
Received: 25 February 2025

Revised: 18 March 2025

Accepted: 23 March 2025

Published: 26 March 2025

Citation: Shahid, S.; Brown, D.J.;

Wright, P.; Khasawneh, A.M.; Taylor,

B.; Kaiwartya, O. Innovations in Air

Quality Monitoring: Sensors, IoT and

Future Research. Sensors 2025, 25,

2070. https://doi.org/10.3390/

s25072070

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Innovations in Air Quality Monitoring: Sensors, IoT
and Future Research
Saim Shahid 1 , David J. Brown 1 , Philip Wright 2, Ahmad M. Khasawneh 3 , Bryn Taylor 2

and Omprakash Kaiwartya 1,*

1 Department of Computer Science, Nottingham Trent University, Nottingham NG1 8NS, UK;
saim.shahid@ntu.ac.uk (S.S.); david.brown@ntu.ac.uk (D.J.B.)

2 Cobac Security Limited, The Granary, Church Street, Thrumpton, Nottingham NG11 0AX, UK;
phil.wright@cobacsecurity.co.uk (P.W.); bryn.taylor@cobacsecurity.co.uk (B.T.)

3 School of Computing, Skyline University College, University City of Sharjah,
Sharjah P.O. Box 1797, United Arab Emirates; ahmad.khasawneh@skylineuniversity.ac.ae

* Correspondence: omprakash.kaiwartya@ntu.ac.uk

Abstract: Recently, Air Quality Monitoring (AQM) has gained significant R&D attention
from academia and industries, leading to advanced sensor-enabled IoT solutions. Liter-
ature highlights the use of nanomaterials in sensor design, emphasising miniaturisation,
enhanced calibration, and low voltage, room-temperature operation. Significant efforts
are aimed at improving sensitivity, selectivity, and stability, while addressing challenges
like high power consumption and drift. The integration of sensors with IoT technology
is driving the development of accurate, scalable, and real-time AQM systems. This paper
provides technical insights into recent AQM advancements, focusing on air pollutants,
sensor technologies, IoT frameworks, performance evaluation, and future research direc-
tions. It presents a detailed analysis of air quality composition and potential air pollutants.
Relevant sensors are examined in terms of design, materials and methodologies for pollu-
tant monitoring. A critical review of IoT frameworks for AQM is conducted, highlighting
their strengths and weaknesses. As a technical contribution, an experimental performance
evaluation of three commercially available AQM systems in the UK is discussed, with a
comparative and critical analysis of the results. Lastly, future research directions are also
explored with a focus on AQM sensor design and IoT framework development.

Keywords: air quality monitoring; sensors; internet of things; air pollutants; sensors design

1. Introduction
Air pollution is a global crisis that adversely affects human health, ecosystems, and the

economy. The growing awareness of environmental issues is significantly contributing to
people’s desire to better understand the air quality around them [1]. According to the World
Health Organisation, outdoor air pollution caused approximately 4.2 million premature
deaths in 2019 [2]. Additionally, household air pollution leads to about 3.2 million deaths
annually, including over 237,000 deaths of children under 5 years old [3]. Researchers
in [4] have estimated that Particulate Matter pollution causes the premature deaths of
48,625 adults annually in the United Kingdom. These alarming figures, coupled with
increasing public interest, have generated a demand for Internet of Things (IoT) technology
equipped with relevant sensors to provide comprehensive and granular data in order to
support public health, regulatory compliance, and environmental protection efforts [5].

Researchers are leveraging IoT and advanced sensors in their efforts to develop ac-
curate, scalable, and real-time AQM systems (see Figure 1) [6]. Investigations are being
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conducted to design interconnected, battery-efficient solutions to monitor a wide range of
pollutants [7]. A key focus of this ongoing research includes miniaturising these devices
while maintaining robust calibration, cost-effective manufacturing, and room-temperature
operation [8,9]. In the multidisciplinary field of advanced air quality sensor design and
fabrication, researchers are working to enhance the sensing materials for pollutant moni-
toring by improving various sensor parameters [10]. These parameters include power
efficiency, operating temperature, humidity dependence, sensor drift, sensitivity and
selectivity [11,12]. Additionally, significant efforts are being made to overcome the chal-
lenges associated with metal-oxide sensor technology [13]. In the field of IoT, researchers
are embedding multiple sensors together to monitor microclimates as well as gather granu-
lar multi-point indoor and outdoor pollution data through participatory or crowd-sourced
settings [14,15].
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The primary objective of these research works is to enhance the emerging technology
of AQM. The ultimate goal is to transform the current environment monitoring process into
automated, spatiotemporal systems capable of monitoring a broader range of air pollutants
in real-time [16]. These advanced systems can significantly improve public awareness of
environmental conditions around them in a variety of settings. Indoors, they can be useful
in hospitals, factories, social venues, homes as well as in industrial kitchens and more.
Outdoors, these devices can be utilised to monitor air quality in parks, traffic zones, rural
and urban settings, public transportation, personal vehicles, and even in human space
exploration [17].

One of the many challenges faced by researchers is reducing energy consumption
in AQM systems [18]. These sensors draw more power as compared to the microcon-
trollers which significantly reduces the battery life of the overall system [19]. This issue
is exacerbated when multiple sensors are used on a microcontroller to measure different
pollutants. Many researchers have explored renewable energy sources, such as solar power,
to address the power needs of their AQM devices [20]. Additionally, the research com-
munity is actively addressing other critical concerns, including accuracy, reliability, and
calibration practices, as well as network scalability, security, and cost-effectiveness [21].
Despite significant advancements in AQM, the multidisciplinary design process of intricate
sensors remains a distinct field from the integration of these sensors into IoT solutions.
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Researchers typically focus on either sensor design architecture or IoT frameworks, but not
both as a cohesive solution.

In this context, this paper presents a technical insight into the innovations in AQM
considering pollutants, sensor designs, IoT frameworks, systems performance evaluation,
and future research directions. The following are the key parts and potential contributions
of this paper:

1. Technical details of air quality composition and potential air pollutants are presented.
2. AQM sensors are scrutinised in terms of design, materials and methodologies for

pollutant monitoring.
3. A critical review of IoT frameworks for AQM is carried out alongside an analysis of

their strengths and weaknesses.
4. Experimental performance evaluation of three commercially available AQM systems

in the UK is discussed with a comparative and critical results analysis.
5. Future research directions in AQM are also highlighted related to sensor designs and

IoT framework development.

The remainder of the paper is structured as follows: Section 2 provides technical
information on the composition of the air environment and potential pollutants. Section 3
examines AQM sensors with the emerging materials and methodologies. Section 4 reviews
IoT-based advancements in AQM devices, focusing on the integration of multiple pollutant
monitoring sensors with various microcontrollers. Section 5 discusses experimental results
for evaluating the performance of some commercial AQM devices. Section 6 identifies
future research directions in AQM, followed by a conclusion presented in Section 7.

2. Air Composition and Pollutants
This section details the typical composition of the air environment and identifies

potential pollutants or toxicants along with their key sources. These details are crucial for
understanding the AQM research and its significance.

2.1. Atmosphere Air Composition

Earth’s atmosphere consists of about 78% Nitrogen and 21% Oxygen, with trace
amounts of other gases like Carbon Dioxide (CO2), Neon, and Hydrogen, among others. In
addition to these gases, the atmosphere holds various particles, including natural aerosols
such as dust and pollen, which are carried by the wind. It also transports pollutants like soot
and smoke from car exhausts and power plants, with CO2 being a significant contributor to
human-induced global warming. Moreover, the air is filled with living organisms known
as bioaerosols, which are tiny microbial organisms. These organisms cannot fly but can
travel long distances through the air, aided by wind, rain, or even a sneeze. To assess air
quality, the Air Quality Index (AQI) matrix is used, which assigns values to the cleanliness
of the air. Lower AQI values indicate cleaner air. Conversely, when the AQI exceeds 100,
often due to factors like forest fires and heavy urban traffic, it can be comparable to inhaling
car exhaust throughout the day. Consequently, it is advisable to limit outdoor activities
during such conditions [22].

2.2. Air Pollutants
2.2.1. Ammonia

Ammonia (NH3) is a colourless, pungent gas extensively employed in fertiliser pro-
duction, cleaning agents, and various industrial processes. It arises naturally through the
decomposition of organic nitrogen-containing materials in the environment. Although
essential for biological nitrogen cycling, high concentrations can irritate the eyes, skin, and
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respiratory system. Chronic exposure in occupational settings, particularly agriculture and
chemical manufacturing, may lead to long-term respiratory impairment [23].

2.2.2. Particulate Matter

Particulate Matter (PM) consists of tiny inhalable particles, including sulphates, ni-
trates, NH3, salts, black carbon, mineral dust, and water droplets. PM is categorised by its
size, with PM2.5 and PM10 being the most significant for health and regulatory purposes.
PM10 particles with a diameter of less than 10 µm mainly come from sources like pollen,
sea spray, wind-blown dust from erosion, agriculture, roads, mining, construction sites
and waste burning. Fine PM2.5 particles with a diameter of less than 2.5 microns originate
from fuel combustion in power plants, industries, vehicles, and secondary sources like
chemical reactions between gases. Indoor sources of PM include burning fuels in open
fires, inadequately ventilated stoves, and space heaters as well as activities like preparing
animal feed, heating water, and brewing beverages. The International Agency for Research
on Cancer classified PM as a cause of lung cancer in 2013, and it is a key indicator to assess
the health impacts of air pollution on a population [24].

2.2.3. Nitrogen Dioxide

Nitrogen Dioxide (NO2) is a reddish-brown gas that dissolves in water and acts as a
very strong oxidiser. It is mainly produced through the combustion of fuels at high tem-
peratures, which occurs in processes such as heating, transportation, industrial activities,
and power generation [25]. Additionally, household sources like furnaces, fireplaces, and
gas stoves contribute to NO2 emissions. Exposure to this gas can irritate the respiratory
tract and worsen existing respiratory conditions. It also plays a significant role in ozone
formation at ground level which is a pollutant closely tied to conditions like asthma and
respiratory ailments.

2.2.4. Carbon Monoxide

Carbon monoxide (CO) is a colourless, odourless gas produced by the incomplete
combustion of carbon-based fuels such as wood, gasoline, coal, natural gas, and kerosene.
Common sources include rudimentary cooking devices, open fires, oil lamps, furnaces,
fireplaces, and motor vehicles. This gas permeates lung tissues and enters the bloodstream,
impairing the body’s ability to bind with oxygen effectively. The resulting oxygen depletion
damages tissues and cells, causing respiratory distress, fatigue, dizziness, and flu-like
symptoms. Prolonged exposure to elevated CO levels can be fatal [26].

