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Abstract—The rapid advancement of 6G, cloud-fog computing,
and internet of things (IoT) has revolutionized the control
paradigm of smart grid. With the closed coupling between
communication and power domains, control performance heavily
relies on timely and secure sensing, transmission, and computing
of grid state information. Conventional approaches which treat
the four sectors as separate subsystems suffer from slow con-
vergence and even cascading control oscillations. In this paper,
we address the key research problem of sensing-transmission-
computing-control integrated optimization to minimize the over-
all voltage deviation. A timeliness-driven integrated optimization
algorithm is proposed, where proactive optimization of communi-
cation resource adaptation and power-domain control decisions
is conducted based on the evolution of information timeliness
loss in sensing, transmission, and computing, as well as its
impact on control accuracy. Particularly, a self-penalty based
cost function is developed to quantify the mismatch between
communication-domain resource allocation and voltage control
deviation. Moreover, a novel timeliness indicator, named age
of trustworthy information (AoTI), is introduced to capture
timeliness-trustworthiness performance loss on proportional-
integral (PI) consensus control stability margin. Consensus
weights are optimized based on AoTI to further enhance con-
vergence speed and improve control accuracy. Simulation results
demonstrate that the proposed algorithm significantly improves
power-domain control stability, validating the efficiency of AoTI
as a critical indicator for control information importance.

Index Terms—Smart grid, power-communication coupling,
information timeliness, sensing-transmission-computing-control
integration, PI consensus control, resource allocation

I. INTRODUCTION

THE rapid development of advanced information and com-
munication technologies such as 6G, internet of things

(IoT), and cloud-fog computing, has evoked a paradigm shift
in smart grid. The collaborative interaction among generators,
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grid, controllable loads, and energy storages becomes a reality
due to the real-time sensing, reliable transmission, and efficient
computing of critical grid states [1]. As a result, the power
domain is closely coupled with the communication domain,
which imposes new challenges. On the one hand, the allocation
of sensing, transmission, and computing resources in the com-
munication domain should be intelligently optimized based on
the power-domain demands, providing a highly reliable and
timely data channel for power control. On the other hand,
efficient and robust control optimization is also a necessity
to prevent false and tampered data spreading into the power
domain through communication networks, causing cascading
control oscillations and failures.

The integration of sensing, transmission, computing, and
control is a key technology for ensuring stable operation of
power-communication coupling smart grid. The four subsys-
tems are treated as a whole and act synergistically. In sensing,
with efficient data sensing period and event triggering mecha-
nisms, critical state changes are sensed timely while avoiding
redundant communication overheads. In transmission, joint
optimization of data encryption intensity and channel allo-
cation can ensure both data trustworthiness and timeliness,
especially in untrusted environments with false data injection
(FDI) attacks. In computing, appropriate computing resource
allocation can reduce queuing delays and improve state in-
formation timeliness. In control, control decision optimization
based on highly timely and trusted data can reduce voltage
deviation and improve control stability.

Proportional-integral (PI) consensus control as a distributed
control approach has been widely applied in smart grid. It per-
fectly matches grid topology since massive generators, loads,
and energy storages are deployed in a decentralized and dis-
tributed manner. In [2], Wang et al. proposed a decentralized
voltage control algorithm based on PI-consensus control and
distributed resource clustering to minimize voltage deviation.
In [3], Shi et al. considered the impact of FDI attacks and
proposed a deception attack-aware consensus voltage control
method for microgrids. The partial primal-and-dual (PPD)
algorithm is adopted to achieve attack detection by analyzing
primary and dual variables of voltage control. However, the
joint optimization of power and communication domains has
been ignored in the above works.

Several studies have explored multi-sector resource allo-
cation. For sensing-transmission integration, Hua et al. de-
veloped an integrated sensing and communication system
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to assist target detection, where pilot sequences in channel
estimation and user information in transmission are jointly uti-
lized [4]. For transmission-computing integration, an energy-
efficient satellite-aerial integrated edge computing network
was developed by jointly optimizing ground user device
association, multi-user multi-input and multi-output launch
precoding, computing task assignment and resource allocation
[5]. For sensing-transmission-computing integration, Cai et
al. proposed a low-latency computing task offloading ap-
proach for vehicular networks by investigating the coupling
among sensing, communication, and computing [6]. Actual
task processing delay is minimized by jointly optimizing
sub-task dispatch and service selection decisions. A low-
energy, low-latency short packet transmission method was
developed based on sensing-transmission-computing integra-
tion [7]. The total system energy consumption is minimized
while ensuring radar sensing performance and short packet
transmission constraints. However, the above studies primarily
focus on communication-domain resource allocation, while the
joint optimization of power and communication domains has
not been thoroughly investigated. For power-communication
coupling, Yu et al. studied the impact of communication
delay and packet loss on microgrid voltage tracking, and
proposed a consensus-based proportional-integral predictive
control strategy to reach output voltage consensus [8]. A
dynamic voltage and communication channel scheduling co-
design scheme was developed by considering the impact of
parameter uncertainty and communication delay on voltage
control [9]. Fast coordination and voltage recovery have been
achieved despite limited communication channel resources. In
[10], Peng et al. developed an algorithm to obtain both the
PI-based load frequency control gain and an upper bound on
the allowed communication delay. A PI consensus control
algorithm was proposed to minimize the DC bus voltage
deviation and improve power sharing of storage battery by
considering communication delay [11].

However, these studies mainly adopt delay as the primary
performance indicator in the communication domain, which
may not be fully applicable to control optimization. Com-
munication delay primarily measures information transmission
efficiency but cannot accurately reflect the information time-
liness loss across the entire process of sensing, transmission,
computing, and control [12], [13]. Age of information (AoI)
as an effective indicator for quantifying information timeliness
loss, measures the deviation between the generation time of
the latest state data and the current time at the receiver
[14]–[16]. In [17], Klügel et al. analyzed the feasibility of
AoI on the optimization of networked control systems and
provided an AoI estimation method, where the control perfor-
mance is optimized by minimizing the age penalty function.
Peak age of loop (PAoL) was constructed for quantifying
the sensor-controller-actuator loop [18], based on which a
block length optimization method was developed to improve
loop information freshness and control performance. A new
transmission scheme based on context-aware learning was pro-
posed by considering AoI of devices [19]. Numerical results
demonstrate that the awareness of state information timeliness
and control precision can be enhanced by leveraging AoI to

guide resource allocation optimization. However, despite the
numerous advantages of AoI, its application to the complex
power-communication coupling smart grid still faces several
technical challenges.

