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Quantum Machine Learning for Energy-Efficient
5G-Enabled IoMT Healthcare Systems:
Enhancing Data Security and Processing

Muhammad Zeeshan Riaz, Bikash K. Behera, Shahid Mumtaz, Saif Al-Kuwari, and Ahmed Farouk

Abstract— Energy-efficient healthcare systems are be-
coming increasingly critical for Industry 5.0 as the Internet
of Medical Things (IoMT) expands, particularly with the
integration of 5G technology. 5G-enabled IoMT systems
allow real-time data collection, high-speed communication,
and enhanced connectivity between medical devices and
healthcare providers. However, these systems face energy
consumption and data security challenges, especially with
the growing number of connected devices operating in
Industry 5.0 environments with limited power resources.
Quantum computing integrated with machine learning (ML)
algorithms, forming quantum machine learning (QML), of-
fers exponential improvements in computational speed
and efficiency through principles such as superposition
and entanglement. In this paper, we propose and evaluate
three QML algorithms, which are UU', variational UU', and
uut- quantum neural networks (QNN) for classifying data
from four different datasets: 5G-South Asia, Lumos5G 1.0,
WUSTL EHMS 2020, and PS-loT. Our comparative analysis,
using various evaluation metrics, reveals that the UU'-
QNN method not only outperforms the other algorithms
in the 5G-South Asia and WUSTL EHMS 2020 datasets,
achieving 100% accuracy, but also aligns with the human-
centric goals of Industry 5.0 by allowing more efficient
and secure healthcare data processing. Furthermore, the
robustness of the proposed quantum algorithms is verified
against several noisy channels by analyzing accuracy vari-
ations in response to each noise model parameter, which
contributes to the resilience aspect of Industry 5.0. These
results offer promising quantum solutions for 5G-enabled
loMT healthcare systems by optimizing data classification
and reducing power consumption while maintaining high
levels of security even in noisy environments.

Index Terms—Industry 5.0, 5G Technology, Internet
of Medical Things (IoMT), UU! Method, Variational UU'
Method, Quantum Neural Network (QNN)
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[. INTRODUCTION

HE Internet of Medical Things (IoMT) is a crucial
application of Industry 5.0 in healthcare, connecting
medical devices and patients to revolutionize healthcare de-
livery globally [1]. By establishing a robust infrastructure
between medical software and hardware applications, IoMT
facilitates seamless interaction between biosensor nodes [2]
and mobile edge computing (MEC) [3], linking patients with
doctors and sharing data through secure networks, thus min-
imizing hospital visits and reducing workload on healthcare
departments. The development of 5G networks accelerates the
evolution of the Internet of Things (IoT) and IoMT within
the Industry 5.0 healthcare system, supporting technologies
such as device-to-device (D2D) communication [4], machine-
to-machine (M2M) interactions [5], and mobile cloud com-
munications (MCC) [6]. 5G networks ensure fast and secure
data transfer between healthcare systems and patients, offering
significant advantages over low-bandwidth networks. IoMT
services require minimal data usage, energy efficiency, and
secure connections [7]. 5G technology meets these needs by
improving data management and connectivity and providing
advanced capabilities such as imaging and treatments. This
ensures that multiple doctors can access patient data for diag-
nosis and decision making, improving service quality. Despite
these advancements, establishing a reliable IoMT with 5G
for Industry 5.0 infrastructure presents challenges. The safety
hazards of wireless healthcare equipment, such as ensuring
energy-efficient transmission for wireless body area networks
(WBAN:S), are discussed in [8]. Energy transmission efficiency
and security concerns have emerged as significant difficulties.
The expected adoption of IoMT is delayed by users’ lack of se-
curity awareness and potential vulnerabilities that could expose
sensitive health-related information. Overcoming these energy
and security challenges is critical to ensure the successful and
secure use of IoMT in the healthcare industry 5.0 [9].
Integrating machine learning (ML) to develop IoMT with
5G for Industry 5.0 healthcare management systems provides
significant benefits, including enhanced healthcare quality
control, accuracy, effective monitoring, and improved treat-
ment during emergencies [10]. ML algorithms facilitate large
data transfers, allow devices to share data in real time with
telemedicine applications, and allow remote patient monitor-
ing. Various ML techniques improve the efficiency of Industry



