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Abstract

The investigation into nonlinear bulk strain wave propagation within layered elas-
tic waveguides offers numerous practical applications, notably in the domain of non-
destructive testing. In situations where even a minor flaw in the bonding between
waveguide layers can trigger a catastrophic structural failure, the utilisation of strain
solitons in a waveguide of large domain holds significant promise in detecting a lack of
bonding and structural fault. Experimental findings reveal that strain solitons propa-
gate over considerably greater distances in comparison to the waves employed in existing
methodologies, such as linear wave methods. In this thesis, we investigate the impact
of delamination, the lack of bonding between structural layers, aiming to detect its
presence and identify its location.

We consider three scattering problems. First, we study the scattering of a nonlinear
bulk strain wave in a two-layered waveguide with a delaminated region ‘sandwiched’
between soft bonded regions, where soft bonding refers to weak adhesive contact. The
lower layer is assumed to be much denser than the upper layer. The longitudinal dis-
placement of the waves within this structure are modelled by a system of Boussinesq
equations with continuity conditions at the interface. Given the complexity of the equa-
tions, we develop both direct numerical and semi-analytical methods, detailed in the
appendices.

We vary the delamination length and analyse the phase shift of the wave packet in
the second soft bonded region, comparing to the case of no delamination. Generally,
across various small wave parameters, €, as the delamination length increases so does the
phase shift. We also use theoretical predictions, such as the linear dispersion relation,
to validate the numerical simulation findings.

Next, we consider the same two-layered structure, but with layers made of different
materials, but without a significant contrast in densities, resulting in distinct charac-
teristic wave speeds in each layer. We model this by a system of coupled Boussinesq

equations. We vary the delamination length and analyse the leading wave packet in the



second soft bonded region, which is easier to locate. Examining various soft bonded
region lengths, we find that increasing the delamination length generally causes a phase
shift to increase/decrease in correlation. These results allow us to determine the delam-
ination length solely based on the observed phase shift, even without prior knowledge
of the structure configuration.

The final structures that we considered were an n-layered waveguide with delamina-
tion between perfectly bonded regions, and a two-layered waveguide with delamination
between soft bonded regions. As with the other structures, we vary the delamination
length but focus on the change in amplitude of the leading wave peak. For the perfectly
bonded case, we introduced a measure comparing the wave peak to the theoretical pre-
diction of the Inverse Scattering Transform. In the soft bonded region, a similar measure
was used, but only with the leading wave packet from the first and second soft bonded
region. We observe that increasing the delamination length results in a decrease in wave

amplitude.



Acknowledgements

Firstly, I extend my sincere gratitude to my lead supervisor, Matt Tranter, for his invaluable advice and
unwavering encouragement throughout my academic journey, from my BSc and MRes to my PhD. His
approach to research has not only inspired me but also propelled me to think innovatively in pursuit
of my own research goals. Without his guidance, the accomplishment of this PhD would have been an
unattainable feat.

I express my heartfelt appreciation to my secondary supervisor, David Chappell, for his insightful com-
ments and engaging discussions during our regular supervisory meetings. David’s expertise in linear waves
brought a unique perspective to nonlinear waves.

I am grateful to the faculty members and fellow research students within the Department of Physics and
Mathematics, notably Tuan Bohoran, Suliman Almansour, Rob Lockett, David Jenkins, and Iain Pinder,
whose invaluable assistance within the office has been truly instrumental.

Finally, my deepest gratitude goes to my parents, whose unwavering support has been the cornerstone of
my journey. Their belief in me has been the driving force behind this endeavour, and I owe the realisation

of this work to their encouragement and devotion.



Declarations

I hereby declare that this thesis is my original work and has not been submitted for any other academic
degree or professional certification. I confirm that all content is my own, except where contributions from
jointly authored publications have been incorporated.

The results of this thesis are partially summarised in the following papers:

1. J.S. Tamber and M.R. Tranter. Scattering of an Ostrovsky wave packet in a delaminated waveguide.
Wave Motion, 114:103023, 07 (2022).
(This work relates to Chapter 3).

2. J.S. Tamber and M.R. Tranter. Studying the effect of delamination on Ostrovsky wave packet prop-
agation in waveguides. Journal of Physics: Conference Series, 2647:252019 (2024).
(This work relates to Chapter 3).

3. J.S. Tamber, D.J. Chappell, J.C. Poore, and M.R. Tranter. Detecting delamination via nonlinear
wave scattering in a bonded elastic bar. Nonlinear Dynamics, 112:023033 (2024).
(This work relates to Chapter 5).

4. J.S. Tamber, D.J. Chappell, and M.R. Tranter. Delamination Detection via Ostrovsky Wave Packets
in Layered Waveguides. Proceedings of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 481:20240574 (2025).

(This work relates to Chapter 4).



Abbreviations

BKG Boussinesqg-Klein-Gordon

cKG coupled Klein-Gordon

cRB coupled Regularised Boussinesq
DDE Doubly Dispersive Equation
DFFT Discrete Fast Fourier Transform
DFT Discrete Fourier Transform
FFT Fast Fourier Transform

FPU Fermi-Pasta-Ulam

FWHM Full Width at Half Magnitude

IDFT Inverse Discrete Fourier Transform
IST Inverse Scattering Transform

IVP Initial-Value Problem

KdVv Korteweg-de Vries

NLS Nonlinear Schrodinger

PDE Partial Differential Equation

PMMA Polymethylmethacrylate



Contents

1 Introduction 1
1.1 Historical background . . . . . . . ... L e 1
1.2 Applications . . . . . . . . L e 4
1.3 Structure of thesis . . . . . . . . . L 6

2 Propagation of nonlinear waves in waveguides 10
2.1 Single elastic waveguide . . . . . . .. Lo 11

2.1.1 Nonlinear elasticity theory . . . . . . . . .. .. ... oo 11
2.1.2  Weakly-nonlinear solution . . . . . .. . ... ... Lo oL 14
2.2 Scattering problem - two-layered elastic waveguide with delamination . . ... .. .. .. 17
2.2.1 Nonlinear elasticity theory . . . . . . . . .. ... o oo 18
2.2.2 Model formulation . . . . . .. ..o 20
2.3 Initial-value problem - coupled Boussinesq equations . . . . . .. .. ... ... .. 22
2.3.1 Coupled Klein—Gordon chains . . . . . . . . . . . .. .. ... ... 22
2.3.2  Fermi-Pasta-Ulam model . . . . . . .. .. ... ... 23
2.3.3 Coupled Fermi-Pasta-Ulam model . . . . . ... .. .. ... .. ..., .... 25
2.3.4  Symmetric case and dispersion relation . . . . ... ..o 27
2.3.5  Two-layered elastic waveguide with soft bonding . . . . . . ... ... ... .... 28
2.4 SUMMATY . . . oo e e e 30

3 Scattering of an Ostrovsky wave packet in a delaminated waveguide 32
3.1 Model formulation . . . . .. ... L 33
3.2 Weakly-nonlinear solution . . . . . . . .. ... L L L 35

3.2.1 Region 1: first delaminated section . . . . . . . . . . ... ... 35
3.2.2 Region 2: first soft bonded section . . . . . ... ... oo 37



CONTENTS )
3.2.3 Region 3: second delaminated section . . . . . .. ... ... ... ... 38
3.2.4 Region 4: second bonded section . . . . . . .. ..o 38

3.3 Inmitial conditions . . . . . . . ... 39
3.3.1 Matching at the boundaries . . . . . . . .. .. L L Lo 39

3.4 Numerical methods . . . . . . . . .. 41
3.4.1 Zero mean initial condition . . . . .. ... Lo 41
3.4.2  Amplitude of solitons in delaminated region . . . . . . . ... ... oL, 42
3.4.3 Base case simulations . . . . .. .. L L L 43
3.4.4 Linear dispersion relations - KdV and Ostrovsky equations . . . .. ... ... .. 45
3.4.5 Linear dispersion relation - Boussinesg-type equations . . . . .. .. ... ... .. 47
3.4.6 Varying parameters . . . . . . .. ..o Lo e 47
3.4.7 Varying delamination length . . . . . .. .. ... Lo oL 49
3.4.8 Application to model a PMMA bar . . . . . . .. ... ... ... ... 52

3.5 SUMMATY . . ¢ oo vt e e e e e e e 53
4 Scattering of an Ostrovsky wave packet in a two-layered waveguide 55
4.1 Problem formulation . . . . . . . . ... 56
4.2 Weakly-nonlinear solution . . . . . . . . . . . L 58
4.2.1 Homogeneous section . . . . . . . . . . .. Lo 58
4.2.2  Soft bonded sections . . . . . . ... 60
4.2.3 Delaminated section . . . . . . . . .. L L L 62
4.2.4 Matching at the boundaries . . . . . . .. .. . Lo oL 64

4.3 Numerical results . . . . . . . . L 64
4.3.1 Zero mass - Boussinesq equation initial condition . . . . . . ... ... 0oL L. 65
4.3.2 Zero mass - KdV equation initial condition . . . .. .. .. ... ... ... .. .. 66
4.3.3 Base case simulations . . . . .. ... L oL 66
4.3.4 Linear dispersion relation . . . . . . . .. ... L Lo 69
4.3.5 Leading wave peak analysis . . . . . . .. .. ... o 70
4.3.6  Varying delamination length and position . . . . .. ... ... ... ... ... .. 72
4.3.7 Reversing the direction of wave propagation . . . . . . .. .. .. ... .. ... .. 7

4.4 SUMMATY . . o v e it e e e e e e e e e e e e e e 79
5 Scattering of a radiating solitary wave in a two-layered waveguide 81
5.1 Perfectly bonded case . . . . . ... 82



CONTENTS 3

5.1.1 Weakly-nonlinear solution and initial conditions . . . . .. .. .. ... ... ... 84

5.1.2 Theoretical prediction from the incident wave . . . . . . . . . .. .. ... ..... 85

5.2 Imperfect bonding case. . . . . . . . . L 88
5.3 Numerical results . . . . . . . . oL L e 92
5.3.1 Numerical methods . . . . . . . . . . .. 93

5.3.2 Examples of scattering . . . . . . . ... L Lo 93

5.3.3 Measure of delamination length for perfect bonding . . . . .. .. ... ... ... 95

5.3.4 Measure of delamination length for soft bonding . . . . ... ... ... ... ... 99

5.3.5 Material parameters . . . . . . . . .. e e e 100

5.4 SUummary . ... .. e e e 101

6 Conclusion 103
6.1 OVErview . . . . . . 103
6.2 Further work . . . . . . . . e 106

A Finite difference method 107
A1 Boussinesq equation . . . . . . ... e 108
A.2 TInitial value problem for a system of M coupled Boussinesq equations . . . . .. ... .. 111

B Semi-analytical method - Pseudospectral scheme 117
B.1 KdVequation . . . . . . . .. e 118
B.2 Single Ostrovsky equation . . . . . . . . . . .. L 119
B.3 Coupled Ostrovsky equations . . . . . . . . . . . . . . i 120

Bibliography 123



Chapter 1

Introduction

1.1 Historical background

Solitons, or a solitary waves, are stable waves that maintain their form and energy during propagation.
They were first observed by Scottish mathematician, John Scott Russell, in 1834 [1]. Russell’s encounter
with what he termed the ‘great wave of translation’ birthed the modern theory of solitons [2].

Driven by curiosity, Russell began a mathematical investigation into the nature of solitons. To deepen
his understanding of them he constructed wave tanks within his home. Russell observed the exceptional
stability and the ability to traverse long distances, which differed from conventional waves. Another
revelation was that in stark contrast to nonlinear waves, solitons would neither merge nor superimpose.
Rather, waves of lower amplitude would be overtaken by waves of higher amplitude, instead of combining
together. Russell observed the velocity of these waves is largely determined by their width and the depth
of the water [3].

Russell’s findings were met with scepticism due to their contradiction with established hydrodynamic
theories. Nevertheless, Russell deducing that the wave’s total volume and the displaced water’s volume
being equivalent, remained a focal point. Crucially, he derived an equation for the speed, ¢, of solitary

waves as follows:

& =g(h+a), (1.1)

where a represents the wave’s amplitude, h signifies the water depth, and g denotes gravitational acceler-
ation [4]. This relationship founded a pivotal observation that waves of higher amplitude propagate faster
than waves of lower amplitude.

Russell’s ideas led to the development of mathematical models for this phenomenon. French math-
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ematician Joseph Valentine Boussinesq presented the first explicit derivations in 1872 and 1877 [5, 6],
followed closely by the work of British scientist Lord Rayleigh [7].

Both Boussinesq and Rayleigh made the assumption that the horizontal length scale of the solitary
wave far exceeds the depth of the water, an assumption derived from the shallow water equations [8].
Using equations of motion for an inviscid, incompressible fluid, they derived the formula for wave speed
in line with Russell’s concept. They denoted the profile of these solitary waves as z = ((x,t) at position

x and time t expressed as

C(z,t) = a sech®(B(z — ct)). (1.2)
The constant 3 is defined via
1 4h*(h+a)
i W N 1.
&= g, (13)

where 3 <1 is assumed. Boussinesq and Rayleigh however could not find a straightforward equation for
¢(x,t) that yielded the solution (1.2). However, in 1895, mathematicians Kortweg and de Vries formulated
a nonlinear partial differential equation (PDE) whose solution mirrored the profile in equation (1.2). This

equation is known as the Korteweg-de Vries (KdV) equation, which can be formulated as

U — Uty + Upge = 0. (1.4)

The KdV equation has been derived within many different contexts, including from the Fermi-Pasta-
Ulam (FPU) lattice model [9]. Enrico Fermi, John Pasta and Stan Ulam decided to study the rate at which
a system comprised of multiple particles attains thermal equilibrium. The FPU problem, also referred to
as the Fermi-Pasta-Ulam-Tsingou problem acknowledging the numerical work of computer programmer
Mary Tsingou (now Mary T. Menzel) [10], was first written up in a Los Alamos report in May 1955, and
marked a new development in nonlinear physics.

In 1965, Zabusky and Kruskal were motivated by the FPU lattice model’s lack of equipartition of energy
among harmonic modes and thus explored the long-wave approximation, resulting in a re-derivation of

the Boussinesq and KdV equations for solid mechanics [11]. They explicitly solved the KdV equation

Ut 4wty + 62 Uppr = 0 (1.5)

for 6 = 0.022 and the initial condition u(z,0) = cos(wx). Initially, the dispersive term is small, thus
placing primary emphasis on the nonlinear term’s effect and leading to the emergence of a discontinuity at
t =t, = 1/m. They demonstrated the emergence of solitons through a cosine initial condition, generating

multiple solitons for this specific value of 62 = 0.0222. Their study showed that the interaction of solitons
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is an elastic process where, post-interaction, the amplitude remains constant, and a phase shift occurs,
rather than the amplitude changing. This phenomenon is known as ‘recurrence’ where solitons converge
at a common point, almost reconstructing the initial condition. Furthermore, their investigation showed
that with the subsequent recurrences, the precision of the reconstruction tended to diminish compared to
the initial recurrence.

In 1967, Gardner, Green, Kruskal, and Miura developed the Inverse Scattering Transform (IST) for
the KdV equation [12] and importantly, the IST offers a method to solve a large class of initial-value
problems on the infinite line. These models possess useful mathematical properties, such as infinitely
many conservation laws and compatibility conditions known as the Lax pair [13], which, within the theory
of integrable systems and functional analysis, refers to a pair of time-dependent operators satisfying a
corresponding differential equation termed the Lax equation. A restriction to the Hilbert space of square-

integrable functions, L?(IR) [14], enables us to rewrite the KAV equation as the following Lax’s equation:

% =L, =[P,L] = PL— LP. (1.6)

Here, [P, L] denotes the commutator, with the operators L and P denoted as

2 3

0 0
9.2 +u, P=-4 + 6u—— + 3ug. (1.7)

L= a7 T 0,

Thus, the KdV equation possesses a Lax pair and infinitely many conservation laws, which together
establish its integrability.

Subsequent extensions by Zakharov and Shabat in 1972 [15] provided a method to solve the Nonlinear
Schrodinger (NLS) equation. In 1974, Ablowitz, Kaup, Newell, and Segur [16] suggested a more general
scheme which solved the KdV and NLS equations and by extension this solved a broader class of equa-
tions, including the sine-Gordon equation, which had established a foundation for the study of integrable
systems. This integrability was previously identified due to Albert Backlund’s investigation on surfaces
with consistently negative Gaussian curvature in the 19th century [17]. Since then, the integrability of
many other PDEs, such as the Boussinesq and KdV equations, has been deduced in both singular and
multi-dimensional spatial frameworks, as well as the derivation of corresponding soliton solutions [18].

In 1967, Toda introduced another lattice model involving a chain of particles with exponential interac-
tion potentials, revealing the emergence of exact soliton solutions [19]. Stable envelope solitons are crucial
to the behaviour of a modified Toda lattice that includes an additional linear term [20]. This modified
lattice is linked to the two-directional generalisation of the Ostrovsky equation, which was introduced by

Ostrovsky in 1978 to model oceanic waves influenced by Earth’s rotation, and further explored in [21].
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The Ostrovsky equation is given by
(Ut + vy + Ugaz), = YU, (1.8)

where ~y represents the strength of rotational effects [22,23]. This equation is typically used to account
for the background rotation of the Earth and the influence of shear flow in oceanic wave dynamics. In
oceanographic scenarios (where u > 0), the presence of rotation eliminates the solitary wave solutions of
the KdV equation due to terminal radiation damping [24,25]. Numerical simulations have revealed that a
stable localised wave packet becomes the dominant solution in the Ostrovsky equation [26,27]. Employing
a modified Toda lattice with an added linear elastic term [20] portrays the behaviour of a solid waveguide
on an elastic foundation.

The weakly-nonlinear description of the emerging wave packet in the Ostrovsky equation as a higher-
order NLS equation has been developed in [26] establishing a connection between the carrier wave’s
wavenumber and the group velocity’s maximum [20, 26].

In 2007, Karima Khusnutdinova formulated a model of coupled Klein-Gordon (cKG) chains and their
respective equations to represent long longitudinal waves in two-layers characterised by nonlinearity stem-
ming solely from the bonding material [28]. In 2009, Khusnutdinova et al. examined a lattice model within
layered elastic waveguides featuring soft bonding between layers [29]. The pivotal aspect of this model
is that it relies on a complex chain of oscillating mechanical dipoles, which was previously considered in
a linear context [28]. This model represents a natural extension of prior linear [30] and nonlinear [31]
models. By deriving a system of coupled Boussinesg-type equations, an accurate asymptotic model was
obtained from this complex chain. This model accounts for the essential degrees of freedom for the elastic
waveguide, capturing both geometrical and physical sources of nonlinearity.

In conclusion, the Boussinesq and KdV equations, originating from fluid dynamics, have found appli-
cations in the study of nonlinear waves in solid systems. Solitons and tools such as the IST have improved
our understanding of wave behaviour. Their behaviour in layered structures continues to provide valuable

insights in nonlinear dynamics and material properties.