First, existing literatures lack in-depth analysis of the propa-
gation path of system state changes across communication and
power domains. The separate treatment of sensing, transmis-
sion, computing, and control is no longer suitable. Second, the
coupling between sensing and transmission is highly complex.
For instance, reducing the sensing period enables timely
capture of state changes, but it also increases data backlogs
of encryption, transmission, and computing queues, thereby
increasing AoI. Last but not least, traditional consensus control
methods have not explored the difference and fluctuation
of information timeliness and trustworthiness. AoI cannot
reflect the trustworthiness of control information. The mere
consideration of AoI in control optimization inevitably causes
tampered data spreading into the power domain from com-
munication networks, causing cascading control oscillations.
Therefore, it is necessary to design a novel timeliness indicator
that balances AoI and data security for PI consensus control.

In response to these challenges, we aim to address the key
research problem of sensing-transmission-computing-control
integrated optimization in complex power-communication cou-
pling smart grid. Specifically, the formulated problem is solved
in three stages, where sensing period, encryption intensity,
channel allocation, decryption computing resources, and con-
sensus weights are joint optimized to minimize the overall
bus voltage deviation. Next, a cost function is constructed
to account for the self-penalty term arising from sensing-
transmission resource mismatch and voltage control deviation,
based on which sensing and transmission resource allocation is
jointly optimized. Additionally, computing resource allocation
is optimized to minimize the sum AoI. Finally, a novel metric
named age of trustworthy information (AoTI) is introduced to
guide control optimization. It captures the intrinsic relationship
among control stability margin loss, AoI and trustworthiness.
Compared with delay and AoI, using AoTI for consensus
control not only significantly reduces convergence time, but
also achieves reliable resistance to FDI attacks. The main
contributions are summarized as follows.

• Timeliness-driven sensing-transmission-computing-
control integrated optimization: We establish an accurate
expression of the cumulative timeliness loss across
sensing, transmission, and computing, and quantify its
impact on power-domain control performance. This
sheds insight into the design of closed-loop, integrated
optimization of both communication and power domains,
which breaks the rigid paradigm of unidirectional
and separate implementation of sensing, transmission,
computing, and control.
• Self-penalty deep actor-critic (DAC) based sensing-
transmission collaborative optimization: The propagation
path of sensing and transmission demand changes caused
by state transitions in the power domain is deeply ex-
plored to enable real-time capture of rapid state changes.
Additionally, a self-penalty term quantifying resource-
demand mismatch is leveraged to update DAC network
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in closed-loop to effectively resolve the paradox between
resource wastage and insufficiency.
• Computing resource allocation for optimal AoI: To
prevent excessive timeliness loss from compromising
control stability, a computing resource allocation problem
is constructed to minimize the sum AoI. Based on the
derived expression between AoI evolution and comput-
ing resource allocation, triggering moments, and queue
backlog, the problem is transformed into a convex one
and solved in a tractable manner.
• Consensus control based on AoTI: Compared to AoI
and delay, AoTI integrates the latency of the whole
chain of sensing, transmission, computing and control
as well as information trustworthiness. The nonlinear
impact of communication-domain information timeliness
and trustworthiness on power-domain control stability
margin is quantified. It provides guidance on consensus
weight optimization to favor state information with high
timeliness and trustworthiness, improving PI consensus
convergence.

II. SYSTEM MODEL

The proposed framework of sensing-transmission-
computing-control integration for power-communication
coupling smart grid, is shown in Fig. 1. It consists of three
layers. The sensing layer is composed of IoT devices deployed
in distributed generators (DGs), loads, and energy storages
to sense real-time grid state data. In the transmission and
computing layer, transmitter devices (TXs) encrypt sensed
data and transmit them to neighboring devices (RXs), which
decrypt and compute the received data. In the PI consensus
control layer, each device interacts with neighboring devices
to iteratively update the consensus variables and adjust DG
output based on the decrypted state variables and bus voltage
deviations.

FDI attacks severely affect consensus convergence by ex-
ploiting vulnerabilities of communication channels to inject
malicious data, misleading devices into making inaccurate
control decisions [20]. Although increasing data encryption
intensity can effectively defend against FDI attacks, it also in-
creases decryption delay and AoI, negatively affecting conver-
gence performance. Therefore, we focus on how to minimize
the overall voltage deviation through integrated optimization
of sensing, transmission, computing, and control resources.
The models of sensing, transmission, computing, and control
are introduced below.

A. PI Consensus-based Secondary Control Model for Smart
Grid

The PI consensus-based secondary control model for smart
grid is illustrated in Fig. 1. The primary control employs
traditional droop control to maintain power supply-demand
balance and stabilize bus voltage. The secondary control
leverages PI consensus to correct the reference voltage of
the primary control and improve control precision based on
coordinated voltage regulation of DGs. PI consensus allows
neighboring devices to exchange not only the state variables

Fig. 1. The proposed framework of sensing-transmission-computing-control
integration for power-communication coupling smart grid.

output by the observers but also intermediate variables that
reflect the convergence performance of each device’s state
variables, resulting in steady state response characteristics.

Considering J devices, the buses connected to DGs are
numbered as 1, · · · , JDG, while the pure load buses are num-
bered as JDG + 1, · · · , J . Based on Kirchhoff’s current Law,
the injected current at bus j is given by

ioj =
vbus
j

Ωload
j

+
P load
j

vbus
j

+ I load
j

+
∑
j′∈J ′j

vbus
j − vbus

j′

Ωj,j′
, j = 1, 2, · · · , J (1)

where vbus
j denotes the bus voltage. J ′j denotes the set of

J ′ devices connected to device j. Ωj,j′ denotes the line
impedance between j and j′. Ωload

j , I load
j , and P load

j are the
constant impedance load, current load, and power load.

The above equation can be linearized as[
∆io
0

]
=

[
YJDG×JDG YJDG×J
YJ×JDG YJ×J

] [
∆vbus

∆vbusJ

]
(2)

where ∆io = [∆io1, · · · ,∆ioJDG
]T , ∆vbus =

[∆vbus1 , · · · ,∆vbusJDG
]T , ∆vbusJ = [∆vbusJDG+1, · · · ,∆vbusJ ]T .[

YJDG×JDG YJDG×J
YJ×JDG YJ×J

]
∈ RJ×J is the block form of the

admittance matrix, with its elements expressed as

yj,j′ =


∑
j′∈J ′j

1/Ωj,j′

+1/Ωload
j − P load

j

/
v̄bus

2

j for j = j′

−1/Ωj,j′ for j 6= j′

(3)

where v̄busj represents the grid operation voltage during lin-
earization, which can be simplified as the rated voltage vrefj .