5.0 healthcare applications by handling large amounts of data
in the initial stages, such as biomedical imaging analysis. In-
tegration of federated learning (FL) with artificial intelligence
(Al) in intelligent healthcare systems addresses security, pri-
vacy, stability, and reliability issues, offering novel FL-based
Al applications in intelligent healthcare, including electronic
health record (EHR) management, health monitoring, biomed-
ical image analysis, and COVID-19 trait identification [11].
Implementing deep reinforcement learning for secure data
transfer minimizes energy consumption, improving battery life
compared to greedy algorithms; however, transferring excess
data without the patient’s consent can quickly drain the battery
[12]. An innovative approach combining Bell’s inequality with
chaotic maps has produced 256-bit keys for biosignals and
medical imaging through symmetric encryption strategies, and
the efficiency is tested for breast tumor detection and biosignal
analysis through convolutional neural networks (CNN) [13].
Furthermore, unsupervised ML methods employ clustering
and dimensionality reduction approaches, which are critical to
identify hidden patterns, improve patient profiles, and group
documentation [14]. Several deep learning and ML techniques
enhance patient data safety and monitor healthcare systems in
the autism center for 5G networks linked to IoMT [15].
Quantum Machine Learning (QML) has the potential to
revolutionize precision in Industry 5.0 healthcare by offering
real-time solutions through pattern recognition, task execution,
modification of healthcare features, and enhancement of diag-
nostic and treatment plans, which outperform the effectiveness
of classical ML approaches. QML algorithms have been used
to improve disease prediction and classification [16], and a
hybrid classical-quantum algorithm using clustering of quan-
tum k-means (qk-means) has been proposed to analyze breast
cancer and knee magnetic resonance datasets [17]. Another
study ensures data confidentiality using quantum-enhanced
data preservation techniques for smart healthcare systems [18].
To address the challenges of conventional ML, such as long
training times, infrequent output, and security issues, a digital
twin-assisted quantum federated learning (DTQFL) approach
has been proposed. Digital twins are created using DTQFL
over 5G networks for specific patient diseases and are syn-
chronized with quantum variation neural networks to train and
update without compromising real-world performance [19].

A. Problem Statement

Although classical ML methods have improved the secu-
rity and energy efficiency of 5G-enabled IoMT networks for
Industry 5.0, they face significant limitations. These include
difficulties handling massive data transfers, ensuring secure
data transmission, addressing scalability challenges, and op-
erating efficiently in heterogeneous high-speed environments.
QML offers a promising solution to process complex high-
dimensional data more efficiently than classical methods,
improving scalability, security, and efficiency in large-scale
5G-enabled IoMT deployments. However, despite these ad-
vantages, QML algorithms remain highly sensitive to quantum
noise, which can introduce security vulnerabilities in patient
data and significantly degrade system performance if not
adequately mitigated.

B. Novelty

To fill these critical gaps, we propose a novel QML tech-
nique, the UUT-QNN. This method combines the strengths
of the UU' algorithm and Quantum Neural Networks (QNN)
to improve energy efficiency, scalability, and security in 5G-
enabled IoMT for Industry 5.0, while demonstrating robustness
against various noisy channels. Unlike conventional QML
approaches, which rely on parameterized quantum circuits and
suffer from barren plateau problems and vanishing gradient-
cost functions when scaling to large numbers of qubits, the
proposed UUT-QNN leverages unitary operations and adjoint
transformations to stabilize training and preserve quantum
information. The proposed algorithm constructs its cost func-
tion based on the inner product of U and UT, maintaining
unitarity throughout the optimization process. This design
reduces the complexity of landscape optimization and enables
a more stable and efficient training of quantum models com-
pared to traditional QNNs. Furthermore, UU T-QNN addresses
noise-related challenges, making it practical for real-world
deployment in 5G-enabled IoMT environments. Experimental
evaluation in four benchmark datasets: 5G-South Asia (5G-
SA), Lumos5G 1.0 (L5G1.0), WUSTL EHMS 2020 (WE20),
and Privacy and Security Internet of Things (PS-IoT) versus
UUT, variational-UUT, and classical models show that UUT-
QNN outperforms existing methods, particularly in handling
large-scale medical data under noisy conditions.

C. Contributions

1) We introduce a novel algorithm UU' — QNN that com-
bines the UU' technique with QNN within a variational
quantum circuit framework. This approach improves data
security, processing efficiency, and energy optimization in
5G-enabled IoMT systems for Industry 5.0.

