We briefly summarize the state-of-the-art in Table I.

B. Motivation and Contributions

1) Need for Dual-LLM implementation in healthcare: The
integration of LLMs within healthcare systems is driven by
the critical need to enhance data management and provide
personalized assistance. Traditional healthcare systems face
significant challenges such as limited personalized patient
interaction, the inability to provide real-time responses, and
a lack of contextual awareness. These limitations necessitate
the deployment of advanced AI systems capable of addressing
these gaps effectively.

DUAL LLM implementation in healthcare

LLM based IAI for MEC SYSTEM LLM based personalized chat assistant 

Fig. 1: An illustration of proposed Dual-LLM implementation in healthcare.

As depicted in Fig. 1, the Dual-LLM system integrates two
LLM applications within the healthcare framework: one for
optimizing MEC network efficiency and data routing through
IAI, and the other for providing personalized patient interac-
tions through an advanced chat assistant. The first application
of LLMs within our proposed framework is LLM-based IAI
framework which adjusts parameters for dynamic user-specific
data routing (DUDR) and RIS in a MEC environment. This
integration enhances network efficiency and optimizes data
flow in dynamic healthcare settings. The IAI uses predictive
analytics and advanced data processing to adjust DUDR and
RIS configurations, ensuring optimal data flow and signal
integrity, especially in real-time health monitoring scenarios.
During medical emergencies, the system prioritizes and routes
data from critical monitoring devices to healthcare providers,
ensuring timely intervention and reducing adverse outcomes.

Integrating IAI, the optimization framework enhances network
efficiency and user experience under variable conditions and
high-stakes healthcare demands. The IAI continuously adapts
to changes in the network environment, ensuring appropriate
responses to real-time data. During peak usage, such as a
pandemic or mass casualty event, the system dynamically
allocates bandwidth and resources to maintain efficient com-
munication between medical staff and patients.

A second application involves an LLM-based chat assis-
tant that offers real-time personalized recommendations and
guidance to patients. By comparing real-time data with his-
torical records, the assistant provides tailored advice, enhanc-
ing patient outcomes and engagement. Using state-of-the-art
LLM technologies, this assistant delivers highly personal-
ized, context-aware interactions essential for immediate and
accurate patient responses. For instance, a diabetic patient
can receive real-time dietary advice and blood sugar updates
based on their current and historical data. Employing advanced
LLMs, the chat assistant improves patient interaction by offer-
ing customized guidance, crucial for managing chronic con-
ditions and adhering to treatment plans. An example includes
a post-surgery patient receiving daily check-ins and reminders
for medication, physical therapy, and follow-up appointments,
thus improving recovery outcomes.

This dual-model architecture is irreplaceable because it
decouples responsibilities across two critical layers: (i) the
network control plane, managed by LLM-1, and (ii) the patient
interaction layer, governed by LLM-2. LLM-1 handles real-
time MEC-based optimization and RIS configuration through
Interactive AI (IAI), ensuring that time-sensitive physiological
data from patients is transmitted with prompt responsiveness
and robust signal integrity. Simultaneously, LLM-2 leverages
retrieval-augmented generation (RAG) to provide semantic-
level, personalized responses based on both current sensor
readings and electronic health record histories. A single-model
solution cannot simultaneously optimize physical-layer routing
and deliver accurate, patient-facing semantic inference. Thus,
the proposed Dual-LLM system offers a specialized, mutu-
ally reinforcing intelligence architecture essential for modern,
context-aware smart healthcare systems.

2) Need for DUDR: In wireless communication, various
approaches have addressed challenges in heterogeneous and
dynamic network environments, focusing on network opti-
mization, resource allocation, and signal enhancement. How-
ever, a comprehensive solution remains elusive. We propose
DUDR, a novel approach that optimizes data routing by
considering user profiles, device capabilities, and real-time
network conditions, thereby redefining wireless communica-
tion efficiency. This is particularly critical in healthcare, where
reliable and timely data transmission is essential due to patient
mobility and dynamic medical device usage. Traditional
wireless communication protocols, including proactive (e.g.,
OLSR), reactive (e.g., AODV), and hybrid (e.g., ZRP) routing
schemes, are not inherently designed to address the stringent
requirements of healthcare-centric networks. These methods
exhibit critical limitations in scalability, context awareness,
and real-time adaptability. Moreover, traditional schemes lack
contextual intelligence and cannot prioritize data based on
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TABLE I: Comparison with significant existing works in AI- and RIS-enabled healthcare communication.

Reference Key Contributions Limitations
J. Shao et al., J. Commun.
Inf. Netw., 2024 [8]

Introduces WirelessLLM, a framework for adapting large
language models to wireless communication networks,
addressing challenges in wireless intelligence.

Conceptual framework; lacks practical implementa-
tion and specific focus on healthcare applications.

P. Ramjee et al., arXiv
preprint arXiv:2402.04620,
2025 [14]

Develops CataractBot, an LLM-powered expert-in-the-loop
chatbot for cataract patients, improving multilingual access
and patient engagement.

Limited to static patient interaction. No integration
with RIS, MEC, or real-time data routing frame-
works.

Y. Zhu et al., arXiv preprint
arXiv:2402.07016, 2024 [16]

Proposes a RAG-enhanced LLM framework to analyze
multimodal electronic health records (EHRs) for clinical
outcome prediction.

Operates in batch-mode without real-time adaptation,
wireless context-awareness, or integration with RIS-
enabled infrastructure.

C. Huang et al., IEEE Trans.
Wireless Commun., 2019
[37]

Investigates the potential of reconfigurable intelligent sur-
faces (RIS) to enhance energy efficiency in wireless com-
munication systems. Provides theoretical analysis and prac-
tical insights into RIS implementations.

Focuses on energy efficiency in wireless communi-
cations; does not address AI integration, MEC, or
patient-centric healthcare applications.

Our Work (This Paper) Integrates a Dual-LLM system for RIS-assisted smart healthcare. One LLM controls MEC-level dynamic user-
specific data routing and RIS configuration using interactive AI, while the second LLM acts as a patient-specific
chat assistant for personalized recommendations. Utilizes a modified PPO algorithm for joint latency-energy
optimization, combining communication-level optimization and AI-driven patient interfacing.

patient vitals or emergency level, undermining the respon-
siveness of healthcare systems. These protocols also fail to
leverage advancements such as RIS, which are crucial for
enhancing signal coverage and reliability in complex indoor
hospital settings. Finally, conventional routing algorithms are
often energy-agnostic, overlooking the critical need for energy-
efficient communication among battery-powered medical sen-
sors. These limitations highlight the inadequacy of traditional
methods and motivate the need for intelligent, context-aware,
and RIS-integrated solutions, such as the proposed Dual-LLM-
enabled DUDR framework.

In modern healthcare settings, network congestion is in-
creasingly becoming a critical concern due to the proliferation
of medical devices and data-intensive medical applications.
Facilities often experience traffic overload, especially during
emergencies or pandemics, impacting the timely delivery
of patient data. Moreover, critical applications such as re-
mote diagnostics, robotic surgery, and smart intensive care
units demand URLLC, where even minor delays can lead
to adverse patient outcomes. These challenges necessitate
intelligent, edge-driven, and adaptive communication solu-
tions. Recent advancements in LLMs have demonstrated
significant potential in healthcare. Our research introduces a
multi-source, multi-modal LLM-based chat assistant designed
for personalized patient support through advanced retrieval
mechanisms. Unlike prior works such as [37] that address RIS
optimization or task offloading without AI-driven adaptability,
recent LLM-based efforts like CataractBot [14] and REALM
for multimodal EHRs [16] focus on static patient interaction
and offline clinical analysis, respectively. In contrast, our
framework uniquely combines dual-LLMs with real-time RIS
control and MEC-based IAI to support both dynamic network
optimization and personalized healthcare assistance.

Our integration of RIS and Dual-LLMs addresses healthcare
network bottlenecks by enhancing signal propagation, reduc-
ing transmission latency, and minimizing network overhead.
The RIS dynamically strengthens weak communication links,
while the LLM-IAI engine optimizes user-specific routing and
resource allocation via deep reinforcement learning. Addi-
tionally, the chat-based assistant module provides real-time,

privacy-preserving patient interactions and decision support
within edge environments, which are essential for responsive
and secure healthcare service delivery. By leveraging state-
of-the-art LLM technologies, our healthcare assistant provides
context-aware, personalized interactions, enhancing patient
care and support.

The key contributions of this paper are as follows:
1) Introduction of DUDR System: Developed a novel

DUDR system within a MEC environment that adapts
routing based on real-time user-specific data. We employ
a Greedy Look-Ahead Algorithm (GLAA) for path
selection, leveraging a dynamic scoring mechanism tai-
lored to the DUDR framework. This system significantly
enhances network performance and ensures consistent
data delivery by intelligently managing traffic flow in
accordance with the specific demands of healthcare
applications.

2) Optimization Framework Using LLM-IAI: Created
an LLM-based IAI framework to dynamically adjust
DUDR parameters and RIS configurations. This opti-
mization framework aims to enhance network efficiency,
optimize data flow, and minimize overhead in a highly
dynamic and variable healthcare environment.

3) Real-Time Personalized Healthcare Assistance: Imple-
mented an LLM-based chat assistant that provides real-
time personalized recommendations and guidance to
patients. This assistant compares real-time data with
historical records to offer tailored advice, significantly
improving patient outcomes and engagement.

4) Enhanced Network Efficiency and User Experience:
Employed advanced deep reinforcement learning (DRL)
driven modified PPO algorithm to demonstrate sub-
stantial improvements in data transmission efficiency,
latency reduction, and overhead minimization compared
to conventional network management methods, thereby
enhancing overall user experience.