1.2 Applications

Wave propagation in solid materials holds significant relevance in modern applications, as demonstrated
by various studies [32-39]. For instance, when bonding two PMMA waveguides using cyanoacrylate
adhesive, the propagation of long longitudinal bulk strain solitary waves in elastic waveguides, can be

effectively modelled using Boussinesq-type equations [22,32,33], despite these equations being typically
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associated with fluid mechanics [36,40-44]. Bulk strain solitons have demonstrated stability in layered
waveguides with delamination, thus making them an effective tool for inspecting such structures alongside
existing methods [45-49]. Analysing waveguides using linear waves can be problematic due to their
limited range, requiring the use of exceedingly complex imaging techniques to capture specific behaviours.
Nonlinear waves, on the other hand, offer a broader range of observation, thus identifying delamination
more effectively [50]. The study of nonlinear waves has grown rapidly in recent years, finding promising
applications in fluid and solid mechanics, mathematical biology, nonlinear optics, and various other fields
[61-56]. Namely, solitary waves frequently emerge as solutions to nonlinear equations, such as the KdV
equation in shallow water dynamics [52,53,57,58]. They are also found in the Benjamin-Ono equation,
which describes internal waves in stratified fluids [59,60], the nonlinear Schrodinger equation governing
optical phenomena [61,62], and in the context of flexural waves described by the beam equation [63],
among others.

Layered structures, employed in industry, heavily rely on the integrity of their bonding. Inadequate
bonding or the occurrence of delamination, i.e. the absence of bonding, within waveguides such as rods,
bars, shells, and plates can cause an entire structure to collapse, presenting significant risks. For instance,
gas pipes often feature a protective layer that is welded on; however, if delamination is present between
the gas pipe and protective layer, then this can lead to gas leaking [64]. Similarly, aeroplane wings with
delamination could potentially detach during flight [65]. Thus, theoretical insights and imaging techniques
on waveguides are crucial for the early detection of delamination within protective layering. This is par-
ticularly pivotal for ensuring the absence of delamination, as theoretical findings serve as valuable guides
for practical experiments [44,46,66]. An experiment that provided an important perspective for observing
nonlinear wave behaviour within layered structures involved the laser generation of a compression solitary
wave with holographic interferomentry logging the wave pattern [44]. These practical experiments aim to
capture the propagation of waves, such as solitons, within layered waveguides with the aim of confirming
theoretical findings [67, 68].

The dynamic behaviour of layered structures depends on both the material of the layers and the type of
the bonding between them. In scenarios where the bonding between the layers is sufficiently soft and the
material of the layers are similar, the bulk strain solitons are replaced by radiating solitary waves, which
are solitary waves with a one-sided, co-propagating oscillatory tail [29,46,48]. As these radiating solitary
waves contain a co-propagating oscillatory tail, theoretical estimates of this tail can be formulated [69].
The longitudinal displacement of the waves is modeled by a system of coupled Boussinesq equations.
Two numerical schemes are applied to understand how these waves propagate in layered waveguides

with varying densities and bondings: a finite difference method, detailed in Appendix A, and a semi-
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analytical scheme, outlined in Appendix B. Conversely, when the layer materials are distinctly different,
the propagating waves become Ostrovsky wave packets instead of bulk strain solitons [48], which are
described by the Ostrovsky equation (1.8). The evolution of wave packets originating from initial pulses
has been extensively examined by Grimshaw and Helfrich [26,70]. The longitudinal displacement is
modelled by uncoupled Boussinesq equations in this case and, similarly as mentioned for the radiating
solitary waves case, numerical methods are used to gain an understanding of the wave propagation. These
two cases are outlined in Section 2.3.5. However, many other structure configurations are explored within
this thesis.

In summary, layered structures are highly important in industrial applications where delamination can
lead to severe consequences. Nonlinear waves, observed within these structures experimentally, can be
used to detect structural faults. The propagation of the wave packet within the waveguide depends on

the type of bonding and density of the layers.

1.3 Structure of thesis

In this thesis, we will explore the behaviour of long longitudinal bulk strain waves, focusing on wave
amplitude, speed, and position, in multi-layered structures with various bonding types and configurations.
Using two numerical approaches, a finite difference method and a semi-analytical scheme, we will analyse
how variations in bonding affect wave propagation, with the aim of detecting delamination. In Chapter
2, we will review the existing literature in the area by examining historical cases. In the first case, we will
focus on a single elastic waveguide, using nonlinear elasticity theory to derive a Boussinesq equation for the
longitudinal displacement of waves [29,45]. We will then construct a weakly-nonlinear solution to obtain
leading order solutions and initial conditions. The second case will examine a two-layered waveguide with
perfect bonding on the left and delamination on the right [47,71]. Using nonlinear elasticity theory, we
will derive a Boussinesq-type equation for the longitudinal displacement of waves for each section of the
structure, rather than a single Boussinesq equation as in the single waveguide case. We will then establish
equations governing the leading order propagation of waves in both directions for each region, along
with the initial conditions, and derive the continuity conditions specifically at the boundary between the
bonded and delaminated regions. In the third case, we will consider an initial-value problem for coupled
Boussinesq equations and explicitly show how they are derived from a coupled Klein-Gordon chain model
and a coupled Fermi-Pasta-Ulam chain model [72,73]. We will then derive the dispersion relation for
a symmetric case and, for a scattering problem involving coupled Boussinesq equations, establish the

leading order equations describing left and right propagating waves in each layer of the structure.
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In Chapter 3, we will examine a two-layered structure consisting of an initial delaminated region,
followed by a soft bonded region, then a second delaminated region, and finally a second soft bonded
region. The characteristic wave speeds in the two layers differ substantially, due to the significantly greater
density of the lower layer compared to the upper one, hence, our focus will be on wave propagation in
the upper layer. We will develop weakly-nonlinear solutions to derive the leading order transmitted and
reflected strain waves, which are described by KdV equations in the delaminated regions and Ostrovsky
equations in the soft bonded region, while also deriving the initial and continuity conditions [48]. We
will outline the numerical schemes from Appendices A and B and perform simulations, expecting strong
agreement between the methods. In the soft bonded region, we anticipate the leading peak will form
an Ostrovsky wave packet, while in the delaminated region, it should evolve into a leading solitary wave
with secondary solitons and some radiation. We will then obtain theoretical predictions for wave speed
and amplitude using the IST method and the linear dispersion relation, aiming for strong agreement with
the simulations. Next, we will compare structures with varying delamination lengths to a fully bonded
structure, examining two aspects: one focusing on wave amplitude, using the leading wave peak, and the
other on phase shift, with the front of the wave packet as a reference point. This approach allows us to
estimate the delamination length without needing prior knowledge of its exact value. For the amplitude, we
anticipate a percentage decrease as the delamination length increases, consistent with observations in [48].
The final part of our analysis in this chapter will involve simulations using experimental parameters for
the waveguide’s properties and geometry, aiming to gain insights into anticipated real-world behaviour.
We expect to observe an Ostrovsky wave packet in the soft bonded region and solitons in the delaminated
region, consistent with findings in this chapter and prior studies, though not be fully separated as a smaller
bar may be being used due to the experimental geometry [45,72].

Next, in Chapter 4, we now examine a structure similar to that in Chapter 3, but with a less dense
lower layer. This lower layer will have a characteristic wave speed ¢, while the wave speed in the upper
layer remains ¢ = 1, so the characteristic speed difference will be ¢ —1 = O(1). As before, we will develop
weakly-nonlinear solutions to derive the leading order strain waves and establish continuity conditions,
now applied to each layer individually. Numerical simulations using the schemes outlined in Appendices A
and B will be performed again, and we expect good agreement between the methods. However, the waves
in the lower layer are anticipated to evolve more slowly than those in the upper layer due to its higher wave
speed. Next, we will use the IST method to obtain theoretical predictions for the wave amplitude, and the
linear dispersion relation to predict the wave speed, both for the lower layer, considering various c¢ values.
We expect strong alignment between these theoretical predictions and the simulation results [74]. Building

on the analysis from Chapter 3, which focused on the phase shift of waves in delaminated structures by
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varying the delamination length (using the front of the wave packet as a reference point), we will now
extend the analysis to include both the delamination length and position, using the leading wave peak as
the reference point. This approach, to our knowledge, has not been explored in previous literature. By
using phase shift plots, we will aim to identify a common delamination length and position in both layers
for arbitrary phase shift values, allowing us to estimate the delamination length and position without
prior knowledge of these values. This analysis will be further extended by considering varying c values
in the lower layer. We will also examine waves propagating right-to-left in the upper layer and compare
them to left-to-right propagation. Similarly to the lower layer, we will determine a common delamination
length and location for both propagation scenarios for a set of phase shift values. This approach will
provide an additional tool for detecting delamination and its location within a structure. To conclude, we
will briefly examine the positions of the leading wave peak and the front of the wave packet for structures
of varying delamination lengths, confirming the forward motion of the overall wave packet as reiterated
in the literature [75].

In Chapter 5, we will examine wave behaviour within two distinct multi-layered structures. The first
multi-layered structure consists of a delaminated region ‘sandwiched’ between perfectly bonded regions.
This configuration can extend to any number of layers, as each layer is made of the same material. The
second structure is similar to that in Chapter 4, but here both layers are of similar materials. For both
structures, we will construct weakly-nonlinear solutions and establish the initial conditions, following the
approach of previous chapters. For the structure with perfect bonding, we will employ the IST method
to predict the wave amplitude. However, for the soft bonded structure, the leading order equations are
expected to be described by coupled Ostrovsky equations [76], which do not permit the application of the
IST method. For the structure with perfect bonding, we will define a measure based on the simulated
wave amplitudes in the two bonded regions and the predicted amplitude in the second bonded region.
This measure will allow us to study the impact of various parameters, including delamination lengths,
incident soliton widths (measured as Full Width at Half Maximum, or FWHM), and different waveguide
configurations and geometries. Similar analysis was conducted in [77], where, as the delamination length
increased, the measure approached a theoretical limit representing the maximum relative change in wave
amplitude between the bonded regions, although the progression was nonlinear. For the soft bonded
structure, we will apply a similar process without using the IST method, instead basing our measure on
the wave amplitudes in the first and third bonded regions. We will then scale this measure to achieve
overlap across all FWHM curves, allowing us to derive results for a single FWHM and then use scaling
to extrapolate findings for other FWHM cases. Finally, we will scale our Boussinesq equations to a

dimensional form, using experimental data parameters to provide estimates for practical delamination
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lengths in real-world applications.

In Chapter 6, we will summarise the results from previous chapters and discuss possible future work
that could improve and extend the analysis conducted in this thesis.

In Appendix A, we apply a finite difference method to numerically solve a single Boussinesq equation,
then extend this approach to an initial value problem for a system of M coupled Boussinesq equations. In
Appendix B, we use a pseudospectral scheme to solve the KdV, single Ostrovsky, and coupled Ostrovsky

equations numerically.



Chapter 2

Propagation of nonlinear waves in

waveguides

This chapter will review existing work and foundational concepts that inform the research developed in
Chapters 3 — 5. It will not present original contributions but will provide essential context and highlight
key gaps addressed in later chapters.

In this chapter we will discuss three problems. Firstly, in Section 2.1 we discuss a scattering problem for
a single elastic waveguide, which will involve deriving a Boussinesq equation that describes the longitudinal
displacements within the waveguide using nonlinear elasticity theory [45]. We will then consider a weakly-
nonlinear solution and derive its leading order solutions including appropriate initial conditions.

Next, in Section 2.2 we will review a two-layered waveguide with delamination on the right and bonding
on the left. We will again use nonlinear elasticity theory and derive the leading order weakly-nonlinear
solutions [47].

Finally, in Section 2.3 we will explore two different lattice models, starting with coupled Klein-Gordon
(cKG) chains to derive cKG equations [29,72,78] and then a coupled FPU model to derive coupled
regularised Boussinesq (cRB) equations. We will then consider the symmetric case of these equations to
understand the asymptotic behaviour of the dispersion relation. Following that, we derive the weakly-

nonlinear solution as before but for different characteristic speeds resulting in coupled Ostrovsky equations.

10
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2.1 Single elastic waveguide

In this section, we will be considering the elastic waveguide displayed in Figure 2.1. Firstly, we will use
nonlinear elasticity theory to derive the respective doubly dispersive equation (DDE), which is an equation
of Boussinesq type with two kinds of dispersive terms [45] describing the long longitudinal displacements
in the waveguide. Then, considering the Boussinesq equation, we derive leading order equations described
by the KdV equation using a weakly-nonlinear solution. Finally, we find the respective initial conditions

for the derived KdV equations.

Xo Xy

Figure 2.1: Elastic bar of rectangular cross section

2.1.1 Nonlinear elasticity theory

We consider long longitudinal bulk solitary waves in a single elastic waveguide of rectangular cross section
o ={-a <y <a-b<z<b}, that are governed by the DDE. We denote the Lagrangian Cartesian
coordinates (z,y, z), where the origin O is positioned along the bar at the centre of the cross-section o
and we assume the bar is in the initial equilibrium state. Here, x represents the position along the bar in
the interval [xg,z1], where ¢ is the starting point and x; is the ending point, and ¢ represents the time.

We study the problem in the scheme of nonlinear dynamic elasticity with the functional S expressed as

t1
S= [ LUU,U,,..x t)d0dt, (2.1)

to

where L(U,Uy, Uy, ...,x,t) is the Lagrangian density per unit volume, ¢ is time,  is a space domain
occupied by the waveguide, and U = {u,v,w} is the displacement vector confined in the Lagrangian

Cartesian coordinates (z,y, z) [32]. We denote the Lagrangian density £ written in material variables as

ou

L=K 1= g (EY — pII(Ly), (2.2)
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where K is the kinetic energy density, IT is the density of potential energy, p is the density, and I}, = I(C)

are the invariants of Cauchy-Green deformation tensor [79]

YU+ (VO)" +vU - (VO)T

2.
c . (23)
The invariants are explicitly written as
2 2
L= te(C), Ip= O =C) o). (2.4)

2 b

We use the Murnaghan’s model for II [80] and the following energy expansion up to the 5-constant

approximation
(A +2p) 17
2

(I +2m)I3
3

I = —2/,L12+ —2m11]2+n13—|—... (25)

to consider the compressible isotropic nonlinearly elastic materials where A and p are Lame’s coefficients,
two material-dependent quantities that emerge in strain-stress relationships, and I, m, n are Murnaghan’s
moduli [80,81]. To simplify the problem to a nonlinear equation for the longitudinal displacement we shall
use the planar cross-section hypothesis and the approximate relations for the transverse displacements via

the linear longitudinal strain component as

uru(z,t), VR YV, WR —2VU, (2.6)
where
A
= 7’ 2.7
Y 2(A + ) 27)

is Poisson’s ratio [82,83]. A cylindrical rod with a circular cross-section has similar relation [84,85]. K
and IT can be simplified using the relations (2.6) giving the approximate expressions of the invariants valid

for the small amplitude long longitudinal elastic waves as

K= § 0 +0f i) = § [ud + 07 + 2R ]+ 28)
and
1
M= (Eui - glé + u? (y? + zQ)in) + . (2.9)

where the nonlinear coefficient

B=3FE+20(1—2v)*+4m(1+v)*(1 — 2v) + 6nv?, (2.10)
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depends on Murnaghan’s moduli I, m,n, Young’s modulus E = u(3X\ +2u) /(A + p), and Posson’s ratio v.

Utilising (2.1) and (2.2) we express the Euler-Lagrange equation as

2 2
oL, (a L, 0 650) 0" 0Lo | O 0Ly g (2.11)

o0 \otow " oxou, ) T 0220w, | 920t Duy,

where L, = fg Ldo is the Lagrangian density per unit length. Substituting the expressions of (2.8) and

(2.9) into the integral of (2.2) with respect to o gives

1
L, = 3 / p[uf + (y* + 22 2ul,] + (Eui + gui + 2 (y? + zz)uiw) + ...dp. (2.12)

Substituting this expression into (2.11) produces the DDE for long nonlinear longitudinal displacement

waves within the waveguide in a form

2 Jv? 2
Ut — C Ugy = ;urum + T(Utt — 1 Uza) wa- (2.13)

We differentiate (2.13) with respect to z, introducing u, = f, to find the Boussinesq equation

Jv?

g

B

ftt - C2fmr = ?p(fQ)zm + (ftt - C%fmm)ml‘a (214)

which describes the longitudinal strain in an elastic waveguide of rectangular cross section. Here the linear
longitudinal wave velocity is ¢ = \/17 , the linear shear wave velocity (shear stress written in terms of
velocity) is ¢; = \/m =c/ \/m, and the polar moment of inertia of the rectangular cross section
o, is given by

2 2
J= /(y2 + 2%)do = 74ab(a3+ b ). (2.15)

Considering the change of variables

I T U
t=m, T=—4, U= 2.16
Tk x X’ U U ( )
and substituting the respective partial derivatives into (2.13) gives
. T? _ BUT? _ _ Juv? 1
Uiy — CQﬁuii = ;Fuwuﬁ + TFuﬁg. (2.17)

We compare this to the regularised Boussinesq equation

Ut — CCUpy = e(—12upUpy + 2Ustza ), (2.18)
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—12¢EX [ Jv? c?
CT:X, U:T, X = 260—(1_02>. (2.19)

and c¢; describe the physical and geometrical properties of the waveguide, and

to give

E
» B

€ < 1 is the small wave amplitude parameter. Equation (2.18) is in a regularised manner to facilitate

The parameters «, ¢

straightforward application of numerical schemes.

2.1.2 Weakly-nonlinear solution

Let us consider a generalised version of (2.18), given by
Upy — gy = £(QULULe + Bllrtaz)- (2.20)

Differentiating (2.20) with respect to space and denoting u, = f yields the longitudinal strain of the

elastic waveguide as

ftt - szz:z =é& (%(f2)zx + ﬁfttrz) . (221)

To attain accurate results with minimal algebraic rearrangement, we consider the following weakly-

nonlinear solution of (2.21) as
fla,t) = [T T) + f*(0.T) +eP(&n,T) + O(?), (2.22)

where the functions f~(£,T) and f+(n,T) represent a leading order solution that describes wave propaga-
tion in the left and right directions, respectively. The fast characteristic variables are given by £ = x — ct
and 7 = z + ¢t and the slow time variable is given by T' = et. The term P(&,n,T) is the higher-order
correction describing the propagation in both the left and right directions. The principle of incorporating
characteristic variables to describe the interactions of solitons was introduced by Miles in 1977 [86]. As ¢
contains —ct the wave in the characteristic reference frame moves at a speed c to the right, conversely as
1 contains +ct the wave in the characteristic frame moves at a speed c to the left.