2) We conduct a comprehensive comparative analysis of
three quantum classification algorithms UU, variational
UUT, and the proposed UUT-QNN on four diverse
datasets: 5SG-SA, L5G1.0, WE20, and PS-IoT.

3) We rigorously evaluate the robustness of the proposed
algorithms against five noise models, demonstrating their
resilience and effectiveness in noisy environments.

D. Organization

The paper is structured as follows: Section II outlines the
problem formulation and methodology for quantum algorithms
(UU?, variational UUT, and UUT-QNN). Section III presents
the experimental results for the four datasets considering
noise and noiseless environments. Section IV discusses the
experimental results and concludes the study.

[I. METHODOLOGY

The application of QML techniques for data classification
in IoMT devices connected through 5G networks is shown
in Fig. 1. IoMT chips integrated into various medical instru-
ments perform early-stage data analysis. This early analysis
enables efficient classification tasks using QML techniques,
significantly improving the energy performance of connected
IoMT devices.
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Fig. 1: Quantum Machine Learning for 5G-enabled IoMT System.

A. Problem Formulation

Before applying the proposed classical-quantum classifica-
tion approach, datasets undergo preprocessing steps, including
data cleaning, feature scaling, categorical data encoding, and
feature selection. The original dataset is represented as:

X = (X1, Xowe, X21) (1)

X = (X0, %3, 0 Xn) @)

where X, denotes a scaled feature value, and N < M. The
preprocessed dataset consists of PP data points (rows) and N
features (columns). In quantum classification algorithms, spe-
cific quantum circuits are executed. The condition determines
the number of qubits m required for these quantum algorithms:

2" > N 3)

After preprocessing, k-means clustering is applied to divide
the dataset into k clusters: Cy,Cs,....,Cr_1. The datasets
given are divided into two groups, namely Cj and C;. The cen-
troids of these clusters are calculated, denoted as cg, 1, ..Cp_1.
The next step involves calculating the distances between the
test data points ¥; and the centroids Dy; ¢, Dy; e,y o, Dy ey
using the proposed quantum algorithms. The goal is to
compare these distances to assign each test data point to
the closest cluster, determining ¢ such that y; € c¢;. After
classification, evaluation metrics are calculated to assess the
efficiency and accuracy of the algorithms. The problem can be
formally defined as finding the distances using measurements
from quantum circuits designed according to the proposed
algorithms:

Dy e, = M(QC), “4)

where M (QC) represents the measurement outcomes from the
quantum circuits.

B. Quantum Algorithms

1) UUT Algorithm: The UUT method determines the inner
product between the centroid and the test data point (see Fig.
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Fig. 2: Quantum Circuit for (a) UUT Algorithm, (b) Varia-
tional UUT Algorithm, (c) UUT-QNN Algorithm.
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2a and Algorithm 1). The unitary operator U; encodes the

centroid data in the state:
|A) = Uy |0)®"™ )

In this case, the maximum number of m-qubits encodes the
centroid data points. Now, another similar unitary operator U,
is used to encode the test data point:

|B) = Uy [0)*™ (6)

The inner product between the test data and the centroid is



given by:
(AIB) = (BlA) = ™% (0|U3UL[0)°"
= m®(0|T|0)*"™ @)
Here, the operation 1" = UZ]; U, is performed, which involves
applying U, followed by U to the state |0)®™. The operator
T is an arbitrary m-qubit operator that produces an arbitrary
state in the m-qubit system when applied to |O>®m. In general,
the state looks like this:
T10)*™ = by |000...000) 4 by [000...001)
+  21000...010) + ... + bom 1 |111...111) (8)

Substituting into Eq. (7), it becomes:
mEOIT(0) = bo )

Here, by is the coefficient of state |000...000), which is a real
number since it does not have associated phase information
(any phase can be taken as common). Furthermore, by repre-
sents the square root of the probability of measuring the state
|000...000):

bo = VPooo..o00 (10)
Therefore, from Eqgs. (7) and (10), the inner product is:
(AIB) = V/Pooo..on0 = /Poyom (11)

Thus, the inner product can be calculated by measuring the
circuit and determining the square root of the probability of
the |0>®m state. The quantum circuit model is initialized with
|0)®™ for data processing, leveraging the controlled U (6;) and
anti-controlled unitary UT(—6;) gates to encode the centroid
and test data, respectively.