C. Organization

The remainder of this paper is structured as follows: Section
II and Section III describe the considered LLM-IAI-based
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Fig. 2: An illustration of proposed LLMs with IAI network architecture.

MEC system and its signal model, respectively. The optimiza-
tion problem formulation is presented in Section IV. Section
V outlines the proposed solution using the standard PPO and
modified PPO algorithms. In Section VI, the proposed solution
to implement DUDR is presented. Numerical simulations are
presented in Section VII to verify the theoretical results.
Finally, Section VIII provides the conclusions and future work
of the paper.

II. SYSTEM MODEL

In our advanced system model, as depicted in Fig. 2,
we integrate LLMs1 with Interactive AI (IAI) to strengthen
modern healthcare communication systems. Edge computing
nodes (ECNs) facilitate localized data processing and real-time
decision-making, thereby enhancing system responsiveness
and ensuring dependable information delivery. The integration
of DUDR and RIS optimizes network performance and user
experience, managed by a central control unit (CCU) that
coordinates signals and manipulates electromagnetic waves
to improve signal coverage. LLMs within ECNs analyze
healthcare data in real-time, supporting dynamic DUDR man-
agement by adjusting data pathways based on user inputs and
network conditions for efficient and adaptive delivery. RIS
units, governed in real-time by insights from LLM analy-
sis, optimize signal propagation, improve quality, and reduce
interference. Our proposed smart healthcare system employs
beyond 5G (B5G) networking, the IoT, and AI, shifting from
traditional cloud dependencies to edge-centric processing and
storage. This system comprises interconnected components for
seamless data acquisition, processing, and analysis, with IAI
enhancing user interaction and adaptability, thus improving
patient care and operational efficiency. Key components of the
framework include perception units within ECNs to interpret

1LLMs embedded in MEC nodes enhance RIS adaptability by predicting
channel dynamics and prioritizing emergency health data using contextual
cues derived via RAG and LangChain pipelines. They generate real-time phase
adjustment vectors and score-based routing decisions, enabling low-latency,
energy-efficient, and emergency-aware communication, which are critical for
applications like continuous monitoring and remote triage.

real-time data from sensors and user inputs, refining data
handling protocols and routing decisions adaptively. Action
units execute strategies based on real-time analyses, adjust-
ing network configurations and resource allocations instantly.
Brain units, utilizing RAG and LLMs, form the decision-
making core, synthesizing information from Perception Units
and orchestrating the overall network strategy to meet the
dynamic needs of the healthcare environment.

A. Connectivity and Data Flow

As shown in the Fig. 2, IoT devices are widely deployed in
the healthcare IoT ecosystem for patient monitoring and data
collection, capturing vital signs like heart rate, blood pressure,
and temperature. These devices are strategically placed to
ensure optimal coverage and patient comfort, and they utilize
smart algorithms for adaptive data collection based on patient
needs and environmental conditions. ECNs, positioned within
healthcare facilities, process this data locally to reduce latency
and improve response times, leveraging IAI to enable real-
time health monitoring and adaptive responses to patient
condition changes. The CCU orchestrates operations, ensur-
ing seamless coordination among components by processing
aggregated data with sophisticated AI algorithms, including
an IAI framework for enhanced decision-making and dynamic
resource allocation. RIS units, controlled by the CCU’s IAI-
enhanced algorithms, dynamically improve wireless signal
quality across the facility, ensuring uninterrupted and op-
timized data transmission. Interactive AI units, distributed
throughout the network, facilitate direct interactions with
healthcare professionals and automated systems using RAG
and LLMs to provide contextually relevant information and
predictive analytics. The LLM server (LLS) has been upgraded
with the latest AI models, enabling complex data interactions
and real-time learning, supporting predictive diagnostics and
personalized treatment plans, thereby extending its capabilities
to proactive health management.

The functionality of our advanced healthcare system crit-
ically depends on the efficient flow and processing of data,
facilitated by state-of-the-art networking technique namely
DUDR. Data collected by IoT devices, including critical
patient vitals, undergoes initial processing at nearby ECNs.
This proximal data handling minimizes latency, enabling rapid
responses to essential health metrics. RIS significantly enhance
the quality of data transmission within the healthcare facility.
By dynamically optimizing signal paths, RIS units ensure
robust and efficient communication links between IoT devices
and ECNs, thereby strengthening the overall stability and
continuity of the network.

Once processed, data is forwarded from the ECNs to the
CCU for more comprehensive system-wide analysis. This
stage involves sophisticated routing mechanisms that ensure
fast and secure data handling across the network. After
analysis, the CCU conveys data to the LLS for advanced
analytics. The LLS leverages sophisticated AI models to delve
deeper into patient health trends, facilitating predictive diag-
nostics and more informed medical decision-making. DUDR
is instrumental in optimizing network traffic flow within the
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system. It intelligently prioritizes and routes data based on
specific user needs and the urgency of medical situations.
For example, in emergencies, DUDR ensures that critical
patient information receives precedence, rapidly reaching the
required medical personnel while deprioritizing less urgent
data. The interaction between the CCU and the LLS embodies
the core of our system’s data analytics capability. Equipped
with advanced AI technologies, the LLS provides deep insights
into patient conditions, supporting complex decision-making
processes that enhance overall patient care and operational
efficiency.

III. SIGNAL MODEL

The signal model of the smart healthcare system encap-
sulates the data transmission and processing mechanisms,
starting from the collection of data by IoT devices to its final
analysis in the LLS. We consider a scenario where multiple
single-antenna IoT devices communicate their data through a
wireless medium facilitated by an RIS2 and processed by
ECNs, which are equipped with multiple antennas, before
reaching the CCU and LLS.

A. Overall Signal Reception at ECNs

Each IoT device is equipped with a single transmitting
antenna, whereas each ECN possesses 𝑄 number of multiple
receiving antennas. The RIS involved in the communication
path is composed of 𝑁 adjustable elements, enhancing signal
transmission through dynamic phase adjustments.

The transmitted signal from the 𝑘 th IoT device, denoted as
𝑥𝑘 (𝑡), can be expressed as:

𝑥𝑘 (𝑡) =
√︁
𝑃𝑘 (𝑡)𝑠𝑘 (𝑡), (1)

where 𝑃𝑘 (𝑡) is the transmission power of the 𝑘 th IoT device
at time instant 𝑡, and 𝑠𝑘 (𝑡) is the signal symbol at time 𝑡.

Now, the total signal received at the 𝑖th ECN, factoring in
the path selection, is given by

y𝑖,𝑘 (𝑡) = 𝑎dir
𝑖,𝑘h

dir
𝑖,𝑘 (𝑡)𝑥𝑘 (𝑡)

+ 𝑎RIS
𝑖,𝑘 HRIS

𝑖,𝑘 (𝑡)𝚽(𝑡)g𝑘 (𝑡)𝑥𝑘 (𝑡) + n𝑖,𝑘 (𝑡), (2)

where 𝑎dir
𝑖,𝑘

and 𝑎RIS
𝑖,𝑘

are binary variables indicating the use
of the direct and RIS-enhanced paths, respectively. Here,
hdir
𝑖,𝑘
(𝑡) ∈ C𝑄×1 is a vector of channel gains from the 𝑘 th

IoT device to the 𝑖th ECN at time instant 𝑡, HRIS
𝑖,𝑘
(𝑡) ∈ C𝑄×𝑁

is a matrix representing the channel from the RIS to the 𝑖th

ECN at time instant 𝑡, 𝚽(𝑡) ∈ C𝑁×𝑁 is a diagonal matrix
representing the phase shifts introduced by the RIS at time
instant 𝑡, g𝑘 (𝑡) ∈ C𝑁×1 is the channel gain from the 𝑘 th IoT
device to the RIS at time 𝑡, and n𝑖,𝑘 (𝑡) ∈ C𝑄×1 is a vector of
additive noise at time 𝑡.

2To address practical deployment challenges, we note that RIS panels
can be non-invasively integrated within hospital ceilings or walls due to their
thin, passive, and low-power nature. This facilitates enhanced indoor wireless
coverage without disrupting existing infrastructure.
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Fig. 3: DUDR process flowchart.

B. RIS Phase Shift Matrix

The effectiveness of the RIS-enhanced signal is significantly
influenced by the phase shifts of the RIS elements. These en-
hancements can be mathematically represented by a diagonal
matrix 𝚽(𝑡), which combines both phase adjustments and gain
factors:

𝚽(𝑡) = diag(𝑒 𝑗 𝜙1 (𝑡 ) , 𝑒 𝑗 𝜙2 (𝑡 ) , . . . , 𝑒 𝑗 𝜙𝑁 (𝑡 ) ), (3)

where 𝜙𝑘 (𝑡) is the phase shift introduced by the 𝑛th element
of the RIS at time instant 𝑡, with 𝑁 being the total number of
elements in the RIS. The term 𝑒 𝑗 𝜙𝑛 (𝑡 ) signifies that each RIS
element adjusts the phase of the incoming signal, aligning it
optimally for improved propagation and reception. RIS phase
shifts are dynamically optimized by a DRL agent guided by
LLM-derived policies, which incorporate real-time healthcare
context. Factors such as residual device energy influence
passive reflection prioritization to conserve power, while sud-
den changes in patient vitals trigger emergency-aware RIS
configurations for low-latency, high-reliability transmission.