The configuration of the system given by (2.21), which incorporates a mixed fourth-order derivative
in place of a fourth-order spatial derivative, proves advantageous for numerical simulations due to the
mitigation of short wave instability as highlighted in [87,88]. Differentiating f(z,t) to find fi, fow, (f?)zz
and fi., and substituting these terms into equation (2.21) will ultimately yield an equation describing
the terms in the expansion. The partial derivative of f(z,t) with respect to ¢ can be expressed by

of 0

=5y = g7+ +eP). (2.23)

fe
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The partial derivative % can expressed as a differential operator in conjunction with the three character-

istic variables. Using the chain rule, we can write this as

8§ (‘377 0 8T 0 i
=X =4+ — X — + — P 2.24
8 8 0 i
— — P 2.2
= (- a6 T <7 7T+ [T +eP). (2.25)
Applying partial differentiation to each respective term yields
fo=—cfe +eff +e(—cPe+ Py + fr + f1) + O(e?). (2.26)

By using a similar approach, we can derive the remaining partial derivatives for (2.21). Substituting these

derivatives into (2.21) yields

(e + 21y + 2 (“20fze + 20fF, = 262 Pe + PPy + PP ) )
— (f&+f$;+5(Pnn+P£§+2Pn£)>

- (Z <2 (Ffc), +2078), + 2l " + 21 £y +4f£f,,+> 8 (e ggee + ¢ nmm)) +0(2),
(2.27)

which can be simplified to

4P Py, = 2efr +alf ) + B frgee — 28, + alfH 1),

2 — r+ -+ -+
+ fe nnnn+af£Ef +af fnn+2af6 fn'

(2.28)

We now perform time averaging at constant 7 to (2.28). This involves fixing 7 while integrating (2.28)

over time, t, defined as follows:

1 T
lim — / Pe, dt. (2.29)
0

T—00 T

where 7 is a dummy variable. To facilitate the evaluation, we rewrite the time integral by transforming

the variables while ensuring that 1 remains constant throughout the process to give

1 T 1 2eT+E d
lim — / Pey dt = lim — / Pey <. (2.30)
0 ¢

T—00 T T—00 T

Next we assume that the incident, reflected, and transmitted functions, along with their derivatives, are

bounded and sufficiently rapidly decaying at infinity for any fixed T' (in line with numerical experiments
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[89,90]), under these conditions, the integral simplifies to

lim 7/ Pe,y dt = — lim f[PE]ngrg =0, (2.31)

T—00 T 2c T—o00 T

as all P terms are required to be bounded. The same principle of time averaging applied to the right-hand

side of (2.28) yields

0= (2ch‘ +alf )+ ﬂchg&) lim [irwg

¢ T—o0 L2cT

+ lim QL[ 2eff +alfT 1)+ BT (2.32)

T—00

T—00 20T

2ct+E€
+ lim /5 (2afg£f++2af* %+4afgfn+> dn,

where f~ and f* are bounded and sufficiently rapidly decaying at infinity. Under these assumptions, the
terms in the second and third lines of (2.32) become zero upon averaging. Thus, only the first line of

(2.32) remains non-zero, and the resulting expression simplifies to
= - f- 27 ) = 2.33
(QCfT JFO‘(f fg )+BC fggg)g 0, ( )
which via integration with respect to ¢ yields the right-propagating leading order solution
2cfp +a(f~f7) + B feee = 0, (2.34)

which corresponds to the Korteweg-de Vries (KdV) equation. Applying a similar process with respect to

£, we also garner the left-propagating leading order equation
—2cfi +aftff+pSlfE, =0 (2.35)
Now substituting (2.34) and (2.35) into (2.28) gives
—Ac*Pey = afeef T+ af T f 4200 £ (2.36)

Integrating equation (2.36) with respect to n and £ gives the higher-order correction function

a ul 3
P=¢ (ET)+ 6" T) ~ 1 (f‘ [ orranert [ d£+2f‘f+> NGRS
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where ¢~ (£,T) and ¢t (n,T) are integration constants. Now we consider the initial conditions

f(2,0) = f(z) fu(z,0) = g(2). (2.38)

Multiplying the derivative of f (z) by ¢ with respect to « and adding this to g(z) gives

cf' (@) +g(x) = 2¢f, =0 = fTli=0 = % {cf(x) - [Lg(s) ds] : (2.39)
and conversely subtracting the equations gives
’ _ _ 1 z
ef (@)~ 9(@) = 2ef o = F oo = o [cf<x> [ s ds] , (2.40)

where fT],—o and f~|;—¢ are the initial positions of the left and right propagating waves respectively [91].

2.2 Scattering problem - two-layered elastic waveguide with de-
lamination

Building upon the work established in Section 2.1, we now shift our focus to the structure in Figure 2.2

which is a two-layered waveguide with delamination on the right. The presence of delamination is a type

Xo Xy X2

Figure 2.2: Two-layered symmetric waveguide with delamination at x1 to x5

of damage in multi-layer structures and is commonly encountered in civil and mechanical engineering
applications as outlined in Section 1.2. In areas where delamination is present solitons undergo fission,
providing a valuable indicator of delamination. In this section, we will use nonlinear elasticity theory to
derive a system of DDEs for the longitudinal displacement of the nonlinear waves within the waveguide

and then find a weakly-nonlinear solution.
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2.2.1 Nonlinear elasticity theory

Consider a two-layered waveguide with perfect bonding on the left, x¢ to x1, and delamination on the
right, 1 to 2 as shown in Figure 2.2 and [45,47], where 21 = 0. Due to the delamination, the generated
long longitudinal strain waves scatter within the delaminated region. We make the assumption that the
cross section x is a perfect interface, meaning that at the boundary of the two regions, the interface is
smooth and free of geometric irregularities. Similarly to the single elastic waveguide in Section 2.1, we
consider the problem for the scheme of nonlinear dynamic elasticity and assume the delamination area is
{1 <2z < z9,—a <y < a,z =0} and the perfect bonded region has identical layers with a width of 2a
and height b.

Let us consider (2.13), where the wave displacement in the bonded region (z¢ to x1) is u™ (x, 1), and in
the delaminated region (z; to x5) is u*(x,t). We use u* (x,t) to denote the displacement in both regions,

leading to the two DDEs in the form

Beck
ufi — Aud, = 61 (uif — A iud,)ee + uFug, (2.41)

and write the continuity condition for normal stress as

2+ +_ 2 18:¢3 1o
=CiUy + 6+(utt - Cl+umc)$ +5 Uy
2 B,

1:07
(2.42)

18-
2B "

cZug + (5_ (ugy = ¢ _ugy)s +

x=0
which is generated by the waveguides applying pressure against each other. The §1 term is a dispersion
coefficient, typically used within the context of oceanic waves to factor in the Earth’s curvature [92].
The difference in bonding between the regions (xg,z1) and (z1,22) results in varying normal stresses.

Consequently, we denote the normal stress as

do*

= (2.43)

+
ftt =

When the soliton reaches the z = 0 boundary, the stress between the two waveguides is denoted by the
continuity of longitudinal stress

0 Ja=0 = 0" |a=0- (2.44)

We define the dimensionless variables as

it = (2.45)
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where

c_ _ c2

X* 12E_ 0_ c?
T =20, U'=—-&—2"X* X'=,|le1—=(1-2=), (2.46)
I} 2 u
in order to reduce the number of parameters in the problem. To develop the weakly-nonlinear theory, we

define the small parameter

o_ 3 o 14+2v_
== (1-Z )= = T 2.4
°=0x? ( 2 ) X2+ o)’ (2:47)

which is consistent when the considered waves are assumed to be long (§_/(X*)? < 1). The nonlinearity
balances the linear dispersion which is consistent with the assumption of small deformation (U*/X* < 1)
[32]. The governing wave problem thus takes the following form up to O(e):

Uy — U

rw = 26(—6uyu, +uppn), T <0, (2.48)

Z x T

ufy, — uf, = 2e(—6putul, +yul,,,), >0, (2.49)

T

with the continuity of longitudinal displacement as
U |g=0 = U [=o, (2.50)
and the initial conditions u*(z,0) = F*(z). The associated strain continuity conditions are given by
Uy + 26[=3(ug)” + tggglle=o = Pug +26[=38(u)” + Ydag]le=o- (2.51)

In the equations above, we use the asymptotic relations u;,,, = u5,,, +O(c) and u},,, = cut, .. +O(e),

along with introducing the following dimensionless parameters:
(2.52)

(note the ¢ and S here are different to the ones in the previous section). We assume the dimensionless
parameters to be of O(1). Equations (2.48) — (2.51) follow the notation in [45], whereas [47], which does
not use asymptotic expansions, presents a slightly different form. However, the methodology applied in

Section 2.2.2 will remain unchanged, differing only in parameter representation.
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2.2.2 Model formulation

The weakly-nonlinear solutions are expressed as

u(2,t) = 1§, X) + R(n—, X) + eP(¢-,n-, X) + O(e?), (2.53)

ut(w,t) = T(E4, X) +eQ (&4, 14, X) + O(?), (2.54)

where I and R represent the incident and reflected waves, respectively, within the left region of the
waveguide, and T represents the transmitted wave within the right region of the waveguide which is
generated at the x = 0 boundary by the incident wave. The incident and reflective wave behave in a
similar manner as in Section 2.1. P is the higher-order correction of the wave at x < 0 and @ is the
higher-order correction to the wave at © > 0. The characteristic variables are described by £_ = x — ¢,
& =x—cty,n- =x+1t, ny =x+ct and X = ex. Substituting the respective weakly-nonlinear solutions

into (2.48) gives

_2P£7777 = (IX - 3(I2>£7 + 1576757)57 + (RX - 3(R2)n7 + Rnfnfnf)nf - 6(IR777 + Rlﬁf )57777- (2~55)

We now apply space averaging to (2.55) with respect to n_, similarly to the time averaging detailed in
Section 2.1. While time averaging involved averaging over the time domain axis ¢ to find higher-order
terms, space averaging is performed over the spatial domain z € (—o00,0]. To average the P , term
on the left-hand side of (2.55) with respect to a dummy variable 7, as was done in time averaging, we

integrate over x while holding 7_ constant, this gives

1 T
lim / P, da. (2.56)
0

T——o00 T — 0

Next, by transforming to characteristic variables, where the integration is performed along 7_, the ex-

T 1 [27 ¢ dn_
/ Pe, do= lim - / Pf_n_%. (2.57)
0

To—o T J_ ¢

pression becomes

lim
T——oco T — 0

Using the boundedness and rapid decay of the higher-order corrections and their derivatives as 7 — —o0,
we obtain

lim i[Pg_]”*f— =0. (2.58)

T——00 2T —&-
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Now averaging the right-hand side of (2.55) gives

:| 21 —§_

0=(Ix —3(1%¢ +I ¢ ¢ ), lim [’L‘ .

- r—>—00 L2T

) 1 r—t_
+ lim 9 [RX - 3(R2)77— + Rn—n—ﬂ—]Q_gf (2-59)

T——00

1 27—€_
~ lim — / 6(IR, +RIc ), , dy.

T——00 2T e &
As I and R are bounded this summation is reduced to the leading order equation
jX - ijg_ + jf—&—f_ =0, (260)

where I = I . Now similarly applying space averaging with respect to {_ gives the following leading

order equation

Rx —6RR, + R, , , =0, (2.61)

where R = R, . Substituting our leading order solutions into (2.55) and applying integration with respect

to £_ and 7n_ gives the higher-order corrections

Pe_n_, X) =¢(6—, X) + (n_, X) — 6 ( / I Rdn_ + / IR, dt_ + 2[R> : (2.62)

where ¢(§_, X) and ¢ (n_, X ) are arbitrary integration constants. Now applying a similar process for

(2.49), we obtain the following leading order equation

. 6r ~ ~ B .

Tx — CTTTEJr + 072T£+f+£+ =0, (2.63)
where T = T:_ and the corresponding higher-order correction is

Q(5+777+,X) ZQ(€+aX) +T(77+’X)7 (264)

where ¢(£4, X) and r(ny, X) are arbitrary integration constants. Differentiating (2.50) with respect to ¢
gives

Uy |a=0 = uf [o=o- (2.65)

Substituting our weakly-nonlinear solutions at leading order into (2.65) yields

Iﬁ, |x=0 - Rn, |3c=0 = CT§+ |ac=0~ (266)
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Similarly, substituting our weakly-nonlinear solution into (2.51) and applying some mathematical rear-
rangement gives

IE_ ‘m:O + Rn_ |.r:0 = C2T§+ |2?:0' (267)

Now applying simultaneous equations techniques to solve (2.66) and (2.67) gives

T§+ |:1::0 = CTI§7 |z:0 and Rn7 |:1::() = CRI§7 |z:07 (268)

where Cp = <2 and Cp =

o are the reflection and transmission coefficients respectively. When

2
c(1+c)
c =1, i.e. the materials are the same in the bonded and delaminated regions, we see C7 =1 and Cr =0

and thus the leading order reflective wave is zero.

2.3 Initial-value problem - coupled Boussinesq equations

In the following section, we will investigate a ¢cKG model [28]. Then we will explore the FPU chains,
specifically by incorporating two weakly coupled FPU chains to derive coupled Boussinesq equations,
which has been examined in detail in the work of [29]. Next we will consider the symmetric case for our
coupled Boussinesq equation to obtain and analyse the linearised dispersion relation. Finally we will be
observing the work done in [48] where they investigated the propagation of radiating solitary waves within
a two-layered structure containing soft bonding, which was described by coupled Boussinesq equations.
We will examine two scenarios in which the weakly-nonlinear solution assumes distinct forms based on
the value of the parameter ¢. The bonding between the waveguides in [48] varied, but we will only be

considering a soft bonded region [72].

2.3.1 Coupled Klein—Gordon chains

In [78] a model of ¢cKG chains is studied as shown in Figure 2.3. We consider two interconnected linear
periodic chains of particles where each particle in the upper and lower chain possesses a mass denoted
as my and meg, respectively, as illustrated in Figure 2.3. Similar to the FPU model, the inter-particle
separation within each chain at of a distance a, where the particles are moving solely along the z-axis.
The interaction between neighbouring particles within each chain adheres to the harmonic model
OH (tp,wy)

Oy, ’

OH (up, wy)
Ow,,

mlﬁn = ﬂl (un+1 - 2un + un—l) -
(2.69)

m2wn = ﬂ2 (wnJrl - 2wn + wnfl) -

)
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Figure 2.3: Illustration of the cKG chain model.

with distinct interaction constants 81 and (2 and the dot representing differentiation with respect to time
and H (u,,w,) denoting the energy associated with the interaction between P} and P?. The displacements
of particles P} and P2, denoted as u,, and w, respectively, determine the interaction between the two

chains. We define dimensionless variables as

- -~ H
=2 =2 a==, w=,/22 HF=—"
a a a my a mycs
, (2.70)
262 _ o 5, Bia”
&) Bima m; ’ ’
By introducing a force function as f (@, w) = —H (@, w) and applying the long-wave approximation to
(2.69), we obtain the following system of PDEs
Upp = Ugy = ful(t, ), Wy — Cwee = fu(u,w), (2.71)

where the tildes are omitted for simplicity [28]. More recent work instead implemented coupled Boussinesq

equations for coupled problems [48], which will be discussed in Section 2.3.2.

2.3.2 Fermi-Pasta-Ulam model

In this section we will consider the original FPU chain model outlined in [9] and shown in Figure 2.4.
Both sides of the chain are assumed to be clamped at equilibrium, and the equilibrium distance between
particles is a. We assume ug = uy = 0 when a chain contains N + 1 particles. Firstly we want to describe
the displacements of these particles from their state of rest using the equations of motion. We denote the

kinetic and potential energies of the individual particles as

E) = 5mv?, Ep = ikIQ, (2.72)
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Figure 2.4: FPU chain model consisting of a chain of equidistant particles connected to their nearest
neighbours by weakly-nonlinear springs, where u,, represents the displacement of the n'" particle from
the equilibrium.

where k denotes the linear spring constant, v is the velocity of the particle, m is the mass of the particle
and z is the particle’s displacement. Then, we calculate the kinetic energy, T, and potential energy, U
within the system where we sum up the kinetic (or potential) energy from each individual chain to obtain

the total (or potential) system’s kinetic energy. These total energy is expressed as
- . 9 ( : )

Now, the total potential energy, represented by U, can be denoted in a similar manner. However, we
must consider the weakly-nonlinear nature of the springs, thus we incorporate a nonlinear spring constant

term, denoted by «. Namely, we have
Uzz ﬁ(u 1—u)2—|—g(u 1 —up)? (2.74)
—~ 9 n-+ n 3 n+ n . .
As the Lagrangian of the system is denoted as
L—T—U—Zm—u?’—z E(u —u)g—&-g(u —up)? (2.75)
= = 8 D) E D) n+1 n 3 n+1 n ] N

we can substitute T' and U into the equations of motion, given by the Euler-lagrange equations

d oL oL
a4 (au> ) (2.76)

In doing so, we obtain the system

mun = (unJrl - 2un + Un71)[k + Oé(un+1 — Unfl)]. (277)



CHAPTER 2. PROPAGATION OF NONLINEAR WAVES IN WAVEGUIDES 25

The motion of the particles in the chain is described by the discrete system (2.77), which will later be

extended to a continuous model for the displacement [11]. We introduce the continuum approximation as
un(t) = u(@n, t) = u(na,t), upt1 = u(z, £a,t), (2.78)

where the displacement field u slowly varies. Substituting the Taylor expansions

2

a? ad a*
Unt1(t) = u(wn, t) + av'(z,,t) + 5u "(2p,t) + Ku' "(Tp,t) + —

nn 279
S (@) + (2.79)

into (2.77) allows us to transform the following discrete model to this continuous differential equation

4
muy = kCLQqu + 204@3”1‘“7;1’ + %ULLzza (280)

which excludes higher-order terms by truncating the Taylor series. This equation is of the form of a
Boussinesq equation which describes the long wave propagation in the chain model (2.77). Equation

(2.80) can be rescaled as

Ut c2umm — 502 (umuzz 52”1193:1:)7 (281)
where
ka? 2aa a?
2 2
5 ) 2.82
¢ »c k-’ 12¢ (2:82)

Equation (2.81) can then be regularised using the asymptotic relation Uz, = 2 Uppps, giving

52
Ut — C2umz = 602 (umux$ + CZUttzz> . (283)

2.3.3 Coupled Fermi-Pasta-Ulam model

Now let us consider the coupled FPU chain model as shown in Figure 2.5 [9]. The individual particles
and the kinetic energy are denoted similarly as in Section 2.3.3, but the potential energy expression is

derived with the inclusion of a coupling term. The kinetic and potential energy are denoted as
T=>Y" L (mal + M)
" 2 n n )
1 5 1 5 1 )
U = ; 505(11471,-&-1 - Un) + gﬁ(un—i-l - Un) + §A(wn+1 — ’LUn) (284)

1 1
+§B(wn+1 - wn)g + 5’7(’“% - wn)2> )
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v
“

<

Pn—l P F

n n+l
Figure 2.5: Coupled FPU chain model consisting of a chain of equidistant particles connected to their

nearest neighbours by weakly-nonlinear springs, where u,, and w,, represent the displacement of the n®
particle from the equilibrium in the upper and lower layers respectively

respectively, where o and A are the nonlinear spring constant, 8 and B denote the nonlinearity coefficients
for the chain and - represents the coupling coefficient. Now we apply a similar process as outlined in

Section 2.3.2 with the Lagrangian denoted as L = T — U, which is substituted into the Euler-Lagrange

d oL oL d oL oL
clt(aan)‘aun—o’ dt(awn)‘awn—o (2.85)

to yield the following system

relations

Mmily, = (Unt1 — 2Up + Un—1)[ + B(Unt1 — Un—1)] — 0(un — wp),
(2.86)

M, = (wpy1 — 2wy, + Wp—1)[A + B(wpt1 — wp—1)] + 6(uy — wy).