Algorithm 1 UUT algorithm

Require: : Data features and centroid features
Ensure: : Classification of data-points in two clusters
1: Set all qubits to the [0)*™ state
2: Encode centroid features in the U operator to produce |i)y)
and |¢) representing clusters Cy and C respectively
3: for : € P do
4. Encode test data features in UT to obtain state |¢;)
5:  Measure the quantum circuit using the first centroid to
get {¢;|1ho) and then with the second centroid to get
(¢i|11) as given in Eq. 7

6 if (¢5[)1) > (¢i[tbo) then

7: Corresponding test data belongs to C
8: else

9: Corresponding test data belongs to Cj
10:  end if

11: end for

2) Variational UUT Algorithm: The variational UUT algo-
rithm extends the standard UUT technique by incorporating
additional layers of Hadamard gates. The primary modification
is the placement of a Hadamard layer immediately after
initializing the state |0>®m and before the measurement stage,
as shown in Fig. 2b and Algorithm 2. In this algorithm,

Algorithm 2 Variational UU

Require: Data features and centroid features
Ensure: Classification of data-points in two clusters
1: Initialization: Set all qubits to the [0)*"" state
2: Construct a circuit layer comprising of n Hadamard gates,
N U gates and then repeat it n times

3: Construct the dagger of the circuit layer and repeat it n

times

4: Encode the centroid features in the U gates of each layer,

resulting in |} and |¢)1) representing clusters Cy and Cy
respectively

5: for i € P do

. Encode the test data features in the UT gates of each
layer, resulting in the state |¢;)

7 Measure the quantum circuit using the first centroid
data, followed by a measurement with the second cen-
troid data.
if (¢i|1o) > (¢ilt1) then

: Corresponding test data belongs to Cy
10: else

11: Corresponding test data belongs to C
12:  end if
13: end for

the operations (HU) and (UTH) are arranged in layers
with equal repetitions. Specifically, applying the operation
(HU) for n times, followed by (UTH) n times, constructs
a variational circuit of layers n. The variational UUT algo-
rithm has significant advantages over the UUT algorithm due
to the additional flexibility of the variational layers. These
extra layers improve expressibility and enable a better feature
transformation, allowing the model to capture more complex
patterns in certain datasets. After executing the circuit and
performing the measurements, the probability of the state
|0)®™ is determined. The classification decision is based
on comparing these probabilities calculated using different
centroids. A data point is assigned to the first cluster if the
probability |0>®m calculated using the first centroid is higher
than that calculated using the second centroid; otherwise, it
is assigned to the second cluster. Mathematically, this can
be expressed as: if (¢;|Y1) > (¢;|1ho), then the data point is
assigned to cluster 1; otherwise, it belongs to cluster O.

C. UUT-Quantum Neural Networks

QNNs utilize variational quantum circuits (VQCs) with
multilayer architectures, where entanglement layers replace
traditional activation functions. Our work proposes a mod-
ified QNN that combines the UU' method with a VQC
using tunable parameters. The UUT-QNN consists primarily
of a U circuit, a Ut circuit, and a VQC, as shown in
Fig. 2c. The circuit applies a series of controlled unitary
operations U (6y),U(61),...,U(0,,), which encode centroid
data points into the quantum state, followed by inverse uni-
tary operations UT(—6y),UT(—61),.....,UT(—6,,) to encode
test data points, allowing comparison of quantum states. To
further process the encoded data, a sequence of parame-
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terized rotations is introduced around the Z axis, denoted
R.(00),R.(61),...,..., R.(021m—1). These rotations, parame-
terized by angles 6;, are optimized during training to enhance
the discriminative power of the model. The variational layers
in UUT-QNN were configured with alternating single-qubit
rotations (R, R.) and entanglement gates (e.g., CNOTSs) to
ensure efficient exploration of the Hilbert space. Finally,
qubits are measured on a computational basis, collapsing the
quantum state into a classical bit string that serves as input
for downstream analysis or decision-making. The U circuit
includes gates U, control U, and anti-control U, as shown in
Fig. 2c; the number of gates is determined by the number of
features in the dataset N. The features of the centroids are
encoded in the parameters 6 of the gates U, with ¢ and A
set to zero. Similarly, the UT circuit consists of UT, control
Ut, and anti-control UT gates, where the features of the test
data are encoded in the 6 parameters, with ¢ and A set to
zero. Then, VQCs, hybrid quantum-classical approaches that
take advantage of both types of computation, are applied
to the quantum system. Unlike conventional parameterized
quantum circuits that suffer from barren plateaus and gradient
decay during the training process, the UUT-QNN cost function
inherently preserves unitary consistency and ensures stable
coherence and noise resilience, which is reliable for a noisy
high-dimensional quantum environment. These circuits feature
controllable parameters that are iteratively optimized by a
classical computer. The loss function used in the UUT-QNN

algorithm is defined as:
Loss = (1 — Accuracy)? (12)