C. Dynamic User-Specific Data Routing

The flowchart in Fig. 3 illustrates the DUDR process in a
smart healthcare system. It begins with data collection from
IoT devices, followed by real-time storage of the collected
data. For this purpose, a time-series database, InfluxDB, is
employed due to its capability to handle high-frequency write
operations and complex queries. These databases are strategi-
cally positioned between the IoT devices and the edge server
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to ensure efficient data flow. InfluxDB is particularly well-
suited for managing time-sensitive health metrics, enabling
timely ingestion and consistent availability of patient data for
downstream processing.

We now incorporate a real-time scoring function guided
by LLM-based IAI at MEC nodes, which interprets patient
context, signal metrics, and emergency factors to optimize
routing and dynamically reconfigure RIS via a DRL agent.
Subsequently, scoring calculations are conducted using a
predefined path selection scoring mechanism, as detailed in
Subsection III-C-1.

1) Path Selection Scoring Mechanism: The adoption of a
scoring mechanism for path selection in smart healthcare sys-
tems is driven by the need to optimize data transmission under
varying network conditions and clinical urgencies. The scoring
approach ensures that every data path is evaluated against a
set of critical performance metrics such as signal strength,
proximity, user-specific needs, and emergency medical factors.
This comprehensive evaluation is crucial because it allows the
system to adapt dynamically to changes in the environment or
user conditions, ensuring that the most efficient and effective
transmission routes are selected for every situation.

The flexibility to use direct links, RIS-enhanced links, or
a combination of both based on their scores further enhances
the system’s robustness, providing redundancy and ensuring
continuous service even under suboptimal conditions. This
dual-path utilization is particularly advantageous in e-health
applications where network stability and data fidelity are
paramount. For instance, in remote patient monitoring systems,
selecting the most dependable communication path ensures
uninterrupted data flow and preservation of critical health
information, thereby enabling healthcare providers to make
timely and well-informed clinical decisions.

Overall, this scoring method aligns with the goals of modern
e-health systems, which strive to offer timely, and patient-
centered care. By intelligently routing data based on real-
time assessments of network and user conditions, the sys-
tem supports a wide range of e-health applications, from
telemedicine and remote diagnostics to emergency medical
response, thereby playing a pivotal role in the digital trans-
formation of healthcare.

Hence, we introduce a comprehensive scoring mechanism
for path selection at time instant 𝑡 which depends on the
following parameters:

• Distance (d): The physical distance between the IoT
device and the ECN at time instant 𝑡, represented by
𝑑𝑖,𝑘 (𝑡). The distance between two points (𝑥1, 𝑦1) and
(𝑥2, 𝑦2) at time instant 𝑡 is calculated as:

𝑑𝑖,𝑘 (𝑡) =
√︃
(𝑥𝑖 (𝑡) − 𝑥𝑘 (𝑡))2 + (𝑦𝑖 (𝑡) − 𝑦𝑘 (𝑡))2. (4)

• Signal Strength (SS): Measured for both the direct and
RIS-enhanced paths at time instant 𝑡, denoted as 𝑆𝑆dir

𝑖,𝑘
(𝑡)

and 𝑆𝑆RIS
𝑖,𝑘
(𝑡), respectively. The signal strength at time

instant 𝑡 is calculated based on the Log-normal path loss

model:

𝑆𝑆𝑖,𝑘 (𝑡) = 𝑃𝑡 (𝑡) − 𝑃𝐿𝑑0

− 10𝛾 log10

(
𝑑𝑖,𝑘 (𝑡)
𝑑0

)
+ N(0, 𝜎). (5)

Here, 𝑃𝐿𝑑0 represents the path loss at the reference
distance 𝑑0, and N(0, 𝜎) denotes the Gaussian random
variable with zero mean and standard deviation 𝜎 ac-
counting for shadow fading.

• User-Specific Parameters (𝑈𝑖,𝑘 (𝑡)): These parameters re-
flect unique user requirements and device characteristics
at time instant 𝑡 influencing data routing decisions.

• Emergency Factor (𝐸𝑖,𝑘 (𝑡)): The emergency factor at
time instant 𝑡 prioritizes data routing based on the crit-
icality of the monitored condition. It is calculated as
a weighted sum of various health indicators, including
heart rate, blood pressure, respiratory rate, oxygen satu-
ration, glucose level, ECG readings, and consciousness
level. These indicators range from non-critical (0) to life-
threatening (1).

The proposed scoring evaluates each potential path i.e.,
Direct path and RIS-enhanced path, and selects the optimal
path or paths based on a composite score as provided below

Scoredir
𝑖,𝑘 (𝑡) = 𝑤1𝑆𝑆

dir
𝑖,𝑘 (𝑡) − 𝑤2𝑑𝑖,𝑘 (𝑡)

+ 𝑤3𝑈𝑖,𝑘 (𝑡) + 𝑤4𝐸𝑖,𝑘 (𝑡), (6)

ScoreRIS
𝑖,𝑘 (𝑡) = 𝑤1𝑆𝑆

RIS
𝑖,𝑘 (𝑡) − 𝑤2𝑑𝑖,𝑘 (𝑡)

+ 𝑤3𝑈𝑖,𝑘 (𝑡) + 𝑤4𝐸𝑖,𝑘 (𝑡), (7)
Total score(𝑡) =Scoreuser to RIS (𝑡) + ScoreRIS to ECN (𝑡). (8)

where 𝑤1 to 𝑤4 are weights assigned to signal strength,
distance, user-specific parameters, and the emergency factor,
respectively. These scores help the path selection algorithm
dynamically prioritize routes based on an integrated assess-
ment of signal quality, proximity, user-specific needs, and
the urgency of the medical situation. In this scenario, the
priority of weights would be 𝑤4 > 𝑤1 > 𝑤2 > 𝑤3 reflecting
the criticality of emergency response and the importance of
accurate heart rate monitoring in the e-health system.

The calculated scores are checked against the threshold via
a microcontroller:
• Both Scores Below Threshold: If both Scoredir and

ScoreRIS are below the threshold, the data is sent to
the LLM-based chat assistant. This process involves re-
trieving patient details stored in the real-time database
and utilizing the RAG mechanism to enrich the LLM’s
responses.

• Either Score Above or Equal to Threshold: If either
Scoredir or ScoreRIS scores are above or equal to the
threshold, the microcontroller further evaluates the emer-
gency level. In cases of high emergency, both a short mes-
sage service (SMS) and an email are sent to the doctor’s
mobile number and email address respectively. The SMS
is sent via a Global System for Mobile Communication
(GSM) module and includes the measured values and the
Global Positioning System (GPS) position of the patient
[38]. The email, sent through SMTP, provides a more
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Algorithm 1 GA for Optimal User-ECN and User-RIS-ECN Se-
lection at Time Instant 𝑡.

1: Initialize: Set of users 𝑈, set of ECNs 𝐸 , set of RISs 𝑅, transmit
power 𝑃𝑡 (𝑡), distance threshold 𝐷th

2: Initialize an empty list Results
3: for each user 𝑢 ∈ 𝑈 do
4: best combination← 𝑁𝑜𝑛𝑒

5: best score← −∞
6: for each ECN 𝑒 ∈ 𝐸 do
7: Calculate the 𝐷 (𝑢, 𝑒, 𝑡) using (4)
8: if 𝐷 (𝑢, 𝑒, 𝑡) > 𝐷th then
9: continue

10: end if
11: Calculate the 𝑆𝑆dir (𝑡) using (5).
12: Calculate the Scoredir

𝑖,𝑘
(𝑡) using (6).

13: if Scoredir (𝑡) ≥ best score then
14: best score← Scoredir (𝑡)
15: best combination← (𝑢, 𝑁𝑜𝑛𝑒, 𝑒)
16: end if
17: for each RIS 𝑟 ∈ 𝑅 do
18: Calculate the 𝐷 (𝑢, 𝑟, 𝑡) using (4).
19: Calculate the 𝐷 (𝑟, 𝑒, 𝑡) using (4).
20: Calculate 𝐷 (𝑢𝑟, 𝑟𝑒, 𝑡) = 𝐷 (𝑢, 𝑟, 𝑡) + 𝐷 (𝑟, 𝑒, 𝑡).
21: if 𝐷 (𝑢𝑟, 𝑟𝑒, 𝑡) > 𝐷th then
22: continue
23: end if
24: Calculate the 𝑆𝑆RIS (𝑡) using (5).
25: Calculate the ScoreRIS

𝑖,𝑘
(𝑡) using (7)

26: if ScoreRIS (𝑡) > best score then
27: best score← ScoreRIS (𝑡)
28: best combination← (𝑢, 𝑟, 𝑒)
29: end if
30: end for
31: end for
32: Add best combination and best score to Results
33: end for
34: return Results

detailed report. For less severe emergencies, only an email
notification is sent, providing comprehensive details and
allowing the doctor to assess and prioritize the situation
based on the detailed information provided.

Finally, after passing the score check, the path selection
process determines the routing path using either the Greedy
algorithm (GA) or the GLAA, depending on the scenario.
The details of these algorithms are described in the following
subsections.

2) GA for Optimal User-ECN and User-RIS-ECN Selection:
The GA is designed to make immediate, local optimizations
by selecting the best combination of users, ECNs, and RISs
based on the highest signal strength at the current moment.
The steps of the algorithm are provided in Algorithm 1.

The problem with the GA is that it only makes decisions
based on the immediate scores without considering the poten-
tial future states of the network. This can lead to suboptimal
path selections since it does not account for the possibility
that a slightly lower current score might lead to a much better
overall score when future conditions are taken into account. As
a result, the GA might commit to paths that seem best in the
short term but are less optimal in the long run. Additionally,
the execution time of the GA can be high due to the need to
evaluate all potential paths without any intermediate filtering.