Using a Taylor expansion about the equilibrium point, for the derived difference-differential equations in

each chain, as Section 2.3.2 garners the following cRB equations

Ut — Uggy = UgUgy + Uttzw — 5(“ - w),
(2.87)
Wit — CWay = QWWay + BWitae +7(u — w).

Here 6 and 7 denote the dispersion coefficients in the upper and lower layer, respectively, which factors

in the soft bonding component between layered waveguides.
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2.3.4 Symmetric case and dispersion relation

Differentiating the system (2.87) with respect to z and denoting u, = f and w, = g, we obtain

1
ftt - fmx = §(f2)ww + fttww - 6(f - g>7
1 (2.88)
git — czgwm = §a(g2)mw + 6gtt;vw + ’Y(f - g)
In the symmetric case, where ¢ = a = =1 and g = f, the system (2.88) reduces to
Lo
ftt - fzz == i(f )mm + fttma:a (289)
which has a particular solution in the form of the solitary wave
—ct
F(x,t) = Asech? <‘”” AC > , (2.90)
where
2 -1 c
A=— and A=-———5-—— (2.91)

de 6ev/c2 — 1

For (2.88), the linear waves propagating within this model are described by the dispersion relations
[~ Aett@=rt) and g ~ Be (=P where k represents the wavenumber and p represents the phase speed,
the speed at which a wave propagates. It will be assumed that the coefficients in (2.88) are perturbed and
compared to the symmetric case, but remain positive, thus resulting in the following linearised dispersion

relations:

[k2(1 - p®) — k*p? + 6] [K*(c® — p®) — BE*P® + 4] = 70. (2.92)

When the symmetry is broken, these pure solitary wave solutions are replaced with radiating solitary
waves and are structurally unstable and their tail rapidly decays to zero. This occurs due to a possible
resonance of the linear wave spectrum at some finite non-zero k. This resonance enables the solitary wave
to emit energy, resulting in the formation of radiating solitary waves. These solutions are observed when
the wave speeds are close between two waveguides [29]. Directly solving the biquadratic equation (2.92)
is not very helpful, as the resulting formula is difficult to analyse. Fortunately, the analysis of (2.92)

becomes considerably simplified through a change of variables [29]

s 04+k—S

1201 2\ .42 _
S=k*(1-p°)—k*p°+06, or p EEwEIE

(2.93)



CHAPTER 2. PROPAGATION OF NONLINEAR WAVES IN WAVEGUIDES 28

Thus we may rewrite (2.92) as

S% —bS —c=0, (2.94)
where
14 k2
b=0+k*>—k(y+E*?), c=rys, K= H:FW (2.95)
Furthermore, we establish the following relation between the amplitudes A and B
S Ky
B=—-A= A 2.96
A= 54 (2.96)

which gives us

1
51)2 = 5([) + Vb2 + 4(IC), (297)

where S7 corresponds to the positive square root and Sy the negative square root. As c is positive, we
find S; > 0 and Sy < 0. We observe that 0 < S; < § + k2, supporting the existence of real values of p for
any k. For fixed k, the inequality S2 < S7 holds, and hence using (2.93) we find that P, > P;.

2.3.5 Two-layered elastic waveguide with soft bonding

Now let us consider two scattering problems for a two-layered waveguide containing soft bonding. The
first case is when the waveguides have similar properties where the difference in the characteristic speeds
is c—1 = O(e). When the properties within the waveguide are similar, a solitary wave within the bonded

area transforms into a radiating solitary wave [48]. If we substitute

f=cf, g=¢eg, t=+et, x=/ex, (52525, v = €27, (2.98)
into (2.88), we can rewrite the cRB equations as

ftt - fza: = 5[_6(.][2)95:1: + 2fttzz - 25(f - g)]7

gttt — Cngx = 5[_6a(92)mx + 26gttxm + 2’7(.](. - g)]v

(2.99)
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where the tildes are omitted for simplicity of notation. The weakly-nonlinear solutions for the coupled

system are given by

flx,t) =I(,T)+ R(n,T) +eP(&,n,T) + O(?), (2.100)

g(x,t) = S(E,T)+G(n,T) +Q(&,n,T) + O(?), (2.101)

where the characteristic variables are ¢ =z —t, n = x +t and T = et. I and S represent the incident
waves in the upper and lower waveguides, respectively, and R and G represent the reflective waves in the
upper and lower waveguides, respectively.

The term ¢? — 1 can be written as ¢> — 1 = (¢ — 1)(c + 1). Since ¢ ~ 1, it follows that ¢ + 1 ~ 2.

Additionally, as ¢ — 1 = O(e), we have
A —1=2(c—1)~20(e). (2.102)

Thus, ¢? — 1 is of order O(g), allowing us to add (¢? — 1)g,, to both sides of the second equation in (2.99),

enabling the system to be rewritten as

ftt - fmx =& [76(]02)11 + 2fttmz - 26(f - g)} )
> (2.103)

C
gtt — Gazx = € _6a(92)zm + Qﬁgttzx + 27(]0 - g) + c Jzx

Substituting the respective partial derivatives of (2.100) and (2.101) into (2.103) and applying time

averaging as in Sections 2.1.2 and 2.2.2, gives the leading order coupled Ostrovsky equations

(IT — 6][5 + 61555)5 — 5([ — S) =0,

21 (2.104)
(ST — 60&(555) + BS¢ee + 9% Sg) +~(I—=8)=0,
3
and
(R —6RR, + BRyyn)y —0(R—G) =0,
21 (2.105)
<GT — 6a(GGy) + Gy, + 26Gn) +v(R—-G)=0.
n
The higher-order corrections are denoted as
P,nT)=3 (Ig/R dn + /I d¢R, +2IR> + o1& X) +1(n, X),
(2.106)

QEnT) = 3a (Sg/G dn+Gn/S ds+sz> + 6alE, X) + thaln, X),



CHAPTER 2. PROPAGATION OF NONLINEAR WAVES IN WAVEGUIDES 30

where ¢1(¢, X), ¥v1(n, X), ¢2(£, X) and 1(n, X) are integration constants. At ¢ = 0 the leading order

weakly-nonlinear solutions (2.100) - (2.101) are represented as

fli=o = (I(§,T) + R(n,T))|t=0 = F(z), and gl=o = (S, T)+ G0, T))|i=0 = G(). (2.107)

Differentiating the leading order solutions (2.100) and (2.101) with respect to t at = 0 gives

f1(0,8) = (=cle + cRy) a0 = fi(t) = V(z), and  g(0,t) = (—cS¢ + cGy)lo=o = fo(t) = W(2).
(2.108)

The f, and g, derivative terms at = 0 can be denoted as

cfe(0,t) = (cle + cRy)|o=0 = cg1(t) and cgz(0,t) = (cSe¢ + ¢Gy)la=0 = cga(t). (2.109)

This leads to the leading order initial ¢ = O(1) evolution of the Cauchy data, which is described by the

classical d’Alembert’s solution

—1 —1
t t
Gloo = 5 (80 ¢ [ s as). Shma= - (£l —c [ a9 as).

As we assume the initial conditions are sufficiently rapidly decaying at both 4oo, the slow variable

Rlo—o = 2% (fl(t) T K 91(5) ds) . gm0 = 2% <f1(t) _ C/t g1(5) ds) : ( |
2.110
(t) s)

T = &t helps describe the subsequent ¢t = O(¢7!) evolution of the given initial data by looking for the
weakly-nonlinear solution of the Cauchy problem (2.99), (2.107) and (2.108) in the form of asymptotic
multiple-scales expansions. Similarly, initial conditions for O(e) also yield initial evolution of the Cauchy
data according to the classical d’Alembert solution. Another case explored in [72] was when the difference
in speed between the two wave operators was ¢ — 1 = O(1), and so two sets of characteristic variables
were introduced instead. Applying a similar process as in the above case leads to uncoupled leading order

solutions.

2.4 Summary

In this chapter we have discussed the motivation for considering nonlinear wave propagation in layered
elastic waveguides. Firstly, in Section 2.1.1 we considered a single elastic waveguide and defined some of its
properties such as its Poisson ratio, kinetic energy density and density of potential energy. From this we

derived a Boussinesq equation describing the longitudinal displacement of the nonlinear wave propagating
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within the elastic waveguide using nonlinear elasticity theory. Then in Section 2.1.2 we considered a
weakly-nonlinear solution to describe the wave propagation in the left and right directions.

The next case we considered was a two-layered waveguide with delamination on the right in Section
2.2. We utilised the same nonlinear elasticity theory as for a single elastic waveguide from Section 2.2.1.
Therefore, an interesting case that will be explored in a Chapter 5 is, what would the effect be on the entire
structure if we add perfect bonding on the right thus effectively sandwiching the delaminated region? How
would different lengths of delamination affect the wave propagation and consequently the integrity of the
structure?

We then examined two models; FPU and cKG. The FPU model was used to derive the coupled
Boussinesq equations in Section 2.3. We then explored the asymptotic behaviour and dispersion relation
of the symmetric case for the coupled Boussinesq equations before finding the weakly-nonlinear solutions
within the context of a scattering problem in Section 2.3.5. From this, in Chapter 4 we can now explore
scattering problems where the longitudinal displacement in the lower waveguide is present and thus both
parts of the structure are modelled by coupled Boussinesq equations. In Section 2.3.3 specifically, the
coupled Boussinesq equations contained dispersion coefficient terms which factored in soft bonding within
layered waveguides, and although this has been somewhat explored in [48] as mentioned previously, this
was when the characteristic speeds were similar. We will explore what would happen in the case of distinct

characteristic speeds in Chapters 3 and 4.



Chapter 3

Scattering of an Ostrovsky wave

packet in a delaminated waveguide

In this chapter, we will investigate the scattering of an Ostrovsky wave packet within the upper waveguide
of a two-layered structure. This structure consists of an initial small delaminated region, followed even-
tually by a second delaminated region, with soft bonded layers on either side of the second delaminated
region. The lower waveguide is assumed to have a significantly higher density than the upper waveguide,
resulting in a system described by Boussinesq and Boussinesq—Klein—Gordon (BKG) equations.

Next, we intend to derive and compare a direct numerical model with a semi-analytical approach, which
consists of several matched asymptotic multiple-scale expansions. For the semi-analytical approach, we
expect the leading order solution to be described by Ostrovsky equations in the soft bonded region and by
Korteweg-de Vries (KdV) equations in the delaminated region, as shown in previous studies [47,48]. We
hope to demonstrate a strong agreement between the semi-analytical approach and the direct numerical
simulation.

We will then seek theoretical predictions for wave speed using the dispersion relation and for wave
amplitude using the Inverse Scattering Transform (IST) [48,75]. We aim for strong agreement between
these theoretical predictions and the numerical simulations to validate these methods as effective tools.
We aim to plot the wave amplitude and phase shift in the final soft bonded region for structures of various
delamination lengths. Finally we will demonstrate the process of scaling the non-dimensional results to a
physical context, illustrating through an example involving a PMMA bar. The results of this chapter are

partially summarised in [93].

32
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3.1 Model formulation

Wave scattering within the upper waveguide of two distinct two-layered structures, as depicted in Figure
3.1 and inspired by the experimental setup arrangement outlined in [46], will be explored in this chapter.
Figure 3.1(b) depicts a finite delamination case. In this scenario, a long longitudinal soliton is generated
within the initial small delaminated region of the upper waveguide from zy to z; where the longitudinal
displacement is denoted by u(!). The structure then includes two soft bonded regions from z1 to zs and
x3 to x4 where the longitudinal displacements are u(® and u(¥), respectively. These soft bonded regions
‘sandwich’ the delaminated region, which is from zs to 3, where the longitudinal displacement is u(®).
Figure 3.1(a) illustrates a semi-infinite delamination case, featuring the same structure as Figure 3.1(b),

but without the final bonded region.

— —»X

Xy

X X % X

(a) Infinite delamination case. (b) Finite delamination case.

Figure 3.1: Examples of the bi-layer structure with an initial delaminated region for x¢ < z < x1, a soft
bonded region for x; < x < 5 and either (a) a delaminated region for x2 < z < z3, or (b) a delaminated
region for zo < x < x3 followed by another soft bonded region for s < x < z4. In both cases we assume
that the material in the lower layer has a significantly higher density than the material in the upper layer.

The scattering of long longitudinal solitary waves within a similar structure was examined in [48],
focusing on cases where the wave characteristic speed in the lower layer was ¢ — 1 = O(e), with ¢
representing a small amplitude parameter. In that scenario, a radiating solitary wave was generated within
the waveguides in the bonded sections of the structure and became separated from its co-propagating
tail in the delaminated sections. In our study, each section of the waveguide is also made of the same
material throughout, however, the lower layer is considered to be much denser, making the discrepancy
in characteristic speeds more significant. Consequently, we assume that longitudinal displacements in the
lower layer are essentially zero and thus negligible.

The longitudinal displacement within the upper waveguide can be modelled by the following system
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of Boussinesq and Boussinesq-Klein-Gordan (BKG) equations

ugtl) —ull) = 2¢ (—6u(1 S ﬁuttm) (3.1)
uff) = u®) = 2 (~6uPul2 + Bufi), —u®), (3.2)
ugf) —ul®) =2 ( 6uPul®) + 5u ) (3.3)
) ) = 2 (~6uPuD + ull, — ), 5.4

where £ is a nonlinear coefficient describing the physical and geometrical properties of the waveguide. We
set B = 1, and therefore, for most of the work in this chapter, we omit it for simplicity. The continuity of

longitudinal displacement at the interfaces between the sections is given by

w® = D)

. i=1,2,3, (3.5)

=X, T=XT;

and the continuity of normal stress of these interfaces is

ul?) + 2¢ [—3 (u:(f)) + uggc]

. . 2 .
) 4o [_3 (u) +ug;;1>}

,i=1,2,3. (3.6

Equations (3.1)—(3.4) are scaled with coefficients chosen specifically to ensure that the leading order
solutions derived from the weakly-nonlinear solution are in canonical form. Following the method outlined
in [48], we differentiate (3.1)—(3.4) with respect to x and set ul) = £ to describe the longitudinal strain

of the system as

1P = 1D =2 (<3 (s0%) 4 1),

1P = 12 =2 (=3 (%) 412 -2
W =1 =20 (<3 (%) +52). (3.9)

10— 10 =2 (=3 (s0°) 4 i =)

The continuity conditions may also be expressed in terms of longitudinal strain as follows:

T ) Tit1 .
/ D de = —/ fOHVde, i=1,2,3, (3.11)
Ti—1 T
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and

o 2[5 (10 1 0]

. . 2 .
_ f(z-l-l) + 2 |:_3 (f(z-l—l)) + ft(tl—i-l):|

T=XT;

3.2 Weakly-nonlinear solution

For each region, we will construct a weakly-nonlinear solution based on asymptotic multiple-scale expan-
sions, which describes the wave propagation. This solution includes a transmitted and reflected wave
at leading order, along with higher-order corrections. Notably, in the final region, there is no reflected
wave, while in the initial region, an incident wave is present instead of a transmitted wave. All functions
in the expansion and their derivatives are assumed to be bounded and sufficiently rapidly decaying at
infinity, consistent with assumptions in [47,48] and physical observations. We will then substitute these
expansions and their partial derivatives into the system of equations (3.7) — (3.10) and apply the space-
averaging method to derive the leading order solutions. This approach parallels the methods developed
in [45,47,48] for wave propagation in layered waveguides with perfect and soft bonding. Finally, we will

apply the continuity conditions to obtain ‘initial conditions’ for these derived equations.

3.2.1 Region 1: first delaminated section

We consider the first region of the structures in Figure 3.1, where the two layers are delaminated. This
region is governed by the Boussinesq equation (3.7). A solitary wave is generated within the waveguide
in this region, consistent with the experiments described in [46]. Therefore, we construct an asymptotic

multiple-scale expansion of the type
FO(a,t) = 1(6,X) + RV (n, X) + PO (€, n, X) + OE),

where £ = x —t and n = x +t represent the fast “spatial” characteristic variables, and X = ex denotes the
slow “temporal” space variable. The leading order incident and reflected waves are represented by I and
R respectively, while the higher-order correction is represented by P(). Substituting this asymptotic
expansion into (3.7) gives

1 1
2P = (Ix — 6II¢ + Iee)e + (R — 6RVRID + R

e ) )y — 6(2IRY + RII + Iee RY). (3.13)

Assuming the left boundary at xg is far away from the boundary at x; and tends to negative infinity, we

can take zop — —oo. We then average the left-hand side of equation (3.13) by holding £ constant and we
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integrating (3.13) with respect to the fast spatial variable z, yielding

1 &
lim / —2P}}) dz, (3.14)
xTo—>—00 le — JZO zo

in the reference frame moving with the linear speed of right- and left-propagating waves (at constant
& or ). As mentioned earlier, all functions and their derivatives are assumed to remain bounded and
sufficiently rapidly decay at infinity. This assumption is necessary to avoid secular terms in the asymptotic

expansions. When applying the averaging, similarly to Section 2.1.2, at constant ¢ we obtain

1 2z1—§
-2 -2 2x1—&
I PDdr= lim ——— / P dn= aim o ——— [P =0
10—1>n;100 1 — Xo / &n v 10—1>H—100 2(.731 — 330) &n " $0—1>rEOO 2(1‘1 — xo) 2x0—&
0 2x0—¢
(3.15)
Now, by averaging the right-hand side of (3.13), we get
0= Tim —— [Ty — 61T, + Loee] ™~ (3.16)
T ago—00 2(zy — ) & et ¢ .
W _grM RN 4 O n
Ry —6RMRY + R li — 3.17
+ (Rx Ry )y coi o {2(371 _ Io)} _ (3.17)
2z1—§
~ lm / 6(2Ic RV + RUT + I,e RY) dn (3.18)
To—>—00 2(1‘1 — l‘o) n m ’
2z0—¢§

the terms in the first and third line become zero when evaluated, thus we obtain the following KdV

equation
Ry —6RVRY + RY =o. (3.19)
A similar process is applied when averaging at constant 7, yielding
Ix — 611+ I¢ee = 0. (3.20)

Substituting (3.19) and (3.20) into (3.13), then rearranging and integrating with respect to the charac-

teristic variables, gives

PO —3 <2IR(1) +RW / 1de + I / R<1>dn> + oM (e, X) + D (1, X), (3.21)

where ¢!, (1) are arbitrary functions.
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3.2.2 Region 2: first soft bonded section

Now, we consider the soft bonded region, where we derive Ostrovsky equations to govern the leading
order wave behaviour through the constructed weakly-nonlinear solutions [23,94]. The weakly-nonlinear

solution is assumed to be
P (a,t) =T (& X) + R (n, X) + PP (£,n, X) + O(),

where ¢, 7 and X are the same as the first region. The function T represents the transmitted wave
generated by the incident wave in the first region, while R(®) represents the reflected wave. The higher-
order correction in this section is denoted by P(?). Substituting (3.2.2) and its respective partial derivatives

into (3.8) gives
_op@ _ (72 _ a(2)(2) (2) (2) _ ep(2 p2) 2 ) _ (2 (2)
2Py = (1) 67T+ 12) + (RY —6RORP + RE) )~ (T + RO)
(2) p(2 2) p(2 (2) p(2
6 (21 R + TORE) + TR . (3.22)
The solution is considered over the period of time from when the wave enters the second region at the
boundary x = 1 to when it exits at the boundary x = zo. As with the first region, we assume that

the boundary at x = w9 is sufficiently far from x = z;, allowing us to apply averaging by integrating the

left-hand side of (3.22) with respect to x, leading to the expression:

lim
T1—>—00 Tog — X1

T2
/ —2P® dg. (3.23)

Z1

When averaging the left-hand side of (3.22) with respect to either constant £ or 7, the higher-order
correction function P(?) becomes zero, similar to the observations in the first section. Therefore, applying

the averaging to the right-hand side of (3.22) at constant £ and 7 yields

(T)@ _ 6T(2)T§(2) i Tg(§§>£ —4T®), (3.24)

respectively, where (3.24) and (3.25) are Ostrovsky equations [23]. Therefore, substituting (3.24) and

(3.25) into (3.22), rearranging the resulting expression, and then integrating with respect to & and n
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yields
P® =3 (Tf@) / R® dp+ R / T® d¢ + 2T<2>R<2>> + o€ X) + v (n, X), (3.26)
where ¢(2) (¢, X) and 9 (n, X) are arbitrary integration constants.

