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Abstract— The global drive to reduce carbon footprint 

and optimise costs in the construction industry has led to 

integrating Whole Life-Cycle Carbon (WLC) and cost 

assessments into industry practices. One of the key points is 

reducing embodied carbon in materials and accounting for 

emissions and costs during transportation, installation, and 

the operation of built assets. This study presents a novel 

approach of using Artificial Intelligence (AI) to rapidly 

evaluate both Whole Life-Cyle Carbon (WLC) and costs, 

enabling an enhanced and rapid decision-making during the 

early design stages. By leveraging data from Building Cost 

Information Service (BCIS) database and carbon databases 

from past projects of a top construction firm in UK, AI is 

found to provide real-time guidance for optimising material 

choices and configurations, hence balancing sustainability 

with budget considerations. The proposed integration of 

using AI techniques such as neural networks into existing 

carbon and cost estimation tools, such as CarboniCa 

Software, aims to streamline the current data entry process 

and provide a rapid data analysis. This not only saves time 

but also reduces cost of implementation and enhances 

productivity. This paper outlines the use of AI techniques to 

predict embodied carbon and cost of construction projects 

from key characteristic features of buildings. The results 

show that AI can be used to predict the expected outputs 

with high accuracy, consequently providing productivity 

improvements and reducing time and cost of 

implementation. The suggested approach highlights the 

future role of AI in driving more sustainable, productive and 

cost-effective construction practices. 
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I. INTRODUCTION  

While the construction industry plays a crucial role in 
driving social developments, the United Nations 
Environment Programme [1] reports that the buildings and 
construction sector is the largest source of greenhouse gas 
emissions, accounting for 37% of global emissions. This 
makes it one of the primary contributors to climate change. 
Consequently, the construction industry faces significant 
challenges in balancing environmental sustainability, 
requiring a strong focus on reducing carbon emissions 
especially operational and embodied carbon, both of which 
are essential elements in life cycle carbon assessments for 
buildings. 

Embodied carbon, sometimes referred to as capital 
carbon, encompasses the emissions generated throughout 
the lifecycle of building materials from extraction, 
processing, and manufacturing; followed by transportation, 

construction, demolition and disposal. A comprehensive 
"cradle-to-cradle" assessment factors in all these stages, 
with material production contributing the most, accounting 
for 80 to 95% of cradle-to-site embodied carbon. 
Operational carbon refers to the emissions associated with 
the energy used during a building’s use, such as heating, 
cooling and ventilation [2]. Both types of emissions are 
critical in calculating whole-life carbon (WLC), an 
essential practice in the construction industry for selecting 
design options with the lowest carbon footprint.  

However, conducting accurate WLC assessments is a 
complex and time-consuming process. It requires vast 
amounts of data entry on material and energy usage 
throughout the entire life cycle of a building. This has 
become a major bottleneck in the efforts to achieve carbon 
assessment. In addition, Lu et al.[3] indicates that to 
successfully fulfil the objective of “low-carbon-buildings” 
through energy conservation and emission reduction, it is 
crucial to managing building carbon emissions throughout 
the design phase because the design process is responsible 
for eighty percent of the decisions about building carbon 
emissions. Consequently, once a building enters the 
construction stage, it becomes challenging to meet 
additional emission reduction targets. 

Nevertheless, CarboniCa is an intelligent carbon 
calculation tool developed by Morgan Sindall, a leading 
UK construction organisation, to address the challenges of 
carbon emissions in the construction industry. It is 
designed to measure whole life carbon emissions in 
accordance with Royal Institution of Chartered Surveyors 
(RICS) professional standards throughout the design, 
construction, and lifecycle of a building. This web-based 
software, compliant with both the RICS professional 
standard for whole-life carbon assessment and EN15978, 
has been utilised for assessments on over 50 large building 
projects, contributing to annual carbon savings of more 
than 14,500 tonnes. The tool calculates carbon emissions 
using a preprocess-based inventory method, allowing users 
to manually input material quantities from a bill of 
materials or cost plan. These quantities are specified for 
different design elements, with the software's elemental 
breakdown adhering to the 4th Edition of the BCIS 
Elemental Standard Form of Cost Analysis. CarboniCa 
also includes a verified and validated carbon factor 
database that covers all materials used in Morgan Sindall's 
construction projects, which is regularly updated and 
manually verified to ensure its accuracy. 