Algorithm 2 GLAA for Optimal User-ECN and User-RIS-ECN
Selection at Time Instant 𝑡.

1: Initialize: Set of users 𝑈, set of ECNs 𝐸 , set of RISs 𝑅, transmit
power 𝑃𝑡 (𝑡), distance threshold 𝐷th

2: Initialize an empty list Results
3: for each user 𝑢 ∈ 𝑈 do
4: best combination← 𝑁𝑜𝑛𝑒

5: best score← −∞
6: for each ECN 𝑒 ∈ 𝐸 do
7: Calculate 𝐷 (𝑢, 𝑒, 𝑡) using (4)
8: if 𝐷 (𝑢, 𝑒, 𝑡) ≤ 𝐷th then
9: Calculate 𝑆𝑆dir (𝑡) using (5)

10: Calculate Scoredir (𝑡) using (6)
11: if Scoredir (𝑡) > best score then
12: best score← Scoredir (𝑡)
13: best combination← (𝑢, 𝑁𝑜𝑛𝑒, 𝑒)
14: end if
15: end if
16: for each RIS 𝑟 ∈ 𝑅 do
17: Calculate 𝐷 (𝑢, 𝑟, 𝑡) using (4)
18: if 𝐷 (𝑢, 𝑟, 𝑡) ≤ 𝐷th then
19: Calculate 𝑆𝑆user to RIS (𝑡) using (5)
20: Calculate Scoreuser to RIS (𝑡) using (7)
21: if Scoreuser to RIS (𝑡) > best score then
22: for each ECN 𝑒′ ∈ 𝐸 do
23: Calculate 𝐷 (𝑟, 𝑒′, 𝑡) using (4)
24: if 𝐷 (𝑟, 𝑒′, 𝑡) ≤ 𝐷th then
25: Calculate 𝑆𝑆RIS to ECN (𝑡) using (5)
26: Calculate ScoreRIS to ECN (𝑡) using (7)
27: Calculate Total score(𝑡) using (8)
28: if Total score(𝑡) > best score then
29: best score←Total score(𝑡)
30: best combination←(𝑢, 𝑟, 𝑒′)
31: end if
32: end if
33: end for
34: end if
35: end if
36: end for
37: end for
38: Add best combination and best score to Results
39: end for
40: return Results

3) GLAA Algorithm for Optimal User-ECN and User-RIS-
ECN Selection: The GLAA improves upon the basic GA by
considering potential future network states. This algorithm
evaluates immediate and potential future scores to make more
strategic routing decisions. The steps of the algorithm are
provided in Algorithm 2.

The GLAA addresses the shortcomings of the basic GA by
incorporating a look-ahead mechanism that evaluates potential
future states of the network. It first checks if the user-to-RIS
score is greater than the current best score, which acts as a
filter to identify promising intermediate links. If the user-to-
RIS score is high enough, the algorithm then evaluates the
combined user-RIS-ECN score. This approach ensures that
decisions are not just based on immediate scores but also
consider the potential future benefits, leading to more strate-
gic and optimal path selections. By focusing on promising
intermediate links, the GLAA effectively balances immediate
and future network performance, resulting in more efficient
and effective routing decisions. Furthermore, the intermediate
filtering step reduces unnecessary computations, which can
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lead to a shorter execution time compared to the basic GA,
despite the additional evaluations.

IV. OPTIMIZATION FRAMEWORK

Each computational task in the system is
characterized by the following parameters: 𝜏𝑖,𝑘 (𝑡) =

{𝐷𝑖,𝑘 (𝑡), 𝐶𝑖,𝑘 (𝑡), 𝐿𝑚𝑎𝑥𝑖,𝑘
(𝑡)}, where 𝐷𝑖,𝑘 (𝑡) represents the

data size, 𝐶𝑖,𝑘 (𝑡) denotes the required CPU cycles per byte
to process the data task corresponding to user 𝑘 and edge
computing node (ECN) 𝑖 at time instant 𝑡, and 𝐿𝑚𝑎𝑥

𝑖,𝑘
(𝑡)

specifies the maximum latency tolerance in ms.

A. Decision Making for Task Offloading

The decision to offload a task to the ECN is based on
optimizing the trade-off between execution time and energy
consumption, under the constraint of maximum tolerance
latency. The decision variable is denoted as

𝛽𝑖,𝑘 (𝑡) =
{

1, if the task is offloaded to the ECN,
0, otherwise.

(9)

In the context of smart healthcare systems, efficient task
execution is critical for both local and edge computing en-
vironments. This section delineates the computation models
for tasks executed on IoT devices and through ECNs.

B. Local Computing on IoT Devices

Local computing is defined based on the computational ca-
pability of the IoT device, denoted as ΩIoT

𝑖,𝑘
(𝑡), which represents

the CPU cycles per second available for task execution. For
a given task processed locally, the execution time 𝑇 IoT

𝑖,𝑘
(𝑡) is

determined by

𝑇 IoT
𝑖,𝑘 (𝑡) =

𝐶𝑖,𝑘 (𝑡)
ΩIoT
𝑖,𝑘
(𝑡)
. (10)

The energy consumption 𝐸 IoT
𝑖,𝑘
(𝑡) for executing the task

locally at the IoT device is calculated as

𝐸 IoT
𝑖,𝑘 (𝑡) = 𝜔

(
ΩIoT
𝑖,𝑘 (𝑡)

)2
𝐶𝑖,𝑘 (𝑡), (11)

with 𝜔 = 10−26 watts/cycle3 being a coefficient dependent on
the chip architecture, reflecting the energy efficiency of the IoT
device’s processor. This model enables dynamic adjustment
of the CPU-cycle frequency via technologies like dynamic
voltage and frequency scaling (DVFS) to optimize for energy
consumption while meeting execution time requirements.

C. Edge Computing via ECN

In the edge computing model, tasks are offloaded to an
ECN for processing. The transmission rate 𝑅𝑖,𝑘 (𝑡) for sending
input data from the IoT device to the ECN over a wireless
channel after applying maximum-ratio combining is given by
(12), which is presented on the top of the next page. Here, 𝑤
denotes the bandwidth allocated for transmission (𝑤 = 𝐵/𝑁)
and 𝜎2

𝑖,𝑘
(𝑡) represents the noise power at the 𝑖th ECN. 𝐼𝑖,𝑘 (𝑡)

is the total interference power received at the 𝑖th ECN from
other transmitting devices, which is given as follows

𝐼𝑖,𝑘 (𝑡) =
∑︁𝐼

𝑖

∑︁𝐾

𝑣≠𝑘

��𝑎d
𝑖,𝑣 (𝑡)hd

𝑖,𝑣 (𝑡)

+𝑎RIS
𝑖,𝑣 (𝑡)HRIS

𝑣,𝑟 (𝑡)𝚽(𝑡)g𝑟 ,𝑣 (𝑡)
��2 𝑃𝑣 (𝑡). (13)

The total execution time for edge computing 𝑇𝐶
𝑖,𝑘
(𝑡) includes

both the transmission time to the ECN and the computation
time at the ECN, and thus computed as follows:

𝑇ECN
𝑖,𝑘 (𝑡) =

𝐷𝑖,𝑘 (𝑡)
𝑅𝑖,𝑘 (𝑡)

+
𝐶𝑖,𝑘 (𝑡)
ΩECN (𝑡)

, (14)

where 𝐷𝑖,𝑘 (𝑡) denotes the data size of the task, and ΩECN (𝑡)
the fixed CPU-cycle frequency of the ECN.

The energy consumption for offloading and executing the
task at the ECN 𝐸ECN

𝑖,𝑘
(𝑡) is given as follows

𝐸ECN
𝑖,𝑘 (𝑡) =

𝑃𝑖,𝑘 (𝑡)𝐷𝑖,𝑘 (𝑡)
𝑅𝑖,𝑘 (𝑡)

. (15)

This model assumes the outcome data size from the ECN
back to the IoT device is significantly smaller than the input
data size, hence the energy and time costs for returning results
are negligible.

In the realm of IoT-based healthcare systems, the dual objec-
tives of minimizing energy consumption and execution latency
are paramount, directly impacting both the patient experience
and the operational longevity of IoT devices. To address these
concerns, our model introduces a novel approach to balancing
these objectives, employing a dynamic weighting factor 𝜆𝑖,𝑘 (𝑡)
(𝜆𝑖,𝑘 (𝑡) ∈ [0, 1]), which allows for a flexible trade-off between
energy savings and latency reduction, tailored to meet patient-
specific requirements.

Furthermore, recognizing the critical role of battery sus-
tainability in IoT applications, our framework integrates the
battery’s residual energy rate 𝜌𝑖,𝑘 (𝑡) into the weighting factor.
This adjustment ensures that decision-making aligns with the
device’s current energy state, promoting energy-efficient op-
erations without compromising service quality. The modified
weighting factor is given by

𝜆∗𝑖,𝑘 (𝑡) = 𝜆𝑖,𝑘 (𝑡)𝜌𝑖,𝑘 (𝑡), (16)

where 𝜌𝑖,𝑘 (𝑡) =
𝐸res
𝑖,𝑘
(𝑡 )

𝐸 total (𝑡 ) , with 𝐸 res
𝑖,𝑘
(𝑡) representing the maxi-

mum available residual energy of the IoT device connected to
ECN 𝑗 and 𝐸 total (𝑡) denoting the total battery capacity.