3.2.3 Region 3: second delaminated section

We now consider the third region of the bar, where the two layers are delaminated, using a similar
methodology to Sections 3.2.1 - 3.2.2. Therefore, the calculations in this section can be summarised. We

construct a weakly-nonlinear solution for (3.9) of the form
FP(@,t) =TO (g X) + B (n, X) + PP (€0, X) + O,

where the characteristic variables have the same meaning as before. The averaging used in this region

takes the form

1 T3
lim / ... dz. (3.27)

T2= =0 T3 — T2 Jg,

Substituting the weakly-nonlinear expansion into (3.9) and then averaging at constant 7 and £, we obtain

T§f’) _ 6T<3)T£(3) 4 Téé’é =0, (3.28)
Rg?) _ GR(3)R£]3) + Rgﬁl)ﬂ =0, (329)

respectively, and the higher-order correction is found as
P® =3 (2T(3)R<3> +R® / T dg + 1 / R® dn> + 0@ (&, X) + 9P (1, X). (3.30)
where ¢, (3 are arbitrary functions.

3.2.4 Region 4: second bonded section

Now, for the fourth region, we construct a weakly-nonlinear solution of the form

FO (@, t) = TW(E X) +ePW (1, X) + O,
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with the averaging in this region given as

1 w4
lim / ... dz. (3.31)

T4—00 Ty — T3 z3

We obtain the equation

(18 — 61 4 1) =1, (3.32)
with higher-order correction
PW = W (g, X) + W (n, X), (3.33)

where ¢4, 1Y) are arbitrary functions. If the incident wave is right-propagating and there is no boundary
to generate a reflected wave in this final region, then there should be no left-propagating wave field in
this region [45,47,48]. Therefore we must have ¢(¥) = 0. As mentioned earlier, in [48], the waveguides
were of similar materials and had close characteristic speeds, which led to the weakly-nonlinear solution
in the bonded regions being described by coupled Ostrovsky equations and in the delaminated regions by
KdV equations. In contrast, for the limiting case considered here, the weakly-nonlinear solutions in the
bonded regions are described by single Ostrovsky equations. This also occurred in [72,94,95] when using
the time-averaged derivation for the initial-value problem for the coupled regularised Boussinesq (cRB)
equations.

With the weakly-nonlinear solution now defined for each section of the structure shown in Figure
3.1(b), this structure could be extended by adding additional soft bonded or delaminated regions. The
weakly-nonlinear solution in these new regions could be constructed similarly to the approach taken in

sections 3.2.1 - 3.2.4. However, this is beyond the scope of this thesis.

3.3 Initial conditions

3.3.1 Matching at the boundaries

We now use the continuity conditions (3.11) and (3.12) to determine ‘initial conditions’ for the equations
derived in Sections 3.2.1 - 3.2.4. By substituting the weakly-nonlinear solution into the continuity condi-
tions, we can express the value of the functions in the subsequent region at the interface between the two
regions in terms of the value of the corresponding function in the previous region.

Let’s begin with the initial continuity condition at x = x, the interface between the first and second
regions. We examine this condition for wave displacements during the time interval before the waves reach

the boundary between the second and third regions. We also assume that the displacement at negative
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infinity is zero, which corresponds to zero mean initial conditions, where zero mean refers to the average
initial displacement over the entire domain being zero. By differentiating (3.11) with respect to time at

x1, we derive a relation between the strain rates of the form

/ fPdr = — / ¥ da. (3.34)
xo x1

Since we assume the waves haven’t yet reached the interface between the second and third sections of the
bar, we can exclude the reflected wave R(®) from the calculation at this boundary for right-propagating

waves. By substituting the weakly-nonlinear solutions derived in Sections 3.2.1 and 3.2.2 into (3.34) we

T T2 9
/ (15 - Rg)) do = —/ 7 da. (3.35)

0 1

obtain at leading order

Recalling that € = x — ¢t and n = x + t, and noting that x appears linearly, we can obtain an expression
at x = x; by integrating with respect to the characteristic variables. Given that the strain waves are
localised and have zero mean, this expression will be zero when evaluated at x = zg or x = x5. Therefore,
from (3.35), we obtain

Ilo=g, = R |gma, = TP|oy,. (3.36)

To establish a unique relation among the three wave quantities, we use the second continuity condition.

By substituting the relevant weakly-nonlinear solutions into (3.12) at leading order, we obtain
Ioeo, + RW oy, = TP |y, (3.37)

We can now find ‘initial conditions’ for the reflected wave in the first section of the bar and the transmitted

wave in the second section of the bar, expressed in terms of the given incident wave. Explicitly
R(l) |CE:171 = C;%l)-“z:ml; T(z) |x:xl = Cé’l)-ﬂm:xla (338)

where we have the reflection coefficient Cg) = 0 and transmission coefficient C(Tl) = 1, which is consistent
with previous works for a perfectly bonded waveguide [45,47] and for a layered bar with soft bonding [48].
These coefficients indicate complete transmission of the incident wave at leading order, consistent with
the material being uniform across each section of the bar.

The same approach can be applied to the interfaces between the second and third sections, as well
as the third and fourth sections of the bar, assuming that the waves are traveling in these sections and

have not yet reflected back to the left boundary. Therefore the ‘initial conditions’ for the reflected and
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transmitted waves are

ROomsy = O TPasy TPomsy = CF TP, (3.39)
R(S)‘z:g33 _ Cg’)T(S)|m:m33 T(4)|z:m3 _ 0;3)T(3)|m:ma. (3.40)
Since the material remains consistent across all sections of the bar also, C’g"?) =0 and C’:(FQ’?’) =1. We

consider the continuity conditions at leading order, but this approach could be extended to higher-order

corrections.

3.4 Numerical methods

We will use a direct numerical method on the system of equations (3.1) - (3.4) along with the continu-
ity conditions (3.5) and (3.6), following the methodology outlined in [77] and Appendix A.1, with grid
resolutions of Az = 0.01 in space x, and At = 0.01 in time ¢t. We will compare these results with those
from a semi-analytical approach, where we solve the KdV and Ostrovsky equations using a pseudospectral
method as detailed in [48] and Appendices B.1 and B.2. For both the KdV and Ostrovsky equations, we
use A¢ = 0.1 for the step size in the characteristic variable &, and AX = 0.001 the step size in X. The
number of points in the domain for the Discrete Fast Fourier Transform (DFFT) in our pseudospectral

method is expressed as

N = 2%, (3.41)

where d is a chosen parameter that ensures there are enough points in the domain.

3.4.1 Zero mean initial condition

The initial condition is assumed to be the solitary wave solution of the KdV equation within the first
region of the waveguide. Since the leading order solution in the soft bonded section is governed by the
Ostrovsky equation, which requires a zero mean initial condition, we use the approach outlined in [48,96]

to introduce a pedestal term that ensures this function has zero mean. Specifically, we take

I(¢,20) = Asech? (f t\xo) —ap [Asech2 (W) + Asech? (W)} , (3.42)

where A = —v/2, A = 2/4/v, and we establish

tanh (/TLS)

S (tanh (L/J{—go) + tanh (ngf’)) '

(3.43)

g =
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Here, x( represents the initial phase shift, x; is selected such that the pedestal terms lie close to the
solitary wave, and S denotes a scale factor for the width of the pedestal. In all instances, we opt for
S =10 and z; = 5. Considering the initial conditions for equations (3.1) — (3.4), we integrate the strain

solitary wave solution of the Boussinesq equation from (3.7), yielding

u(z,0) = AA [tanh <x ;x()) - 1] — apAAS {tanh (W) + tanh (W) _ 2} ’

AS AS
(3.44)
u(e. k) = AR [tanh (-+> - 1]
A
— apAAS [tanh (I i xl) + tanh (“’” Bl xl) _ 2] , (3.45)
AS AS
where we have the coefficients

P e S G 2 (3.46)

4 - vi—1 ’

and v; is related to v by the approximate relation v; = 1+ev+ O(e?) [48]. Note that the initial condition
u(z,0) pertains to the entire waveguide, while the initial condition for u(" is extracted from u(z,0) within

the respective domain.

3.4.2 Amplitude of solitons in delaminated region

The IST theory [12] tells us that localised initial conditions for the KdV equation are known to result in
either a series of solitons accompanied by dispersive radiation (unless the continuous spectrum is zero),
or only generate dispersive radiation. When the initial condition is a soliton, the peak amplitudes of
the resulting solitons can be determined analytically [45,53]. In our case, we anticipate that the wave
entering the delaminated region of the bar will form an Ostrovsky wave packet [23]. To derive quantitative
predictions for the peak amplitudes of the generated solitons, we apply the IST to the KdV equation (3.28),
derived in Section 3.2.3, following a methodology similar to that used in [48] for a radiating solitary wave.

Let us consider the solution of an initial-value problem (IVP) for the KdV equation

Uy — 6UUy + Upyy =0, Ulr—o = Up(x), (3.47)

on the infinite line, with a sufficiently rapidly decaying initial condition Uy (x). The IVP (3.47) is associated
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with the following spectral problem for the Schrodinger equation

Uyx + A= Uo(x)] ¥ =0, (3.48)

where X represents the spectral parameter [12]. The parameters of the solitons are defined by the discrete
spectrum of (3.48), hence, our objective is to numerically describe this spectrum using a shooting method
[97]. Given the negative nonlinear coefficient, the discrete spectrum is constrained by the minimum of the
initial condition and zero [98], thus establishing a range within which to solve for the discrete eigenvalues.

The eigenfunctions of the Schrédinger equation exhibit the asymptotic behaviour

erx, as Yy — —oo,
W(y) ~ (3.49)

-7
e "X, as y — 00,

where A\ = —r2. Therefore we rewrite (3.48) as a boundary value problem in the form

Uy =2, &= (Uo(x) NV, (3.50)

where we solve this system from x = a to x = b. The solution is normalised by setting ¥(a) = 1, ®(a) = r,
and the system is solved using a fourth-order Runge-Kutta method. The ratio of ® and ¥ is evaluated
at the right boundary and compared with the relation ®(b)/¥(b) = —r to determine whether r is an

eigenvalue.

3.4.3 Base case simulations

Firstly, we examine the wave scattering within the upper waveguide of the structure with infinite de-
lamination, as depicted in Figure 3.1(a), and compare the results from direct numerical simulations with
the semi-analytical results. The comparative analysis of the waves in each region, using both methods,
is illustrated in Figure 3.2, showing excellent agreement throughout. Notably, as the incident soliton
from the initial delaminated region propagates into the bonded region, it evolves into an Ostrovsky wave
packet, consistent with the anticipated outcomes from the initial-value problem detailed in [94]. This wave
packet subsequently undergoes fission into solitons as it continues propagating through the delaminated
region. At this point, the leading soliton is clearly separated from the trailing radiation. However, the
remaining peaks have not yet separated and become distinct from one another and continue to move on
a zero background, making it difficult to clearly identify them as solitons. This observation is consistent

with findings in [47,77] and experimental observations [44,46,99]. Enhanced agreement could potentially
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be achieved through the incorporation of higher-order terms or the reduction of the ¢ value.

t =40 t =340 t = 1620
0
u
-1
-2 -2 -2
-100 -50 0 200 250 300 1500 1550 1600

-100 0 300 1600

Figure 3.2: The waves in the upper waveguide with infinite delamination calculated using direct numerical
simulations (blue, solid line) and the semi-analytical solution (red, dashed line). Parameters are e = 0.01,
v =4,v; = 1.04 and v = 1. For the finite difference method, the full computational domain is [—100, 1600].
In the pseudospectral method we have N = 65, 536.

The theoretical prediction of the wave peaks’ amplitudes, obtained using the IST as elaborated in
Section 3.4.2, indicates the presence of three solitons. Specifically, the lead soliton’s amplitude is predicted
to be -1.016, agreeing with the semi-analytical results that the prediction is based upon. Meanwhile, the
second and third solitons are predicted to have amplitudes of -0.392 and -0.042, respectively. In Figure
3.2, there appears to be a second soliton, exhibiting a larger amplitude than the prediction. However, it
is yet to emerge entirely from the well, and as it does so, it is expected to lose some amplitude.

The next logical case to explore involves the scenario where the second delaminated region is not
semi-infinite anymore, but rather sandwiched between two soft bonded regions as depicted in Figure 3.1b.
Our objective is then to determine the presence of a delaminated region and, if confirmed, deduce its
length based on the observed wave behaviour.

We now adjust the configuration from the infinite delamination case in Figure 3.2 by introducing an
extra soft bonded region positioned at 1600 < x < 2400. The resulting waves within this final soft bonded
region are depicted in Figure 3.3. The plot shows that the leading solitary wave evolves into an Ostrovsky
wave packet, upon propagating from the second delaminated region into the second soft bonded region,
similar to the behaviour observed in the initial bonded region. There is also radiation trailing behind,
which might mask any additional Ostrovsky wave packets originating from other solitons. Consequently,
our analysis will primarily concentrate on the leading wave packet. It is worth noting that while the

agreement is good around the leading wave packet, it diminishes further away from it due to the absence
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of higher-order correction terms.

-0.6 : : : :
2300 2320 2340 2360 2380 2400
x

Figure 3.3: The solution in the final section of Figure 3.1(b), where 1600 < x < 2400, using the same
parameters stated in the caption for Figure 3.2 at t = 2400, for the direct numerical simulation (blue,
solid line) and semi-analytical solution (red, dashed line).

3.4.4 Linear dispersion relations - KdV and Ostrovsky equations

To further understand the wave packet’s behaviour, we will derive the linear dispersion relations for both
the KdV and Ostrovsky equations. Previous studies, such as [26], have shown that the Ostrovsky wave
packet travels at a velocity near the peak of the group speed, whereas solitary wave solutions of the
KdV equation exist within the spectral gap, which is a range of frequencies where the solitary waves are
stable and localised. Leveraging these insights can help us pinpoint the wave packet’s location within the
waveguide and assess if delamination has occurred. We proceed to derive the dispersion relations for a
moving reference frame.

The linear dispersion relations are derived by seeking linear wave solutions of (3.20) and (3.24) (or
equivalently, (3.28) and (3.32)). We look for solutions in the form I ~ Ipe'*¢=X) and T(?) ~ Tpe!(ke—wX),
where w represents the wave frequency and k denotes the wavenumber. Substituting these solutions into

equations (3.20) and (3.24) and omitting nonlinear terms yields the dispersion relations
w(k) = —k® for I and w(k) = % — &3 for T, (3.51)

The same relationships can be derived from (3.28) and (3.32) accordingly. The phase speed is given by
p = w/k, thus

p(k) = —k? for I and p(k) = % — k? for T,

The group speed is calculated as cq(k) = dw/dk, hence

cy(k) = —3k* for I and c,(k) = —% —3k% for T®, with ¢,(k) <0. (3.52)
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A plot of the dispersion relation, phase speed and group speed for the parameters specified in the caption

of Figure 3.2 is demonstrated in Figure 3.4.

5
4+
0
w ,l
Spectral gap S
‘ ‘ ‘ T —— -10 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
k k
(a) Dispersion Relation (b) Phase Speed and Group Velocity

Figure 3.4: The dispersion relation for the KdV/Ostrovsky equations is shown in Figure 3.4(a) and the
phase speed (red) and group velocity (blue) are shown in Figure 3.4(b) for the base case parameters for
soft bonded (solid) and delaminated (dotted) regions.

For T, in the soft bonded region, the group speed peak in Figure 3.4(b) is at cg = —2.449 for
ko = 0.639, thus the wave packet will propagate at this speed. However, in the case of delamination, the
solitary wave solutions within the delaminated region exist within the spectral gap and travel at a speed
p > 0, but close to p = 0.

Recalling the characteristic variables £ = x — ¢t and X = ez, both with the dimension of length L, we

can write ¢4 as
d¢§
Cqg = —=, 3.53
where ¢4 represents a dimensionless speed in the characteristic reference frame. Consequently, for each
unit increment in X, the wave packet therefore experiences a phase shift of magnitude z; = |¢4| = 2.449 in
the £ direction, assuming the soliton has an amplitude close to zero. The value x; serves as a dimensionless

distance the wave packet travels in £ for each unit increase in X.

Considering the dimensionless distance x,, we use the expression for £ to relate it to time as
x x
cgms—Ozf—t:Mf:f—xch. (3.54)

Translating back to (z,t) coordinates, we calculate x/t to obtain the phase speed v}, of the waves in the

bonded region, predicted as

T__mfe 1 (3.55)
: :

Vp = = = .
s/ —xscqg 1 —emg



CHAPTER 3. SCATTERING OF AN OSTROVSKY WAVE PACKET IN A DELAMINATED
WAVEGUIDE 47

Table 3.1 illustrates the wave speeds in each region of the waveguide from the semi-infinite delaminated
structure, along with the predicted speed from the dispersion relation, v,. It is observed that the solitary
waves move at a speed greater than 1.02, while in the bonded region, the wave speed is slightly slower,

showing a good agreement with the predicted speed from the dispersion relation.