For DGs, the loads can be eliminated, yielding a reduced-
order network equation, expressed as

∆io = YJDG∆vbus (4)
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where YJDG = YJDG×JDG − YJDG×JY
−1
J×JYJ×JDG , YJDG ∈

RJDG×JDG is the reduced-order admittance matrix.
The bus voltage at device j is

vbus
j (t) = vref

j − κjioj(t) + uj(t) (5)

where κj is the droop coefficient, and uj(t) denotes the output
control signal. Define the voltage deviation as

ψd
j(t) = κji

o
j(t) (6)

The objective is to minimize the overall voltage deviation
of all buses in the smart grid. The secondary control problem
is formulated as

P1 : min
ψd

j

f(ψd
j) =

JDG∑
j=1

1

2
(vbus
j − vref

j )2,

s.t. C1 : ψd
j = ψd

j′ ,∀j, j′ ∈ {1, 2, · · · , JDG} (7)

where C1 represents that the output power among the DGs
must be allocated strictly in inverse proportion to the droop
coefficients, that is, κ1io1(t) = κ2i

o
2(t) = · · · = κJDGi

o
JDG

(t).
When the overall voltage deviation is minimized, the devi-

ations of the control variables uj and the voltage deviation ψd
j

are also minimized. Thus, P1 can be reformulated as

P2 : min
ψd

j

f(ψd
j) =

JDG∑
j=1

1

2
(uj − ψd

j)
2 (8)

The optimal solution for P2 is given by uj = ψd
j . Based

on the PI consensus algorithm, the secondary control variables
and intermediate variables are updated as

u̇j(t) =
∑
j′∈J ′j

ωψj,j′(t)
(
ψd
j′(t)− ψd

j(t)
)

−
∑
j′∈J ′j

ωZj,j′(t) (Zj′(t)− Zj(t)) + gj(t)∇f(ψd
j(t))

(9)

Żj(t) =
∑
j′∈J ′j

ωZj,j′(t)
(
ψd
j′(t)− ψd

j(t)
)

(10)

where ωψj,j′(t), ωZj,j′(t), and gj(t) are weight coefficients.
Zj(t) is an auxiliary variable that reflects the convergence of
ψd
i (t). ∇f(ψd

j(t)) represents the gradient of f(ψd
j(t)).

B. State Sensing Model based on Adjustable Sensing Period
and Event Triggering

Define the sensing period variable for the IoT device
of the j-th DG as hj(t) ∈ Hj = {hmin

j , · · · , hmin
j +

(hmax
j −hmin

j )(n−1)
N−1 , · · · , hmax

j }, where hmin
j and hmax

j represent
the minimum and maximum sensing periods. The n-th sensing

period is expressed as hmin
j +

(hmax
j − hmin

j )(n− 1)

N − 1
, with

n = 1, 2, · · · , N .
Then, device j performs event triggering judgment based

on sensed values. If the event triggering conditions are met,
device j encrypts the sensed state data and transmits them to
neighboring device in set J ′j . Upon receiving the encrypted
state data, the neighboring devices decrypt them and update

their local states based on PI consensus. Defining the k-th
event triggering moment for device j as tkj , the event triggering
condition is given by

δj(t)

{
ωψj,j′(t)

[
eψj (t)

]2
+ ωZj,j′(t)

[
eZj (t)

]2}
≥
∑
j′∈J ′j

(ωψj,j′(t) + ωZj,j′(t))

2

(
ψ̂d
j′(t)− ψ̂d

j(t)
)2

(11)

where ψ̂d
j(t) = ψd

j(t
k
j ). δj(t) is the event-triggered sensitivity

control variable, and a lager δj(t) indicates higher sensitivity.
eψj (t) and eZj (t) represent the changes in the voltage deviation
ψd
j and the auxiliary intermediate variable Zj(t) since the last

event triggering, expressed as

eψj (t) = ψd
j(t)− ψ̂d

j(t) (12)

eZj (t) = Zj(t)− Ẑj(t) (13)

where Ẑj(t) = Zj(t
k
j ).

C. Transmission and Computing Model

1) TX-Side Encryption Delay Model: After an event is
triggered, device j encrypts the state sensing data. The data
encryption intensity variable is defined as wkj ∈ W =
{1, · · · ,m, · · · ,M}, where wkj = m represents that device
j uses the m-th level of encryption intensity. The encryption
complexity, security, and decryption complexity of the m-
th level are denoted by ωEN

m , φm, and ωDE
m , respectively.

The encryption delay ignoring device-side encryption queue
backlog is expressed as

τk,EN
j =

M∑
o=1

1{wkm = o}
ωEN
o ζk,ori

EN,j

fj
(14)

where ζk,ori
EN,j represents the size of state data, and fj represents

the computing resources.
Assume encryption queue backlog of device j as QEN

j (t).
The triggering sequence number of the first packet waiting for
encryption in the queue is defined as HIEN

j,k−1. oEN
j (t) denotes

the sequence number of the last packet left the encryption
queue before time t. After the k-th event triggering, if the
triggering interval is less than the encryption delay τ

HIEN
j,k−1,EN

j

of the state data HIEN
j,k−1, i.e., tkj −t

k−1
j < τ

HIEN
j,k−1,EN

j , then the
encryption queue backlog increases. At this point, oEN

j (t) =

HIEN
j,k−1 − 1. The encryption queue backlog evolves as

QEN
j (k) = QEN

j (k − 1) + 1 (15)

The encryption delay is updated as

τ k̃,EN
j = τ k̃,EN

j − (tkj − tk−1j ) (16)

where k̃ = HIEN
j,k−1.

If tkj − t
k−1
j ≥ τ

HIEN
j,k−1,EN

j , the encryption queue backlog
evolves as

QEN
j (k) = QEN

j (k − 1) + 1−

(
arg max

oEN
j (t)

{(
tkj − tk−1j

)



5

−
oEN
j (t)∑

o=HIEN
j,k−1

τo,EN
j ≥ 0

}
− HIEN

j,k−1 + 1

)
(17)

The last term represents the number of packets encrypted
within the triggering interval. The encryption delay is

τ k̃,EN
j =

[
τ k̃,EN
j −

(
tkj − tk−1j −

k̃−1∑
r=HIEN

j,k−1

τ r,EN
j

)
, 0

]+
(18)

where k̃ = HIEN
j,k−1 + 1, · · · , oEN

j (t) + 1.
2) TX-Side Transmission Delay Model: Assume that device

j transmits the encrypted data to j′. Define the bandwidth
allocation variable as bj(t) ∈ Bj = {1, 2, · · · , cmax}, where
cmax represents the maximum number of channels. The trans-
mission capacity is defined as Rmax. When bj(t) = c, the
transmission rate for device j is c

cmax
Rmax. The transmission

delay ignoring transmission queue backlog is expressed as

τk,TX
j =

ζk,ori
TX,jcmax

cRmax
(19)

where ζk,ori
TX,j is transmission data size. Define QTX

j (t) as the
transmission queue backlog, HITX

j,k−1 as the sequence number
of the first packet waiting for transmission, and oTX

j (t) as the
sequence number of the last packet left the transmission queue
at time t. Similar to the encryption queue backlog, if tkj −t

k−1
j

is less than the transmission delay τ
HITX
j,k−1,TX

j , then oTX
j (t) =

HITX
j,k−1 − 1. The transmission queue backlog evolves as

QTX
j (k) = QTX

j (k − 1) + oEN
j (t)− HIEN

j,k−1 + 1 (20)

The transmission delay is updated as

τ k̂,TX
j = τ k̂,TX

j − (tkj − tk−1j ) (21)

where k̂ = HITX
j,k−1.