2.2.5. Sulphur Dioxide

Sulphur Dioxide (SO2) is a colourless gas with high water solubility and is primarily
produced through burning fossil fuels in homes, industrial facilities, and power plants.
Exposure to this gas can increase the likelihood of hospital admissions and emergency
room visits due to asthma-related complications [27].

2.2.6. Lead

It is found in products like paints, ceramics, pipes, solders, gasoline, batteries, ammu-
nition, and cosmetics, as well as in ambient air from leaded fuel exhaust. Exposure to lead
in children can result in behaviour and learning problems, lower IQ, hyperactivity, growth
inhibition, hearing impairments, and anaemia, with extreme cases leading to seizures,
coma, or fatality [28]. Adults exposed to lead are more susceptible to cardiovascular issues,
high blood pressure, hypertension, reduced kidney function, and reproductive issues [29].
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2.2.7. Polycyclic Aromatic Hydrocarbons

Polycyclic Aromatic Hydrocarbons (PAH) exist as particulates in the atmosphere and
originate from the incomplete combustion of organic materials such as meat cooking, fossil
fuels in sources like industrial furnaces, diesel engines, and wood-burning stoves, as well
as from tobacco smoke. Short-term exposure to these chemicals can cause irritation in the
eyes and respiratory passages. Extended exposure to these substances has been linked to a
higher risk of developing lung cancer [30].

2.2.8. Volatile Organic Compounds and Formaldehyde

Volatile Organic Compounds (VOCs) and Formaldehyde (CH2O) have high vapour
pressure and low water solubility, and are found both indoors and outdoors. They are re-
leased as gases from various solids or liquids, often reaching higher indoor concentrations,
sometimes ten times more than outdoors. Environmental Protection Agency has revealed
that indoor levels of some organic pollutants are two to five times higher than outdoors.
VOCs originate from the use and storage of products like cleaning supplies, office equip-
ment, pesticides, paints, adhesives, particleboard, and plywood, etc. [31]. Formaldehyde, a
colourless gas with a pungent smell, ranks among the most prevalent VOCs encountered
indoors. According to the World Health Organisation, prolonged exposure to this gas has
been linked to the development of nasopharyngeal cancer [32].

2.2.9. Ozone

It is a secondary pollutant primarily formed in the lower atmosphere when nitrogen
oxides, released from the combustion of fossil fuels, and VOCs react under strong solar
radiation. Unlike the protective ozone layer in the stratosphere, ground-level ozone near
the Earth’s surface is a major component of photochemical smog [33]. It can cause oxida-
tive damage to the respiratory tract’s lining, leading to eye and nose irritation, reduced
lung function, and exacerbations of asthma and Chronic Obstructive Pulmonary disease.
Although it is predominantly an outdoor pollutant, ozone can infiltrate indoors, affecting
indoor air quality. To protect public health, the World Health Organisation recommends
maintaining an 8 h mean ozone concentration below 100 µg/m3 which is approximately
50 parts per billion (ppb) [34].

2.2.10. Radon

It is a radioactive gas originating from specific rock and soil formations. This gas tends
to accumulate in the lower levels of homes when ventilation and evacuation systems are
insufficient. Recent studies conducted in Europe, North America, and Asia have shown that
indoor radon exposure is linked to lung cancer. This makes radon the primary contributor
to lung cancer in non-smokers across these regions [35].

2.2.11. Hydrogen Sulphide

Hydrogen sulphide (H2S) is a colourless, flammable gas recognised for its distinctive
rotten-egg odour and is primarily generated by decomposing organic matter. Although
trace amounts may play a physiological role, elevated concentrations can be highly toxic
by inhibiting cellular respiration. Occupational exposure in industries such as petroleum
refining or wastewater treatment can lead to significant health risks, including respiratory
and neurological damage. Symptoms at lower concentrations include eye and throat
irritation, while higher levels may rapidly induce unconsciousness or death [36].

Figure 2 shows the World Health Organisation’s reference concentrations for various
air pollutants based on different averaging periods [37]. Colors are used for time duration.
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Figure 2. World Health Organisation’s recommended guideline for pollutants.

The pollutants detailed below do not have specific quantitative guideline limits. How-
ever, they are included within the World Health Organisation’s Global AQ guidelines due
to their potential health impacts.

2.2.12. Black Carbon

Commonly known as soot, it constitutes a significant portion of PM2.5 and originates
from incomplete combustion of fossil fuels, biofuels, and biomass. Emissions come from
human activities like diesel vehicles and biomass cookstoves, as well as natural events
like wildfires. As a potent greenhouse gas, black carbon contributes to regional ecological
disruption and glacier melt. Exposure, both short-term and long-term, is linked to adverse
cardiovascular health effects and premature mortality [38].

2.2.13. Ultrafine Particles

These particles, measuring 0.1 micrometres or less in diameter, primarily originate
from combustion processes in transportation such as vehicles, aviation, and shipping, as
well as in industrial facilities, power plants, and residential heating systems. Exposure to
these fine particles heightens the risk of pulmonary, cardiovascular, and ischaemic heart
diseases [39].

2.2.14. Mould

It is a type of microscopic fungus that grows in damp places. Moisture accumulation
and the subsequent growth of mould and bacteria can result from structural deficiencies in
buildings, inadequate heating and insulation, or insufficient ventilation. These conditions
lead to the production of allergens and irritants capable of triggering asthma attacks in
individuals allergic to mould. Additionally, they can cause irritation in the eyes, skin, nose,
throat, and lungs of both mould-allergic and non-allergic individuals [40,41].

Figure 3 shows the taxonomy of Section 3 (left-part) and Section 4 (right-part) in our
paper, illustrating the distribution and type of papers reviewed.

Sensors are crucial components in AQM devices, as they detect and quantify critical
air parameters. Therefore, in the next section, we examine the design and construction
of AQM sensors. It focuses on established materials such as metal-oxide semiconductors
and emerging materials like nanomaterials, alongside advanced manufacturing techniques,
including Organic Thin Film Transistor (OTFT) technology. Desirable properties such as
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room-temperature operation are highlighted, as they enhance practicality and reduce energy
consumption. The design and parametric evaluation of key pollutant sensors such as NH3,
H2S, VOC, NO2, CO2, Radon, SO2, Ozone, PM, Lead, and PAH will further illustrate how
these sensors can be integrated into modern IoT frameworks for AQM, thereby bridging the
gap between sensor development and real-world IoT architecture for AQM.
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3. Sensors for AQM
3.1. Gas Sensors

The significance of graphene oxide and other two-dimensional (2D) materials for
gas-sensing applications has been discussed [42]. Notably, 2D materials have a high
surface-to-volume ratio because these materials are only a few atoms thick which makes
them promising for gas sensor applications. Molybdenum disulfide, Tungsten disulfide,
Tungsten diselenide, and Molybdenum diselenide exhibit a bandgap that can be tuned
by changing the number of layers, which is useful in the construction of nanomaterials
and gas-sensing devices. However, these materials require high temperatures to function
thus affecting device longevity, and their drawback lies in the lack of nuanced selectivity,
compromising their ability to precisely distinguish between different gases.

When CO undergoes oxidation on a p-type sensing material, it loses an electron to fill
a hole. Since holes are the majority charge carriers in p-type material, the introduction of an
electron to fill a hole leads to electron-hole recombination. This, in turn, reduces the number
of positive charge carriers (which are the majority charge carriers in a p-type material),
thereby decreasing the conductivity of the gas-sensing material and increasing electrical
resistance. The authors discuss how chemiresistors alter their electrical resistance when
relevant gas molecules adsorb onto the sensing layer. They explore field effect transistor-
based gas sensors and their semiconductor channel response to the target gas, impacting
the drain-source current. Additionally, they mention impedance sensors, highlighting these
sensors’ ability to enhance the selectivity of the target gas by utilising a sinusoidal waveform
of a specific frequency. Observing the resultant waveform’s behaviour allows for drawing
conclusions. Monitoring parameters such as frequency, capacitance, and resistance improve
the determination of the sensed gas, enabling impedance gas-sensing devices to detect
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sub-parts per million (ppm) concentrations. The authors also discuss optical gas sensors,
highlighting their capability to alter optical properties like absorbance, fluorescence, and
reflectivity to indicate the presence of a target gas. Subsequently, a detector captures the
reflected or diffracted light to convert it into an electrical signal. Furthermore, they delve
into Quartz Crystal Microbalance gas sensors, noting that any change in mass on the surface
of the quartz crystal due to the adsorption of target gas molecules affects the resonant
frequency of the quartz crystal, which can then be measured to identify the presence of
the gas.

3.2. Stability of Gas Sensors

The stability of gas sensors fabricated using metal-oxide semiconductors has been
investigated [43]. Sensor stability is defined as the capability to maintain a consistent and
repeatable signal over an adequate duration. The progress in research pertaining to the
stability of metal-oxide sensors spanning the period from 2016 to 2021 was comprehensively
examined. Metal-oxide semiconductors are widely used due to their attractive character-
istics like small size, easy operation, low cost, etc. The sensitivity and selectivity of these
sensors are the primary areas of research. Metal-oxide surfaces also usually remain stable
when interacting with oxygen in air at high temperatures. Several key factors affecting
the stability of semiconductor metal-oxide sensors have been identified (see Figure 4).
These include the properties of the sensitive material, element doping, poisoning, ambient
humidity, and the supporting components of the sensor, such as integrated heaters used
to maintain the semiconductor gas-sensing metal-oxide material within the temperature
range of 150 to 450 degrees Celsius.
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3.3. 2D NH3 Sensor

The development of a novel composite made from polymers and 2D materials is
detailed [44]. A poly(3-hexylthiophene)/molybdenum disulphide (P3HT/MoS2) nanocom-
posite is synthesised by utilising a bottom gate top contact organic field effect transistor
configuration. The active sensing layer was produced using the floating film transfer
method (FTM). The study found that within a closed chamber under ambient condi-
tions, this organic field effect transistor with nanofiber morphology showcased a mobility
of 0.147 cm2/V−s and a threshold voltage of −3.78 volts in air. Upon exposure to 100 ppm
of NH3 gas, this threshold voltage shifted to −10.71 volts. The device exhibited a limit of
detection of 904 ppb. The sensor exhibited a significant sensing response of 63.45% when
exposed to 100 ppm concentration of NH3 gas. No permanent changes occurred in the
sensing layer during the test. Their organic field effect transistor device demonstrated
a strong linear response to various concentrations of NH3 gas, indicated by a coefficient
R2 = 0.9964. The response properties of the sensor to methane, CO, and CO2 at 100 ppm
confirmed that their sensor is highly selective to NH3 gas.
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3.4. Low-Voltage NH3 Sensor

A Low-Voltage OTFT-based toxic NH3 gas sensor operating at room temperature
is fabricated and designed using a self-aligned technique where the gate is made of a
highly doped silicon substrate [45]. In this technique, the gate serves as a mask for the
subsequent doping of the source and drain regions through the ion implantation method.
This method results in more precise channel lengths, improved transistor performance and
reduced overlap capacitance between the gate and the source/drain regions. In contrast,
gate metals like aluminium or gold in the non-self-aligned techniques cannot withstand the
annealing temperatures (above 800 ◦C) needed for the ion implantation process to restore
the crystalline structure of the material.