Given this foundation, the overhead for executing a task
directly on the IoT device, encapsulating both energy con-
sumption and latency, is formulated as follows

𝑂IoT
𝑖,𝑘 (𝑡) = 𝜆

∗
𝑖,𝑘 (𝑡)𝑇

IoT
𝑖,𝑘 (𝑡) + (1 − 𝜆

∗
𝑖,𝑘 (𝑡))𝛽𝐸

IoT
𝑖,𝑘 (𝑡), (17)

where 𝛽 serves as a normalization factor, equalizing the units
between energy consumption and latency to facilitate their
direct comparison. This factor is derived from the ratio of
the average latency to the average energy consumption across
all tasks and devices. Here, 𝜆𝑡

𝑖,𝑘
= 𝜆∗

𝑖,𝑘
(𝑡) and 𝜆ECN

𝑖,𝑘
=

(1 − 𝜆∗
𝑖,𝑘
(𝑡))𝛽 respectively represent the adjusted weights for

execution latency and energy consumption.
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𝑅𝑖,𝑘 (𝑡) = 𝑤 log2
©­­«1 +

������𝑎d
𝑖,𝑘
(𝑡)hd

𝑖,𝑘
(𝑡) + 𝑎RIS

𝑖,𝑘
(𝑡)HRIS

𝑖,𝑟
(𝑡)𝚽(𝑡)g𝑟 ,𝑘 (𝑡)

������2 𝑃𝑘 (𝑡)
𝜎2
𝑖,𝑘
(𝑡) + 𝐼𝑖,𝑘 (𝑡)

ª®®¬ . (12)

In parallel, for tasks offloaded to the ECN, the overhead is
calculated as follows

𝑂ECN
𝑖,𝑘 (𝑡) = 𝜆

𝑡
𝑖,𝑘𝑇

ECN
𝑖,𝑘 (𝑡) + 𝜆

ECN
𝑖,𝑘 𝐸ECN

𝑖,𝑘 (𝑡). (18)

Consequently, the cumulative overhead for the IoT device in
executing or offloading the task is determined by

𝑂𝑖,𝑘 (𝑡) = 𝛽𝑖,𝑘 (𝑡)𝑂ECN
𝑖,𝑘 (𝑡) + (1 − 𝛽𝑖,𝑘 (𝑡))𝑂

IoT
𝑖,𝑘 (𝑡). (19)

This comprehensive approach ensures an optimal balance be-
tween energy efficiency and latency, enhancing device auton-
omy and patient satisfaction in IoT-driven healthcare services.

D. Optimization Problem Formulation using MM

Our objective is to minimize the total overhead in the system
by optimizing the allocation and routing of computational
tasks and signal paths. Thus, the optimization problem can
be formulated as follows:

min
𝑎𝑡

∑︁
𝑖,𝑘

(
𝛽𝑖,𝑘 (𝑡)𝑂ECN

𝑖,𝑘 (𝑡) + (1 − 𝛽𝑖,𝑘 (𝑡))𝑂
IoT
𝑖,𝑘 (𝑡)

)
(20a)

s.t. 𝑇 IoT
𝑖,𝑘 (𝑡) ≤ 𝐿

𝑚𝑎𝑥
𝑖,𝑘 (𝑡) if 𝑥𝑖 (𝑡) = 0, (20b)

𝑇ECN
𝑖,𝑘 (𝑡) ≤ 𝐿

𝑚𝑎𝑥
𝑖,𝑘 (𝑡) if 𝑥𝑖 (𝑡) = 1, (20c)

𝐸 IoT
𝑖,𝑘 (𝑡) ≤ 𝐸

res
𝑖,𝑘 (𝑡) if 𝑥𝑖 (𝑡) = 0, (20d)

𝐸ECN
𝑖,𝑘 (𝑡) ≤ 𝐸

res
𝑖,𝑘 (𝑡) if 𝑥𝑖 (𝑡) = 1, (20e)

Var(𝑇𝑖,𝑘 (𝑡)) ≤ 𝑉max ∀𝑖, 𝑘, (20f)
|𝜙𝑛 (𝑡) | ∈ 1, ∀𝑛 ∈ N , (20g)

where the constraints are described as follows. Constraints
(20b) and (20c) ensure that the latency for executing tasks,
whether locally on the IoT devices or at the ECNs, does
not exceed the maximum tolerance threshold 𝐿𝑚𝑎𝑥

𝑖,𝑘
(𝑡) at time

instant 𝑡. These constraints are pivotal for real-time healthcare
applications where delays can be critical. Constraints (20d)
and (20e) limit the energy consumption for executing tasks
to the residual energy available on the IoT devices (𝐸 res

𝑖,𝑘
(𝑡))

at time instant 𝑡. This is crucial for managing the energy
efficiency and operational longevity of battery-powered IoT
devices in a healthcare monitoring context. Finally, constraint
(20g) ensures that the magnitude of each phase shift 𝜙𝑛 (𝑡)
introduced by the RIS elements is equal to 1 at time instant 𝑡.

E. Optimization Problem Formulation using IAIM

Our objective is to minimize the total overhead in the system
by optimizing the allocation and routing of computational

tasks and signal paths. Thus, the optimization problem can
be formulated as follows:

min
𝑎𝑡

∑︁
𝑖,𝑘

(
𝛽𝑖,𝑘 (𝑡)𝑂ECN

𝑖,𝑘 (𝑡) + (1 − 𝛽𝑖,𝑘 (𝑡))𝑂
IoT
𝑖,𝑘 (𝑡)

)
(21a)

s.t. 0 ≤ 𝑎dir
𝑖,𝑘 (𝑡) + 𝑎

𝑅𝐼𝑆
𝑖,𝑘 (𝑡) ≤ 1 ∀𝑖, 𝑘, (21b)∑︁
𝑘

𝑥𝑖,𝑘 (𝑡) = 1 ∀𝑖, (21c)

𝑅𝑖,𝑘 (𝑡) ≥ 𝑅min ∀𝑖, 𝑘, 𝑥𝑖 (𝑡) = 1, (21d)
(20c), (20e), (20d), (20b), (20f), (21e)

where the constraints are described as follows. Constraint
(21b) ensures that either a direct or an RIS-enhanced path is
selected for each signal transmission between IoT devices and
ECNs at time instant 𝑡, enforcing exclusivity in path usage.
Constraint (21c) ensures that each IoT device is assigned to a
unique path at time instant 𝑡. Constraint (21d) ensures that the
data rate for each IoT device-ECN pair meets the minimum
required rate 𝑅min at time instant 𝑡. Constraint (20f) ensures
that the variance in latency does not exceed the maximum
allowed variance 𝑉max at time instant 𝑡.

The problem involves significant complexities, including
nonlinearity and time-variant dynamics. Hence, we employ
DRL techniques due to their adaptability, ability to balance
exploration and exploitation, and robustness in handling such
challenging environments.

V. PROPOSED SOLUTION FOR OPTIMIZATION PROBLEM

Standard proximal policy optimization (PPO) is imple-
mented due to its balance between simplicity and stability,
offering a robust training process through its clipped surrogate
objective function, which limits policy updates and ensures
sample efficiency. This makes PPO a widely adopted choice
for reinforcement learning tasks. However, to further enhance
performance, modified PPO is introduced, incorporating an
adaptive clipping parameter that dynamically adjusts based
on the behaviour of the policy. Particularly in non-stationary
contexts, this enhancement improves stability and convergence
by enabling more flexible and controlled policy updates.
Modified PPO’s adaptive nature and enhanced stability make it
particularly suitable for complex and evolving scenarios, pro-
viding more accurate learning outcomes compared to standard
PPO.

A. Standard Proximal Policy Optimization (PPO)

The aim of the standard PPO policy optimization technique
is to identify an improved policy through recurrent policy
updates based on observed trajectories. Moreover, standard
PPO is effective because it balances the need for robust
updates with the simplicity of implementation. The algorithm
achieves this through a clipped surrogate objective function,
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which limits the size of policy updates to prevent significant
deviations from the old policy, thus ensuring stability during
training. The policy is defined by 𝜋 with the parameter 𝜃𝜋 .
In the process of training, stochastic gradient descent (SGD)
is used on a mini-batch of 𝐿𝑡 transitions (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) in
order to identify an optimal policy 𝜋∗. The framework for the
proposed algorithm is defined as follows:
• State Space:The agent uses the variables in the state

space to make decisions and is dependent on the envi-
ronment. The state space at time instant 𝑡 is represented
as 𝑺𝑡 = {𝑺1, 𝑺2}, where 𝑺1 encapsulates the channel
conditions:

{
hdir
𝑖,𝑘
(𝑡),HRIS

𝑖,𝑘
(𝑡), g𝑘 (𝑡)

}
,∀𝑖, 𝑘 , and 𝑺2 covers

synchronization parameter: {𝑇RIS }, where the system
model synchronizes with the RIS operational time-scale
{𝑇RIS } to avoid synchronization conflicts.

• Action Space: All the optimizing variables are kept
in the action space and are represented by 𝒂𝑛𝑡 ={
x(𝑡), 𝜆(𝑡),ΩIoT (𝑡), 𝛽(𝑡), 𝑃(𝑡),𝚽(𝑡)

}
, where 𝑎𝑛𝑡 ∈ 𝑎𝑡 . The

set of all possible actions at time instant 𝑡 is denoted
by 𝒂𝑡 =

{
𝒂1
𝑡 , 𝒂

2
𝑡 , 𝒂

3
𝑡 , . . . , 𝒂

𝑛
𝑡 , . . . ,∞

}
. Each element of

this set, 𝒂𝑖𝑡 for 𝑖 = 1, 2, 3, . . ., corresponds to a specific
combination of the optimization variables. The action
space 𝒜 = {𝑎1, 𝑎2, . . . , 𝑎𝑡 , 𝑎𝑡+1, . . . ,∞} consists of all
possible actions at different time instants.