On the other hand, AI plays a crucial role, possessing 
the potential to revolutionise the way carbon assessments 



 

 

are conducted by significantly reducing the time required 
and improving the efficiency of the assessment process. AI 
techniques, such as those employed by Su et al. [4], have 
been utilised to develop predictive tools that optimise 
carbon efficiency in building designs from the outset; 
concurrently, Zhang et al. [5] have applied AI to predict 
embodied carbon based on various building parameters.  

Thus, by facilitating faster carbon assessments, AI not 
only aids  construction companies in making quicker 
decisions but also offers clients more sustainable, low-
carbon options 
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Fig. 1. The use of AI with CarboniCa software to estimate cost and 

WLC. 

 

A. Aim and Objective 

This study aims to evaluate, within the CarboniCa 
framework, the use of AI and its  integration into Cost and 
WLC assessment processes as shown in the Error! 
Reference source not found.. By applying deep learning, 
not only streamline the process, but also significantly 
enhance the efficiency of carbon emission and cost 
evaluations.  The objective is to enable more data-driven, 
and environmentally friendly decision-making process 
based on historical data from past projects by developing 
an AI model that can effectively leverage valuable insights 
derived from previous projects and BCIS databases to 
rapidly estimate the carbon emission and cost of the 
building to improve the sustainability of the entire 
construction process from the earliest stages. 

Furthermore, this paper explores the various factors 
that influence carbon emissions in buildings, providing a 
thorough analysis of how these factors interact and 
contribute to the overall carbon footprint. It also examines 
the pivotal role that AI can play in accelerating the speed 
of cost and carbon assessments and offers an in-depth 
discussion on how AI can be seamlessly integrated into 
Carbonica tools, thereby laying the foundation for more 
sustainable and eco-conscious building practices in the 
future. 

II. LITERATURE REVIEW 

A. Factors for Achieving Low Carbon Buildings 

Recent studies have highlighted several critical factors 
that contribute to carbon emissions in building design 

through data analysis, focusing on both embodied and 
operational carbon. Kamazani and Dixit [6] suggested that 
increasing the window-to-wall ratio (WWR) could be 
advantageous, as the embodied energy and carbon 
associated with window materials are lower than those of 
wall components; furthermore, Lotteau et al. [7] supported 
this perspective, revealing that building shape and size 
have a more substantial impact on embodied energy and 
carbon per square metre compared to factors such as wall 
thickness; while the glazing ratio was found to be non-
influential for embodied carbon in residential buildings in 
France. In Contrast, Gauch et al. [8]  utilised sensitivity 
analysis to evaluate the impact of architectural design 
variables during the early design stages, identifying key 
measures such as building compactness, frame material, 
the use of glazed windows, and mechanically ventilated 
systems and a reduced window-to-wall ratio (WWR). The 
WWR results were opposite to the above two references as 
heat gain from windows and their lower embodied  would 
reduce embodied emissions and operational energy. 
Additionally, Zhang et al. [5] conducted a feature 
importance analysis, uncovering that material cost, steel 
use, and concrete consumption are primary influences 
during the preliminary design phase. Moreover, Xikai et al. 
[9] identified 12 significant design variables from a total of 
17 factors, including building height, floor area, and 
various heat transfer coefficients. And Zhu et al. [10] 
examined embodied carbon emissions in China and found 
that factors such as building construction area and indirect 
emissions intensity had a significant impact on overall 
emissions. Furthermore, Victoria and Perera [11] utilised 
multiple estimation methodologies to determine that the 
wall-to-floor ratio and the number of basements are crucial 
in influencing embodied carbon emissions. Last, Giannelos 
et al. [12] introduced the application of shallow neural 
networks for implementing time series forecasting of CO2 
emissions related to the construction industry. 
Interestingly, under the same methods, carbon emissions 
vary across different countries, suggesting that region 
could also be an important variable. 

Collectively, these studies emphasise the importance of 
understanding and optimising factors such as frame 
material, window-to-wall ratio (WWR), building shape and 
size, material cost, steel and concrete use, building height, 
floor area, heat transfer coefficients, building construction 
area, and the wall-to-floor ratio to achieve more 
sustainable building designs. 