The capacitance per unit area of the dielectric material is enhanced to achieve
486 nF/cm2 at 1 kHz. The newly developed material, LaZrOx, demonstrated a low leak-
age current density of about 0.5 × 10−8 A/cm2 at −2 V, indicating high capacitance and
excellent insulation properties, making it promising for low voltage OTFT applications.
The sensor responded to NH3 gas at a rate of 47% for concentrations of 5 ppm, with a
detection threshold of approximately 11.65 ppb. The sensor typically takes around 9 s to
respond and approximately 50 s to recover. Its performance was stable under varying
humidity conditions, particularly between 30% and 70% relative humidity. The authors
used the following equation to calculate the drain current IDS in the saturation region of
their produced NH3 sensor:

IDs = µpCd
W
2L

(VGS − Vth)
2; VDS ≥ VGS − VTH (1)

µp represents the mobility, Cd denotes the capacitance per unit area of the gate oxide
film, W/2L is a width-to-length ratio of the channel, VGS refers to the Gate-Source voltage,
VTH is the minimum Gate-Source voltage required to create a conductive channel between
the drain and source terminals, and VDS is the Drain-Source Voltage.

3.5. Highly Sensitive NH3 Sensor

A highly sensitive NH3 sensor is developed that is capable of operating at room
temperature [46]. Bi-layer metal-oxide dielectric i.e., Titanium dioxide/Hafnium dioxide,
is used to enhance the capacitance to 0.926 µF/cm2, so that more charge can be stored at a
given gate voltage. This enabled the sensor to turn on at a lower applied gate voltage of
−1.5 volts. The layers of Titanium dioxide and Hafnium dioxide are grown sequentially
on a boron-based, highly p-doped silicon substrate (gate) which improved the dielectric
constant to 42 as compared to 3.9 of SiO2. Using the fully solution-processed FTM method,
the authors grew gold (Au) doped P3HT film on top of the dielectric layer to act as an
organic semiconductor channel. The designed sensor demonstrated a response time of
5 s and a recovery time of 17 s. Additionally, it exhibited a 55% sensing response at a
concentration of 5 ppm of the NH3 analyte. The following equation is used to calculate the
sensing response of their fabricated OTFT-based sensor:

S% =

∣∣∣IDS(AIR) − IDS(NH3)

∣∣∣
IDS(AIR)

× 100% (2)

where, IDS(AIR) is the drain-source current in normal air and IDS(NH3)
the drain-source

current when the sensor is exposed to the NH3 analyte.

3.6. OTFT NH3 Sensor

A flexible, low voltage and solution-cast OTFT for NH3 sensing at room temperature is
developed by utilising an inorganic oxide/polymer-based dielectric layer and polymer/2D
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nanocomposite-based active gas-sensing layer [47]. As shown in Figure 5, the dielectric
layer consists of ZrOx/poly (methyl methacrylate)/poly melamine co-formaldehyde, while
the active layer comprises P3HT/graphitic carbon nitride. To overcome the inherent
brittleness of pristine inorganic oxide dielectrics, the authors merged them with polymers,
forming an inorganic oxide-polymer nanocomposite. This novel composite serves as a
dielectric material, exhibiting a high dielectric constant of 20. Their sensor demonstrated
a low detection limit of 0.5 ppm and a 69% sensing response at 20 ppm of NH3. The
researchers were able to achieve a low gate threshold voltage of −0.1052 volts in their
sensor design.
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Figure 5. Structure illustration of the OTFT-based low-voltage NH3 sensor.

Figure 6 presents a detailed analysis of the sensor characteristics developed by the
authors for detecting NH3 concentrations in ppm. This graph illustrates how four key pa-
rameters, sensitivity response, threshold voltage, subthreshold swing, and mobility, change
with varying NH3 concentrations. Sensitivity response (S%), shown in yellow colour, in-
creases as the NH3 concentration rises, indicating that the sensor’s responsiveness to NH3

improves at higher concentrations. Threshold voltage (VTH), depicted in orange colour,
shows a decreasing trend with increasing NH3 concentration. Subthreshold swing (SS),
represented in grey colour, measures the sensor’s switching efficiency in the subthreshold
region and shows a rising trend with increasing NH3 concentration. Mobility (µ), depicted
in blue colour with a dotted line, shows a decrease as NH3 concentration increases.
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3.7. Nanosheets Enabled Gas Sensor

The sensing of NH3 gas in p-channel thin-film transistors is enhanced by using a
nanocomposite composed of P3HT and graphene oxide [48]. The study involved fabricat-
ing the device on a boron-doped silicon substrate through FTM. This research included a
detailed electrical characterisation of the P3HT/graphene oxide nanocomposite organic
field effect transistor, which was compared with a similar organic field effect transistor
that used only P3HT. The nanocomposite organic field effect transistor with palladium
electrodes demonstrated an increased response of about 63% at 80 ppm NH3 gas. Im-
provements in crystallinity and grain size in the active layer led to enhanced response
and recovery times of approximately 44 s and 82 s, respectively. The characterisation of
the film revealed that the P3HT/graphene oxide nanocomposite possessed a higher root
mean square roughness compared to pristine P3HT, which, according to the authors, is
beneficial for the sensor’s performance due to an increased surface-to-volume ratio. As
the trap charge density varies with the changing concentration of NH3, the authors have
utilised the following equation to calculate the trap carrier density

(
∆etrap

)
of the active

semiconductor sensing layer.

∆etrap =
Qtrap

q
=

∆VTHCox

q
(3)

q is elementary charge constant which is 1.602 × 10−19Coulombs. Qtrap represents the
trapped charge. ∆VTH represents the threshold voltage shift, which is indicative of voltage
change at the gate required to maintain a constant current, depicting the concentration of
NH3. Cox is the capacitance per unit area of the gate oxide.

3.8. H2S Gas Sensor

A novel sensor is designed for detecting H2S gas at room temperature [49]. The sensor
utilises a nanocomposite of P3HT and Graphene Quantum Dot in its active sensing layer,
which is applied using FTM on a SiO2-coated p++ Si substrate. The sensor demonstrated
a 91% sensing response and an 18% shift in gate threshold voltage at a concentration
of 25 ppm of H2S, with a very slow recovery time of 225 s. The sensing response at
VGS = VDS = −40 volts is calculated using the following equation:

S(%) =

∣∣∣∣ IDS,air − IDS,H2S

IDS,air

∣∣∣∣× 100 (4)

where IDS,air is the drain-source current in the normal air conditions, and IDS,H2S is the
drain-source current when a concentration of H2S is present in the air. The addition of
nanomaterial in the conducting polymer has enhanced the current driving capability of
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the H2S sensor by improving the charge carrier transport mechanism. The thickness of the
active layer as 30± 4 nm, and the quantum dots are approximately 2 nm in size. The surface
roughness of the P3HT/Graphene Quantum Dot sensing film is higher compared to the
pristine P3HT-based film, which increases the surface-to-volume ratio, thereby enhancing
the interaction sites for H2S gas. Over a two-week period, the sensor exhibited a response
variation of 4% at 54% relative humidity. Additionally, a change in sensing response of 4%
to 5% was observed when the relative humidity was increased from 20% to 70%.

3.9. Optical Fibre-Based VOC Sensor

Optical fibre-based sensors for VOC detection exhibit heightened sensitivity, enabling
effective detection at sub-ppm levels. Having high vapour pressure, VOCs can evapo-
rate easily into the atmosphere at room temperature. In [50], multiple recent VOC sensor
technologies are discussed, including Electrochemical Gas Sensors, Quartz Crystal Microbal-
ances, metal-oxide semiconductors, Non-Dispersive Infrared Gas Sensors, and Colorimetric
Gas Sensors. The study notes that metal-oxide semiconductor-based sensors operate at
high temperatures and are highly sensitive to external humidity, while Electrochemical
Gas Sensors are prone to zero drift and ageing. Optical fibre-based sensors are superior
to traditional methods as these sensors are tiny, robust, responsive, and unaffected by
drift. The optical fibres typically comprise silica cladding and a germanium-doped silica
core. Key issues such as the need for enhanced selectivity, and the development of more
compact, and cost-efficient sensors are also highlighted. Future research could benefit from
integrating advanced materials and nano-engineering techniques to further improve the
sensors’ performance. Figure 7 illustrates various techniques for measuring VOCs and the
underlying principles they employ.
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3.10. NO2 Gas Sensor

The traditional methods for sensing NO2, which is acidic in nature and has a pungent
smell, face several challenges [51]. These challenges include the requirement for high
temperatures, prolonged recovery periods, and a decline in performance under harsh con-
ditions. This research explores the application of MoS2 for NO2 gas sensors, highlighting its
ease of integration with different materials, compatibility with a range of devices, adjustable
morphology, and ample surface area to facilitate the adsorption of NO2 molecules. Several
methods for sensing low concentrations of NO2 include electrochemical sensors, optical
sensors, and resistive sensors [52,53].

The metal-oxide semiconductors, known for their cost-effectiveness and high sensitiv-
ity in diverse nanostructures, substantially improve the functionality of NO2 gas sensors.
However, these semiconductors face challenges in selectivity. It is highlighted that reduced
graphene oxide is an outstanding material for constructing NO2 sensors, owing to its large
surface area and minimal noise characteristics. The authors discussed the significant bene-
fits of using conducting polymers for detecting highly toxic NO2 gas, including their ease



Sensors 2025, 25, 2070 13 of 39

of manufacture and room-temperature operation, while also acknowledging drawbacks
such as degradation and high humidity dependence.