If tkj − t
k−1
j ≥ τ

HITX
j,k−1,TX

j , the transmission queue backlog
evolves as

QTX
j (k) = QTX

j (k − 1) + oEN
j (t)− HIEN

j,k−1 + 1

−

(
arg max

oTX
j (t)

{(
tkj − tk−1j

)
−

oTX
j (t)∑

o=HITX
j,k−1

τo,TX
j ≥ 0

}

− HITX
j,k−1 + 1

)
(22)

The transmission delay is updated as

τ k̂,TX
j =

[
τ k̂,TX
j −

(
tkj − tk−1j −

k̂−1∑
r=HITX

j,k−1

τ r,TX
j

)
, 0

]+
(23)

where k̂ = HITX
j,k−1 + 1, · · · , oTX

j (t) + 1.

3) RX-Side Decryption Computing Delay Model: Device j′

constructs independent decryption queues for encrypted data
and allocates computing resources for parallel decryption and
computing. For encrypted data from j, the decryption delay
ignoring decryption queue backlog is expressed as

τk,DE
j,j′ =

M∑
o=1

1{wkm = o}
ωDE
o ζk,ori

DE,j

fkj,j′
(24)

where ζk,ori
DE,j represents decrypted data size, and fkj,j′ indicates

the computing resources allocated by device j′.
Define QDE

j,j′(t) as the decryption queue backlog, HIDE
j,j′,k−1

as the sequence number of the first packet waiting for de-
cryption, and oDE

j,j′(t) as the sequence number of packet left
the decryption queue. If the triggering interval is less than
the decryption delay τ

HIDE
j,k−1,DE

j,j′ of state data HIDE
j,k−1, then

oDE
j (t) = HIDE

j,k−1 − 1. The decryption queue backlog is

QDE
j (k) = QDE

j (k − 1) + oTX
j (t)− HITX

j,k−1 + 1 (25)

The decryption delay is updated as

τ k̈,DE
j,j′ = τ k̈,DE

j,j′ − (tkj − tk−1j )
fkj,j′

f k̈j,j′
(26)

where k̈ = HIDE
j,k−1.

If (tkj − tk−1j ) ≥
f

HIDE
j,k−1

j,j′

fkj,j′
τ

HIDE
j,k−1,DE

j,j′ , the decryption queue

backlog evolves as

QDE
j (k) = QDE

j (k − 1) + oTX
j (t)− HITX

j,k−1 + 1

−

(
arg max

oDE
j (t)

{(
tkj − tk−1j

)
−

oDE
j (t)∑

o=HIDE
j,k−1

fkj,j′

foj,j′
τo,DE
j,j′ ≥ 0

}
− HIDE

j,k−1 + 1

)
(27)

The decryption delay is updated as

τ k̈,DE
j,j′ =

{
τ k̈,DE
j,j′ −

[
(tkj − tk−1j )−

k̈−1∑
r=HIDE

j,k−1

fkj,j′

frj,j′
τ r,DE
j,j′

]
, 0

}+

(28)

where k̈ = HIDE
j,k−1 + 1, · · · , oDE

j (t) + 1.

D. Information Timeliness Model

The AoI of device j is defined as the deviation between the
generation time of the latest state data received by j and the
current time t. The AoI of the state data from j′ is given by

AoIkj,j′(t) = t− tkj′ (29)

which measures the timeliness of state information from j′.
There exists a coupling relationship among information

timeliness, sensing period, queue backlog, and computing
resource allocation. The impact of sensing period and backlog
on AoI is shown in Fig. 2(a). When a smaller sensing period
is selected under small data backlog, the state data will be
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Fig. 2. The coupling relationship among information timeliness, sensing period, data backlog, and computing resource allocation: (a) The impact of sensing
period and data backlog on Aol; (b) The impact of computing resource allocation on AoI.

processed quickly, keeping AoI at a low level. Conversely,
choosing a larger sensing period is detrimental to timely
information updating. The AoI can reach extremely low valley
values due to few data backlog. On the other hand, the
larger sensing period also results in higher AoI peaks due to
the continuous accumulation of AoI during the large sensing
interval. If a smaller sensing period is chosen under large
data backlog, frequent sensing increases the queue backlogs
of encryption, transmission, and computing, maintaining AoI
at a higher level.

The impact of computing resource allocation and backlog
on AoI is shown in Fig. 2(b). When insufficient computing
resources are allocated to large decryption queue backlog, the
AoI will surge due to the large queuing delay of decryption.
In contrast, allocating sufficient computing resources to small
backlog can reduce AoI but at the cost of computing resource
wastage.

E. Control Model Considering AoI and FDI Attacks

The indicator variable for FDI attack is defined as Φkj,j′ .
When the attack intensity is greater than or equal to the
security level, Φkj,j′ = 1 represents that the control information
from j′ received by j during the k-th event triggering cannot
effectively resist FDI attack. The value of Φkj,j′ is determined
as

Φkj,j′ = 1

{
ι ≥

M∑
o=1

1{wkm = o}φo,kj,j′

}
(30)

where ι represents the attack intensity, and φo,kj,j′(t) denotes
the security level using the o-th level of encryption intensity.

The PI consensus-based secondary control model consider-
ing AoI and FDI attacks is expressed as

u̇j(t) =
∑
j′∈J ′j

∑
k∈Kj

′
j (t)

ωψj,j′(t)

×
(
ψd,k
j′ (t− AoIkj,j′(t))− ψd

j(t)
)

−
∑
j′∈J ′j

∑
k∈Kj

′
j (t)

ωZj,j′(t)
(
Zkj′(t− AoIkj,j′(t))

− Zj(t) + Φkj,j′∆λ
Z
j,j′
)

+ gj(t)∇f(ψd
j(t)) (31)

Żj(t) =
∑
j′∈J ′j

∑
k∈Kj

′
j (t)

ωZj,j′(t)

×
(
ψd,k
j′ (t− AoIkj,j′(t))− ψd

j(t) + Φkj,j′∆λ
ψ
j,j′

)
(32)

where Kj
′

j (t) represents the set of packet sequence numbers,
and ∆λZj,j′ denotes the injected false data. When Φkj,j′ = 1,
Φkk,k′∆λ

Z
k,k′ and Φkk,k′∆λ

ψ
k,k′ are not equal to zero, which

indicates that the secondary control variables and intermediate
variables are affected by the FDI attack.

PI consensus convergence is influenced by FDI attacks and
AoI. As illustrated in Fig. 3(a) and Table I, FDI attacks can re-
duce convergence performance and control precision and even
cause control oscillations. Specifically, constant attack and step
attack result in large voltage deviation and convergence time
while stochastic attack leads to non-convergence. On the other
hand, larger AoI also causes negative impacts, as shown in Fig.
3(b) and Table II. When AoI increases from 0.15 s to 0.35 s,
the convergence time and overshoot of consensus becomes
significantly larger. When AoI reaches 0.45 s, consensus
iteration fails to converge. In the presence of FDI attacks,
increasing encryption intensity provides better protection but
also increases encryption and decryption delays, which in
turn increases AoI. This demonstrates the mutual coupling
between FDI attack and AoI. Therefore, the integrated design
of sensing, transmission, computing and control must strike a
balance between security and information timeliness.