Uy U1 V2 V3
0.976 | 1.033 | 1.010 | 1.021

Table 3.1: The predicted speed of the Ostrovsky wave packet in the bonded regions, vy, and the numerically
observed speed of the waves in each region, denoted v to vs.

3.4.5 Linear dispersion relation - Boussinesq-type equations

We now consider the dispersion relation for the system of Boussinesq and BKG equations (3.1)—(3.4). By

substituting the sinusoidal approximation u ~ ¢***=“% into (3.1)—(3.4), we obtain the dispersion relation

| k%4 ey

where w and k are defined as before. The phase speed is expressed as

w k2 + ey
= — = i _ .
P=% =7\ 2t 20kt (3.57)

Differentiating the dispersion relation with respect to k yields the group velocity as

k(c® —2e%B7y)

Vey + k21 + 2e8k2)3/2

In Figure 3.5 we provide the corresponding plot to Figure 3.4, but for (3.56) - (3.58). The peak of the

Cg:

(3.58)

group velocity in Figure 3.5(b) is ¢, = 0.976, which is identical to the wave speed predicted by calculating

the dispersion relation from the Ostrovsky equation, implying both methods will provide similar results.

3.4.6 Varying parameters

From the parameters specified in Section 3.4.3, and the § value specified in (3.1) - (3.4), we now vary the
values of 7, 8, and €. The resulting wave speeds in each region are presented in Table 3.2.

Table 3.2 shows that the group speed increases when v and 7y increase, whereas it decreases when
[ is increased. In all cases, there is good agreement between the predicted and observed wave speeds,

except when varying v. This discrepancy arises because the BKG equations do not directly account for
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Figure 3.5: The dispersion relation for Boussinesg-type equations is shown in Figure 3.5(a) and the phase
speed (red) and group velocity (blue) are shown in Figure 3.5(b) for the base case parameters for soft
bonded (solid) and delaminated (dotted) regions.

Initial condition Zero mass Non-zero mass
Parameter Cq (%1 (%) V3 Cg (%} (%) U3
v=2_8 0.976 | 1.163 | 1.000 | 1.047 || 0.976 | 1.191 | 1.003 | 0.995
£ =38 0.951 | 1.064 | 0.977 | 0.999 || 0.951 | 1.081 | 0.977 | 1.000
8 =10.65 0.986 | 1.064 | 0.993 | 1.026 || 0.986 | 1.081 | 0.993 | 1.025
y=2 0.966 | 1.064 | 0.965 | 1.018 || 0.966 | 1.081 | 0.965 | 1.018
vy=4 0.952 | 1.064 | 0.955 | 0.982 || 0.952 | 1.087 | 0.955 | 1.011

Table 3.2: The predicted and numerically observed wave speeds for varying parameters and initial condi-
tions.

amplitude, only indirectly through the scaling €. The results also indicate little variation between using
the zero-mass or non-zero-mass initial conditions.

The small wave parameter, ¢, directly influences the degree of wave evolution. We will perform simu-
lations using the setup shown in Figure 3.2, varying only ¢ while keeping all other parameters fixed. The
resulting wave speeds in the soft bonded region from these simulations will be compared with theoretical
predictions derived from the linear dispersion relations for both the Boussinesq and Ostrovsky equations,
as presented in Table 3.3.

Table 3.3 shows excellent agreement between the numerically simulated wave speeds and the two
theoretical predictions across all € values, demonstrating that the linear dispersion relation accurately
predicts wave speed for various e values.

Similarly, we compare the amplitude of the leading wave peak at the end of the delaminated region
from our numerical simulations - one set conducted over a duration of ¢ = 2000 and another run for
a sufficiently long time to allow the leading soliton to separate from the trailing radiation - with the

theoretical predictions from the IST for various € values, as shown in Table 3.4.
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Parameter Cq Up Vg

e =10.001 | 0.9975 | 0.9976 | 1.0250
e =10.002 | 0.9951 | 0.9951 | 1.0000
e =0.003 | 0.9926 | 0.9927 | 1.0000
e =0.004 | 0.9902 | 0.9903 | 1.0125
e =0.005 | 0.9878 | 0.9879 | 1.0050
e =0.006 | 0.9853 | 0.9855 | 1.0042
e =0.007 | 0.9830 | 0.9831 | 1.0071
e =10.008 | 0.9810 | 0.9831 | 1.0031
e =10.009 | 0.9781 | 0.9783 | 1.0083
e =0.010 | 0.9757 | 0.9760 | 1.0100

Table 3.3: The numerically observed wave speed in the first soft bonded region, vy, compared with the
wave speed predicted from the linear dispersion relation for the Ostrovsky equation, v, and the Boussinesq
equation, ¢4, for 0.001 < e < 0.01

Parameter IST Simulation (¢ = 2000) Simulation (long run)
e =0.001 -1.472 -1.502 -1.477
e = 0.002 -1.107 -1.114 -1.107
¢ =0.003 -0.764 -0.763 -0.764
e = 0.004 -0.630 -0.495 -0.629
e = 0.005 -0.888 -0.930 -0.880
e = 0.006 -1.098 -1.034 -1.098
e = 0.007 -1.208 -1.209 -1.208
e = 0.008 -1.220 -1.219 -1.221
e =0.009 -1.148 -1.148 -1.148
€ =0.010 -1.016 -1.016 -1.016

Table 3.4: A comparison of the wave amplitude of the leading wave peak at the end of the second
delaminated region in the numerical simulation at ¢ = 1600 and the IST prediction for 0.001 < e < 0.01

Table 3.4 shows reasonable agreement between the amplitudes from numerical simulations at ¢t = 2000
and the IST predictions for € < 0.006. However, the agreement is not as precise, as the soliton’s structure
and amplitude are still influenced by the trailing radiation. In contrast, running the simulation long
enough for the soliton to separate from the trailing radiation reveals excellent agreement with the IST
predictions up to three decimal places. For € > 0.007, both simulation cases demonstrate strong agreement
of the amplitude with the IST prediction, as the faster evolution of the wave at larger € values facilitates
quicker separation of the soliton from the trailing radiation even at ¢ = 2000. This further validates the
IST as a reliable tool for predicting wave amplitudes in the delaminated region and supports the findings

presented in Section 3.4.3.

3.4.7 Varying delamination length

To understand the impact of delamination in a layered structure, we investigate how varying the de-

lamination length influences the wave behaviour in the second bonded region. We consider the finite
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delaminated structure, using the same parameters as in Section 3.4.3. The delamination length of the
second delaminated region is varied incrementally from D = 0 (indicating no delamination) in intervals
of 10, up to D = 360. The calculation duration is set to a maximum of ¢t = 2000.

We examine two scenarios: € = 0.005 and € = 0.001. Figure 3.6 illustrates the corresponding waves
transmitted near the end of the first soft bonded region for these cases. Since the Ostrovsky equation has
‘time’ represented as X = ex, we anticipate that a lower value of € will result in less evolution. Hence,
for e = 0.001, the wave resembles a soliton more closely, while for € = 0.005, it manifests as an Ostrovsky
wave packet. This distinction provides two distinct behaviours for analysis. Other values of ¢ are expected
to align with either of these behaviours or fall within the transition between them. However, as we have
already analysed € = 0.001 and ¢ = 0.005, examining intermediate cases would add little value and is

therefore not pursued within this thesis.

0.5 1 0.5
0 0
-0.5 -0.5
u u
-1 -1
-1.5 -1.5
-2 : : : : -2 : : : :
200 220 240 260 280 300 200 220 240 260 280 300
x x
(a) € = 0.001 (b) & = 0.005

Figure 3.6: Waves located near the end of the first soft bonded region of the upper waveguide for (a)
¢ =0.001 and (b) £ = 0.005.

The amplitude of the Ostrovsky wave packet fluctuates during its propagation, with a peak amplitude
near its centre [26]. We determine this peak amplitude by identifying the maximum value in the second
bonded region, spanning from ¢t = 1600 to ¢ = 2000. We then investigate how this peak amplitude varies
with different delamination lengths compared to the no-delamination case. The results are shown in
Figure 3.7.

In the case where ¢ = 0.001, there appears to be an almost linear correlation between the delamination
length and the amplitude change. This finding is consistent with observations in the solitary wave and
radiating solitary wave cases [48,77]. Conversely, for e = 0.005, we initially observe an increase in
amplitude. However, as the delamination length continues to increase, the amplitude of the wave packet

decreases in a nonlinear manner. This is expected as the wave packet comprises of at least one peak
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Figure 3.7: Plots showing (a) the percentage change in amplitude and (b) the phase shift curves (solid
lines) relative to the fully bonded case, with their gradients (dashed lines with circular markers). Blue
and red lines correspond to € = 0.001 and € = 0.005, respectively.

that will eventually evolve into solitons within the delaminated region. However, initially, these peaks are
contained within a wave packet, leading to an artificial boost in their amplitude due to the accompanying
radiation. As the delamination size increases, the generated solitons gradually separate from the wave
packet, becoming distinct. This separation could lead to the expected drop in amplitude as the solitons
evolve into Ostrovsky wave packets within the second bonded region.

We now consider the phase shift at the front of the wave packet by manually tracking its position
for varying delamination lengths, relative to the no-delamination case. For ¢ = 0.001, initially, as the
delamination length ranges from 0 to 10, there is a sharp rise in phase shift, gradually tapering off beyond
D = 10. Similarly, for € = 0.005, there is a noticeable phase shift increase with delamination length. While
the relationship is nonlinear, it tends to become closer to linear after an initial adjustment period. We
also plotted the gradient of these phase shift curves, which showed a linear increase as the delamination
length increased for both €. For € = 0.005, the phase increased more significantly than for ¢ = 0.001.

Referring to Section 3.4.4, we expect a minimum phase shift of x; = 2.449 for € = 0.005 when D = 200,
as per the linear dispersion relation. The phase shift from D = 200 to D = 300 is 1.09. This leads to
noticeable disagreement in the gradient at the centre of the phase shift line in Figure 3.7(b), albeit expected
due to the nonlinear behaviour contributing to some deviation in the results. Similarly, for ¢ = 0.001,
we predict a minimum phase shift of zg = 2.449 for D = 1000. The gradient line of the phase shift for

€ = 0.001 closely matches this minimum phase shift.
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3.4.8 Application to model a PMMA bar

Let us recall from Section 2.1.1 the DDE

2 Jv? 2
Ut — C Ugpqy — ;ulum —+ T(Utt — clum)m. (359)
We adapt this model by including a bonding coefficient ~,,, simulating the waveguide being attached to
a much denser lower waveguide via a soft bond, thus

Jv?

2 _ 2
g, = iy = tigliag + == (wp — Ciuas)

— Y. (3.60)

T

We can apply a scaling to bring us to the non-dimensional form, namely

S

A

T 4
Yv U7 ?7 (361)

T =

where

Juv? X 12ec?p 2e207y
X — 2 2 T2 U=-_ X, Yp=—t . 3.62
e @D T= T EE S I

In doing so, we obtain equation (3.2) and an estimate for the ‘material’ bonding coefficient, 7,,, in terms of
the non-dimensional one, 7, used in our results. Within the delaminated regions of the bar, we set v = 0,
hence ~,, = 0. Considering a PMMA bar with a cross-section of 10 mm x 10 mm, which corresponds
to dimensions of 2a mm x 2b mm, (consistent with experimental setups), we adopt material parameters

derived from experiments on PMMA [100], as presented in Table 3.5.

a (m) b (m) p (kg/m?) v | E(GPa) | | (GPa) | m (GPa) | n (GPa) | g (GPa)
5x 1073 [ 5x 1072 | 1.16 x 1073 | 0.34 5.27 —10.90 —7.70 -14 —3.57

Table 3.5: Table of experimental parameters with definitions consistent with those described in Section
2.1.1, where a and b are the dimensions of the bar’s cross-section, p is the material density, v is Poisson’s
ratio, F is Young’s modulus, I, n, and m are Murnaghan’s moduli, and § is a nonlinear coefficient.

With these parameters, we can perform a simulation using our model. We take ¢ = 0.1, consistent
with the value utilised in [46] for numerical simulations. The bar is configured with a length of 600 mm,
with a delamination beginning at 300 mm.

Based on the results illustrated in Figure 3.8, it becomes apparent that an Ostrovsky wave packet
forms within the bonded region, while solitons emerge within the delaminated region. However, these

solitons are not fully developed and would require a longer bar for complete separation. The simulated
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Figure 3.8: Ostrovsky wave packet generation and scattering in a bi-layer structure employing material
parameters corresponding to PMMA. Here, we adopt € = 0.1, with all measurements converted back to
dimensional variables.

wave height is approximately 3 mm high, and takes 0.25 ms to approach the end of the bar (0.29 ms to

reach it).

3.5 Summary

In this chapter, we explored the scattering of an Ostrovsky wave packet within the upper waveguide of
a bi-layer structure featuring both soft bonding and delamination between the layers. Our investigation
focused on a configuration where the lower layer has a significantly higher density compared to the upper
layer. This setup is described by the BKG equations in the bonded regions and the Boussinesq equations
in the delaminated regions.

We constructed weakly-nonlinear solutions with matched asymptotic multiple-scale expansions and
used averaging techniques with respect to the fast space variable to derive leading order solutions. This
methodology follows established works in the field, which have explored various material properties and
bonding conditions [47,48].

We ran and compared simulations using a direct numerical scheme with a semi-analytical approach,
observing good agreement throughout the waveguide. For enhanced accuracy, higher-order corrections in
the weakly-nonlinear solution can be derived, similar to the approach used for initial-value problems for
these equations [72,94, 96].

In the initial delaminated region, a solitary wave was generated. Unlike prior studies where the wave
evolved into solitons or radiating solitary waves in the soft bonded region, we observed Ostrovsky wave

packets in the soft bonded region due to the significant difference in wave speeds between the layers [23].
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As the Ostrovsky wave packet entered the second delaminated region, it evolved into a series of rank-
ordered solitons accompanied by dispersive radiation, consistent with theoretical predictions from IST
theory for the KdV equation [12]. We found excellent agreement between the amplitude of the leading
soliton in the simulation and the theoretical prediction using the IST, even across various ¢ values. Upon
re-entering the second bonded region, each of these solitons transitioned into Ostrovsky wave packets,
with the leading soliton displaying the most distinct behaviour.

As the length of the delaminated region increases, we observed a decrease in the amplitude of the
largest wave peak within the Ostrovsky wave packet. This decrease follows a predominantly linear trend
for small values of the wave parameter e, while for larger values of ¢, it exhibits nonlinear behaviour,
starting with an initial growth phase followed by decay. Similarly, we noticed an increasing phase shift
relative to the fully bonded case as the delamination length increased. This phase shift demonstrates
a linear relationship for small € values and a nonlinear trend for larger € values. The linear dispersion
relation methods for the KdV and Ostrovsky equations, as well as for the BKG and Boussinesq equations,
were used to successfully predict the wave speeds in each section for various € values, showing good
agreement with the observed numerical results.

Experiments conducted on PMMA and polystyrene layered waveguides [46,68] have previously demon-
strated that solitons can be detected at larger distances compared to linear waves [101]. Motivated by
these findings, we simulated a PMMA bar with a cross-section of 10mm x 10mm and a length of 600mm.
Our simulations revealed the development of Ostrovsky wave packets in bonded regions, with solitons be-
ginning to form in delaminated regions. These numerical findings could be used for laboratory experiments
involving a diverse range of materials to detect certain waves as a means of controlling delamination.

In Chapter 4, we will explore a similar scattering problem where the lower layer is not as dense, thus
we consider its longitudinal displacement, and so coupled Boussinesq equations are employed instead.
This will involve a more detailed examination of the weakly-nonlinear solution. Unlike [48], the wave
speed in the lower layer will exceed ¢ = 1 4+ O(e). This suggests that while there might be some initial
interaction between the waves in each waveguide, the faster wave in the lower layer will eventually break
away from the wave in the upper layer, leading to minimal long-term interaction. Consequently, we do

not anticipate observing the radiating solitary waves seen in [48].



Chapter 4

Scattering of an Ostrovsky wave

packet in a two-layered waveguide

y

Xo X1 X2 X3

Xo X X2 X3 X4

(a) Infinite delamination case (b) Finite delamination case

Figure 4.1: Schematic of the bi-layer structures with a homogeneous region for xo < x < x1, a soft
bonded region for 1 < z < z2 and a delaminated region for o < x < z3. Figure 4.1(b) shows another
soft bonded region for z3 < = < x4. We assume that the homogeneous section has the same material
properties as the upper layer and, for the other three sections, we assume that the material in both layers
has similar material properties.

In this chapter, we investigate wave scattering in the structures shown in Figure 4.1. These structures
are similar those in Chapter 3, but instead of a delaminated first region, the first region here is homoge-
neous with uniform waveguide densities. Additionally, while Chapter 3 focused only on the upper layer,
this chapter examines both layers, as the density discrepancy between them is smaller, except in the first
region.

This chapter is organised as follows: in Section 4.1, we will introduce the set of coupled Boussinesq
equations that govern the longitudinal displacement and strain within each section of the waveguide.
In Section 4.2, we will construct weakly-nonlinear solutions to describe the wave propagation, using an
asymptotic multiple-scales expansion at leading order. The constructed leading order solutions will then

be used in the semi-analytical method, as in Chapter 3.

95
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In Section 4.3, we will compare the direct numerical solution to the constructed semi-analytical solu-
tion, with the aim of achieving good agreement and demonstrating a substantial improvement in compu-
tation speed with the semi-analytical approach. Two scenarios will be examined: one with a soft bonded
region followed by infinite delamination, and another where delamination is situated between soft bonded
regions. The characteristic speed in the lower layer will be varied and compared to theoretical predictions
from the linear dispersion relation. We then plot the phase shift, defined as the difference in position of
the leading peaks relative to a fully bonded case, for cases of various delamination lengths and positions.
When given only a phase shift value, we will use our plots from both layers, or when waves transmit in
both directions through the upper layer, to uniquely determine the position and length of the delamina-
tion. We will conclude our findings in Section 4.4. The results of this chapter are partially summarised

in [102].

4.1 Problem formulation

Similar to Chapter 3, in this chapter we will examine the scattering of a wave packet within a two-
layered structure with semi-infinite delamination. The structure consists of an initial homogeneous section,
followed by a soft bonded region and then a delaminated region, as illustrated in Figure 4.1(a). Figure
4.1(b) depicts a finite delamination case, similar to the semi-infinite scenario but with the delaminated
section ‘sandwiched’ between two bonded sections. These structures are inspired by the experimental
setup in [46].