Various techniques are explored for enhancing MoS2-based NO2 gas sensors, including
the use of heterostructures and nanocomposites. Mechanically exfoliated MoS2 modified
with lead sulphide is investigated, noting that it performs better than sensors using intrinsic
MoS2 [54]. This research also explains the properties of lead sulphide and MoS2. In p-type
materials such as lead sulphide, the fermi level is closer to the valence band, indicating
a higher concentration of holes in the valence band. Conversely, in n-type materials like
MoS2, the fermi level lies closer to the conduction band, suggesting a higher concentration
of free electrons in the conduction band. When a heterojunction forms between n-type
MoS2 and p-type lead sulphide, the difference in Fermi levels drives electrons from the
n-type MoS2 (with a higher Fermi level) to the p-type lead sulphide (with a lower Fermi
level). As electrons move from MoS2 to lead sulphide, they leave behind positively charged
holes in MoS2. This migration of electrons continues until an equilibrium is established.
At equilibrium, the Fermi levels of MoS2 and lead sulphide align, resulting in the for-
mation of a built-in electric field at the junction. This electric field acts to balance the
movement of charge carriers, preventing any net flow of electrons or holes across the
junction at equilibrium.

3.11. Visible Light-Aided NO2 Sensor

A NO2 detector utilising zinc oxide activated by Cadmium Sulphide is developed [55].
The sensor was fabricated through a simple, rapid, and low-cost Liquid Plasma Spray
technique. Cadmium sulphide served as an activator for zinc oxide at room temperature
with the aid of visible light. The creation of the cadmium sulphide-zinc oxide sensor
involved using an aqueous mixture of cadmium sulphide and zinc acetate as precursors.
The authors utilised the narrow-band-gap semiconductor cadmium sulphide to reduce
the band gap of zinc oxide, which is at 3.37 electron volts. This is because photogenerated
electron-hole pairs in the semiconductor are only produced if the energy of the photon
from the projected light is greater than the material’s band gap energy. The band gap of
zinc oxide prior to the addition of cadmium sulphide indicates that the material requires
ultraviolet light for activation. Therefore, the authors added cadmium sulphide to decrease
the band gap, thus enabling the sensor’s activation in visible light. This will help the
semiconductor to sense the gases at low temperatures. The authors used lights with
wavelengths of 480 nm (blue colour), 510 nm (green colour), and 640 nm (red colour) to
study the NO2 sensor’s behaviour.

For evaluating the sensor, the researchers utilised a custom setup in which they
injected 10 ppm of NO2 and synthetic air at flow rates of 25 mL/min and 225 mL/min,
respectively, into the testing chamber to achieve a concentration of 1 ppm of NO2. The
authors employed the surface depletion model and double Schottky barrier model to
explain the gas-sensing mechanism. In the proposed model, zinc oxide functions as an
electron acceptor, while cadmium sulphide acts as an electron donor. When exposed to
light, particularly blue or green wavelengths, cadmium sulphide absorbs high-energy
photons. This absorption process leads to the formation of photogenerated electron-hole
pairs. As a result, the electrical resistance of the material reduces as compared to when it is
in a darker environment.

3.12. Low-Temperature CO2 Sensor

The metal-oxide-based chemo-resistive CO2 sensors are widely used and show poten-
tial but there is a need for a CO2 sensor that is both efficient and capable of operating at
low temperatures [56]. An efficient resistive CO2 sensor has been developed using hollow
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nanostructured cerium dioxide (CeO2), a type of metal oxide. The sensor operates at a
low temperature of 100 ◦C and was tested under relative humidity conditions ranging
from 30% to 70%. The yolk-shell nanospheres they developed exhibit twice the sensitiv-
ity, improved stability and reversibility compared to ceria nanoparticles available in the
market. Additionally, these sensors demonstrate quicker response times and a higher CO2

adsorption capacity. The authors describe a simple approach to create a hollow and porous
structure of the yolk-shell nanoparticles for improved gas diffusion and larger specific
surface area, resulting in superior electrical and sensing properties. Figure 8 shows the
step-by-step process used by the authors to develop yolk-shell CeO2 nanosphere powder.
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The authors developed two types of sensors for comparison. One sensor incorporated
their custom-made yolk-shell hollow CeO2 powdered nanospheres, while the other used
commercially available CeO2 nanoparticles. To fabricate these CO2 sensors, they mixed
CeO2 with ethylene glycol to create a paste. This paste was then applied to an alumina
substrate equipped with interdigitated Pt electrodes on the top and a Pt heater located
on the bottom to heat the sensor to 100 ◦C. Following this, the sensors were annealed
at 400 ◦C for an hour to eliminate any residual ethylene glycol and stabilise the sensing
layer. The authors used the following formula to calculate the sensing response of their
developed sensor.

Sensing response =
RCO2

R0
(5)

where Rco2 is the resistance of the sensor at a specific concentration of CO2, while R0 is the
baseline resistance measured in synthetic air without the presence of CO2. The authors
assessed the adsorption capacity of their developed sensor material by thermogravimetric
analysis. This technique helped in the comparison of the sensing material’s weight before
and after interaction with CO2. They found that, although the sensor exhibited a good
sensing response, its reversibility was compromised when operated at room temperature.
Their findings also showed that rising relative humidity decreases the electrical resistance
of the sensor, while the baseline resistance remains stable. They concluded that due to
their hollow and porous structure, the yolk-shell CeO2 nanospheres exhibit a surface area
16 times larger than commercially available CeO2 powder. This facilitates efficient diffusion
of CO2 and the carrier gas into the sensing film, thus also improving recovery time [57].

3.13. Radon and Alpha Radiation Sensor

A battery-operated, low-power, cost-effective semiconductor-based sensor is devel-
oped to measure radioactive radon (Rn-222) gas and alpha radiation levels in the air [58].
They used a 0.18 µm Complementary Metal-Oxide Semiconductor (CMOS) process to fab-
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ricate the sensor. Additionally, they incorporated a layer of polysilicon which is a material
composed of many silicon crystals, in contrast to a single continuous crystal structure
found in monocrystalline materials. This sensor employs a grid-like structure composed of
thousands of parallel floating gate transistors to expand its sensing area. The sensor array
consists of 90 × 64 sub-pixels, each measuring 17.5 µm × 12.5 µm, resulting in an entire
array sensing area of 1.12 mm × 1.12 mm. These floating gate transistors, similar to those
used in non-volatile memory, retain charge even when the power is off. The floating gates
help in trapping and measuring the charge generated by radon radiation. According to the
authors, the sensor operates continuously without being affected by humidity.

A Shallow Trench Isolation dielectric layer is used as a sensing capacitor in the sensor
where alpha particle interaction will generate electron-hole pairs. The authors calculated
that a 0.35 µm thick shallow trench isolation layer absorbs 53.7 kilo electron volts of energy
from a 5.5 mega electron volts alpha particle crossing the SiO2 layer. Assuming a constant
electron-hole pair generation energy of 17 electron volts for SiO2, they calculated the
number of electron-hole pairs generated Ne−h using the following equation.

Ne−h =
Eabsorbed

Epair generation
=

53.7 KeV
17 eV

≈ 3150 (6)

A differential approach is employed by utilising a blind sensor to filter out noise
and DC shifts. Multiple layers of Kapton film (50 µm) are applied to shield a portion
of the overall sensor, thereby preventing alpha radiation, a heavy particle with limited
penetration capability, from interacting with the covered area. This results in obtaining
two measurements, one from the normal region of the sensor and the other from the blind
region. Both measurements are then compared to eliminate noise.

3.14. High-Performance SO2 Gas Sensors

A high-performance SO2 gas sensor capable of detecting ppm level concentrations has
been developed [59]. It utilises a hydrothermal method to synthesise a composite of tin
selenide functionalised by graphite-phase carbon nitride. At 200 ◦C, the sensor showed a
28.9% response to 20 ppm of SO2 gas. The developed sensor demonstrated high selectivity
when tested against interfering gases of Liquefied Petroleum Gas, CO, methane, H2S and
hydrogen. Similarly, to design a SO2 gas sensor for ppm level detection, experiments have
also been conducted using various room-temperature ionic liquids, electrode materials and
geometries [60].

3.15. Ozone Gas Sensors with Zinc Oxide and Perovskite Crystals

Zinc oxide thin films of 300 nm were deposited on silicon and alumina substrates
to create a low-power ozone gas sensor operating at room temperature with zero
bias [61]. The sensor demonstrated successful detection of ozone concentrations rang-
ing from 55 to 1150 ppb, with a response time of less than 2 s and a recovery time within
15 s. Notably, the authors reported partial film degradation following prolonged exposure
to high ozone concentrations of 4500 ppb. Despite this degradation, their sensor remained
reliable for long-term indoor monitoring. Likewise, room-temperature ozone sensors based
on inorganic mixed-halide perovskite microcrystals with and without manganese doping
have been designed and studied [62]. By tuning the bromine-to-chlorine ratio, they showed
that bromine-rich compositions show a p-type response to ozone, while chlorine-rich ones
exhibit n-type behaviour. Manganese doping further enhanced sensor performance by
creating more active adsorption sites, which improves detection sensitivity down to a few
parts per billion.
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3.16. PM Sensor

A novel interdigitated capacitive sensor for real-time monitoring of sub-micron and
nanoscale PM has been introduced to overcome the limitations of conventional optical
and gravimetric methods [63]. The sensor utilised capacitance shift analysis to enhance
detection sensitivity. It consisted of a disposable chip (2 mm × 12 mm) integrated into an
air sampling cassette and a reusable readout board for real-time capacitance measurement.
A microheater was incorporated to stabilise readings against environmental variations
such as humidity and airflow. Experimental validation showed that 77% of the collected
particles were sub-micron, confirming the sensor’s capability for fine PM detection. The
authors demonstrated that the sensor response is proportional to particle volume, and
a comparison with gravimetric methods revealed that only 1/1000 of the total collected
particle mass contributed to the sensor response due to radial deposition effects.