The loss function is optimized using the COBYLA optimizer

Algorithm 3 Optimization Algorithm

Require: Initial parameters params, Number of iterations
nume-iterations
Ensure: Plot of accuracy vs iteration
1: Define the Accuracy function:
Define the Loss function:
Define the optimization procedure:
Function Optimize_Params
num_iterations)
Initialize empty lists: accuracy_list, iteration_list
Initialize optimize_I P as None
for ¢+ «+ 1 to num_terations do
if © = 1 then
optimize_IP <~ COBYLA optimization on Loss()
using initial_params
10:  else
11: optimize_IP <— COBYLA optimization on Loss()
using optimize_ I P.x
12:  end if
13:  Calculate accuracy
Accuracy _function(optimize_I P.x)
14:  Append accuracy to accuracy-list
15:  Append @ to iteration_list
16: end for
17: Plot accuracy_list against iteration_list

Ll

(tnitial _params,

R A

using

to find the optimal parameters for the quantum circuit (Algo-
rithm 3). The above loss function was chosen to emphasize
maximizing accuracy while strongly penalizing misclassifica-
tions, offering a smooth gradient that aids convergence with
optimizers such as COBYLA. Its simplicity and computational
efficiency make it well-suited for quantum circuits. The input
to the loss function consists of the parameterized quantum
circuit, which uses standard quantum gates such as single-
qubit rotation gates Rx(c;), Ry(B;) and Rz(vy;), controlled-
Not (CNOT) gates, and controlled-Z (CZ) gates. In our imple-
mentation, Rz(f) and the CNOT gates are used to entangle
within the circuit. The detailed UUT-QNN method is provided
in Algorithm 4 and the definitions of the rotation gates R, («),
R,(8), R.(v), CNOT (CX) and CZ are presented as follows.

R.(a) = cosa|0)(0] —isinal|0) (1]
—isina |1} (0] 4+ cos a |1) (1],
Ry(B) = cosB0) 0] —sin B0} (1]
+sin g |1) (0] +cos 5 |1) (1],
R.(y) = e 7[0) (0] +e7[1) (1],
CX = [00)(00] + |01) (01] + |10) (11] + [11) (10|,
CZ = 100 (00| + |01) (01| + [10) (10| — |11) (11].

Regarding the variational layers, our quantum circuits are
designed with parameterized single-qubit rotations followed
by entangling gates (e.g., CNOT), repeated across layers to
form a variational ansatz. These layers are optimized via
gradient-based classical routines to minimize the loss function.
The parameters of these gates allow the model to learn com-
plex representations, analogous to weights in classical neural
networks. Including variational layers improves the quantum
model’s capacity to approximate non-linear transformations,
which is critical for learning complex data distributions in
generative tasks.

[1l. EXPERIMENTAL RESULTS
A. Datasets

The proposed quantum algorithms are evaluated using four
datasets that provide various data types to assess 5G-enabled
IoMT systems. The 5G-SA dataset contains 2,835 rows and
14 columns generated by the NYUSIM 3.0 millimeter wave
simulator, which incorporates atmospheric parameters relevant
to South Asia [20]. It has key features such as transmitter-
receiver distance, frequency band, environmental obstacles,
and received signal strength indicator (RSSI), with missing
RSSI values addressed through regression-based imputation
and noisy data smoothed using Kalman filters. The L5G1.0
dataset includes 68,118 rows and 19 columns of 5G throughput
data from a 1,300-meter loop near the U.S. Bank Stadium
in Minneapolis, covering urban infrastructure [21], [22]. It
includes latency, throughput, packet loss, jitter, and signal-to-
noise ratio (SNR) as features, where missing data were han-
dled using forward/backward filling techniques, and outliers
were mitigated using Z-score and interquartile range (IQR)
methods to ensure robust network performance analysis. The
WE20 dataset features 44 attributes, with 35 network flow
metrics and eight biometric features, collected from a real-time



Algorithm 4 UUT-QNN for Classification

Require: Features of data points, Features of centroids, initial
parameter list params
Ensure: Plot of accuracy against iteration
1: Initialize all m qubits in the quantum circuit in [0)®"
state.
2: Encode the centroid data in the U circuit, resulting in
quantum states |Cluster;) and |Cluster)
3: Encode test datapoint in the UT circuit, resulting in the
state |Test;).
Variational Quantum Circuit:
Layer 1:
for ) =0tom—1do
Apply R.(6 = paramslj]) gate to qubit j
end for
Apply one hidden layer of m CNOT gates between each
pair of nearest neighbor qubits.
10: Layer 2:
11: for j =0tom —1 do
122 Apply R.(6 = params[j + m]) gate to qubit j
13: end for
14: Perform optimization using Algorithm 3 and get the
accuracy plots.