• Reward function (𝑟𝑡 ) : A reward function calculates the
obtained reward at time instant 𝑡 is designed as

𝑟𝑡 (𝒔𝑡 , 𝒂𝑡 ) =
∑︁

𝑖,𝑘

(
𝛽𝑖,𝑘 (𝑡)𝑂ECN

𝑖,𝑘 (𝑡)

+(1 − 𝛽𝑖,𝑘 (𝑡))𝑂IoT
𝑖,𝑘 (𝑡)

)
(22)

The objective function to update the policy parameters is
𝜃 𝜋
𝑡+1 = argmax

𝜃 𝜋

1
𝐿𝑡

∑𝐿𝑡
𝑖=1 ∇𝑎𝑖L (𝑆𝑖 , 𝑎𝑖; 𝜃

𝜋) . In standard PPO, the

agent interacts with the environment to find the optimal policy
𝜋∗ with the parameter 𝜃 𝜋

∗
that maximizes the reward:

L (𝑆, 𝑎; 𝜃 𝜋) = E
[
𝜋𝜃 𝜋 (𝑆, 𝑎)
𝜋𝜃𝑜𝑙𝑑 (𝑆, 𝑎)

𝐴𝜋 (𝑆, 𝑎)
]
, (23)

where the policy distribution of the actor network is rep-
resented by 𝜋𝜃 𝜋 (𝑆, 𝑎) and that of the old actor network
by 𝜋𝜃𝑜𝑙𝑑 (𝑆, 𝑎). Here, 𝐴𝜋 (𝑆, 𝑎) is the advantage function.
To prevent excessive policy updates, standard PPO uses the
following clipping surrogate method:

Lclip (𝑆, 𝑎; 𝜃 𝜋) = E
[
min

(
𝜋𝜃 𝜋 (𝑆, 𝑎)
𝜋𝜃𝑜𝑙𝑑 (𝑆, 𝑎)

𝐴𝜋 (𝑆, 𝑎),

clip
(
𝜋𝜃 𝜋 (𝑆, 𝑎)
𝜋𝜃𝑜𝑙𝑑 (𝑆, 𝑎)

, 1 − 𝜖, 1 + 𝜖
)
𝐴𝜋 (𝑆, 𝑎)

)]
, (24)

where the clipping parameter is 𝜖 . The formula for the
advantage estimate 𝐴𝜋 is 𝐴𝜋 = 𝑅𝑡 + 𝜆𝑉 (𝑆𝑡+1) − 𝑉 (𝑆𝑡 ) where
the estimated value of the state 𝑆𝑡 is denoted by 𝑉 (𝑆𝑡 ) and
the observed return is represented by 𝑅𝑡 . The parameters are
updated as follows: 𝜃𝑡+1 = argmax

𝜃𝜋

E
[
Lclip (𝑠, 𝑎; 𝜃𝜋)

]
. The

policy is learned using a mini-batch 𝐿𝑡 .

B. Modified Proximal Policy Optimization
By adding an adaptive clipping parameter 𝜖𝑡 and making

changes to the value function update, modified PPO expands

on PPO. This parameter, which is obtained from the Kullback-
Leibler (KL) divergence between the current policy and the old
policy, is dynamically changed based on the behaviour of the
policy:

𝜖𝑡 = 𝜖 sign
(
KL

(
𝜋𝜃old ∥𝜋𝜃𝑡

)
− 𝛿

)
, (25)

where 𝛿 is a small constant and (KL
(
𝜋𝜃old ∥𝜋𝜃𝑡

)
denotes the

KL divergence between the previous and the present policies.
The fixed threshold 𝜖 in the surrogate objective function of the
traditional PPO is replaced by this adaptive clipping parameter.
Adapting 𝜖𝑡 dynamically in response to the KL divergence,
modified PPO makes sure that policy updates are under control
and consistent with the behaviour of the present policy. By
allowing for bigger updates when the policy is closer to the
original and avoiding excessive modifications when it deviates
greatly from it, the adaptive clipping technique enables precise
and stable policy updates. The optimization process’s stability
and convergence are enhanced by this dynamic modification.
Until convergence, the algorithm iterates over episodes and
steps, updating networks and refining the policy using both
standard and modified PPO. The detailed description of the
PPO and modified PPO implementation are similar to those
outlined in [39].

C. Computational Complexity

We provide the complexity analysis for standard PPO and
modified PPO algorithms in Table II. Note that both the

TABLE II: Complexity Analysis of standard PPO and modified PPO [39]

Algorithm Complexity

Standard PPO 𝑂[2( (9𝑁 + 9)𝑙1 + 𝑙1𝑙2 ) + 𝑙2 (𝑁 + 1) + 𝜖 ]

Modified PPO 𝑂[2( (9𝑁 + 9)𝑙1 + 𝑙1𝑙2 ) + 𝑙2 (𝑁 + 1) + 𝜖𝑡 ]

algorithms possess the similar input layer, the first hidden
layer, and the second hidden layer as 9𝑁 + 9, 𝑙1, and 𝑙2,
respectively, where N represents the number of RIS elements.
Moreover, similar dimensions are considered for the actor-
network and critic network of both the algorithms. However,
actor and the critic networks in the output layer are different
i.e., 𝑁 and 1, respectively. Consequently, the complexity of the
standard PPO algorithm is estimated as 𝑂 [2((9𝑁+9)𝑙1+𝑙1𝑙2)+
𝑙2 (𝑁 + 1) + 𝜖] whereas the complexity analysis for modified
PPO is given by 𝑂 [2((9𝑁 +9)𝑙1 + 𝑙1𝑙2) + 𝑙2 (𝑁 +1) + 𝜖𝑡 ]. Here,
𝜖 represents the clip factor of standard PPO and 𝜖𝑡 is the clip
factor for the modified PPO.

VI. PROPOSED SOLUTION TO IMPLEMENT DUDR

The DUDR system is designed to set up a comprehensive
healthcare monitoring framework that involves setting up a
database, collecting patient health data, evaluating emergency
levels based on predefined criteria, and alerting healthcare
providers if an emergency is detected. The system follows
these steps:

1) Database Setup: Create a real-time database to store
patient health data, including heart rate, blood pressure,
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temperature, oxygen saturation, respiratory rate, glucose
level, ECG readings, and consciousness level.

2) Data Collection: Generate random coordinates for users
and edge servers, calculate distances, evaluate signal
strengths, and store this data along with simulated health
parameters in the database.

3) Emergency Factor Calculation: Calculate an emergency
factor based on health data by assessing various health
indicators like heart rate, blood pressure, and tempera-
ture to determine patient urgency.

4) Evaluation of Scores: Categorize patients into high, low,
or no emergency levels by calculating scores for direct
and RIS signal paths and sorting patients accordingly.

5) Alert Notification: Send email alerts to healthcare
providers for high or low emergency patients by format-
ting patient data into an HTML email and using SMTP.

6) Visualization with Streamlit: Use Streamlit to visualize
patient data and emergency status in an interactive
web interface, allowing healthcare providers to view
real-time data and monitor patient health metrics and
emergency alerts.

This implementation ensures a robust and responsive health-
care monitoring system, enhancing personalized patient care.

VII. SIMULATION RESULTS

We consider latency and overhead as the primary per-
formance metrics due to their vital impact on real-time re-
sponsiveness and resource efficiency in healthcare networks.
The simulation parameters are outlined as follows [10]. The
number of IoT nodes (𝐾) is set to 100, and the number of
ECNs (𝐼) is 10. The number of RISs is 20. The weights
(𝑤1
𝑖,𝑘
, 𝑤2

𝑖,𝑘
, 𝑤3

𝑖,𝑘
, 𝑤4

𝑖,𝑘
) are [0.6, 0.5, 0.2, 0.8]. The CPU fre-

quency of the ECN (ΩECN) is 4 GHz. The data size (𝐷𝑖,𝑘)
varies randomly between 300 and 1200 KB. The required CPU
cycles for a task (𝐶𝑖,𝑘) are 0.1106 cycles. The CPU frequency
range of an IoT node (ΩIoT) is 1 GHz. The maximum

Fig. 4: LLM-based Chat-assistant system.

Fig. 5: Comparative performance analysis of the specific patient based on
LLM stored data and real-time data.

Fig. 6: LLM-based Chat-assistant addressing queries related to patients based
on real-time health data.

transmission power (𝑃max) is 23 dBm. The maximum latency
(𝐿ECN

max , 𝐿
IoT
max) is 100 ms. The number of RIS elements (𝑁)

is 32. The noise power (𝜎2
𝑖,𝑘

) is 10−12 W. The total battery
capacity (𝐸 total) is 2500 mAH, and the maximum residual
energy of an IoT node (𝐸 res

𝑖,𝑘
) is 500 mAH. The bandwidth

(𝐵) is 10 MHz. Additionally, the DRL setup parameters are as
follows [39]: the learning rate for the critic-network is 0.0002,
the soft update coefficient is 0.0005, the learning rate for the
actor-network is 0.0001, the mini-batch size is 64, the discount
factor is 0.9, the number of neurons for the two hidden layers
are [512, 512], the replay buffer capacity is 1, 000, 000, and
variance of the action noise is 0.1.