In Chapter 3, we considered a limiting case where the material in the lower layer differed significantly
from that in the upper layer, allowing us to treat the displacements in the lower layer as negligible. In
this chapter, we examine the scenario where the characteristic speed in the lower layer is denoted ¢, while
in the upper layer we assume unit speed and the difference in speed between the layers satisfying the
relationship ¢ — 1 = O(1). This assumption reflects the significantly different material properties in each
layer, allowing us to consider wave scattering in both layers. In [48], the scattering of long longitudinal
waves in this structure was also examined, but the characteristic speeds in the layers differed by O(e),
where € represents a small wave parameter, with the order symbol here indicating the power of €. The
leading order equations were instead described by coupled Ostrovsky equations in the bonded sections
and uncoupled Korteweg-de Vries (KdV) equations in the delaminated sections of the bar, consistent with
the time-averaged derivation for the initial-value problem, as studied in [72].

Following the notation used in Chapter 3 and [48], we denote the longitudinal displacements in the

upper layer of the i-th section as u(? and in the lower layer as w®. For both the homogencous and
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delaminated regions, o and 3 represent the physical and geometrical properties of the waveguide, while
c is the wave speed. In the homogeneous region, these constants are set to 1, while in the delaminated
region, where these constants may differ. The system governing longitudinal displacements is described

by an uncoupled pair of Boussinesq equations

) — o) = 2 [~6uu + ull ]

wlf = Pul) =2 [boululd + puil.]. (a.1)
for i = 1,3, where ¢ = 1 denotes the homogeneous region in which the waveguides have identical material
properties, and i = 3 denotes the delaminated region. § and ~ are coupling coefficients which depend on
the properties of the soft bonded layer [29,48]. Note that in Chapter 3, we considered the limiting case
where in the lower layer ¢ — oo and consequently w — 0. For the soft bonded regions, where i = 2,4,

the coupled regularised Boussinesq (cRB) equations describe the longitudinal displacement of the waves

within the waveguides:

W — ) = 22 [~Gauwlul) + fufl, + (59 - g0)]. (42)

The equations are scaled so that «, 8 and c appear exclusively in the lower layer. Now, we describe the

longitudinal strain of the waves by denoting f®) = u;i) and ¢ = wg), so the system in homogeneous

and delaminated regions is formulated as
i i )2 i
, . N\ 2 ;
gty — *gli) = 2 [—304 (g(”)m + ﬁgftfm] , (4.3)
for 4 = 1,3. For the soft bonded regions, we have
. , N\ 2 . , .
7= 12 =22 | -3 (£0)._ 4 il -8 (50 = g)]
. , N2 ; , ,
gt — *gli) = 2¢ [—301 (g(’))m + Botine + 7 (f(” - g(’))] : (4.4)

for i = 2,4. These equations are complemented by continuity conditions at the interfaces between the



CHAPTER 4. SCATTERING OF AN OSTROVSKY WAVE PACKET IN A TWO-LAYERED
WAVEGUIDE 58

sections, with the continuity of longitudinal displacement denoted as
u(z)|x:zl = u(i+1)|m:xiv w(i)‘z:zi = w(i+1)|x:ziy 1= 1a273 (45)

The continuity of normal stress at the interface in the upper bar is written as

. O\ 2 . X i 2 .
£ 4 2¢ {3 (1) + ffi)} = fO 42 {3 (re) f}Z“)] , i=123  (46)
and for the lower layer we have
(1) m)? ., o 2,(2) @) 4 5,
9" +2e -3 (g ) + g5 = c"g"” + 2 | -3« (9 ) + B4 ; (4.7)
T=T1 =T

. N 2 . . . 2 .

EROIE [_3a () +59§Z’] 2yt o [_3a (s0) +Bg§§+”} , =23 (4.8)

With the governing equations and corresponding continuity conditions for our structures now established,
we will proceed by constructing weakly-nonlinear solutions and deriving leading order approximations

along with the necessary initial conditions.

4.2 Weakly-nonlinear solution

We construct a weakly-nonlinear solution up to O(g) using a methodology similar to that in Chapter 3
to derive the leading order solutions. While some steps are abbreviated here due to their resemblance to

those in Chapter 3, the key processes and results are still provided.

4.2.1 Homogeneous section

Let us consider the first region of the bar, the homogeneous section as shown in Figure 4.1(a), using the
notation from Section 4.1, we construct the leading order weakly-nonlinear solution for the upper layer in

this region, which takes the form
FO(x,t) = 1D (&, X) + RY (9, X) +ePWY (&,9, X) + O(e?), (4.9)

where £ = x —t and 1 = = + ¢ represent the fast characteristic variables, while X = ez denotes the slow
space variable. The function I(*) corresponds to the incident wave, R(Y) represents the reflected waves,

and P() accounts for the higher-order correction at O(g). Substituting this expansion into system (4.3)



CHAPTER 4. SCATTERING OF AN OSTROVSKY WAVE PACKET IN A TWO-LAYERED

WAVEGUIDE 59
gives
W) _ (970 D7 4 970 M 1 pa )
—4pf) = (218 — 121001 +2I§££)§+(2Rx ~ 12R! >R£7>+2R;n>n)n
+12 (I§§>R(1> +TORM + 2I§1)Rf71)) . (4.10)

Averaging the left-hand side of (4.10) by integrating with respect to x, similar to the approach in (3.14),

while keeping the constant 7 fixed, yields

. —4 1 ) 14 2x1—n
lim / Pg(rll)dn: lim 7/2 Pg(;)dn

To——00 L1 — T ZTo—>—00 2($1 - mo)

xo Zo—1
—4 2x1—1n
P
zo——00 2(x1 —xg) L & l2ze—n
=0.
Similarly averaging the right-hand side of (4.10) yields
: 1 1) (1) | opm)]217¢
0= tim ———[21{ 120010 1 21|
10—1)H—1<X> 2(1‘1 — 1‘0) X € * £eg 2wo—&

2 lt( ) sz —00 2 a 0 2x09—¢&
n To—> o

221§

1
- lim —— / (IR + TV RMY + 21V RD) .

To——00 Q(Il — l‘o)
2z0—¢
Evaluating the first and third lines of (4.12) gives us 0, leading to the KdV equation
RY —6RVRM + RV = 0.

Similarly, by averaging with respect to £ we find

1 6191 + 1) = 0.

(4.11)

(4.12)

(4.13)

(4.14)

Thus, by substituting the KdV equations into (4.10) and integrating with respect to £ and 7, we find the

higher-order correction

J <2I<1>R(1> + RO /I<1>d§ + 1V /R<1>dn> + 60 (& X) + o (n, X),

(4.15)
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where ¢§1), ¢§1) are arbitrary functions. For the lower layer, we construct the weakly-nonlinear solution,

of the form
gV (@, t) =TW (£, X) + GV (1, X) + QW) (&,1,X) + O(?), (4.16)

where (M) is the same as in the upper layer. The reflected waves are denoted by G (5, X), and
QW (&,m, X) represents the higher-order correction. Since the incident wave is identical to the upper
layer, one of the leading order equations for the lower layer is (4.14). Using a similar process as for the

upper layer, the other leading order equation is

Gg) _ GG(l)Gsll) + Ggllﬁ)ﬂ =0, (4.17)
and the higher-order correction is
QW =3 <2I<1>G<1> +GP / 1Wag + 1Y / G<1>dn) + oM (&, X) + i (9, X)), (4.18)

where ¢§1), él) are arbitrary functions.

4.2.2 Soft bonded sections

Now, we consider the case where the layers are soft bonded, with significantly different material properties,
resulting in a characteristic speed difference between the layers of c—1 = O(1). For the second soft bonded
region, we do not account for reflected waves, as it is the final section of the structure.

We will construct the weakly-nonlinear solutions to (4.4) in the following form

fO(z,t) =T (&, X) + RY (n, X) + P (&,1, X) + O(e?),

gD (x,t) = 5D (1, X) + GV (¢, X) +eQ (v,¢, X) + O(e?), (4.19)

where i = 2 corresponds to the first soft bonded region and i = 4 to the second. Here, f(*) represents
the solution for the upper layer, and ¢(¥ represents the solution for the lower layer. The characteristic

variables £, n and X are the same as before, but we now have different characteristic variables for the
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second layer, v = x — ct and ¢ = x + ct. Substituting the expansion of f(*) into (4.4) gives

—4p) = (2T§;’> —12(TOT) + zng?é)‘5 _95 (T(i) _ S<i))

+ (2RY ~ 12(RORD) + QRS;’gn)n ~26 (R® - G)

(@) p(i i) p(i (@) pi
—12 (T RO + TORY) + 27 R | (4.20)

Space averaging the left-hand side of (4.20) while keeping the constant ¢ fixed yields 0, similar to the

homogeneous region, while averaging the right-hand side gives

2x;—n
(@) _ 19(Rp® R O _sr®) lm — Lt
(28% — 12(RORD), +2R),, —6RV) lm O /2 o

1 2zi—n .

+ lim 7/ 6GWde = 0. 4.21

Ti—1—>—00 2($i — xi—l) 2wi_1—n f ( )
Recalling that ¢ is a variable in G(¥), we express ¢ as
1-— 1

(-t (o 22)

2

By transforming the variable ¢ in the function G to the expression on the left-hand side of (4.22), we

can integrate with respect to £ to obtain the leading order Ostrovsky equation

(Rg? — 6RORY + R%» — §R®. (4.23)
n

We now apply averaging while holding n constant, following a similar process as when ¢ was held constant.

Averaging the left-hand side of (4.20) again results in zero. For the right-hand side, we transform v as

(I+e)¢+(1—c)n
2

=, (4.24)
and perform the averaging to obtain the following leading order Ostrovsky term
(T)((i) — 67T ¢ ngg)g = o7, (4.25)

By substituting our leading order Ostrovsky equations into (4.20) and integrating with respect to £ and
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7, we obtain the higher-order correction P(*) as

PO — _ 1_5(;2 (//G<i>(u,X)dudu+//S<i>(g,X)dgd<)

+3 (2T<i>R<i> + R / TOdg + 1" / R@)dn) + o8 (&, X) + 0 (n, X), (4.26)

where (bgi), ¢1i) are arbitrary functions. Following a similar averaging process for the lower layer, we

obtain

(c25§? — 6aSD S + 5CQS§QV) NLON (4.27)
(6% — 6aGGE + ﬁC2G?gC)C =G, (4.28)

Following a similar process for the lower layer as for the upper layer, we obtain the higher-order correction

QW as follows:

Qi) — ?7& (//T(“dfdé +//R“)dndn)

+ 3a <25(i)G(i) + Géi) / SOdy + S£i) /G(i)dC) + d)él) (v, X) + 1/151) (¢, X), (4.29)

where qﬁg), zbg) are arbitrary functions. Recalling that the second soft bonded region is the final region
of the structure, no reflective waves are generated, resulting in R* = 0 and G¥ = 0. Consequently,

§4) =0 and wgl) =0.

4.2.3 Delaminated section

We now consider the third region of the structure where delamination is present. We construct the

weakly-nonlinear solution in the form

FO(z,t) =T (6, X) + R (1, X) + eP®) (&,1, X) + O(?),

g (@, 1) = 5O (1, X) + GP (¢, X) +eQ® (v, ¢, X) + O(e?), (4.30)
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where the two sets of characteristic variables are the same as the soft bonded regions. Substituting the

expansion of f®) into (4.3) gives

(3) _ (o) 3)p(3) ®) ®) 5) p(3 5
—ap® = (2Tx —12(TT )+2T§§£)€+ (2RX — 12(R( )R%)H?Rfm)n)n

2 (1Y R + TORE) + 21 RY) (4.31)
Similarly for the lower layer, we find

—42QW = (2c2s§?) +12a(S®SP) + 2ﬁchl(ffw) + (2C2G§§) +120(GOGP) + 258(;2}) C

+12a (Sﬁ)G(?’) + 506D 4 2S§3>G§3)) . (4.32)

Applying averaging in a manner similar to that used for the homogeneous and soft bonded regions yields

the KdV equations in the form

(3 B (3) (3)
Ty —6T + Teee =0, (4.33)
3
RY —6R®PR® 4+ RY) = (4.34)
in the upper layer and
28— 6aS® 8B 4 3253 =0, (4.35)
3 3 3
cQGg() — 604G(3)G(< )+ BCQGEC)C =0, (4.36)

in the lower layer. The leading order equations for the upper layer are similar to those in the homogeneous
region, but we consider a transmitted wave instead of an incident wave. Substituting (4.33) and (4.34)

into (4.31) and integrating with respect to the characteristic variables gives
PO _ 3 <2T<3>R<3> +R®) / TOdg + 7 / R > + 6 (6, X) + 4 (0, ), (4.37)

(3)
1

where ¢§3), are arbitrary functions. Similarly, substituting (4.35) and (4.36) into (4.32) and integrat-

ing with respect to the characteristic variables gives
Q¥ = 3a (2S<3>G<3> +GY / S®dy 4+ 3 / G<3>d<> + o5 (1, X) + 57 (¢, X), (4.38)

where ¢(23), wgg) are arbitrary functions.



CHAPTER 4. SCATTERING OF AN OSTROVSKY WAVE PACKET IN A TWO-LAYERED
WAVEGUIDE 64

4.2.4 Matching at the boundaries

We will now use the continuity conditions (4.5) - (4.8) to establish the ‘initial conditions’ at the interface for
each region of the structure. This involves substituting the weakly-nonlinear solution into the continuity
conditions and expressing the functions at the interface of a region in terms of the functions from the
previous region.

Since the governing equations in Chapter 3 are the same as those for the upper waveguide in our
structure, we can use the ‘initial conditions’ for the reflected and transmitted waves from Chapter 3,

expressed in terms of the transmitted wave from the previous section, which are given by
ROD|,_, = COTO|,_, T, =CWTO |, i=1,2,3, (4.39)

where we have the reflection coeflicient C’}(%l) = 0 and transmission coefficient C(Tl) = 1. Applying a similar

methodology for the lower layer we obtain
G|y, = CETV 8D, S|y, = CETVSD |y, i=1,2,3, (4.40)

where the transmission and reflection coefficients take the form

) -1 )

o O —— oW - £ =1 4.41
¢ e’ S T e(l4e) =4 (4.41)

cl¥ =, c =1, i=2,3. (4.42)

With the leading order solutions and initial conditions for each region in place, we can now proceed to

our numerical simulations.

4.3 Numerical results

We will apply direct numerical simulations to the system of equations (4.1) — (4.2), along with the
continuity conditions (4.5) — (4.8), using the finite difference method detailed in Appendix A.2. The
results from this numerical method will be compared with those from a semi-analytical approach, where

we will solve the KdV and Ostrovsky equations using a pseudospectral method, as outlined in Appendix

B.
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4.3.1 Zero mass - Boussinesq equation initial condition

We build on the method from Section 3.4.1 for a single Ostrovsky equation, applying it to the coupled
Ostrovsky equations. To illustrate, we consider the equation for the transmitted wave in the upper bar,

(4.25), and integrate both sides over the x to give

R o B ) _ o [T e
/ (TX 67T +T§§5)de—5[mT da. (4.43)

— 00

For the coupled Ostrovsky equation, any periodic solution on a finite domain (or a localised solution on a

sufficiently large domain) must have zero mass. Under this assumption, the left-hand side vanishes, thus

/ T® dz = 0. (4.44)

— 00

An identical argument applied to the other three Ostrovsky equations, (4.27), (4.23) and (4.28), yields

/ SO dx =0, / RW dg =0, / G dz = 0. (4.45)

However, due to the coupling between the bars, we express these conditions in a form that reflects this

interaction. In particular, we combine them as

/ h (T@ - S<i>) da =0, / h (R@ - G<i>) da =0, (4.46)

—00 — 0o

which ensures that the net mass carried by the transmitted and reflected waves is balanced across the
coupled system. For the initial conditions, (4.1) and (4.2), taking the integral of the strain solitary wave

solution of (4.3) we get

u(z,0) = A [tanh (%) - 1} -7 [tanh (II;°> + tanh <xA;°> 2} ,

u(z,k)=A {tanh (CE —Am}> - 1] -T {tanh <5Ha;ﬁs,_m}> + tanh (W) - 2} ) (4.47)

where we have A = — v/ -1 ;;17 A= \2/%?1 and
L
r oA tanh (X)

L+x L—x ’
tanh (TSO> + tanh ( ]\SO>
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Here for the semi-analytical calculations, the domain length is considered to be 2L and xg represents an
arbitrary phase shift, ¢ = 1, and & is set to At. T' is chosen to ensure a zero mean value for f, with
the same initial condition applied to g. Throughout the cases discussed, S and x( are set to 10. For the
lower layer, identical expressions are used for both w(z,0) and w(z, k), as the equations remain consistent

across both layers.

4.3.2 Zero mass - KdV equation initial condition

Following Section 3.4.1, for the weakly-nonlinear solutions, we take the exact solitary wave solution derived

from the KdV equation (4.14), which governs the incident wave, as

I(£,0) = A sech? (§> I {sech2 (fj—xo) + sech? <£ _ xo)} , (4.48)
A S AS AS
where A = -, A= \/271 and
o A tanh (%)
~ tanh (55) + tanh (£550)

The relationship between v and v; is given by the approximation v = 1 + ev; + O(g?). To determine the
initial conditions in other regions of the structure, we use the relations from Section 4.2.4 to express them

in terms of (4.48).

4.3.3 Base case simulations

For our numerical schemes, in the direct numerical simulations, we use step sizes of Ax = At = 0.01, and
for the pseudospectral method we use A¢ = 0.1 (the same step size for all characteristic variables) and
AX = 5x107%. These are the same step sizes that we employed in Chapter 3. The coefficients are set as
a=p0F=14¢and § = = 0.5. The boundary conditions are u, = f = 0 on both the left and right sides
of the bar, assuming constant displacements on the left and propagation into an unperturbed medium
on the right. These are the same as the boundary conditions that were used in developing the numerical
method in [77], which we are also using to solve our equations.

Firstly, we will run a base case simulation for the bi-layer waveguide with semi-infinite delamination,
as shown in Figure 4.1(a), and compare the results of the direct numerical simulations with the semi-
analytical results.

The comparative analysis in Figure 4.2 shows excellent agreement between the two numerical schemes
across all regions and layers. In the upper layer, we observe an incident soliton in the homogeneous region,

which evolves into an Ostrovsky wave packet as it propagates into the soft bonded region, consistent with
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Figure 4.2: The waves in the waveguide with semi-infinite delamination for direct numerical simulations
(blue, solid line) and the semi-analytical solution (red, dashed line). Parameters are v = 4, ¢ = 0.005,
c¢= 1.0 and v = 1 for the upper layer and ¢ = 1.5 and 6 = 1 for the lower layer. For the finite difference
method, the spatial domain is x € [-100,1600]. In the pseudospectral method, the number of points for
the Discrete Fast Fourier Transform (DFFT) is N = 65, 536.

the expected outcomes in [93,94]. As the wave packet moves from the soft bonded region into the
delaminated region, it evolves into solitons and dispersive radiation. The leading soliton separates and
becomes distinct from the trailing radiation, while the remaining peaks continue to separate but are not
yet clearly identifiable as solitons.