D AN

healthcare monitoring testbed, making it ideal for evaluating
quantum algorithms in healthcare-focused IoMT networks
[23], [24]. It has biometric signals such as heart rate, ECG,
and accelerometer readings, along with contextual metadata
as features. Missing data was addressed through interpolation
and median imputation, while noisy signals were cleaned
using wavelet transforms and low-pass filters to preserve
physiological patterns. The PS-IoT dataset includes 97606
rows and 5 column features such as device identity, timestamp
of activity, data sensitivity, privacy, and threat level of IoT
security incidents [25].

B. Preprocessing

All unnecessary and irrelevant columns were removed
during pre-processing. Then, 14 columns from the 5G-SA
dataset, 13 columns from the L5G1.0 dataset, 33 columns
from the WE20 dataset, and 5 columns from the PS-IoT
dataset were considered. The feature values of all datasets
were normalized to the range [0,7], and data points were
separated into two clusters per dataset using the k-means
clustering method. The quantum circuit initializes with the
state \0>®m, where the number of qubits m is selected based
on the dataset’s dimensionality and complexity. For example,
the 5G-SA dataset, which involves high-dimensional path loss
metrics, used m = 6 qubits; the L5G1.0 dataset, which
encodes network-level metrics, required m = 5 qubits; the
WE20 dataset, which includes biometric signals, used m =7
qubits; and m = 6 qubits for PS-10T is needed, which includes
timestamp, hour, minute, day, month and weekend. The qubit
count was determined by balancing comprehensive feature
encoding with the practical limits of quantum hardware.

C. Metrics, Hyperparameters and Noise Models

In multiclass classification, key evaluation metrics include
accuracy, precision, recall, and the F1 score, providing in-
formation on general and class-specific model performance.
The proposed quantum algorithms were implemented using
the IBM QASM simulator with 1000 shots. The COBYLA
optimizer was used for the UUT-QNN algorithm, with all
initial parameters set to 0.1 for the datasets. Robustness and
efficiency were evaluated against five key quantum noise
models, which are essential to indicate error correction and
improve computational reliability [26]. The selected noise
models are bit-flip, phase-flip, depolarizing, amplitude damp-
ing, and phase damping, which simulate realistic interference
and degradation. Bit-flip and phase-flip capture discrete qubit
state errors, often caused by electromagnetic interference
(EMI) from medical devices or unstable wireless environ-
ments. Depolarizing noise represents random decoherence
due to hardware imperfections, amplitude and phase damping
models capture energy loss and dephasing effects resulting
from environmental interactions, such as photon dissipation
or oscillator instability.

D. Results of Quantum Algorithms

1) UUT Algorithm: In the UUT algorithm, the k-means
clustering method is used first to obtain the centroids. Then
a quantum circuit is constructed, where the characteristic
values of the centroids are encoded in the 6 parameters of
the U gates, while ¢ and A are set to zero. The test data
features are similarly encoded into UT gates but in reverse
order (Fig. 2¢). For each data point, the quantum circuit is
executed and measured, and the probability of measuring the
state |O>®m is used to compute the inner product between the
test data and each centroid (Eq. 11). This process is repeated
for both centroids, and each test data point is assigned to
the cluster corresponding to the centroid that produces the
highest probability, as outlined in Algorithm 1. This procedure
is applied to all four datasets, and each data point is classified
and labeled accordingly. The achieved accuracies are 73.09%
for the 5G-SA dataset, 52.26% for the L5G1.0 dataset, 96%
for the WE20 dataset, and 54% for the PS-IoT dataset.