3.17. Highly Sensitive On-Site Lead Sensing in Air

A photoluminescent sensor based on a perovskite semiconductor has been developed
to detect the presence of lead in the air [64]. In this method, lead ions interact with methyl
ammonium bromide, resulting in the formation of a highly luminescent perovskite material.
The authors wrote that their sensor can visually detect lead concentrations as low as one
nanogram per square millimetre with the naked eye, while digital imaging techniques can
identify levels as low as fifty picograms per square millimetre. Similarly, a wearable electro-
chemical sensor for detecting atmospheric lead has been designed and demonstrated [65].
The sensor was printed on a flexible and transparent vinyl-based substrate to allow direct
attachment to the surfaces. On this substrate, they printed three electrodes: a carbon work-
ing electrode, a carbon counter electrode, and a silver/silver chloride reference electrode.
The working electrode was modified with a bismuth film and a thin Nafion layer to enhance
sensitivity and selectivity toward Pb. Lead detection was performed using square wave
anodic stripping voltammetry with a portable, miniaturised potentiostat. They reported
that their sensor detected lead at levels as low as 50 micrograms per litre.

3.18. PAH Detection in Air Using Surface-Enhanced Raman Spectroscopy

A method based on surface-enhanced Raman spectroscopy for detecting PAHs in
air has been developed [66]. The Raman signal was enhanced by modifying glass fibre
filters with silver nanoparticles to improve the sensitivity and selectivity of the detection
process. This study focused on detecting PAHs, specifically fluoranthene, phenanthrene,
and pyrene, by capturing them from the air using the coated glass fibre filter. A laser
was used to analyse the collected pollutants. The method achieved low detection limits,
ranging from 9.11 to 18.18 ppb. The analysis was fast and completed within one minute.
The method showed high accuracy and repeatability, with recovery rates ranging from 83 to
126 percent. It was reported that this method is more portable alternative to traditional tech-
niques such as gas chromatography-mass spectrometry. It allows for real-time monitoring
of air pollution. The technique is cost-effective, and suitable for field applications.

Comparative analysis of sensor design parameters from various studies is presented
in Table 1.
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Table 1. In-depth comparative analysis of sensor design parameters from various studies.

Study Gas Active
Material

Active Channel
Material Type

Fabrication
Technique

Threshold Voltage
VTH

Mobility
(cm2/V·s) Range

Sensing
Response Testing Environment Gate Type Response

Time
Recovery

Time
Limit of

Detection

[44] NH3
P3HT/
MoS2

Nanocomposite
of polymer

(P3HT) and 2D
material (MoS2).

FTM −3.78 V (0 ppm) to
−10.71 V (100 ppm)

0.1408 (0 ppm)
to 0.1446

(100 ppm)

63.45% at
100 ppm

Closed chamber with an
ambient environment.

highly
p-doped

silicon wafer.
- - ~1 ppm

[45] NH3 P3HT P3HT
polymer

Spin
coating and

FTM

−0.279 V (0 ppm) to
−0.42886 V (5 ppm)

0.0995 (0 ppm)
and 0.0572

(5 ppm)

47% at
5 ppm

Custom sensing setup with
a temperature controller,
humidity sensor, in-out

valves, and a mixing fan.

p++ silicon
substrate. 9 s 50 s 11.6 ppb

[46] NH3
Au doped

P3HT

Au nano particle
doped P3HT

nano composite

Fully
Solution-

Processed,
Spin

Coating and
FTM

−0.1539 V (0 ppm) to
−0.4980 V (5 ppm)

0.1069 (0 ppm)
and 0.0627

(5 ppm)

55% at
5 ppm

10 L chamber with mass
flow controller, B1500A

semiconductor parameter
analyser, temperature and

humidity sensor (at
46% relative humidity).

Heavily
boron-doped

silicon
substrate
(p++ Si).

5 s 17 s 15.15 ppb

[47] NH3

P3HT/
graphitic
carbon
nitride

Polymer/2D
nanocomposite

Fully
Solution-

Processed,
Spin

Coating and
FTM

−0.1052 V (0 ppm) to
−0.3520 V (20 ppm)

0.1073 (0 ppm)
and 0.041
(20 ppm)

69% at
20 ppm

Mass flow controller with
sample gas cylinder,

humidity sensor, mixing
fan, probe setup, B1500A
semiconductor parameter

analyser, room
temperature, 55% relative

humidity, ambient air.

Indium tin
oxide coated
polyethylene
terephthalate

substrate
(15 × 20 mm)

4 ± 0.5 s 36 ± 4 s 500 ppb

[48] NH3

P3HT/
Graphene

Oxide

Polymer/2D
nanocomposite FTM

−4.75833 V (0 ppm)
to −6.15757 V

(80 ppm)

0.0551 (0 ppm)
to 0.02181
(80 ppm)

63% at
80 ppm

A 10 L chamber at 55%
relative humidity with an

inlet for precise gas
insertion via an air-tight
syringe and an outlet for

exhaust flushing,
connected to B1500

semiconductor
parameter analyser.

highly
boron-doped

silicon
substrate

44 s 82 s 278 ppb

[49] H2S

P3HT/
Graphene
Quantum

Dot

Polymer/2D
nanocomposite FTM −13.71 V (0 ppm) to

−16.21 V (25 ppm)

0.0711 (0 ppm)
to 0.0060
(25 ppm)

91% at
25 ppm

A 10 L chamber at 55%
relative humidity with an

inlet for precise gas
insertion via an air-tight
syringe and an outlet for

exhaust flushing,
connected to B1500

semiconductor
parameter analyser.

p++ Si
substrate 10 s 225 s 606 ppb
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Table 1. Cont.

Study Gas Active
Material

Active Channel
Material Type

Fabrication
Technique

Threshold Voltage
VTH

Mobility
(cm2/V·s) Range

Sensing
Response Testing Environment Gate Type Response

Time
Recovery

Time
Limit of

Detection

[56] CO2 CeO2
Yolk-shell

nanospheres

Microwave-
assisted

solvothermal
- -

1.8–2.9 times
higher than

commer-
cial CeO2

nanoparticles.

Sensors installed in a
continuous-flow Teflon

chamber with DC power
for temperature control, a

gas mixing system
regulated CO2 and
relative humidity, a

programmable
electrometer measured

resistance changes.

N/A
2.58 min

at
2400 ppm

4.08 min
at

2400 ppm
150–2400 ppm

[58] Rn SiO2 Semiconductor

Extended
Tower Jazz

High Voltage
standard
0.18 µm
CMOS

Threshold voltage
variations estimate
radon levels, with

output voltage
adjustable via

trans-impedance
amplifier biasing.

- -

Exposure to an alpha
radiation source and

Radon gas in a
controlled environment.

Polysilicon - -

Tested with
concentra-

tions of
200–800 Bq/m3.
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In the next section, we have critically reviewed recent literature on IoT frameworks
for AQM. It discusses a range of IoT device designs, up-to-date research findings in
terms of issues and solutions, monitoring parameters, and associated sensor-based IoT
network architectures.

4. IoT Frameworks for AQM
4.1. LoRa WAN Enabled IoT

LoRa WAN-enabled IoT framework has been presented in the Mobile Citizen Mea-
surements and Modelling: Air Quality and Urban Heat Islands project [67]. By employing
cost-effective sensors, this research aims to narrow the divide between regional and indi-
vidual measurements. They introduced a distinctive design based on mobile sensing nodes
capable of monitoring temperature, humidity, and various pollutants including NO2, PM1,
PM2.5, and PM10. The authors then conducted a thorough evaluation of their design’s
energy consumption and determined that the results met their expectations satisfactorily.
The authors utilised LoRa WAN for long-range communication. They have designed the
nodes to be mobile to enable participatory monitoring. In their study, sixteen mobile sensor
nodes were built to monitor the air quality. Each node also included an integrated fan for
the PM monitor which, according to their observations, consumes 77 mA. Additionally, a
user-friendly web interface was developed to display the air quality data.

Likewise, an IoT edge device, RnProbe, is designed for integrated radon risk
management [68]. This system leverages LoRa WAN and Wi-Fi communication technolo-
gies to continuously monitor radon levels alongside other indoor air quality parameters
such as temperature, humidity, atmospheric pressure, and CO2. It performs edge com-
puting to initially process sensor data locally, ensuring efficient data transmission to a
cloud-based analytics platform. The device operates in different modes to optimise power
consumption. It draws approximately 160 mA in active mode with all components powered,
about 101 mA in sleep mode with partial component shutdown, and up to 330 mA when
acting as a gateway due to increased communication demands. The authors reported that
their device demonstrates the potential for scalable deployment and real-time monitoring
to support radon mitigation strategies and improve indoor air quality.

4.2. Low-Cost IoT

Low-cost IoT solutions have been discussed detailing their functional and architectural
mechanisms [69]. They highlighted that with proper calibration in specific field conditions,
these sensors can achieve coefficient R2 values up to 0.99. However, without such calibra-
tion, these values may drop to as low as 0.5. The authors discussed methods to improve
PM observation quality by integrating regulatory station data with traffic and satellite infor-
mation. However, they noted that these methods are insufficient for accurately modelling
PM levels in urban areas. They highlighted recent advancements where researchers have
developed networks of inexpensive, in-field-operated PM sensors. These sensors, working
alongside regulatory stations, self-calibrate themselves by using data from these stations
throughout their operational lifespan.

A smart, low-cost IoT-based system for real-time monitoring of hazardous air pollu-
tants, including hydrocarbons, lead, nickel, and PM has been proposed [70]. Their system
used cloud storage, and machine learning-driven predictive analysis to help industries
and regulatory bodies track pollution levels, generate alerts, and take preventive measures
to reduce environmental and health risks. Researchers in [71] reported that the observed
level of PM in bars and pubs where smoking is permitted was 287 µg/m3, compared to
34 µg/m3 in places where smoking is prohibited. In [72], the authors noted that during
cooking, PM generated mainly consists of fine or ultrafine particles and the median mass
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diameter of these particles does not go above one micron. Deodorisers commonly used in
homes are also harmful to the respiratory system, as they produce particles smaller than
2 microns [73]. Figure 9 shows the multiple technologies discussed to measure PM values.
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Figure 9. PM measurement techniques.

Similarly, an IoT-based smart shirt equipped with an affordable electrochemical sensor
has been proposed for continuously monitoring H2S levels in hazardous environments [74].
The wearable device wirelessly transmits real-time H2S concentration data to a cloud plat-
form using Bluetooth Low Energy via a smartphone gateway. The authors emphasised
the sensor’s compactness and notably low-power consumption of 1.86 mW. Addition-
ally, their smart shirt includes an energy harvesting system combining solar, thermal,
and piezoelectric sources, generating up to 216 mW. This enables complete energy au-
tonomy and extended operational lifetime which significantly enhances energy efficiency
and practicality.