The comprehensive functionality and integration of the chat
assistant system, showcasing its architecture, data analysis
capabilities, real-time patient interaction, health monitoring
over time, and emergency alert notifications are illustrated by
the following figures. Fig. 4 depicts the architecture of the
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TABLE III: High-Emergency Patient Alert Details

ID Emergency Level Heart Rate (bpm) Blood Pressure (mmHg) Temperature (°C) Oxygen Saturation (%) Respiratory Rate (breaths/min) Glucose Level (mg/dL)

02fb2b2 High 106.4688177166527 175.20673459726896 39.42061214045992 96.3631347289573 24.41505696808657 97.21422519852825

00a0258 High 100.22138548881156 120.29109318133378 39.011219967723544 98.94477790224133 23.14558327980297 90.25056001258336

ID ECG Consciousness Level (GCS) Respiratory Distress Symptoms Location Google Maps Timestamp

02fb2b2 Premature Ventricular Contractions 4.952926671804939 None (97.37754581190126, 20.016399880138672) Google Maps 2024-05-28 13:28:49

00a0258 Bradycardia 4.81753731671595 None (23.490463758913382, 23.50230336291763) Google Maps 2024-05-28 13:28:47

TABLE IV: Low-Emergency Patient Alert Details

ID Emergency Level Heart Rate (bpm) Blood Pressure (mmHg) Temperature (°C) Oxygen Saturation (%) Respiratory Rate (breaths/min) Glucose Level (mg/dL)

03fcef1 Low 99.4190714460207 113.19362771001719 36.806600266350735 91.02150424909478 17.081330473756574 94.8485430392117

0000000 Low 102.28149856938138 155.13993896209055 37.61902949513211 98.13440088600638 15.430118653565344 91.00634380972996

ID ECG Consciousness Level (GCS) Respiratory Distress Symptoms Location Google Maps Timestamp

03fcef1 Premature Ventricular Contractions 4.93297072362235 None (67.57490050170526, 26.462463561717453) Google Maps 2024-05-28 13:36:38

0000000 Ventricular Fibrillation 14.005003470243134 None (60.3673551870876106, 46.538227141152499) Google Maps 2024-05-28 13:36:35

Fig. 7: An illustration of comparative and latest patient details.

chat assistant, showing how it integrates multiple data sources,
including real-time patient data and stored information, to
provide personalized healthcare support. Fig. 5 demonstrates
the system’s ability to analyze patient data from both stored
records and real-time inputs, highlighting the effectiveness
of the chat assistant in delivering accurate and timely health
insights. Fig. 6 shows the chat assistant in action, responding to
patient queries using up-to-date health metrics to provide rele-
vant and precise advice. Fig. 7 presents a comparison between
historical and current health data of patients, demonstrating
how the system tracks changes over time to ensure accurate
health monitoring. Table III and Table IV show the email alerts
generated by the system for high and low-emergency patients,
respectively, including health metrics and location information.
These alerts ensure that healthcare providers are informed of
all emergency levels, with a link to the patient’s location for
immediate action.

Fig. 8a presents a comparative analysis of the cumulative

overhead for an IoT device when executing or offloading
tasks using both IAIM and MM, leveraging standard PPO
and a modified PPO algorithm. IAIM with the modified PPO
algorithm significantly reduces the overhead by approximately
9.6% compared to MM with the standard PPO algorithm,
demonstrating its superior efficiency. This performance en-
hancement is due to the AI model’s dynamic adaptability,
enabling real-time, data-driven decision-making by contin-
uously adjusting to system and environmental conditions.
Unlike MM, which operates on static assumptions, IAIM
uses advanced algorithms to proactively adapt to changes,
ensuring optimal performance. The modified PPO algorithm
contributes to overhead reduction through several key improve-
ments. Adaptive learning rates enable dynamic fine-tuning,
allowing the algorithm to respond effectively to changing
workloads and network conditions, minimizing unnecessary
overhead. The improved exploration-exploitation balance en-
sures that the algorithm can explore new strategies while
refining existing ones, optimizing the decision-making process.
Additionally, the better convergence properties of the modified
PPO algorithm help in quickly reaching optimal solutions,
reducing the time and resources spent on suboptimal strategies.
These advancements collectively enhance task execution and
offloading efficiency in IoT devices, making IAIM with the
modified PPO a more robust solution for minimizing overhead
and improving overall system performance. The Dual-LLM
architecture semantically interprets system state transitions and
guides RIS configuration for adaptive, context-aware decision-
making, thereby enhancing convergence and reducing over-
head.

Fig. 8b compares the performance of IAIM and MM in
IoT systems, highlighting the impact of DUDR on cumulative
overhead across varying numbers of IoT nodes using standard
PPO and modified PPO algorithms. The results consistently
show that IAIM achieves lower overhead than MM in all sce-
narios, with DUDR further enhancing this effect, particularly
as the number of IoT nodes increases. This trend is attributed
to DUDR’s ability to dynamically optimize data paths based
on real-time conditions and node-specific demands, which
reduces unnecessary transmissions and improves network effi-
ciency. In contrast, MM, especially without DUDR, struggles
with scalability and adaptability, leading to higher overheads

https://maps.google.com/?q=97.37754581190126,20.016399880138672
https://maps.google.com/?q=23.490463758913382,23.50230336291763
https://maps.google.com/?q=67.57490050170526,26.462463561717453
https://maps.google.com/?q=60.3673551870876106,46.538227141152499


14

0 20 40 60 80 100

Episode

18

18.5

19

19.5

20

20.5

21

21.5

22

T
o
ta

l 
R

e
w

a
rd

MM, Standard PPO

MM, Modified PPO

IAIM, Standard PPO

IAIM, Modified PPO

(a) Convergence.

5 10 15 20 25 30

K

0

5

10

15

20

25

30

35

40

45

O
v
e
rh

e
a
d

IAIM, With DUDR (Standard PPO)

MM, With DUDR (Standard PPO)

IAIM, Without DUDR (Standard PPO)

MM, Without DUDR (Standard PPO)

IAIM, With DUDR (Modified PPO)

MM, With DUDR (Modified PPO)

IAIM, Without DUDR (Modified PPO)

MM, Without DUDR (Modified PPO)

14 16 18 20

15

20

25

30

(b) DUDR mechanism.

5 10 15 20 25 30

K

0

5

10

15

20

25

30

35

O
v
e
rh

e
a
d

Overhead, I = 2, MM (Standard PPO)

Overhead, I = 2, IAIM (Standard PPO)

Overhead, I = 5, MM (Standard PPO)

Overhead, I = 5, IAIM (Standard PPO)

Overhead, I = 2, MM (Modified PPO)

Overhead, I = 2, IAIM (Modified PPO)

Overhead, I = 5, MM (Modified PPO)

Overhead, I = 5, IAIM (Modified PPO)

(c) Impact of number of ECNs.

Fig. 8: Optimization of network overhead through the implementation of standard PPO and modified PPO.
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Fig. 9: Optimization of network latency and overhead through the implementation of standard PPO and modified PPO.

and less effective data management. The combination of
DUDR with the modified PPO algorithm further amplifies
these benefits by leveraging adaptive learning rates, better
exploration-exploitation balance, and improved convergence
properties, ensuring even more effective overhead reduction.
This difference underscores the value of IAIM combined
with DUDR in managing large-scale IoT networks, ensuring
minimal congestion and maximized operational efficiency.
The The LLM framework complements DUDR by analyzing
semantic patterns in traffic demands and reconfiguring RIS
behavior to dynamically optimize propagation paths, reducing
congestion.

Fig. 8c illustrates the effects of increasing IoT nodes and
ECNs on cumulative overhead using standard and modified
PPO. The data shows that while overhead rises with more
IoT nodes, the increase is less pronounced under IAIM than
with MM due to IAIM’s adaptive management of data traffic.
Adding ECNs significantly mitigates overhead increases, as
IAIM efficiently utilizes these nodes to enhance network
performance. By dynamically reallocating resources and opti-
mizing data flows, IAIM handles higher node densities without
a proportional increase in overhead. In contrast, MM’s static
management approach leads to steeper overhead increases with
more IoT nodes due to its inability to effectively distribute
workloads among ECNs, resulting in congestion and inef-
ficiencies. The plot demonstrates the benefits of IAIM and

the modified PPO algorithm, which maintain lower overhead
across various ECN setups. The modified PPO algorithm
enhances IAIM’s capabilities by optimizing data paths and
resource management, using adaptive learning rates, improved
exploration-exploitation balance, and better convergence prop-
erties. This allows IAIM to dynamically adjust to network
conditions, efficiently managing resources, and resulting in
more stable and lower overhead as the network scales up.
The Dual-LLM system augments scalability by semantically
analyzing workload patterns and directing RIS reconfiguration
to distribute traffic efficiently across ECNs.

Fig. 9a presents the impact of increasing the number of
IoT nodes and ECNs on latency, using standard and mod-
ified PPO algorithms. As the number of IoT nodes grows,
latency increases; however, IAIM significantly moderates this
rise compared to MM due to its advanced real-time adap-
tive mechanisms that optimize data traffic management and
processing efficiency. IAIM consistently reduced latency by
approximately 30-40% compared to MM for different number
of ECNs. Moreover, IAIM with modified PPO reduced la-
tency by 52.5% compared to IAIM with standard PPO when
using five ECNs. Strategic deployment of ECNs under IAIM
effectively balances network load, mitigating delays caused by
processing and transmission bottlenecks. Continuous real-time
adjustments in resource allocation and data flow optimization
enable IAIM to sustain prompt responsiveness even as the
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number of IoT nodes increases. In contrast, MM demonstrates
limited scalability and adaptability, leading to higher latency
with more IoT nodes due to its static resource management
approach. This analysis highlights IAIM’s distinct advantages,
especially when enhanced by the modified PPO algorithm,
which further refine IAIM’s capabilities through adaptive
learning rates, improved exploration-exploitation balance, and
superior convergence properties. LLM-enhanced IAIM enables
the RIS to respond to latency variations in real time, adapting
beam patterns to minimize delays under increasing IoT node
densities.