2) Variational UUT Algorithm: In the variational UUT al-
gorithm, centroids are obtained using k-means clustering,
followed by applying Hadamard, unitary U, and U circuits to
encode the data. The probability of the |0)®" state is measured
to compute the inner product between the centroids and the
test data points, which determines the cluster assignments. The
process is repeated in multiple layers, from one to ten. The
performance of the variational UUT algorithm is improved
due to additional variational layers that capture complex data
patterns for specific datasets, with extra feature handling. The
accuracies achieved are 72% for the 5G-SA dataset, 54% for
the L5G1.0 dataset, 99% for the WE20 dataset, and 80% for
the PS-IoT dataset.

3) UUT-Quantum Neural Networks: The UUT-QNN algo-
rithm iteratively calculates the loss function for 10 data
points from each dataset, optimizing the parameters in each
step using the COBYLA optimizer. Accuracy is evaluated
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Fig. 3: The Accuracy of UU' Using the k-means Clustering in a Noisy Environment for (a) 5G-SA, (b) L5G1.0, (c) WE20

and (d) PS-IoT

by comparing the output of the variational quantum circuit
with the classical dot-product results. The VQC outputs are
simulated using the IBM QASM simulator with 1000 shots,
and the optimization runs for 20 iterations, tracking accuracy
at each epoch. The results show that for the 5G-SA dataset,
the accuracy remains consistent at 100%; for L5G1.0, it stays
at 20%; for the WE20 dataset, accuracy also remains at 100%
and maintains the accuracy at 57% for the PS-IoT dataset.
A comparison of the accuracies of UU t, variational UUT,
and UUT-QNN (Table I) indicates that for the 5G-SA dataset,
UU'-QNN outperforms the other methods. For L5G1.0 and
PS-IoT datasets, variational UUT achieves higher accuracy,
while for the WE20 dataset, variational UUT and UUT-QNN
surpass UUT. The low F1 score (0.20) of UUT-QNN on the
L5G1.0 dataset highlights the need for improved encoding,
error mitigation, and more effective optimization to handle
complex, noisy, and imbalanced real-world data.

4) Noisy Results: The robustness of the three quantum
algorithms-UU T, variational UU' and UU T—QNN was evalu-
ated under increasing noise probabilities (7 = 0 to 0.6) in the
5G-SA, L5G1.0, WE20, and PS-IoT datasets (Fig. 3 - Fig. 5).

For the 5G-SA dataset, the UU algorithm degrades to a lower
noise level of v = 0.35 under bit-flip noise while maintaining
stable or fluctuating accuracy under other noise models (Fig.
3a). The variational UUT algorithm (Fig. 4a) shows a similar
decreasing trend under bit-flip noise, with a slight recovery at
v = 0.533, and fluctuating accuracy between 55% and 65%
for other noise types. In contrast, the UUT-QNN algorithm
demonstrates superior robustness (Fig. 5a), preserving 100%
accuracy under most noise models and remaining stable up to
v = 0.48 under bit-flip noise.

For the L5G1.0 dataset, both the UU' and the variational
UU?' algorithms exhibit non-robust performance across all
noise channels (Figs. 3b and 4b), with significant degradation
observed in 7 = 0.4 (depolarizing noise) and v = 0.08, and
0.4 (bit-flip noise). The UUT-QNN algorithm maintains stable
accuracy under phase damping. Still, it displays oscillatory
and unstable behavior under other noise models, particularly
bit-flip noise (Fig. 5b). For the WE20 dataset, the UU'
algorithm’s accuracy decreased to v = 0.08 under both bit-
flip and depolarizing noise (Fig. 3c). The variational UUT
algorithm shows gradual degradation, beginning at v = 0.14
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Dataset

Algorithm | Accuracy | Precision | Recall | F1 Score
SVM 0.85 0.85 0.85 0.85
ANN 0.86 0.87 0.87 0.86
5G-SA vut 0.73 1.00 0.65 0.78
v-uuUt 0.72 0.46 1.00 0.63
UUT-QNN 1.00 0.00 - -

SVM 0.65 0.65 0.65 0.64

ANN 0.78 0.78 0.78 0.78

L5G1.0 vut 0.52 1.00 0.52 0.69
V-UUt 0.54 1.00 0.55 0.71

UUT-QNN 0.20 0.00 - -

SVM 0.99 0.99 0.99 0.99

ANN 1.00 0.87 0.87 0.86

WE20 vut 0.96 1.00 0.33 0.50
V-UU* 0.99 1.00 0.83 0.91

UUT-QNN 1.00 1.00 1.00 1.00

SVM 0.81 0.82 0.97 0.89

ANN 0.82 0.84 0.96 0.89

PS-10T vut 0.54 0.82 0.54 0.65
V-UUt 0.80 0.80 0.99 0.89

UUT-QNN 0.55 0.80 0.58 0.67

TABLE I: Comparison of Performance Metrics for 5G-SA,

L5G1.0, WE20, and PS-IoT. Variational UUT (V-UU™).