III. PROBLEM FORMULATION

We address the integrated optimization problem of sensing,
transmission, computing, and control in power-communication
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(a) (b)

Fig. 3. The impacts of different FDI attacks and varying AoI on consensus convergence: (a) The impact of different FDI attacks; (b) The impact of varying
Aol levels (5 DGs, vref = 400 V, Pload = 5 kW, bus-star hybrid topology).

TABLE I
IMPACT OF DIFFERENT FDI ATTACKS ON CONSENSUS CONVERGENCE.

Attack level Convergence
time /s

Overshoot of
bus voltage /%

Steady-state
error /V

Stochastic attack
∆λZ

j,j′ ,∆λ
ψ
j,j′

= [0, 1]

Non
-convergence

Non
-convergence

Non
-convergence

Constant attack
∆λZ

j,j′ ,∆λ
ψ
j,j′ = 3

1.32 0.03 0.12

Step attack
∆λZ

j,j′ ,∆λ
ψ
j,j′

= 5× 105/t2
18.57 0.0624 0.016

TABLE II
IMPACT OF VARYING AOI LEVELS ON CONSENSUS CONVERGENCE.

AoI /s Convergence time /s Overshoot of bus voltage /%
0 1.32 0

0.15 1.37 0.0125
0.25 4.35 0.0382
0.35 12.73 0.0602
0.45 Non-convergence Non-convergence

coupling smart grid. The optimization objective is to minimize
the overall voltage deviation of all buses by jointly opti-
mizing sensing period, encryption intensity, channel alloca-
tion, decryption computing resource allocation, and consensus
weights, thereby achieving a balanced load power allocation
among DGs. The optimization problem is formulated as

MP : min
H,W,B,F ,ω

JDG∑
j=1

1

2
(uj − ψd

j)
2,

s.t. C1 : ψd
j = ψd

j′ ,∀j, j′ ∈ {1, 2, · · · , JDG},

C2 :

JDG∑
j=1

bj(t) ≤ cmax,∀t,

C3 :
∑
j′∈J ′j

fkj,j′ ≤ fDE
j,max,∀j ∈ {1, 2, · · · , JDG},

C4 :
∑
j′∈J ′j

ωψj,j′(t) =
∑
j′∈J ′j

ωZj,j′(t) = 1,

∀j ∈ {1, 2, · · · , JDG},∀t (33)

where H = {hj(t)|∀j,∀t},W = {wkj |∀j,∀k},B =

{bj(t)|∀j,∀t},F = {fkj,j′ |∀j′,∀j,∀k},ω = {ωψj,j′(t),
ωZj,j′(t)|∀j′,∀j,∀t} represent the sets of optimization vari-
ables. C1 specifies that the voltage deviation at each bus is
equal and that power is strictly allocated in inverse proportion
to the droop coefficient. C2 is the bandwidth constraint,
indicating that the total number of allocated channels cannot
exceed cmax. C3 ensures that the total decryption computing
resources allocated by j cannot exceed fEN

j,max. C4 represents
the weight constraints on PI consensus variables and associated
intermediate variables.

IV. TIMELINESS-DRIVEN
SENSING-TRANSMISSION-COMPUTING-CONTROL

INTEGRATED OPTIMIZATION ALGORITHM

Traditional control methods typically treat sensing, trans-
mission, computing, and control as independent subsystems,
which are designed and optimized separately. There lacks
an in-depth analysis of the propagation path of system state
changes between communication and power domains. As
shown in (31), the consensus convergence is influenced by
factors of both communication and power domains. Therefore,
it is urgent to break the rigid paradigm of sequential, unidirec-
tional, and separate implementation of sensing, transmission,
computing and control.

To address these challenges, we propose a timeliness-
driven sensing-transmission-computing-control integrated op-
timization algorithm, as shown in Fig. 4. Within each slot,
the original problem is solved in three stages. First, a self-
penalty DAC-based sensing-transmission collaborative opti-
mization algorithm is executed. By introducing a self-penalty
term to quantify the mismatch between transmission demand
and resource allocation, a cost function is constructed that
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Fig. 4. The principle of the proposed timeliness-driven sensing-transmission-computing-control integrated optimization algorithm.

includes both control deviations of power domain and sensing-
transmission resource adaptation deviations of communication
domain. Next, a computing resource allocation algorithm for
optimal AoI is proposed to minimize the total AoI of control
information. Finally, a control optimization algorithm based on
AoTI is introduced, which assigns higher weights to control
information with high timeliness and reliability. The detailed
execution flow is illustrated in Algorithm 1.

A. Self-Penalty DAC-based Sensing-Transmission Collabora-
tive Optimization Algorithm

The joint optimization problem of sensing and transmission
is formulated as

P3 : min
H,W,B

JDG∑
j=1

1

2
(uj − ψd

j)
2,

s.t. C1, C2 (34)

DAC is an effective method for solving P3. However,
traditional DAC overlooks the changes of data sensing and
transmission demands caused by state changes of power do-
main, which leads to a mismatch between transmission re-
source allocation and sensing-transmission demand, resulting
in both resource shortage and wastage. To address this issue, a
self-penalty DAC-based sensing and transmission collaborative
optimization algorithm is proposed. The state space, action
space, and the self-penalty based cost function are introduced
as follows.

State Space: The state space of j in the l-th time slot is
defined as Sj(l) = {AoIkj,j′(t), Zj′(t), ψ

d
j′(t)|∀j′ ∈ J ′j ,∀k ∈

Kj
′

j (lT0)}. Here, Kj
′

j (lT0) represents the sequence number set
of decrypted data.

Action Space: The action space is defined as Aj(l) =
{µhj (l), µbj(l), µ

w
j (l), σhj (l), σbj(l), σ

w
j (l)}, which represents

the mean and variance variables of normal distributions of

sensing period, channel allocation, and encryption intensity,
i.e., Xh

j (l), Xb
j (l), and Xw

j (l).
Self-Penalty based Cost Function: Device j constructs the

self-penalty based cost function Cj(l) according to the control
deviation and the self-penalty term pj(l) induced by the
mismatch of transmission-sensing resources, expressed as

Cj(l) =V
1

2

∑
j′∈J ′j

∑
k∈Kj

′
j (lT0)(

uj(t− AoIkj,j′(lT0))− ψd
j(lT0)

)2
+ pj(l) (35)

where V represents the tradeoff between the power-domain
control performance and the communication-domain resource
adaptation. The term pj(l) will be elaborated in (37).