B. AI Accelerated carbon assessment 

There is a growing trend in the field of AI-driven 
building management to consider a building's whole-life 
carbon footprint. It is because the use of Artificial 
Intelligence (AI) techniques can generate predictive data 
by analysing past data and buildings’ key features without 
considering the underlying process. The utilisation of both 
machine learning and deep learning techniques has led to 
the incorporation of a greater number of hidden layers in 
neural networks as Chen et al. [13] have indicated that; this 
enhancement in architecture has resulted in improved 
computational efficiency, stability, and overall 
performance compared to traditional methods. Moreover, 
due to its considerable potential at every stage of the 
building lifecycle, AI is gaining prominence in the 
construction sector. This development is consistent with 
more general patterns of technology progress and real-



 

 

world application in the context of the construction sector 
[14].  

Moreover, some researchers have already predicted 
carbon emission by using machine learning algorithms. For 
example, Su et al. [4] employed advanced machine 
learning techniques, including Artificial Neural Networks 
(ANN), Support Vector Regression (SVR), and XGBoost, 
to create a predictive tool for use throughout the design 
phase. This tool was developed to streamline carbon 
emission measurements, optimise design choices, and 
support informed decision-making within the construction 
industry. While the tool performs well, its dataset was 
limited to only 70 project samples from the Yangtze River 
Delta region, which may impact the model's accuracy and 
generalisability. 

Jin [15] utilised both the General Regression Neural 
Network (GRNN) and multiple linear regression models 
for predicting carbon emissions. The MLR model yielded 
an R² value of 0.7001, significantly lower than the GRNN 
model's R² value of 0.7673. Additionally, the GRNN 
model surpassed the MLR model in forecasting CO2 
emissions, achieving a Mean Absolute Percentage Error 
(MAPE) of 2.53%, a Relative Error (RE) of 5.40%, and a 
Root Mean Square Error (RMSE) of 0.40. In a similar 
study, Pino-Mejías et al. [16] implemented both MLP 
regression and Artificial Neural Networks (ANN) models 
for CO2 emissions. The MLP model demonstrated 
excellent performance, achieving an R² value exceeding 
0.9 for both cooling and heating carbon emissions. 
Moreover, a three-layered deep learning model utilising a 
logistic activation function achieved an outstanding R² 
value of 1. Nevertheless, Acheampong and Boateng [17] 
evaluated the applicability of the feedforward multi-layer 
perceptron (FFMLP) with back-propagation (BP) to 
optimise the ANN model for predicting CO2 emission 
intensity in Australia, Brazil, China, India, and the USA. 
The sigmoid function was chosen as the activation function 
for the output layer, while the rectifier function (ReLU) 
was utilised in the hidden layer to improve computational 
efficiency. The R² values varied between 0.8 and 0.99, 
depending on the country. 

Fang et al. [18] developed a random forest-based 
model that achieved more accurate predictions of 
construction-stage carbon emissions, with a lower mean 
square error (0.7649) and an R² value of 0.6403. This 
model, which utilised data from 38 buildings, identified six 
influential design parameters: foundation area, above-
ground area, underground area, building height, number of 
above-ground floors, and basement depth. The study 
revealed that foundation area, underground area, and 
building height had the most significant impact on 
construction-stage carbon emissions. 

Interestingly, the choice of input features has a 
considerable effect on the suitability of machine learning 
methods and their outcomes. For example, in the research 
by Zhang et al. [5], models using only building height as a 
feature resulted in inadequate estimates, with R² values 
below 0.4 for embodied carbon prediction. However, when 
combining features such as building height, structural 
form, seismic fortification intensity, delivery type, 
geographical region, and material cost, the extremely 
randomised trees algorithm performed significantly better, 
achieving R² and MAPE values of 0.821 and 0.054, 

respectively. When additional features such as 
prefabrication technique and material consumption (steel, 
concrete, brick, and block) were considered, the XGB 
algorithm performed optimally, with R² and MAPE values 
of 0.917 and 0.038 on the test dataset. 

In other scenarios, Cang et al. [19] developed a linear 
fitting regression with a process-based inventory analysis 
for embodied carbon emissions during the scheme design 
stage to facilitate the reduction of emissions and enable 
low-carbon design using various building materials and 
structural forms. In addition to that, the carbon emission of 
207 residential buildings in Tianjin, China was calculated 
using the process analysis method, followed by correlation 
analysis and elastic net techniques to identify 12 key 
design factors for a predictive regression model 
incorporating PCR, RF, MLP, and SVR techniques. SVR 
has demonstrated the highest predictive accuracy among 
the four models, effectively estimating carbon emission for 
early stage of the decision-making process [9]. 