for bit-flip and worsening up to v = 0.48 for depolarizing
noise (Fig. 4c). In contrast, UU' -QNN achieves the highest
robustness, with a bit-flip accuracy that gradually decreases
from ~y 0.06 to 0.27 and drops to 10% at ~ 0.6.
Under depolarizing noise, the accuracy initially decreases to
v = 0.28, but recovers to 100% as the noise increases,
highlighting the adaptability of the algorithm (Fig. 5c). For
the PS-ToT dataset, the UU' and variational UUT algorithms
achieve robust accuracy in the phase damping channel while
degradation occurs for depolarization in -y 0.35 to 0.6
and the remaining noise models exhibit a gradual decrease in
accuracy with v = 0 to 0.6 as shown in Figs. 3d and 4d. The
performance of the UUT-QNN algorithm against amplitude
damping and phase damping is robust at different accuracies,
while the depolarizing noise model decreases in accuracy from
v = 0.05 to 0.6 and other noise models show a gradual
decrease in accuracy, as shown in Fig. 5d.

5) Comparative Analysis: The performance analysis of the
proposed quantum algorithms compared to the classical mod-
els is shown in Table II. Although quantum models generally
outperformed classical methods, the results varied between
datasets. For the 5G-SA dataset, the classical method achieved
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(c)

Datasets Models Metrics lassical hine 1 . thods f: ionifi t
“GSA L0 089 ®R2) resources, classical machine learning methods face significan
5G-SA | UUT-QNN | 1.00 (Accuracy) limitations in meeting the scalability and efficiency demands
L5G1.0 L [21] 0.78 (F1 Score) of 5G-enabled IoMT environments. To overcome these chal-
L5G1.0 V-UUT 0.71 (F1 Score) lenges, we proposed a classical-quantum hybrid framework
WE20 SVM [23] 0.92 (Accuracy)

WE20 | UUT-QNN | 1.00 (Accuracy)

incorporating UU, variational UUT, and UUT-QNN, aug-
mented by k-means clustering. This framework demonstrated
improvements in energy-efficient processing, with UUT-QNN
achieving 100% accuracy in the 5G-SA and WE20 datasets.
The quantum algorithms’ robustness was evaluated against five
noise models and demonstrated strong performance, although
bitflip noise remained the most disruptive. The UUT-QNN
algorithm remained resilient to most noise models while out-
performing classical machine learning in accuracy and energy
efficiency, especially for large datasets, and offers a scalable

alternative to classical models by addressing exponential mem-
ory growth.

TABLE 1l: Comparison of Performance Metrics Between Ex-
isting Algorithms and the Proposed Method.

an R? score of 0.89, while the proposed UUT-QNN algorithm
achieved 1.00 accuracy. In the L5G1.0 dataset, the classical
model reported in [21] achieved an F1 score of 0.78, while
the variational algorithm UU' achieved a comparable F1
score of 0.71. In the WE20 dataset, the SVM model from
[23] reached 0.92 accuracy, while the proposed UUT-QNN

achieved a perfect score of 1.00 on all metrics, outperforming
classical baselines.

In real-world healthcare applications, our developed quan-
tum algorithms have significant potential to transform per-
sonalized medicine by enabling early disease prediction, op-
timized treatment planning, and cost-effective diagnostics,
where UUT-QNN can detect complex patterns and variational
UUT can manage large-scale data to tailor individual patient

IV. DISCUSSION AND CONCLUSION

Since Industry 5.0 healthcare systems increasingly rely on
real-time monitoring and communication with limited power



care. However, decoherence, hardware infidelities, and qubit
topology limitations challenge practical deployment on current
quantum hardware. Furthermore, variational training suffers
from barren plateaus, and the UUT-QNN circuits amplify noise
on sparse topologies. Our future work will address identified
noise vulnerabilities, particularly bit-flip noise, by incorporat-
ing advanced error mitigation and quantum error correction
methods. Furthermore, we are developing optimized hybrid
classical-quantum frameworks and experimentally validating
them on near-term quantum devices to enhance the scalability
and reliability of Industry 5.0 healthcare applications.
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