The proposed algorithm is implemented as four steps.
Step 1 (Initialization): Initialize the actor and critic

networks θj and ξj of device j. Initialize the number of
training rounds, discount factor, learning rate of actor network
δa, and learning rate of critic network δc.

Step 2 (Decision making): At slot l, the state Sj(l) is input
into θj to obtain the action Aj(l), and the normal distributions
corresponding to sensing period, channel allocation and en-
cryption intensity are also generated. By performing random
sampling and rounding, the respective optimization results
are derived. Under the channel number constraint, channel
allocation action xbj(l) is proportionally adjusted as

bj(l) =

⌊
xbj(l)cmax∑JDG
j=1 x

b
j(l)

⌋
(36)

where b·c denotes the floor function.
Step 3 (Performance evaluation): Execute the action

and transfer to the next state Sj(l + 1). Calculate the cost
function value Cj(l) based on (35). The self-penalty term pj(l)
is defined as the gap between the amount of data that can
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Algorithm 1: Timeliness-driven sensing-transmission-
computing-control integrated optimization algorithm

1 Input: Sj(l),∀j′ ∈ J ′j ,∀k ∈ Kj
′

j (lT0)

2 Output: Aj(l)
3 for l = 1, 2, 3, · · · do
4 Self-penalty DAC-based sensing-transmission

collaborative optimization:
5 for j = 1, 2, 3, · · · do
6 Load state and obtain actions based on DAC.
7 Obtain xhj (l), xbj(l) and xwj (l) based on

random distributions X(l)hj , Xb
j (l), and

Xw
j (l).

8 Obtain channel allocation action bj(l) based
on (36).

9 Computing resource allocation for optimal
AoI:

10 Obtain AoI evolution AoIkj,j′(T0(l + 1)) as
(40).

11 Approximate AoIkj,j′(T0(l + 1)) as a
continuous function by (42).

12 Allocate computing resources fj,j′(lT0) to
minimize the overall AoI.

13 Control optimization based on AoTI:
14 Calculate AoTIkj,j′((l + 1)T0) as (44).
15 Determine ωk,Zj,j′ (t) and ωk,ψj,j′ (t) based on

AoTIkj,j′((l + 1)T0) as (45).
16 Calculate the self-penalty value pj(l) as (37).
17 Calculate cost function Cj(l) as (35).
18 Transfer to the next state.
19 Calculate TD error ηj(l) as (38).
20 Update DAC networks by gradient descent

method.
21 end
22 end

be transmitted and the maximum amount of data requiring
transmission, i.e.,

pj(l) =

[
bj(l)

cmax
RmaxT0 −

HITX
j,k−1+Q

TX
j ((l−1)T0)∑

o=HITX
j,k−1

ζo,ori
TX,j , 0

]+
(37)

A larger pj(l) indicates a higher degree of mismatch of
sensing-transmission resources.

Step 4 (Learning updates): Critic network calculates
temporal difference (TD) error based on current state and
action, i.e.,

ηj(l) = Cj(l) + γjΛ̂j(Sj(l + 1), ξj)− Λ̂j(Sj(l), ξj) (38)

where γj represents the discount factor, and Λ̂j(Sj(l), ξj)
denotes the critic network’s evaluation value of the current
state. The parameters of critic network are updated using the
TD error as ξj ←− ξj + δcηj(l). Based on the TD error and
the gradient descent method [21], update the parameters of
actor network as θj ←− θj + δaηj(l)5θ πθ(Sj(l), aj(t)).

B. Computing Resource Allocation Algorithm for Optimal AoI

The sequence number set of data received by device j from
j′ at slot l is denoted as KEN

j,j′(l). The computing resource
allocation problem is formulated as

P4 : min
Fj

∑
j′∈J ′j

∑
k∈KEN

j,j′ (l)

AoIkj,j′(lT0),

s.t. C̃3 :
∑
j′∈J ′j

fj,j′(lT0) ≤ fDE
j,max (39)

Define the sequence number set of decrypted data as Kk∗j (l).
Then, the AoI evolves as

AoIkj,j′(T0(l + 1)) = AoIkj,j′(lT0) + 1{k /∈ Kk∗j (l)}T0

+ 1{k ∈ Kk∗j (l)}

 ∑
∀o∈Kk∗j (l),o≤k

τo,DE
j,j′

 (40)

where the indicator function for completed decryption can be
rewritten as

1{k ∈ Kk∗j (l)}

→ fj,j′(l)T0 −
k∑

s=QDE
j,j′ (T0l)[1]

M∑
o=1

1{wkj = o}ζoDE,j,j′ω
DE
o

= Xk
j,j′(l) ≥ 0 (41)

Additionally, we can further approximate (40) as a contin-
uous function based on tanh function, i.e.,

AoIkj,j′((l + 1)T0) = AoIkj,j′(lT0)

+
1

2

[
1− tanh

(
Xk
j,j′(l)

)]
T0

+
1

2

[
1 + tanh

(
Xk
j,j′(l)

)] ∑
∀o∈Kk∗j (l),o≤k

τo,DE
j,j′

 (42)

Based on (42), P4 is transformed into a convex optimization
problem, which can be solved easily.

C. Control Optimization Algorithm based on AoTI

Based on the control information obtained after decryption,
the control optimization problem is formulated as

P5 : min
ω

JDG∑
j=1

1

2
(uj − ψd

j)
2,

s.t. C4 (43)

We propose a consensus weight optimization method based
on AoTI, defined as the product of an increasing loss function
of AoI regarding time and a decreasing function of trustwor-
thiness. It can simultaneously evaluate the impacts of both
information timeliness and trustworthiness on control, and
provide guidance for consensus weight optimization to favor
timely and trustworthy state information, which is expressed
as

AoTIkj,j′(t) = e−αje
−βjAoIk

j,j′ (t) ·

(
1−

M∑
o=1

1{wkj′ = o}φo,kj,j′

)
(44)
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Fig. 5. Simulation topology.

where the first term employs the Gompertz function to describe
the impact of AoI on control stability. αj and βj are used to
adjust the rate of change in control stability margin loss caused
by the increase of AoI.

The consensus control weight based on AoTI is defined as

ωk,Zj,j′ (t) = ωk,ψj,j′ (t)

=
AoTIkj,j′((l + 1)T0)∑

j′∈J ′j

∑
∀k∈Kk∗j (l) AoTIkj,j′((l + 1)T0)

(45)

As indicated by (45), control information with high timeliness
and trustworthiness carries greater weight in the consensus
convergence process, preventing the spread of communication-
domain performance deviations into the power domain,
thereby enhancing both the speed and accuracy of consensus
convergence.