Su et al. [20] developed a machine learning model to 
predict operational carbon emissions. The model evaluated 
five primary energy sources: space cooling, space heating, 
hot water, cooking, and home appliances. The work 
considered the temporal fluctuations in occupant profiles, 
behaviours, and the carbon intensity of energy. In another 
study, Chen et al. [13] used AI, more precisely a long 
short-term memory (LSTM) model, to forecast energy 
consumption and operational CO₂ emissions. Both studies 
focus exclusively on operational CO₂ emissions, 
addressing the carbon footprint resulting from the day-to-
day functioning of buildings, rather than the embodied 
carbon associated with construction materials and 
processes. To predict embodied carbon emissions in 
building structures during the design process, the study 
conducted by Pomponi et al. [21] offered a real-time 
decision-support tool that makes use of machine learning 
algorithms, such as Artificial Neural Networks (ANN). 
The tool's ability to produce precise estimates is 
demonstrated by validating it against commercial finite 
element analysis (FEA) software. 

From the above, there is an increasing trend in AI-
driven building management to consider the carbon 
footprint of buildings, even though most research still 
treats operational and embodied carbon emissions 
separately. However, to take a more forward-looking 
approach, WLC assessment should be viewed as a 
comprehensive method for fully addressing the 
environmental impact of buildings’ development and 
operation. 

III. METHODOLOGY 

A. Data collection 

Two data sources were used in this study. The first was 
carbon related data provided by the industrial partner, 
consisting of 57 large building projects (each over £5 
million), where the majority are educational buildings. The 
second source comprised cost data of a total of 1,008 
samples extracted from the Royal Institute of Building 
Surveyors’ Building Cost Information Service (BCIS) 
dataset. 

The data from the BCIS website has been extracted 
using a specialised Python script developed specifically for 



 

 

this task. This script employs the web scraping tool 
Selenium to facilitate data collection and is designed to 
target specific information related to educational buildings, 
administrative offices, and residential projects; primarily 
the types of projects undertaken by Morgan Sindall, with 
residential initiatives managed by their subsidiary.  

Utilising Selenium, the developed Python script 
dynamically interacted with the BCIS platform, navigating 
through the web interface, submitting queries, and 
extracting relevant data based on predefined filters. This 
setup allowed for automatic pagination, enabling the script 
to seamlessly traverse multiple pages to gather 
comprehensive information on new builds within specific 
categories mentioned above.  

The developed script's automation capabilities ensured 
that each session extracted detailed information, including 
base date, location, floor area, building type, storeys, type 
of substructure, and frame type. Moreover, in cases where 
no data was available for a particular query, the script 
automatically left that entry blank. The scraped data was 
then written directly into a data frame, creating a structured 
table format that facilitated the organisation of information 
and subsequent analysis. 

B. Data pre-processing 

To ensure that predictive models receive high-quality 
data, data pre-processing is an essential step prior to model 
development. This iterative process transforms raw data 
into formats that are both comprehensible and practical 
[22]. Data pre-processing encompasses several key 
activities, including data cleaning, outlier removal, 
formatting of categorical and numerical variables, 
addressing missing values, and feature encoding. 

In this study, data was extracted from the BCIS 
database to predict the overall cost of buildings based on 
key features, while predictions for whole-life carbon 
emissions were based on a previous building information 
dataset from Morgan Sindall. Both datasets presented 
challenges, including missing values, outliers, and a 
mixture of categorical and numerical variables. 

A thorough data cleaning process was conducted in 
Excel, given that the experiment involved only 1,008 
samples for building cost predictions and 57 buildings for 
whole-life carbon predictions. Statistical charts and graphs 
were employed to identify and remove outliers effectively, 
ensuring that the data remained representative and free 
from anomalies that could skew predictive accuracy. 
Additionally, natural logarithm (ln) transformation was 
applied to the target variable to enhance model 
convergence and stabilise variance, which is particularly 
beneficial in regression analyses. 

The utilisation of domain knowledge was crucial in 
resolving missing values. Appropriate techniques were 
utilised to remove or impute these missing values, 
considering the context of the data. This method preserved 
the models' applicability to real-life scenarios while 
simultaneously enhancing the dataset's integrity. 