4.3. Crowdsource-Based IoT

A crowdsource-Based IoT framework has been investigated for Monitoring Fine-
Grained Air quality [75]. The issue of inadequate AQM infrastructure in urban environ-
ments has been addressed, highlighting how the scarcity of monitoring nodes severely
limits the resolution of air quality data at a city-wide scale. To monitor the dynamic air
quality of the city, they employed a fleet of 500 vehicles across Beijing utilising DiDi cor-
poration network to monitor the dynamic air quality of the city. This study was based
on the rationale that the air quality inside a vehicle closely resembles that of the external
environment through which it travels. The authors developed an algorithm to monitor
air quality as vehicle windows are opened and the environment stabilises, i.e., when the
concentration gradient between the inside and outside air diminishes. IoT technology was
used to transmit the data to the cloud. The developed algorithm initially determines the
status of the window and air conditioner by monitoring PM2.5 and humidity levels inside
the vehicle. Once the pollutant levels stabilise after opening the windows, the algorithm
begins to store and transmit the data.

To smoothen the data, authors have utilised double and triple exponential smoothing
equations for PM2.5 and humidity, respectively. This method filters out noise and extracts
trends or patterns from a time series. Each data point is represented as xt, starting from
time t. The following equations were used to model their study, where ∝ is the smoothing
factor, which can vary from 0 to 1, and s(t − 1) denotes the previous smoothed value.
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
s0 = x0

st =∝ xt + (1− ∝)st−1,
t > 0. (7)

The results obtained by the authors show an acceptable bias of 3.64–4.2% from the
expected values.

4.4. Energy Efficient IoT

It is highlighted that the current AQM systems are precise and responsive, but they
come with significant energy operating costs and require expensive, time-consuming
laboratory analyses [76]. To address these challenges, the authors introduced a cost-effective
metal-oxide-based AQM system for assessing the levels of CO, NO2, and SO2 in urban
environments. They also employed laser diffraction technology to measure PM levels and
equipped the device with weather monitoring sensors. In the design, the authors utilised
several key components which include a solar-powered rechargeable battery, a graphic
user interface, a server for storing information, a microcontroller, and a GPRS module. The
device calculates the air pollutant standard index and incorporates an algorithm based on
RSSI to reduce packet losses by 9.8% to 11.6% in medium to poor network conditions. To
calculate AQI, the authors have used the following equation.

Ip =
IHi − ILo

BPHi − BPLo

(
Cp − BPLo

)
+ ILo (8)

Here, Ip represents the AQI corresponding to the concentration of a specific pollutant
Cp. BPHi and BPLo are the upper and lower concentration breakpoints, respectively, for
the pollutant range. IHi is the AQI at the higher concentration breakpoint and ILo is the
AQI at the lower concentration breakpoint. They measured the current consumption of
the device to be varying between 280 and 410 mA which is significantly higher than that
of the transmission module. The authors found PM sensors and the fan are the primary
contributors to this increased energy usage. Figure 10 illustrates the integration of various
sensors and microcontrollers used in the system. The diagram displays the types of sensors,
their specific models, and the environmental parameters they measure. It shows Nextion
LCD employed for user interface, and a Robot-Dyn Mega2560 with ESP8266 for processing
and connectivity.
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Similarly, an energy-efficient IoT-based NH3 monitoring system for flexible and wear-
able applications has been designed in [77]. The authors developed a 3.3 V battery-powered,
Wi-Fi-enabled platform operating at room temperature with a low-power consumption
of around 262.5 mW, enabling real-time data transmission and cloud-based analytics. Its
flexible electronics allowed easy integration into personal wearables, facilitating continuous
health and environmental monitoring.

4.5. Multi-Points Indoor IoT

Recognising that people spend around 90% of their time indoors, an IoT-based Indoor
Air Quality Detector has been developed to monitor key indicators such as CO2 levels, PM2.5,
temperature, and humidity [78]. They installed seven of these devices throughout a building
for a one-month study conducted during the winter season to gather and process data. These
devices were connected using Zigbee wireless modules. A central gateway was utilised for
data acquisition via Modbus Remote Terminal Unit protocol every two minutes from the
sensor nodes which then uploaded the information to the cloud via GPRS/4G connectivity.
The users accessed this data via a web or mobile application. The study found that PM2.5
levels surged, increasing by up to ten times during cooking sessions. Additionally, CO2

levels were observed to rise to 2500 ppm, significantly higher than the typical indoor range of
400–1000 ppm. Specifications of Sensors used in [78] are presented in Table 2.

Table 2. Specifications of Sensors used in Indoor IoT.

Sensor Manufacturer Parameter Interface Power Consumption

PMS5003 Pantower China PM2.5 based on Laser Scattering. UART
Active Mode Sleep Mode

100 mA 200 µA

SHT30 Sensirion Switzerland Temperature and Humidity I2C 4.8 µW
S80053 SenseAir Sweden CO2 at response time of 20 s. UART 18 mA average

STM32F103C8T6 is chosen as the primary microcontroller unit for their development.
This microcontroller typically consumes an average of 25 mA, with an additional low-power
mode available to enhance energy efficiency. The DRF1609H Zigbee wireless module was
utilised for this experiment due to its low-power consumption (25 mA on average, 18 mA
in standby, 20 mA while receiving, and 200 mA during transmission), large-scale network
capacity, dynamic routing, and convenient debugging capabilities. The equation below
demonstrates how the authors calculated relative humidity from the 16-bit readings taken
by the humidity sensor. Here, SRH represents the sensor’s raw humidity value.

RH = 100 × SRH

216 − 1
(9)

Figure 11 illustrates the intervals for data collection and transmission, along with
the overall power consumption per cycle. The central gateway sends three consecutive
acquisition requests to the individual sensor nodes. If the targeted node fails to respond, a
packet loss is registered.

This multi-point system was installed across six rooms in a house. The impact of
opening and closing windows, as well as human behaviour, was also monitored. Outdoor
environment parameters were also recorded for comparison during this experimentation.

This study found that the kitchen had the highest concentration of PM2.5, reaching
1091 µg/m3. PM2.5 levels exceeding 250 µg/m3 pose a severe health risk and cooking
smoke in the kitchen significantly contributes to lung cancer risk. The research revealed that
PM2.5 concentrations in the kitchen were 37% higher than in other rooms and increased
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tenfold during cooking. While CO2 levels spiked when there was activity in the kitchen,
they also gradually increased in the bedrooms when people were sleeping. Although levels
above 1500 ppm are harmful to health, the authors discovered that CO2 levels in bedrooms
occupied by two adults rose to 2566 ppm, while the room of a 7-year-old reached 1638 ppm,
with all doors and windows closed at night.
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4.6. IoT for Mould

IoT framework for mould growth detection has been presented measuring PM2.5,
PM10, CO2, and Total VOCs [79]. They note that poor design, construction, and mainte-
nance practices of buildings increase the likelihood of mould growth. Additionally, the
lifestyle of occupants plays an important role in this process. The resulting mould growth
leads to the biodegradation of building materials and significant health issues for the
occupants. The study demonstrated that high levels of fungal spores are linked to increased
PM2.5, PM10, and CO2 levels, resulting in poor indoor air quality. Figure 12 illustrates the
physical, biological and chemical factors on which the indoor air quality depends [79].
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Figure 12. Factors affecting indoor air quality.

A standard house with two occupants for two months during the winter period is
monitored by employing a range of sensors to monitor air quality. For PM2.5 and PM10,
sensors based on the light scattering principle are used. To measure CO2 levels, they utilised
a non-dispersive infrared sensor. Additionally, they employed metal-oxide semiconductor-
based Total VOCs monitoring sensors. Following the monitoring phase, they collected
multiple surface and air samples from the house to support their conclusions. Analysis
of these samples identified 24 distinct fungal strains. Notably, half of these species were
identified as highly harmful to human health, 21% were toxic, and the remainder were
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associated with long-term health risks. The authors noted that indoor mould affects a much
larger area than is visibly apparent. They further stated that while antibacterial products are
effective against bacteria, they do not eliminate mould, as mould has a different structure
and resilience compared to bacteria. The authors concluded that the peak levels of PM2.5
and PM10 reached 250 mg/m3 and 330 mg/m3, respectively, significantly exceeding typical
annual and 24-h average concentrations. Total VOC levels, however, were not influenced
by the presence of mould and remained within normal limits.

4.7. Hybrid IoT Solutions

It is highlighted that despite the costliness of high-end static AQM stations, they
remain insufficient in capturing the nuanced fluctuations in an individual’s exposure to
pollution [80]. To address this, they have designed a hybrid environment monitoring
system capable of operating both indoors and outdoors. Users can wear this sensor on
their backpacks, purses, or jackets to understand the air quality around them. The authors
have developed an algorithm for their device to differentiate between indoor and outdoor
environments. They conducted a comprehensive comparative analysis of their device’s data
output against that of established high-end static air quality monitors installed outdoors
by the government. By leveraging the power of the crowd, the authors gathered data
over a period of two and a half months in the city of Helsinki to analyse the variability
of meteorological variables and PM compounds. This system offers personalised data
based on an individual’s exposure to everyday pollution. Collected data include PM2.5,
PM10, CO, and NO2 levels, as well as temperature, relative humidity, light intensity, GPS
coordinates, and timestamps. Figure 13 depicts the various sensors and components
integrated into the system, along with their respective functions [80].
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The authors calculated that their designed device can operate for 22 h on battery power.
They justified segregating indoor and outdoor air quality measurements by highlighting
significant variations in pollutant types and concentrations between the two environments.
They mentioned that not segregating the data will yield oversimplified and inconclusive
results. Their experiments revealed that inadequate ventilation resulted in much higher
ozone levels indoors compared to outdoors. This phenomenon is likely attributed to
different types of indoor air purifiers and electronic devices generating ozone as a by-
product. Moreover, they mentioned the continuous spatial variation in PM’s size and
chemical composition. They wrote that the PM can consist of nitrates, sulphates, elemental
and organic carbon, as well as organic compounds such as PAH, biological entities like
endotoxin [81] or cell fragments, and different metals including iron, copper, nickel and
vanadium [82].