D. Computational Complexity

The computational complexity of the proposed algorithm
consists of three parts. In the first part of self-penalty DAC-
based sensing-transmission collaborative optimization, the
computational complexities of initialization, decision making,
performance evaluation, and learning update are O(|θj |+|ξj |),
O(|Aj(l)|), O(1), and O(B×(|θj |+|ξj |)), where |θj | and |ξj |
are the numbers of actor network parameters and critic net-
work parameters. |Aj(l)| and B are the numbers of actions and

TABLE III
SIMULATION PARAMETERS

Parameter Value Parameter Value Parameter Value
Ωload
j 10 Ω Ωj,j′ 0.01 Ω vrefj 400V

κ1 0.1 Ω κ2 0.1 Ω κ3 0.2 Ω
κ4 0.2 Ω κ5 0.2 Ω gj 10
N 5 hmin

j 10 ms hmax
j 50 ms

ζk,ori
EN,j 0.1 Mbit cmax 30 γj 0.99

training samples. The computational complexity of computing
resource allocation for optimal AoI is O(J−1+Γ×Jρ). Γ is
the required iterations to achieve convergence, and the value of
constant ρ depends on the utilized convex optimization algo-
rithm. The computational complexity of control optimization
based on AoTI is O(J−1). Therefore, the total complexity of
the proposed algorithm is O(|θj |+ |ξj |+ 2(J − 1) + Γ× Jρ)

V. SIMULATION RESULTS

The simulation is implemented on three ThinkStation 7920
servers (Intel(R) Xeon(R) Gold 5118/128GB/2.5TB/P2000)
and performed via MATLAB R2024b. As shown in Fig. 5, a
DC microgrid system simulation environment consisting of 5
DGs is constructed based on the topology of an industrial park
in China, as well as the practical operation conditions includ-
ing distributed photovoltaic outputs and load fluctuations. The
DC bus voltage reference is set to 400 V. Each DG includes a
DC power generator, a DC/DC converter, and a passive filter,
with the switching frequency of 10 kHz. The line impedance
is set as 0.01 Ω, and a constant current load of IL = 5 A
is connected to the system. Other simulation parameters are
shown in Table III [22]–[25].

The proposed algorithm has been further validated under
four cases by considering the influence of load fluctuation
(Case 1), grid topology variation (Case 2), communication
failure (Case 3), large network size and different topologies
(Case 4). In particular, its applicability in real-world mi-
crogrids with complex load profiles and load fluctuations is
verified in Case 1. Its sensitivity to grid topology changes
is validated in Case 2. Its robustness against communication
failures is demonstrated in Case 3. Its feasibility and scalability

(a) (b) (c)

Fig. 6. Bus voltage stability performance under load fluctuation: (a) Proposed; (b) Baseline 1; (c) Baseline 2.
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(a)

(b)

Fig. 7. Sensing event triggering moments comparison: (a) Proposed; (b)
Baseline 2.

Fig. 8. Bus voltage stability performance comparison under delay, AoI, and
proposed AoTI.

for large network sizes as well as different grid topologies and
transmission rates are evaluated in Case 4.

Two existing works [11] and [19] are slightly modified as
baseline algorithms for comparison. Baseline 1 refers to con-
ventional consensus control based on communication delay,
where both transmission and computing resources are opti-
mized to minimize communication delay. It employs a time-
triggered mechanism, i.e., state data are sensed at fixed inter-
vals. The highest level of data encryption is adopted. Baseline
2 aims to minimize AoI based on sensing-communication-
computing integrated resource allocation. The same consensus
weight is adopted for all devices.

A. Case 1: Load Fluctuation

Case 1 consists of three load fluctuations. An additional 10
kW constant power load is connected to bus 2 at t = 2 s. The
load is increased from 10 kW to 15 kW at t = 4 s, and is
disconnected at t = 6 s.

(a)

(b)

Fig. 9. Root track comparison of different communication-domain metrics:
(a) AoTI; (b) Delay.

(a) (b)

Fig. 10. Grid topology variation: (a) DG5 disconnection; (b) DG5 reconnec-
tion.

Figure 6 presents the bus voltage stability performance
under load fluctuation. After consensus control, the average
bus voltage of the proposed algorithm stabilizes at exactly
400 V. Compared to baseline 2, the required convergence
time since load disconnection is reduced from 360 to 150 ms,
and the convergence speed under three load fluctuations is
increased by 46.99% due to the consideration of AoTI-based
consensus weight optimization. Baseline 1 performs the worst,
i.e., a total of 950 ms is required to reach voltage stability
under three load fluctuations, which is 53.68% higher than
the proposed algorithm. This improvement of the proposed
algorithm is attributed to the abilities of timely capturing
state changes and dynamically adjusting resource allocation,
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(a) (b) (c)

Fig. 11. Bus voltage stability performance under grid topology variation: (a) Proposed; (b) Baseline 1; (c) Baseline 2.

(a) (b) (c)

Fig. 12. Bus voltage stability performance under bidirectional communication failure between DG1 and DG5: (a) Proposed; (b) Baseline 1; (c) Baseline 2.

ensuring timely and reliable delivery of control information.

Figure 7 illustrates the event triggering moment compari-
son. Compared to baseline 2, the event triggering frequency
during stable operation is decreased to alleviate data queue
backlogs of encryption, transmission, and decryption. For
example, the number of triggered events is reduced by 72
under stable operation. On the other hand, the frequency is
significantly increased to capture state changes, which reduces
AoI and accelerates consensus convergence. Specifically, the
total triggering number is increased by 89 during three load
fluctuations.

To further demonstrate the advantage of using AoTI for
control optimization, a step FDI attack as ∆λZj,j′ = 5×104/t2

is imposed. Fig. 8 shows the bus voltage stability perfor-
mance comparison under delay, AoI, and AoTI. AoTI-based
consensus control achieves a reduction in convergence time
by 53.96% and 36.15% compared to transmission delay-
based and AoI-based approaches, respectively. Moreover, the
voltage oscillations caused by FDI attacks are effectively
eliminated. In comparison, using AoI without considering the
trustworthiness of control information leads to non-optimal
convergence, i.e., a 0.01 V voltage deviation. Transmission
delay-based consensus control results in significant oscillations

and even convergence failure due to the ignorance of control
information timeliness loss.

Figure 9 shows the root locus of different communication-
domain metrics. As AoI increases from 10 ms to 50 ms,
and communication delay increases from 7 ms to 40 ms,
the characteristic roots of the proposed AoTI-based control
optimization algorithm and delay-based control optimization
algorithm move closer to the imaginary axis. When AoI
reaches 48 ms and delay reaches 44 ms, the characteristic roots
of the proposed AoTI-based control optimization algorithm
cross the imaginary axis, and the control becomes unstable.
However, the corresponding AoI and delay when delay-based
control optimization algorithm becomes unstable are 46 ms
and 40 ms, respectively. This demonstrates that AoTI is a
more accurate and suitable communication-domain metric to
improve control stability and robustness.