In terms of feature encoding, it is vital to convert 
categorical variables into a format suitable for machine 
learning algorithms. For instance, when dealing with 
categorical labels such as "Category A" and "Category B," 
these must be transformed into numerical representations 

(e.g., “0” for "Type A" and “1” for "Type B") to enable 
effective processing by the model [22]. One-hot encoding 
was applied where applicable, creating binary columns for 
each category, thus preserving the information without 
introducing bias. 

A popular method for validating models is data 
splitting, in which a given dataset is divided into two 
distinct sets: training and testing. Next, the training set is 
used to fit the statistical and machine learning models, and 
the testing set is used to validate them. Assessment and 
comparison of the predicted performance of various 
models can be undertaken without being concerned about 
potential overfitting on the training set by keeping a set of 
data for validation apart from the training set [23]. 

Alternate sampling was used to split the BCIS dataset 
into training and testing sets equally, utilising a 50/50 split 
to reduce overfitting. The two sets of samples were 
alternated, and it was discovered that this strategy worked 
well. While maintaining a sizable and representative 
dataset for assessment, it made sure the model was 
exposed to a wide variety of situations during training. 
This method achieved a compromise between the 
requirement for a large training set and the capacity to 
objectively evaluate the model's generalisation capabilities. 
An 80/20 split which is commonly used [23] for the whole-
life carbon estimates, meaning that 80% of the data was set 
aside for model training and 20% for testing. This ratio is 
frequently employed to maintain enough data for training 
while offering a fair evaluation of the model's 
performance. 

After the data was split into training and testing, data 
augmentation techniques were used on the training 
samples. Augmentation is an approach which generates 
new data examples for model training thereby increasing 
dataset size and improving model generalisation and 
robustness to make up for the small dataset size [24]. This 
approach ensures that models work effectively on real-
world data and helps reduce overfitting, making it 
especially helpful for small or imbalanced datasets. Data 
augmentation has gained widespread acceptance in the 
machine learning community when used in an ethical 
manner and proven to improve performance. 

To enhance the robustness and size of the training 
datasets, a systematic data augmentation technique was 
employed. In addition to the original training samples, 
additional training samples were generated by augmenting 
the actual values. For each original data point, new 
samples were created by adding small increments of 0.1%, 
0.2%, and 0.3% of the actual value to the original values. 
This method effectively increased the diversity of the 
dataset without the need for new data collection. The 
augmentation strategy, not only expanded the training set, 
but also contributed to improved model generalisation and 
reduced risk of overfitting, ultimately leading to more 
reliable model performance on unseen data. 

Overall, this meticulous approach to data pre-
processing laid a solid foundation for accurate predictions 
of both building costs and whole-life carbon emissions. By 
addressing the complexities inherent in the datasets and 
leveraging domain knowledge, the study aimed to produce 
models that are not only statistically sound but also aligned 
with industry practices and sustainability goals. 



 

 

C. Feature Selection 

Feature selection was conducted using a filter-based 
method that are based on statistical measure to make sure 
the model can be more transparent. Nevertheless, when it 
comes to correlation analysis, it is a widely used method 
for selecting features from continuous variables. It is not 
appropriate for categorical data and specifically suited for 
linear relationships and is a univariate approach [25]. 

Fig. 2 presents the correlation heatmap which reveals 
significant relationships between several key building 
features. The analysis shows that all variables are 
positively correlated. The WLC shows strong correlations 
with all other variables, particularly with the gross internal 
area (GIA) at 0.89 and the net internal area (NIA) at 0.88, 
which are established metrics for cost and building 
efficiency. Therefore, when predicting WLC, it is essential 
to consider all these factors. 

On the other hand, Elastic Net is suited for continuous 
target variables and can effectively handle feature sets that 
include both numerical and categorical variables.  

 

  

 

Fig. 2. The correlation heatmap of the data 

This approach serves as a linear regression model that 
combines the characteristics of Lasso regression (L1 
regularisation) and Ridge regression (L2 regularisation). 
By simultaneously applying L1 and L2 regularisation, 
Elastic Net achieves feature selection while stabilising the 
model's predictive performance [9]. Its advantage lies in 
the ability to shrink unimportant feature coefficients to 
zero and mitigate the effects of multicollinearity through 
L2 regularisation, thereby balancing the sparsity and 
stability of the model. 