PM deposition in the lungs of a person depends upon the activity which they are
performing in the polluted environment. A person who is driving will experience a lower
deposition of PM in their lungs compared to someone exercising in the same environment.
The study in [83] also found out that high levels of PM decrease Heart Rate Variability
which negatively affects cardiovascular health. The authors wrote that PM deposition in
the lungs depends on the living conditions of a person. Their experiments indicate that
women are more at risk of PM deposition in their lungs compared to men. Additionally,
their device offers real-time air pollution maps to provide insights about the microclimate
of a city. The authors concluded that their device can empower people to make informed
decisions. They can choose less polluted routes for commutes and plan trips to shopping
malls or parks based on the real-time air quality. Table 3 shows comparative assessment
and evaluation of various IoT-based AQM Studies.

Table 3. Comparative Assessment and Evaluation of IoT-based AQM Studies.

Study Year Issue Addressed Contributions Techniques Used Limitations

[67] 2021

Effective AQM and urban
heat islands to improve

public knowledge by
bridging the gap between
individual exposure and
regional measurements.

Development of a
participatory type

monitoring system using
low-cost sensors and IoT
architectures with a web

interface to visualise
sensor data.

Use of small, mobile and
modular sensor nodes to

monitor NO2, PM1,
PM2.5, and PM10.

Temperature and
humidity measurements
affected by sun exposure

and wind direction,
significant convergence

time of sensors, high
battery consumption
limiting monitoring

duration, calibration and
accuracy issues.

[69] 2021

Evaluating the accuracy,
reliability, and real-time
monitoring of low-cost

PM sensors.

Comprehensive review of
the performance,

improvement techniques,
benefits, and limitations

of PM sensors.

Comparison of 50 PM
sensors.

High dependency on
calibration, variability in

performance under
different conditions, high

humidity sensitivity,
limited calibration

generalisability and need
for ongoing recalibrations.

[75] 2019 Fine-grained AQM in
urban areas

Vehicle-based system for
high-resolution urban

AQM, algorithms
development and

large-scale testing to
demonstrate effectiveness.

500 mobile nodes for
crowdsourcing and

post-processing data via
exponential smoothing

and intelligent algorithms.

Potential inaccuracies in
AQM estimates when

assuming open windows
reflect outside conditions,

limited testing only in
highly polluted cities.
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Table 3. Cont.

Study Year Issue Addressed Contributions Techniques Used Limitations

[76] 2022
Stable ambient air

monitoring in varying
network conditions.

Introduction of a low-cost
AQM system with

adaptive performance
stability for

data transmission.

A system with
metal-oxide sensors, a

GPRS module, a
microcontroller, and an
algorithm for reducing
packet loss is used to

effectively monitor SO2,
CO, NO2, PM, and
weather conditions.

Simple adaptive
algorithms may increase

latency, reliant on
GSM/GPRS, high power

consumption, and
limited field validation in

varied environments.

[78] 2021

Need for real-time,
multi-point indoor AQM

monitoring in
residential buildings.

Implementation of a
multi-point IoT-based

indoor AQM system and
analysis of the impact of
human behaviour and
environmental changes
on indoor air quality.

STM32 and Zigbee used
for data collection and
transmission, real-time

data access and analysis,
PM2.5 and

CO2 monitoring.

Significant signal loss
(>8%) with Zigbee over

concrete walls,
monitoring period was
limited to one month in

winter, study was
confined to a single
residential building.

[79] 2022

Indoor AQM and early
detection of mould

growth in
residential buildings.

Case study on indoor
AQM and mould in an
Australian suburban
home. Found links

between poor AQ, high
fungal spores, and health
risks. Emphasises early

detection and better
building regulations.

Site inspection, air
testing, surface sampling

for mould, 2-month
indoor AQM monitoring

campaign, analysis of
fungal spore

concentrations, and
environmental parameter

measurements.

Limited to one case study,
short monitoring period,

reliance on basic
sampling instruments,

and conclusions based on
observational data

without
extensive controls.

[80] 2021
Monitoring individual air
pollution exposure using
portable low-cost sensors.

Developed a
citizen-based air

pollution monitoring
system, classified data
into indoor/outdoor,
validated sensor data

accuracy, and provided
fine-grained air

pollution insights.

Data classification,
consistency and accuracy

validation, pollution
measurement campaign
over wide geographic

areas, 40 portable
low-cost sensors to

monitor CO, NO2, O3,
and PM over 6 km2.

Low-cost sensor data
accuracy, limited

geographical focus, data
variability due to user
handling, and simple

indoor/outdoor
classification limit

broader applicability
and precision.

4.8. IoT Devices for AQM-Feature Comparison

The following commercial devices have been used for efficiency testing in real-world
conditions in this study. These devices were selected for their availability, suitability for
indoor environments and connectivity features.

• Ubibots AQS1 Smart AQ monitor (Arundel, UK) [84].
• Temptop 1000S+ AQ Monitor (London, UK) [85].
• Amazon AQ monitor (London, UK) [86].

Table 4 presents a comprehensive feature analysis of the Ubibots AQS1 Smart AQ
monitor, Temptop 1000S+ AQ Monitor, and the Amazon AQ monitor.

Table 4. Features comparison of three commercial IoT-based AQ monitoring devices.

Features Amazon AQ
Monitor

Ubibots AQS1 Smart
AQ Monitor

Temptop 1000S+ AQ
Monitor

Temperature ✓ ✓ ✓
Humidity ✓ ✓ ✓

Atmospheric
Pressure ✗ ✓ ✗
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Table 4. Cont.

Features Amazon AQ
Monitor

Ubibots AQS1 Smart
AQ Monitor

Temptop 1000S+ AQ
Monitor

PM1.0 ✗ ✓ ✗
PM2.5 ✓ ✓ ✓
PM10 ✗ ✓ ✓
VOC ✓ ✓ ✓

Formaldehyde ✗ ✓ ✓
CO2 ✗ ✓ ✗

Equivalent CO2 ✗ ✓ ✗
CO ✓ ✗ ✗

Wi-Fi ✓ ✓ ✗

These devices enable continuous indoor monitoring without the cost and complexity
of regulatory-grade instruments. Their data can help users respond effectively to changing
indoor conditions. Further details on their performance and experimental results from
real-world tests are presented in Section 5.

In the next section, through real-world experimentation, we present and compare
the performance of three IoT-based commercial AQM devices currently available in the
UK market. The graphical results-based critical analysis of the output data from these
commercial AQM systems is the focus with strengths and weaknesses highlighted.

5. Performance Evaluation of AQM Systems
In this section, data collected in various indoor environments from three different

commercially available AQM devices is analysed. These monitors include the ubibot aqs1
smart air quality sensor [84], temptop 1000s+ [85], and the Amazon smart AQM device [86].
Results are presented in graphical format, with colour coding to indicate different air
quality levels: green colour for good air quality, yellow colour for fair air quality, orange
colour for poor air quality, and red colour for terrible air quality [87]. A total of three
experiments were conducted to assess indoor air quality under different conditions. The
first experiment was focused on high pollution levels during cooking activities. The second
experiment involved AQM in a bedroom occupied by two adults, with all windows shut to
establish an environment without ventilation. The third experiment was similarly set in a
bedroom with two occupants but with a window open to allow ventilation.

5.1. Impact of Cooking on Air Quality Using Three Commercial Sensors

Figure 14 illustrates the elevated CO2 levels observed during cooking on a conven-
tional gas stove in an unventilated environment. The figure depicts a sharp increase in the
CO2 levels with the initiation of cooking. This trend is depicted by an exponential curve.
CO2 levels continued to rise until the range hood was activated at 20:10, which led to a
gradual decline in concentration beginning at 20:19. This reduction continued in a nearly
linear fashion until a window for ventilation was opened at 21:28 to further ventilate the
area. This action resulted in a sharp decline in CO2 levels, ultimately bringing it down
within the optimal range for air quality.

The graph in Figure 15 illustrates the levels of PM1.0, PM2.5, and PM10 during cooking
activities, along with a trendline indicating an exponential change in concentrations over
time. Initially, when cooking activities began, the levels of PM rose sharply within a few
minutes to hazardous levels. Before 20:10, when no ventilation was present, the decline in
PM levels was gradual, likely due to the PM diffusing throughout the air. The activation
of the range hood at 20:10 resulted in a steeper decline in PM levels. However, the most
significant reduction occurred at 21:28, when a window was opened for ventilation, leading
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to a rapid drop to safe levels. This observation suggests that opening a window provides
more effective ventilation compared to using a range hood.
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right side indicate the health hazard levels of PM10, while lighter colours on the left represent the
health hazard levels of PM2.5.

Figure 16 compares PM2.5 levels measured by ubibot, amazon, and temptop AQM de-
vices. Although all AQM devices displayed similar trends, there were differences in the ab-
solute values recorded. Temptop devices consistently showed the highest values, followed
by the ubibot and then the Amazon AQM device. This discrepancy highlights the variance
in sensitivity and accuracy among different AQM devices, even when placed next to each
other. Notably, the Amazon device was the fastest to sense changes in the environment.
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Figure 16. Comparison of PM2.5 Levels Measured by ubibots, temptop, and Amazon AQM devices
in an identical Environment.

Figure 17 illustrates the PM2.5 and PM10 levels recorded by the temtop device during
the same cooking experiment. PM10 levels showed a sharp increase until the device
reached its detection limit of 999 µg/m3. At this point, the PM10 concentration readings
from the monitor plateaued because the device cannot measure beyond this limit. The
user manual of the temptop 1000s+ device notes the use of a highly precise laser particle
sensor to measure PM2.5 and PM10 within the range of 0–999 µg/m3 with a resolution of
0.1 µg/m3 [88].
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5.2. Comparison Analysis of Indoor Air Quality with and Without Ventilation in a Residential Setting

Figure 18 depicts the CO2 levels recorded in a bedroom during two different sleep
scenarios involving two adults. On the first occasion, all the windows were closed while the
bedroom door remained open, resulting in no ventilation from the outdoor environment.
This scenario led to a significant increase in CO2 concentrations, as illustrated in the graph.
Initially, the CO2 levels were in the “fair” air quality range when the adults began sleeping.
However, within less than 30 min, the CO2 levels escalated to the “poor” air quality range.
The second occasion involved keeping the bedroom door open along with an open window
in an adjacent room, which facilitated some degree of ventilation from the outdoors. This
setup helped maintain the CO2 levels within the “good” air quality range throughout the
night, as shown in the graph. The graph clearly indicates that when no windows were
open, the CO2 concentrations rapidly increased, reaching “poor” levels due to insufficient
ventilation. Conversely, with the window in the adjacent room open, the CO2 levels
stayed within a healthier range, demonstrating the importance of adequate ventilation for
maintaining air quality during sleep.
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Figure 18. Ubibots device—Comparison of CO2 levels in a room with two people sleeping: Effects of
open window (ventilated) vs. closed window (no ventilation).