B. Case 2: Grid Topology Variation

Case 2 validates the robustness against grid topology varia-
tion. As shown in Fig. 10(a), DG5 disconnects from the grid
at t = 2 s, i.e., all of the communication links connected to
DG5 are interrupted. At t = 4 s, DG5 reconnects to the grid
as shown in Fig. 10(b).
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(a) (b) (c)

Fig. 13. Bus voltage stability performance under bidirectional communication failure between DG1 and DG5 and unidirectional communication failure
between DG2 and DG3: (a) Proposed; (b) Baseline 1; (c) Baseline 2.

(a) (b) (c)

Fig. 14. Bus voltage stability performance under two bidirectional communication failures between DG1 and DG5 as well as DG2 and DG3: (a) Proposed;
(b) Baseline 1; (c) Baseline 2.

Figure 11 shows the bus voltage stability performance under
grid topology variation. After disconnection, the active power
output of DG2 has to be compensated by the remaining four
DGs in proportion to the droop coefficient. The required
convergence time is 190 ms. Upon DG2’s reconnection, the
average bus voltage converges to 400 V in only 160 ms, and
the operation states of 5 DGs are consistent with initial states.
This verifies the robustness of the proposed algorithm against
grid topology variation.

C. Case 3: Communication Failure

Figure 12 shows the bus voltage stability performance under
bidirectional communication failure between DG1 and DG5.
Compared to Case 1 without communication failure, all three
algorithms require longer durations to reach voltage stability
under the occurrence of load fluctuation. Nevertheless, the
proposed algorithm exhibits the shortest convergence time,
reducing it by 32.10% and 38.20% compared to the two
baseline algorithms, respectively.

Figure 13 shows the bus voltage stability performance under
bidirectional communication failure between DG1 and DG5
and unidirectional communication failure from DG2 to DG3.

All three algorithms cannot converge to 400 V due to topology
asymmetry caused by the unidirectional communication fail-
ure. Compared to baseline algorithms, the proposed algorithm
results in the smallest voltage deviation, which is reduced by
62.50% and 53.85%.

Figure 14 shows the bus voltage stability performance under
bidirectional communication failure between DG1 and DG5
and failure between DG2 and DG3. The topology becomes
symmetric and bidirectionally connected. Under this new bus
topology, all three algorithms reach stability and converge
to 400 V eventually, but require a longer convergence time.
Comparing Fig. 13 with Fig. 14, it is concluded that topology
asymmetry is the root cause of the nonoptimal convergence.
Another finding is that the proposed algorithm can rapidly
stabilize bus voltage even with limited topology connectivity,
which demonstrate its robustness against communication fail-
ure and scalability across various grid topologies.

D. Case 4: Large Network Size and Different Topologies

Tables IV-VI show the convergence performance compari-
son under various grid topologies, network sizes, and transmis-
sion rates. As shown in the figures, it is concluded that increas-
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TABLE IV
CONVERGENCE PERFORMANCE OF THE PROPOSED ALGORITHM

Topology Rmax /Mbit/s J=5 J=10

Convergence time /s Convergence deviation /V Convergence time /s Convergence deviation /V

Complete Topology 15 0.43 0 0.59 0
20 0.35 0 0.42 0

Ring Topology 15 0.68 0 1.09 0.02
20 0.45 0 0.56 0

Bus Topology 15 0.67 0 1.2 0.01
20 0.44 0 0.53 0

Star Topology 15 0.62 0 2.22 0.03
20 0.42 0 0.49 0.02

TABLE V
CONVERGENCE PERFORMANCE OF BASELINE 1

Topology Rmax /Mbit/s J=5 J=10

Convergence time /s Convergence deviation /V Convergence time /s Convergence deviation /V

Complete Topology 15 0.59 0 Non-convergence
20 0.42 0 Non-convergence

Ring Topology 15 0.63 0.01 Non-convergence
20 0.56 0 Non-convergence

Bus Topology 15 0.66 0.01 Non-convergence
20 0.45 0 Non-convergence

Star Topology 15 0.67 0.01 Non-convergence
20 0.46 0 Non-convergence

TABLE VI
CONVERGENCE PERFORMANCE OF BASELINE 2

Topology Rmax /Mbit/s J=5 J=10

Convergence time /s Convergence deviation /V Convergence time /s Convergence deviation /V

Complete Topology 15 0.54 0.01 Non-convergence
20 0.38 0 Non-convergence

Ring Topology 15 0.87 0 Non-convergence
20 0.55 0 Non-convergence

Bus Topology 15 0.71 0 Non-convergence
20 0.58 0 0.79 0.01

Star Topology 15 0.70 0 Non-convergence
20 0.48 0 Non-convergence

ing information interaction capability and transmission rates
between nodes is beneficial for convergence improvement.
However, both baseline algorithms show non-convergence
under large network size J = 10. Even in smaller network
with J = 5, they fail to reach the optimal convergence and a
0.01V voltage deviation is observed, e.g., baseline 1 at ring,
bus, and star topologies with Rmax = 15 Mbit/s, and baseline
2 at ring topology with Rmax = 15 Mbit/s. Compared to
baseline algorithms, the proposed algorithm always shows the
smallest convergence time under different topologies, network
sizes, and transmission rates, demonstrating great scalability,
flexibility, and robustness. When the network size is increased
from J = 5 to J = 10, the proposed algorithm maintains zero
voltage deviation even in the topologies of ring, bus, and star
with limited node interconnections.

VI. CONCLUSION

In this paper, the integrated optimization problem of
sensing, transmission, computing, and control in power-
communication coupling smart grid has been addressed. The
formulated problem is solved in three stages by self-penalty
DAC-based sensing-transmission collaborative optimization,
computing resource allocation for optimal AoI, and control
optimization based on AoTI. Simulation results of four cases
validated the superior performance of the proposed algorithm
in improving power-domain voltage stability. It is verified that
the proposed algorithm has practical feasibility, scalability,
and robustness under load fluctuation, grid topology varia-
tion, communication failure, large network size and different
topologies. Compared to baseline 1 with conventional consen-
sus and time-triggering mechanisms, the proposed algorithm
increases the control convergence speed by 53.68%. Compared
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to baseline 2, the convergence deviation is eliminated under
large network size and different topologies, demonstrating the
advantages of integrated optimization. Furthermore, compared
to control algorithms based on communication delay and AoI,
the proposed algorithm based on novel metric AoTI reduces
convergence delay by 53.96% and 36.51%, respectively, and
effectively resists FDI attacks.

In future work, we will focus on testbed development
and investigate real-world implementation in smart grid. For
testbed development, we will develop lightweight software
based on docker and virtualization, and embedded hardware
based on structure-function decoupling. The proposed algo-
rithm will be packaged and implemented as a microservice.
Next, real-world experiment under various typical grid test
sites will be carried out, including rooftop photovoltaic and
battery energy storage systems. The rules for parameter setting
in different power grid scenarios will be investigated and
established via real-world experiment. Last but not least,
we will extend the study into the coupling among power,
communication, and transportation domains. The influence of
aggregated response characteristics of electric vehicles and the
temporal-spatial distribution of traffic flows on joint resource
allocation and consensus control will be analyzed.
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