Its advantage lies in the ability to shrink unimportant 
feature coefficients to zero and mitigate the effects of 
multicollinearity through L2 regularisation, thereby 
balancing the sparsity and stability of the model. 

Based on the results as shown in Fig. 3Fig. 3  of feature 
selection using Elastic Net, it can be seen that the 
importance of building features as follows: the size and 
value of the building appear to be the most critical 
predictive factors. Among these, the gross internal area 
(GIA) and net internal area (NIA) demonstrate the 
strongest positive influence, indicating that the size of the 
building is a primary indicator for predicting the target 
variable. Following closely are asset value and the number 
of floors, both of which also show significant positive 

impacts. These findings highlight the importance of the 
physical characteristics and economic value of the building 
in predictive models. 

The influence of the primary cooling type surpasses 
that of heating and ventilation systems, which may reflect 
certain aspects of energy patterns. Interestingly, while 
building type is important, its impact is not as pronounced 
as the GIA or NIA value and suggests that when 
considering building type. 

Secondary system types, such as secondary cooling, 
heating, and ventilation systems, have a relatively minor 
impact on the target variable. This may indicate that the 
characteristics of primary systems are more critical than 
those of backup or auxiliary systems when assessing or 
predicting building performance. Overall, these results 
indicate that when analysing or predicting building-related 
target variables, priority should be given to the size, value, 
and fundamental structural features of the building. While 
environmental control systems do play a role, their 
importance seems secondary to the core physical 
characteristics of the building.  
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Fig. 3. The use of Elastic Net for feature selection 

These insights could have significant implications for 
fields such as building design or energy efficiency 
planning. However, the potential correlations between 
features when interpreting these results should also be 
cautiously considered, as the Elastic Net model may 
distribute importance among related features. However, 
this result shows that the cooling system have a significant 
impact on the whole life carbon emissions which is seldom 
mentioned in the literature. 

Additionally, an expert knowledge approach was 
integrated into the feature selection process, allowing 
domain expertise to guide the identification of relevant 
features based on theoretical understanding and practical 
experience. This comprehensive strategy ensured a well-
rounded selection of features that enhances model 
performance. Therefore the features selected for this 
regression tasks are: GIA, NIA, storeys, cost of the 
building (asset value), building type and cooling, heating, 
ventilation system. 

 In summary Fig. 4 and Fig. 5 illustrate the process of 
selecting the dominant features for  whole life carbon and 
cost prediction.  
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Fig. 4. Optimisation of input features for Whole Life Carbon prediction 
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Fig. 5. Optimisation of input features for building cost prediction 

D. Architecture of the neural network 

Model training is an important step in developing any 
predictive model, particularly when using neural networks 
due to their ability to capture complex patterns and 
relationships within the data. Neural networks were chosen 
for this task because of their flexibility and power in 
modelling non-linear relationships, especially when the 
input-output mapping is intricate and multi-dimensional. 

A feedforward neural network model was used in this 
study to predict the desired outcomes. As shown in Fig. 6, 
the model begins with an input layer corresponding to the 
input features and an output layer that generates 
predictions. The architecture comprises three hidden 
layers, with neuron configurations optimised through 
experimentation. 

The network was created using ‘feedforwardnet’ 
function, which is designed for general feedforward 
networks. The hidden layers are configured with the 
hyperbolic tangent sigmoid ‘tansig’ activation function, 
while the output layer uses the linear activation function 
‘purelin’. This combination allows the hidden layers to 
capture complex non-linear relationships in the data while 
ensuring that the output layer can model continuous 
values, which is crucial for regression tasks. 

For training the model, the ‘Levenberg-Marquardt’ 
algorithm (trainlm) was chosen. It is known for its 
efficiency in minimising error and its ability to converge 
quickly, particularly in small- to medium-sized networks. 
This backpropagation algorithm is well-suited for neural 
network training due to its balance between speed and 
precision. 