Figure 19 presents the PM2.5 and PM10 levels recorded by the temtop device under
two different ventilation scenarios in a bedroom occupied by two adults. With all the
windows closed, PM2.5 levels spiked to around 14.5 µg/m3 and remained elevated. PM10
levels followed a similar trend, peaking near 25.4 µg/m3 and then remained elevated
throughout the night. According to the temtop 1000s+ device’s datasheet, these values fall
within the “moderate” range, indicating a decline in air quality due to limited ventilation.
In the second scenario, where an adjacent room’s window was open, PM2.5 levels remained
much lower, fluctuating between 2 and 5 µg/m3. Similarly, PM10 levels were also low,
ranging from 3–6 µg/m3. These concentrations are within the “good” range, illustrating the
effectiveness of increased ventilation in maintaining better air quality. The data emphasise
that without adequate ventilation, both PM2.5 and PM10 concentrations increase, leading
to diminished air quality. Conversely, improving ventilation by opening a window in an
adjacent room significantly reduces PM levels, resulting in a healthier indoor environment
for the occupants.
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5.3. Sensor Calibration

Accurate calibration of AQM sensors is critical to ensure precision and reliability of
measurements. Sensors, particularly low-cost ones used in IoT applications, can exhibit
errors due to environmental conditions such as temperature, humidity, and cross-sensitivity
to other pollutants. Sensor calibration methodologies can be broadly divided into three
types including co-location calibration, laboratory calibration, and in-field calibration. Each
approach has its strengths and limitations regarding accuracy and reliability compared
in Table 5. yesCo-location calibration method involves placing air quality sensors next
to high-precision reference instruments, such as regulatory-grade air monitoring stations,
for a defined period under real-world environmental conditions in a field setting. This
allows for a direct comparison of sensor outputs with reference measurements, enabling
the development of calibration equations (e.g., linear regression or machine learning
algorithms) [89]. In the laboratory method, the sensor is placed in a test chamber with
controlled parameters, including pollutant concentration, temperature, and humidity.
Known reference gases or particles (e.g., NO2, CO, PM2.5) are introduced, and the sensor’s
response is compared to the true concentration. The in-field calibration method is used after
the sensors are deployed at their final monitoring location. It ensures that the sensors are
adjusted to match the specific environmental and operational conditions of the deployment
site considering humidity, microclimate, or site-specific pollution sources [90].

Table 5. Advantages and limitations of calibration methodologies.

Calibration
Methodologies Co-Location Laboratory In-Field

Advantages

Provides accurate calibration
under real-world conditions.

Provides highly precise calibration
in a controlled environment.

Ensures high accuracy in the
actual operating environment.

Accounts for the impact of
temperature, humidity, and

pollutants that may not be captured
in controlled environments.

Useful for identifying sensor
response to specific pollutants and

eliminating cross-sensitivities.

Accounts for site-specific conditions
not captured in laboratory or

co-location calibration.
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Table 5. Cont.

Calibration
Methodologies Co-Location Laboratory In-Field

Limitations

Accuracy can degrade when the
sensor is moved to a

different environment.

Calibration may not fully represent
real-world conditions where

external factors (e.g., temperature
fluctuations, pollutant mixtures)

influence sensor accuracy.

Calibration may need to be
repeated periodically to address

environmental changes.Requires prolonged exposure to
ensure calibration robustness.

Dependent on the availability of
high-precision reference stations.

Limited adaptability to dynamic
field environments.

Requires access to reference
instruments at the
deployment site.

6. Future Research Directions in AQM
6.1. STM32 Based AQM Systems

The majority of researchers have utilised Arduino microcontrollers or their derivatives
in their research. It reported that 86% of the current indoor AQM systems rely on Arduino
or Arduino-oriented microcontrollers [91]. While Arduino is a popular choice, particularly
for learning and prototyping, it presents many restrictions e.g., limited user access to control
microcontroller’s power consumption and hardware peripherals, which is necessary for
commercial and sophisticated AQM. Arduino-based systems result in increased power
consumption on top of individual sensor’s power consumption. This inefficiency reduces
device mobility, as frequent human intervention is required to maintain functionality.

In contrast, the STM32 series microcontrollers are known for their exceptional perfor-
mance, rapid processing speed, affordability, and superior power efficiency [92]. These
microcontrollers offer step-by-step real-time power consumption analysis, a high level of
integration, user-friendly development tools, ease of conversion to the final product, robust
hardware debugging capabilities, and superior analogue-to-digital converters with higher
resolution [93]. To address these challenges, future research on AQM system development
should focus on better integration of advanced microcontrollers like STM32 and other
emerging technologies to improve power efficiency, enhance security, and reduce the need
for manual intervention, ultimately leading to more robust and autonomous systems [94].

6.2. Mobile and Distributed AQM

Traditional AQM systems are installed as static devices. The static installation base
AQM is insufficient in providing high spatial and temporal resolution air quality data
of the surrounding environment. In contrast, mobile and distributed AQM systems are
increasingly attracting the attention of researchers [95,96]. However, several challenges
must be overcome to develop effective mobile and distributed AQM systems, including
power consumption, low-cost sensor accuracy, privacy, data processing, communication,
and networking issues [97].

In this direction, a deep learning algorithm using variational graph autoencoders has
been presented to estimate air pollution levels based on actual sensor data and road net-
work topology [98]. The device was mounted on a postal truck and utilised opportunistic
calibration to autonomously calculate calibration parameters. Figure 20 presents a concep-
tual framework that integrates drones equipped with sensors for the detection of pollutants
originating from both natural (e.g., volcanic emissions) and anthropogenic (e.g., industrial
activities) sources. It demonstrates the use of air quality sensors mounted on various
platforms, including unmanned aerial vehicles, automobiles, wearable devices, and static
installations such as roadside units and indoor environments (e.g., homes and commercial
buildings). While this distributed and dynamic monitoring approach offers great potential
for real-time air quality tracking across diverse environments, several challenges remain
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unaddressed. These include ensuring the efficiency and accuracy of pollutant detection, op-
timising communication between the devices, and addressing infrastructure requirements
for seamless and effective connectivity among these mobile and stationary nodes.
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6.3. Optimising Sensor Calibration for AQM

Sensor drift is a significant challenge that impacts the accuracy of AQM systems [99].
Unit-to-unit variability further complicates the calibration process, making it difficult to
ensure consistency. Applying the same calibration across all devices worsens data quality
issues since the extent of drift varies even among sensors of the same type. Combined
errors from baseline drift and sensitivity drift add to the complexity of the situation. As a
result, robust optimisation algorithms for dynamically calibrating low-cost AQM systems
to mitigate sensor drift are increasingly attracting researchers [100].

In this context, an intelligent calibration method for air pollution monitoring during
extreme events has been presented using a Bayesian framework [101]. It is demonstrated
that while black-box calibrators are more accurate, they are prone to drift during new
events, whereas white-box calibrators maintain robustness. Figure 21 provides a graphical
representation of various factors affecting sensor accuracy including baseline drift, sensitiv-
ity drift, and unit-to-unit variability. Representative data of a typical CO2 sensor output
has been used for illustration purposes. The CO2 measurement with sensitivity drift graph
contrasts the ideal signal (in green colour) against typical real-world data as the sensor’s
sensitivity changes over time. As the sensor ages, the deviation in different sensing regions
becomes more prominent. The CO2 measurement with baseline drift graph illustrates
how the sensor’s baseline measurement shifts either up or down over time, contributing
to inaccuracies as the sensor ages. The CO2 measurement with unit-to-unit variability
compares the example output of five different sensors of the same model, demonstrating
how data can vary significantly between units, even under identical conditions. To mitigate
these issues, modern techniques such as robust and optimal machine learning algorithms
must be employed. These methods can dynamically adjust sensor calibrations, improving
the data accuracy and reliability of low-cost AQM sensors.

6.4. Advances in Sensing Materials

The rise of novel sensing materials and fabrication techniques has created new op-
portunities for improving the efficiency of AQM devices. Sensing materials such as
metal oxides, organic compounds, and nanomaterials are gaining significant interest from
researchers [102]. Challenges such as integrating diverse nanomaterials with sensors, en-
suring compatibility and stability in different environments, improving sensitivity and
selectivity, and addressing the high-temperature dependence of metal-oxide sensors must
be addressed to develop effective AQM systems.
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In this aspect, a two-dimensional monolayer composite nanomaterial has been devel-
oped by doping hexagonal boron nitride with a nano-graphene domain [103]. It creates a
highly sensitive SO2 gas sensor that operates based on changes in conductivity and remains
effective in high moisture environments. Similarly, a metal-oxide-based gas sensor array
has been presented composed of nickel oxide-Au, copper oxide-Au, and zinc oxide-Au
thin films for the detection and quantification of VOCs [104]. It has also utilised machine
learning to enhance accuracy in gas classification and concentration prediction.
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7. Conclusions
The multidisciplinary synergy between advanced pollutant sensor design techniques

and IoT solutions provides a robust platform for researchers in both fields to broaden
their expertise. This study supports the purpose-built design and effective integration
of innovative sensors with IoT infrastructures, and vice versa. Through detailed case
studies, this research highlighted the advanced methodologies currently employed in
both disciplines. This study effectively bridges the knowledge gap between sensor design
and IoT technology, fostering mutual advancements in both fields. Its significance is
underscored by the integration of concepts such as OTFT and York-cell ceria-based gas
sensor fabrication with IoT frameworks. In this study, a wide array of key research papers
from both fields are discussed. It compares sensor design and fabrication techniques for
detecting gases such as NH3, CO2, H2S, Radon, and NO2. It also explores IoT architectures,
including participatory methods, adaptive calibration, microclimate monitoring, and multi-
point systems.

The experiments in this paper revealed high PM and CO2 levels in typical living
environments, posing potential health risks. The comparative analysis of the output data
from different devices demonstrated notable discrepancies, particularly in the Total VOC
readings, which varied widely across all the devices tested. Future research can benefit from
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incorporating novel manufacturing practices for other available gas sensors. Additionally,
integrating IoT technologies that employ innovative methods to address challenges like
energy efficiency can further enhance research efforts. The future of AQM lies in the
continued convergence of advanced materials science, IoT technology, and smart data
analytics, promising a healthier and more informed world.
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