Fig. 9b plots cumulative overhead against the number of
IoT nodes, comparing IAIM and MM approaches using either
random weight selection (RWS) or priority-based weight se-
lection (PWS) with standard and modified PPO algorithms.
The results indicate that PWS markedly reduces overhead
as the number of IoT nodes increases compared to RWS,
especially in IAIM. The DUDR mechanism in IAIM prioritizes
urgent data flows, optimizing resource allocation by focusing
on critical tasks and minimizing attention to non-emergency
data. In contrast, RWS allocates resources indiscriminately,
leading to irregular overheads and inefficiencies as networks
scale. This approach results in increased latency due to the
system managing a growing volume of less critical data. Pri-
oritizing weights allows the system to serve urgent cases first,
preventing non-emergency patients from consuming excessive
resources. The graph underscores the benefits of priority-based
selection, which minimizes overhead and improves overall
network performance by strategically managing data flows and
resource usage. This approach is particularly effective in IAI
systems, which handle complex decision-making and adapt to
changing conditions. Advanced algorithms in IAIM dynami-
cally adjust priorities based on real-time data, showcasing a
significant advantage over manual models in large-scale IoT
environments. This prioritization ensures critical tasks receive
necessary resources promptly, maintaining an efficient and
responsive network. By understanding task urgency and patient
criticality, the LLM guides RIS to prioritize high-importance
links, enabling faster processing of critical data under PWS.

Fig. 9c compares the execution time of the greedy and
GLAAs for optimal User-ECN and User-RIS-ECN selection.
The figure shows that the GLAA takes less time than the
basic GA. This is counterintuitive at first glance, as the look-
ahead algorithm involves more steps, including additional
evaluations of potential future states. However, the efficiency
of the GLAA can be attributed to its intermediate filtering
step. By comparing the user-to-RIS score with the current best
score before proceeding to further evaluations, the algorithm
effectively reduces the number of unnecessary computations.
This filtering mechanism ensures that only promising paths are
considered in detail, thereby optimizing the overall execution
process. In contrast, the basic GA evaluates all potential
paths without such preemptive filtering, leading to a higher
computational load and longer execution times. Thus, the
figure highlights the efficiency of the look-ahead strategy
in balancing detailed evaluation with computational resource
management, resulting in faster overall execution. The Dual-
LLM predicts high-value user–RIS link combinations early
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Fig. 10: Throughput and Energy Efficiency versus Number of Users.

in the selection process, allowing the GLAA to focus on
semantically relevant candidates and minimize execution time.

Fig. 10 illustrates the performance trends of throughput
and energy efficiency for both RIS-assisted and Non-RIS
configurations under varying user densities. Throughput is
derived as the ratio of transmitted bits to end-to-end latency,
while energy efficiency is measured in terms of throughput per
unit power consumption. The IAIM framework employed in
this study utilizes a Dual-LLM architecture, optimized through
a modified PPO algorithm, to enable adaptive and context-
aware scheduling decisions. The results reveal that the RIS-
assisted system consistently delivers higher throughput across
all user loads when compared to the Non-RIS baseline. Despite
the expected reduction in throughput with increasing user
density, the RIS-enabled approach demonstrates a slower de-
cline and maintains a higher performance margin. Specifically,
the RIS-assisted framework achieves up to 1.5 times higher
throughput under light traffic conditions and sustains 1.46
times improvement even under heavy user loads. In terms of
energy efficiency, the RIS-based system exhibits significantly
better performance over the entire range of user densities. The
RIS configuration attains more than 2.5 times improvement
in energy efficiency compared to the Non-RIS counterpart.
This gain remains consistent even as the number of users
increases, highlighting the sustainability benefits of RIS de-
ployment in power-constrained scenarios. These enhancements
are attributed to the synergy between the reconfigurable nature
of RIS and the intelligent decision-making capability of the
Dual-LLM agent. The RIS infrastructure enables real-time
adaptation of the wireless channel, while the LLM-driven
policy introduces semantic reasoning into the user scheduling
process. The PPO-based optimization further ensures robust
convergence and effective learning in dynamic environments,
affirming the proposed system’s effectiveness in enabling scal-
able and energy-efficient wireless healthcare communication.

Fig. 11 compares the proposed Dual-LLM-based RIS model
with a conventional static RIS model in terms of average
latency and efficiency score across increasing numbers of
users. A static model refers to a system with fixed RIS phase
configurations and routing policies, which remain unchanged
regardless of user load, emergency status, or network dynamics
[25]. It treats all communication uniformly and lacks any form
of real-time adaptation. In contrast, the proposed system incor-
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Fig. 11: Average latency and Efficiency score versus Number of Users.

porates a priority-based routing mechanism that differentiates
between low- and high-emergency patients. Low-emergency
patients are handled by the RAG module, which semantically
interprets medical context and queues non-critical data. High-
emergency patients, on the other hand, are routed directly via
dynamically reconfigured RIS paths and accelerated through
MEC servers. This results in adaptive resource allocation,
where RIS beamforming, bandwidth, and computing slots
are distributed in real time based on patient urgency and
network conditions. The average latency is computed as the
mean end-to-end transmission delay across all active user
sessions, considering both routing decisions and RIS-induced
path updates. For each user, this includes transmission, prop-
agation, processing, and RIS reconfiguration delays, weighted
according to emergency priority. The efficiency score 𝜂(𝑡) is
derived from the system’s total overhead formulation and is
defined as 𝜂(𝑡) = 1∑

𝑖,𝑘

[
𝛽𝑖,𝑘 (𝑡 ) ·𝑂ECN

𝑖,𝑘
(𝑡 )+(1−𝛽𝑖,𝑘 (𝑡 ) ) ·𝑂IoT

𝑖,𝑘
(𝑡 )

] . This

efficiency score reflects how well the system manages time-
sensitive and energy-constrained communication, effectively
balancing emergency response quality and resource utilization.
As the number of users increases, the proposed model demon-
strates significantly lower latency and higher efficiency by
ensuring that emergency data receives prioritized access while
maintaining balanced system load. The static model, lacking
such differentiation and dynamic routing capability, suffers
from performance degradation under the same conditions.

VIII. ENCRYPTION AND DATA PROTECTION MECHANISMS

While the primary focus of this work is on the design, op-
timization, and performance evaluation of a novel Dual-LLM
framework integrated with RIS for healthcare networks, data
privacy, security, and regulatory compliance remain critical for
any practical deployment. Future extensions of this framework
will explore the integration of lightweight encryption protocols
such as TLS 1.3 and elliptic curve cryptography (ECC) to
ensure secure data transmission across IoT devices, edge
computing nodes, RIS controllers, and LLM inference servers.
Anonymized data processing can be enabled through homo-
morphic encryption, while federated learning paradigms will
be considered to support decentralized model training without
sharing raw patient data. For access control and auditability,
blockchain-based smart contracts offer a promising direction

by providing immutable logs and fine-grained policy enforce-
ment. These strategies are essential to align with healthcare
regulations such as Health Insurance Portability and Account-
ability Act (HIPAA) and General Data Protection Regulation
(GDPR), which mandate strict protections on sensitive patient
information. As this paper presents the first known integration
of Dual-LLMs and RIS in healthcare systems, the current
scope is limited to validating the core system model and its
efficiency. Building upon this foundation, the incorporation of
privacy-preserving mechanisms and compliance-aware secu-
rity layers will be central to future development and real-world
deployment of the proposed architecture.

IX. CONCLUSIONS AND FUTURE WORK

This study explored the application of LLMs in advanced
wireless networks for smart healthcare by integrating LLM-
based IAI to optimize DUDR and RIS within a MEC environ-
ment. The proposed DUDR mechanism adapts routing deci-
sions based on real-time user-specific data, thereby improving
network efficiency and ensuring consistent, high-quality data
transmission tailored to healthcare demands. The framework
included an LLM-based chat assistant for personalized real-
time healthcare assistance and an optimization framework to
minimize network overhead. Using a DRL-driven modified
PPO algorithm, the approach significantly improved data trans-
mission efficiency and reduced latency. Simulations showed
that IAIM and modified PPO reduced overhead by 9.6% com-
pared to MM and standard PPO. IAIM consistently reduced
latency by approximately 30 − 40% compared to MM for
different number of ECNs. Moreover, IAIM with modified
PPO reduced latency by 52.5% compared to IAIM with
standard PPO when using five ECNs. The GLAA and PWS
mechanisms dynamically optimized data paths and resource
allocation, minimizing unnecessary transmissions and enhanc-
ing network efficiency. This ensured minimal congestion and
maximized operational efficiency, demonstrating the value of
IAIM and DUDR in managing large-scale IoT networks.
Future work will also address current limitations by integrating
secure learning frameworks such as federated learning and
homomorphic encryption to ensure compliance with HIPAA
and GDPR. Lightweight LLM variants and model compression
will be employed to reduce inference latency at the edge.
Explainable AI and domain-specific fine-tuning will enhance
output reliability and trustworthiness. Real-world deployment
with commercial internet of medical things (IoMT) and RIS
platforms will validate scalability and interoperability. Beyond
healthcare, the framework can be extended to other latency-
critical domains such as industrial IoT, intelligent transporta-
tion systems, and disaster recovery networks, where dynamic
edge intelligence and optimized routing are equally essential.
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