To find the optimal model setup, a variety of network 
configurations and training approaches were investigated 
through hyperparameter tuning. The number of neurons, 
training function, and activation functions are examples of 
critical hyperparameters that affect how the model learns 
using neural network. To ensure that the neural network 
successfully captures underlying data patterns and achieves 
higher accuracy and generalisation in predictions, this 
approach seeks to identify the optimal values for these 
hyperparameters. Different architectures were tested, 
including ‘feedforwardnet’, ‘fitnet’, ‘patternet, and 
‘cascadeforwardnet’. In addition to ‘trainlm’ for the 
training function, experiments were conducted with 
‘trainbr’ (Bayesian Regularisation) to compare 
performance in terms of convergence speed and accuracy. 
This comprehensive evaluation facilitated the identification 
of the most effective  
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Fig. 6. The architecture of the implemented neural network 

 

 

Fig. 7. The optimal configuration of the implemented neural network 

configuration for the predictive model, which is shown in 
the Fig. 7. 

In terms of the activation functions, both ‘tansig’ 
(hyperbolic tangent sigmoid) and ‘logsig’ (logarithmic 
sigmoid) were tested for the hidden layers, while ‘purelin 
‘(linear) and ‘relu’ 

(rectified linear unit) were explored for the output layer. 
After extensive testing, the combination of ‘trainlm’ for 
training, ‘tansig’ for the hidden layers, and ‘purelin’ for the 
output layer was found to deliver the best overall 
performance and less Mean Average Error (MAE), 
providing a robust balance between learning complex 
patterns and avoiding overfitting.  

MATLAB was used to build and train the AI model, 
and the final configuration consistently yielded the best 
results. 

E. Model Training and Evaluation 

Through extensive experimentation and optimisation of 
the network architecture and hyperparameters, this 
configuration was found to be effective for both the cost 
and WLC prediction.  
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The optimisation process resulted in the development 
of 125 neural network models, testing various 
configurations with neuron counts ranging from 10 to 50 in 
each layer.  

IV. RESULTS AND DISCUSSION 

In order to understand which configuration can produce 
better results, a for-loop is introduced to iterate through all 
transfer functions, training algorithms, and neural networks 
with 3-9 neurons, and obtain the results as shown in the 
TABLE I. The table outlines the performance of various 
training algorithms and neural networks with different 
transfer functions, and assessed based on MAPE and R²  
values. The five training algorithms included are trainlm, 
trainscg, trainbr, traingdx, and trainrp. Each algorithm has 
been tested using four types of neural networks: Fitnet, 
Cascadenet, Feedforwardnet, and Patternet. 

TABLE I.  PERFORMANCE COMPARISON OF NEURAL NETWORK 

ARCHITECTURES 

Algorithm Neural Network Error (%) R²   

trainlm Fitnet 0.27 0.86 

Cascadenet 0.36 0.83 

Feedforwordnet 0.27 0.87 

Patternet 0.37 0.83 

trainscg Fitnet 0.47 0.76 

Cascade 0.83 0.72 

Feedforwordnet 0.52 0.79 

Patternet 0.47 0.74 

trainbr Fitnet 0.31 0.86 

Cascade 0.39 0.81 

Feedforwordnet 0.32 0.82 

Patternet 0.36 0.80 

traingdx Fitnet 0.85 0.74 

Cascade 111.2 0.69 

Feedforwordnet 102.99 0.76 

Patternet 0.89 0.69 

trainrp Fitnet 0.58 0.79 

Cascadenet 0.74 0.71 

Feedforwordnet 0.6 0.81 

Patternet 0.61 0.80 

 

Under the trainlm algorithm, the neural networks 
exhibit relatively low MAPE difference values (0.27% to 
0.37%) alongside high R²  values (0.83% to 0.87%), 
demonstrating strong performance. In contrast, trainscg 
presents higher MAPE differences (0.47% to 0.83%) and 
lower R²  values (0.72% to 0.79%), making it slightly 
inferior to trainlm. The results for trainbr are also 
favourable, with a MAPE difference of around 0.3% and 
R²  values between 0.80% and 0.86%. 

The traingdx algorithm, however, performed poorly, 
particularly with Cascadenet and Feedforwardnet 
networks, showing MAPE differences of 111.2% and 
102.99%, respectively, and lower R² values (0.69% to 
0.76%), indicating significant performance issues. Lastly, 
‘trainrp’ sits in the middle, with MAPE differences 
ranging from 0.58% to 0.74% and R²  values between 
0.71% and 0.81%, delivering an acceptable performance 
but not matching the standards of trainlm and trainbr. 

In summary, although trainlm and trainbr were the top 
performers in this test with lower MAPE and higher R²  
values, the trainlm is known for its speedy advantage due 
to its ability to dynamically adjust parameters, adjust 
weights, and accelerate convergence, making each iteration 

more effective. Last, the performance of traingdx was 
notably subpar, particularly in the Cascadenet and 
Feedforwardnet models. 

 Following the above stage, extensive training with 
more neurons and evaluation led to the identification of an 
optimal configuration for cost prediction: 10 neurons in the 
first hidden layer, 40 neurons in the second hidden layer, 
and 50 neurons in the third hidden layer. This 
configuration achieved a mean absolute error (MAE) of 
1.12% indicating a strong predictive capability, with a 
training time of 37 seconds. 

For WLC prediction, a different configuration of 30 
neurons in the first hidden layer, 30 neurons in the second 
hidden layer, and 20 neurons in the third hidden layer was 
used, resulting in an MAE of approximately 3.53 with a 
training time of 14 seconds. 

The error distribution graph (Fig. 8) displays the 
percentage error across predictions for whole life carbon 
(WLC). 

 

Fig. 8. Histogram of error  distribution for WLC prediction 

The majority of errors are concentrated between 0% and 
5%, indicating high accuracy in the model's predictions 
and suggests that the model is reliable. 

TABLE II.  BEST RESULTS FOR COST PREDICTION 

Layer 1 Layer 2 Layer 3 MAE Time 

50 Neurons 50 Neurons 30 Neurons 1.12 % 37 sec 

10 Neurons 40 Neurons 50 Neurons 1.37 % 77 sec 

40 Neurons 40 Neurons 40 Neurons 2.39 % 52 sec 

 

TABLE III.  BEST RESULTS FOR WHOLE LIFE CARBON (WLC) 

PREDICTION 

Layer 1 Layer 2 Layer 3 MAE  Time 

30 Neurons 30 Neurons 30 Neurons 3.53 % 14 sec 

40 Neurons 20 Neurons 20 Neurons 3.71 % 17 sec 

20 Neurons 40 Neurons 40 Neurons 4.16 % 45 sec 

 

Error! Reference source not found.and TABLE III.  
present few examples of the most effective prediction 
results for Cost and WLC. 

Furthermore, the testing of actual values graph (Fig. 9) 
compares expected versus predicted values for a series of 
samples. The close alignment between the red and blue 
lines demonstrates the model's effectiveness in capturing 
the actual data trends. The slight deviations observed in 



 

 

some samples fall within an acceptable range, reinforcing 
the model's robustness. 

 

Fig. 9. Testing the neural network, results of the expected vs predicted 

values 

 Together, the above graphs highlight the model's 
strong predictive performance and its applicability in 
forecasting accurate trend representation make it a valuable 
tool for strategic planning and decision-making in 
sustainability efforts. 

V. CONCLUSION AND FUTURE WORK 

This study has reviewed and assessed the 
implementation of AI in the built environment sector and 
has found that AI algorithms have the potential to enable 
the estimation of WLC and costs of construction projects; 
and therefore to be integrated into the existing carbon 
optimisation and evaluation software such as CarboniCa.  

The conceptual AI integration approach proposed in 
this study is currently under development, with the next 
phase being industrial testing and validation of model 
efficacy. It is expected that the AI engine will provide an 
option within the CarboniCa software environment for 
rapid assessment of WLC based on learning from past 
projects and the experience of experts. Although there are 
slightly more than 50 recent projects, generalisability 
issues may arise. But since the dataset includes many 
education-based projects, the outcomes will specifically be 
suitable to the education sector. For future development, 
the multi-objective optimisation will be considered to 
enhance the carbon reduction potential of the software by 
providing design recommendations that are dynamic and 
responsive to carbon, time and cost considerations. This 
will lead to data-driven decisions that maximise quality 
and speed by leveraging past projects’ data. The broader 
implication is that further research to develop, test and 
integrate the proposed AI model into existing CarboniCa 
software will ultimately provide practical use cases for the 
adoption and integration of AI in the construction industry 
and construction organisations; This includes, for example, 
solutions to improve the sustainable performance of 
building projects as part of net zero ambitions. However, 
there is still room for further experimentation in AI. For 
example, according to the literature review, there are other 
factors such as region, WWR, and local economic factors 
that have not yet been taken into account and can be 
focused on in future studies.  
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