In the lower layer, the wave behaves similarly to the upper layer but shows less evolution due to
the higher characteristic speed and shorter time spent in each region. The agreement between the two
numerical schemes could be improved by including higher-order terms or reducing the value of . In [48],
where the characteristic speeds in each layer are close, a radiating solitary wave formed in the bonded
sections of the structure. In the delaminated sections, the solitary wave separated from its co-propagating
tail.

In Figure 4.3, we present a computation for the same waveguide configuration as shown in Figure 4.2,
but with € = 0.01. Performing a full error analysis as € — 0 is challenging, as the equation essentially
reduces to the linear wave equation for the initial wave. However, we observe that the error is larger
for higher e values, evidenced by a greater disparity in wave position and amplitude between the two
numerical schemes. The accuracy of the semi-analytical method could be improved by including higher-
order terms, but this is beyond the scope of this thesis. For subsequent calculations in this chapter, we

will use € = 0.005, where the agreement between methods is stronger.
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Figure 4.3: The waves in the waveguide with semi-infinite delamination, with parameters similar to Figure
4.2 except € = 0.01.
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Figure 4.4: The waves in the final section of Figure 4.1(b) for the base case simulation at ¢ = 2400 in the
upper layer and ¢ = 1640 in the lower layer. The parameters are the same as Figure 4.2, comparing the
direct numerical simulation (blue, solid line) and the semi-analytical solution (red, dashed line).

Next, we modify the infinite delamination scenario shown in Figure 4.2 by introducing an additional
soft bonded region within the interval 1600 < = < 2400, creating a finite delamination case. This is the
structure depicted in Figure 4.1(b). The wave scattering in the newly included final soft bonded region
is presented in Figure 4.4. In both layers, we see an Ostrovsky wave packet has evolved from a solitary
wave, mirroring the observations from the first bonded region. Additionally, radiation trailing behind
the leading wave packet may mask any subsequent wave packets that were generated by other solitons.
This behaviour is more pronounced in the upper waveguide, as the lower characteristic speed results in
more noticeable evolution. While there is good agreement around the leading wave packet, the accuracy

diminishes away from it due to the absence of higher-order correction terms.
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At this point, we have demonstrated a strong agreement between the two numerical approaches. The
computations were performed on an Intel Core i7-1255U processor, featuring 10 cores, 12 threads, and
a maximum clock speed of 4.70GHz. The direct numerical approach to the cRB equations required 16
hours and 40 minutes, whereas the semi-analytical approach completed in just 25 minutes, yielding a
speed increase of 40 times. Additionally, the semi-analytical method scales with €, meaning that for
larger values of ¢, if the agreement between the two numerical schemes remains reasonable, this scaling
could further reduce computation time. Given agreement at the leading peaks is strong, we will use the

semi-analytical method for the remaining calculations in this chapter.

4.3.4 Linear dispersion relation

We establish a theoretical prediction of the wave speed by using the linear dispersion relations, to further
understand the wave packet behaviour, as in Section 3.4.4. The solutions I ~ Ipe’*¢=X) and T?) ~
Toe'*e=wX) where w is the wave frequency and k is the wavenumber, are the linearised solutions of the
KdV equation (4.14) and the Ostrovsky equation (4.25) (or equivalently (4.27)), respectively. Substituting
the expressions for I and T into (4.14) and (4.25), respectively, gives

w(k) = —Bk3 for I and w(k) = %k — BE3 for T®. (4.49)
c
The phase speed is defined as p = w/k, so

p(k) = —Bk? for I and p(k) = —— — Bk?* for T(?.

c2k?
The group velocity is calculated as
cg(k) = —3Bk* for I and c,(k) = _%k? — 3Bk? for T®, (4.50)
c

The speed of solitons within the delaminated region lies within the spectral gap, specifically we have p > 0,
but also close to p = 0. Using a similar methodology to that in Section 3.4.4, but using the characteristic

variables £ = x — ¢t and X = ex instead, we predict the wave speed in the soft bonded region as

c

vy (4.51)

1—ex,

where x4 is the minimum phase shift, which corresponds to the distance travelled in the characteristic

frame for each unit increase in X. For the specific case when ¢ = 1, this simplifies to (3.55). The dispersion
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relations, phase speeds, and group speeds can be plotted against the wavenumber using a similar method
to that in Chapter 3, adapted for the equations used here. The maximum value of ¢4 for the soft bonded
region can then be substituted into (4.51), along with the values of € and ¢, to determine the wave speed
in that region.

Table 4.1 presents the theoretically predicted wave speed, v, and the simulated wave speed, vy, for the
second soft bonded region in the finite delamination base case described in Section 4.3.3, across various

values of ¢. The table also shows the difference between these two wave speeds.

Characteristic speed, ¢ o Vp Difference, %
1.0 1.00139 | 0.98787 1.352
1.1 1.10628 | 1.08895 1.733
1.2 1.20537 | 1.18985 1.552
1.3 1.30651 | 1.29062 1.589
1.4 1.40577 | 1.39128 1.449
1.5 1.51098 | 1.49186 1.912

Table 4.1: The predicted speed of the wave in the soft bonded regions, vy, and the numerically observed
wave speed in the final soft bonded region, denoted v,4, for various characteristic speeds, c.

When calculating the numerically observed wave speed, we use the leading wave peak as a reference
point. The speed is measured over a few hundred nondimensional units of time, beyond which the faster-
moving trailing radiation interacts with the wave peak, making it increasingly indistinct and difficult
to identify. In Section 3.4.7, the front of the wave packet was used instead. Although the front of the
wave packet could extend the second soft bonded region over a larger distance and time, reducing the
discrepancy between v, and vy, locating the front of the wave packet becomes increasingly difficult the
longer the waves propagate and evolve. Therefore, in Section 4.3.5, we analyse the behaviour of both the
leading wave peaks and the front for varying delamination lengths to determine which reference point is

easier to interpret and more suitable for subsequent calculations.

4.3.5 Leading wave peak analysis

Figure 4.5 shows the waves near the end of the second soft bonded region in cases similar to our base
case simulation but with varying delamination lengths. The leading peaks are highlighted with dots, and
a spline interpolation function is used in this and subsequent sections in this chapter to interpret the
data between discretised points, providing a continuous wave and improving the accuracy in tracking the
leading peak. Since our initial condition is negative, we treat the local minima as “peaks” in relation to
this setup. If the initial condition were positive, with the nonlinear term also positive, we would instead

identify the local maxima as the peaks. The region where the leading peak is expected is determined by



CHAPTER 4. SCATTERING OF AN OSTROVSKY WAVE PACKET IN A TWO-LAYERED
WAVEGUIDE 71

using information on the distance the wave packet propagates. Working from right-to-left, we identify the

first peak that exceeds a threshold of 0.1 xmin(f), thereby avoiding the false inclusion of any low-amplitude

oscillations.
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Figure 4.5: The waves in the upper layer of a structure with a homogeneous region from zy = —100 to

1 = 0, a soft bonded region from x; = 0 to o2 = 300, a delaminated region from x5 = 300 to x3 = 300+ D
(with various delamination lengths D), followed by a second soft bonded region up to x4 = 2000. In the
simulation, which runs up to ¢ = 2000, the leading wave peak for D = 0 is marked in red, while the next
leading peak that emerges as the delamination length increases is marked in blue.

The peak marked with a red dot at D = 0 has an amplitude of f = —0.036. For larger delamination
lengths, this peak shifts further into the trailing radiation, and the leading peak, marked by the blue dot,
becomes more prominent. There are additional peaks forming; however, we only highlight the initial two
that developed to demonstrate this concept. At D = 1000, the peak with the blue dot has an amplitude
of f = —0.142. This indicates that as the delamination length increases, the overall wave packet advances
while the peaks, in most cases, retreat into the radiation. For instance, at D = 0, the blue peak at
x = 1955 is near or at the front of the wave packet, as the wave tends towards zero beyond that point.
However, at D = 1500, the front of the wave packet appears to extend beyond x = 1965. This is consistent
with the expectation that waves propagate faster in delaminated regions than in soft bonded regions. As
a result, the longer the delamination, the further the wave packet propagates if all other variables are the
same [75]. We also observe that before the wave peak enters the radiation, the leading wave peak is much
easier to visually identify than the front of the wave packet. Due to its consistent and reliable behaviour

over time, we will adopt the leading wave peak as our reference point in the subsequent sections. Although
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the analysis in this section is based on the case where x5 = 300, the observations are applicable to soft

bonded regions of any length, where we will explore varying soft bonded region in the next section.

4.3.6 Varying delamination length and position

In Section 3.4.7, we investigated the wave behaviour in the final bonded region of the upper layer when
varying the delamination length, D = x3 — x5, while keeping the delamination starting position fixed
at xo = 300. In this section, we extend the analysis by varying both the delamination length and its
position, considering both waveguides. Our objective is to calculate phase shifts, which are the differences
in the positions of leading wave peaks relative to a fully bonded case, for various delamination lengths
and positions. Using these calculations, we will explain how to determine the delamination length and
position based upon the observed phase shifts.

Firstly, we focus on the upper layer within the structure containing finite delamination described
in Section 4.3.3, using the same parameters. We will vary the delamination length, D, from 0 (no
delamination) to 400 in increments of 50. Simultaneously, the delamination position, x5, will be varied
from 0 (no initial soft bonded region) to 1500. This range allows us to explore the full spectrum of
delamination starting positions for a bar 0 < x < 2000. We will calculate the phase shift near the end of
the second soft bonded region by comparing the position of the leading wave peak in the fully bonded case
to that in each configuration with delamination. The maximum computational time for the calculations
is set at ¢ = 2000.

Figure 4.6 shows that for o = 0, the phase shift increases almost linearly with the delamination
length. As xs increases, the phase shift continues to grow with the delamination length until x5 = 200,
where it begins to decrease. This decreasing trend then continues until zo = 450, after which the phase
shift starts to rise again, following a nonlinear curve. For the remaining xo values up to zo = 1500,
the phase shift generally increases or decreases consistently with the delamination length, with only rare
instances of reversal. Each graph displays a ‘fan’ shape, which makes it easier to see the underlying trends.
Without these ‘fans’, plotting all curves on a single graph would lead to overlapping, which could obscure
the trends and complicate the interpretation of the results.

Assessing the time required to compute these wave fans, each line of a fan contains 9 points, and there
are 29 lines in total in Figure 4.6. Using the semi-analytical approach, the total computation time is
approximately 109 hours. In contrast, the direct numerical scheme would require about 2,800 hours to
complete. Using the previously mentioned Intel Core i7-1255U processor with 10 cores and 12 threads,
we are able to perform 12 computations concurrently. With this setup, the semi-analytical method

requires approximately 9 hours and 4 minutes to complete. This demonstrates that the semi-analytical
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Figure 4.6: Plots showing the phase shift of the leading wave peak for delamination lengths from D = 50
to D = 400 compared to the fully bonded case in the upper layer. We also vary the delamination position
from o = 0 to o = 1500 and take the characteristic wave speed to be ¢ = 1.0. The direction of x5
is indicated in the first two plots, with the subsequent plots following a downward-upward alternating

pattern.

method allows for reasonable computation times, even without specialised hardware. Additionally, if the

material properties change, these calculations must be redone with updated parameters. By using the

semi-analytical approach, significant computation time is saved whenever testing new materials.

Now, we focus on the lower layer in Figures 4.7 and 4.8, where ¢ = 1.25 and ¢ = 1.5, respectively.



CHAPTER 4. SCATTERING OF AN OSTROVSKY WAVE PACKET IN A TWO-LAYERED

WAVEGUIDE

74

0
& & -1
@ @
Q [
E )
~ oo
_ 0 100 200 300 400 ) 0 100 200 300 400
Delamination Length (D) Delamination Length (D)
—xy =0 —ux2=>50 2o = 100 —ay = 150| |—a9 = 300 —z2 = 350 — 22 = 400 —z, = 450
—xy = 200 —x, = 250 — &y = 500 — 1z = 550 —a2 = 600 —z, = 650
0
-0.2
Z-04
n
?
£-06
[
-0.8
o 100 200 300 400
Delamination Length (D)
‘—1‘2 =T00 —z5 =750 —xy = 800‘

Figure 4.7: Plots showing the phase shift for delamination lengths D = 50 to D = 400 compared to the
fully bonded case in the lower layer. The delamination position is varied from zo2 = 0 to x5 = 800 and we
take the characteristic wave speed to be ¢ = 1.25.
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Figure 4.8: Plots showing the phase shift for delamination lengths D = 50 to D = 400 compared to the
fully bonded case in the lower layer. The delamination position is varied from zo = 0 to x5 = 800 and we
take the characteristic wave speed to be ¢ = 1.5.

A similar pattern to the upper layer is observed; however, for ¢ = 1.5, there is minimal variation in the

curves between successive xo values due to the slower evolution rate. Additionally, for ¢ = 1.5, curves
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overlap for smaller delamination lengths, also owing to the slower evolution. Figure 4.9 shows the gradient

of the phase shift curves for each x5 value.
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Figure 4.9: Gradient plots for all zo values in the upper layer (left) with ¢ = 1.0, and the lower layer
(right) with ¢ = 1.25 (blue) and ¢ = 1.5 (red).

Figure 4.9 shows that for ¢ = 1.0 in the upper layer, the phase shift curve with the greatest gradient
occurs at xo = 0, and this gradient steadily decreases as xo increases, reaching its lowest point around
xo = 350. It then gradually increases from x5 = 350 to zo = 550. Similar behaviour is observed
for ¢ = 1.25 and ¢ = 1.5, with the overall fluctuations in gradient becoming progressively smaller as c
increases.

The gradient plots serve two main purposes in this context. Firstly, they clearly reveal the gradient’s
tipping points, which help determine when to transition to a new graph for plotting the phase shift curves.
By separating the curves at these points where the gradient switches from increasing to decreasing, or vice
versa, we avoid overlap and ensure a clearer visual representation. Secondly, the gradient plots highlight
broader behavioural trends. For example, in the ¢ = 1.0 case, the progressively smaller amplitudes of
successive peaks and troughs indicate that, for large values of x5, the differences between phase shift
curves diminish significantly.

In an engineering context, it may be necessary to analyse two structures with configurations similar
to those in Figure 4.1, where in one structure the delaminated region is absent (i.e., D = 0), but in the
structure containing delamination, the position and length of the delaminated region are unknown. The
goal of this analysis is to determine the position and length of delamination in the damaged structure by
comparing the position of the leading wave peak near the end of the damaged structure to that of the
structure without delamination.

For example, consider a phase shift of -1.5 being observed in the upper layer and -2.01 in the lower layer,
where the lower layer has a characteristic speed of ¢ = 1.25. By referencing Figures 4.6 and 4.7, we find that

in the upper layer, a phase shift of —1.5 intersects at xo = 250, 300, 350 with corresponding delamination
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lengths of D = 321,285,303, respectively. Similarly, for the lower layer with ¢ = 1.25, a phase shift of
—2.01 intersects at x5 = 200, 250, 300, 350,400 with delamination lengths of D = 369,321, 314, 320, 353,
respectively. Given that both the upper and lower layers have values of x5 = 250 with D = 321 under
these respective phase shifts, we can infer that these values likely represent the delamination start position
and length for the damaged structure.

Figure 4.10 presents two additional phase shift cases, each with common delamination lengths and
positions in the upper and lower layers. Figure 4.10(a)-(b) represents the second case, with Figure 4.10(a)
showing the upper layer and Figure 4.10(b) the lower layer. Similarly, Figure 4.10(c)-(d) represents the
third case, with Figure 4.10(c) showing the upper layer and Figure 4.10(d) the lower layer. Instead of
displaying the entire range of x5 values, Figure 4.10 shows only the values that intersect with the given

phase shifts.

5
4t
£ 3 s -
= =
) 7
o 2 o
3 B
= =
i / s
0
-1 L - L -3 L L L
0 100 200 300 400 0 100 200 300 400
Delamination Length (D) Delamination Length (D)
(a) Upper layer - case 2 (b) Lower layer - case 2
0 0
-0.5¢
& £ -0.57
= =
@0 7
o -1 5
] ]
= = 1t
A a9
-1.5
, | | | -15} ‘ ‘ ‘ \
0 100 200 300 400 0 100 200 300 400
Delamination Length (D) Delamination Length (D)
(c) Upper layer - case 3 (d) Lower layer - case 3

Figure 4.10: Plots of all the phase shifts curves that intercept arbitrary phase shift values (horizontal
black lines) at 0.96 and -0.34, for case 2, as well as -0.80 and -1.57, for case 3.

Figure 4.10(a)-(b) shows that a phase shift of 0.96 intersects the upper waveguide, while a phase shift
of -0.34 intersects the lower layer, both at o = 100 and D = 300. This indicates that the structure has

delamination starting at o = 100 with a length of D = 300. Similarly, for case 3, phase shifts of -1.57
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and -0.80 intersect the upper and lower layers, respectively, at x5 = 250 and D = 337. From this we can
infer the delamination length and position based on these phase shifts. As mentioned earlier, in practical
applications where the structure’s configuration is often unknown, the phase shift can help determine
the delamination length and position. In theory, this approach can be applied to further cases as well,

allowing for a broader range of configurations to be analysed.
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Figure 4.11: Plots of the change in phase shift, with reference to the fully bonded case, in the lower layer
from x5 = 0 to 2o = 400 for ¢ = 2.0.

If we consider the case when ¢ = 2.0, we observe even less discrepancy between xo values, with some
overlap occurring between all of them. As a result, larger ¢ values will not be used in the remainder of
the analysis, as the lack of variation in the x5 curves makes it difficult to distinguish between them and
detect delamination. Instead, we can extend our analysis by examining wave propagation in the reverse

direction.

4.3.7 Reversing the direction of wave propagation

Next, we examine the scenario where wave propagation occurs from right to left in the upper layer with
¢ = 1.0. This configuration is considered because the ¢ = 1.5 case discussed previously resulted in excessive
overlap between x5 values, limiting its usefulness. In this case, we use T to denote the position along the
bar on the horizontal z-axis, where Z increases as we move to the left.

In this configuration, for our numerical analysis, the initial homogeneous region is from g = —100 to
Z1 = 0. The waveguides from Z; to Ty are soft bonded, where Z5 indicates the start of the delaminated
region. The end of the delaminated region is denoted by 3 = Z2 — D, and the second soft bonded region
is from 3 to Z4 = 2000.

Importantly, as the position of & in this reverse case corresponds to a spatial reflection of x when
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Figure 4.12: Schematic of the bi-layer structure where wave propagation occurs from from right to left.
A homogeneous region is from Ty < & < %1, followed by a soft bonded region for ; < T < T2 and a
delaminated region for o < & < Z3, and another soft bonded region for 3 < T < Z4. We assume the
homogeneous section has the same material properties of the upper layer and for the other three sections,
the material in both layers has similar properties.

the wave propagates from left to right, the previously computed results can be used without additional
simulations.

While reassigning the soft bonded regions in the left to right case can reproduce the reversed case,
modelling wave propagation from right to left enables delamination to be identified within a single,
fixed structure. This is more practical both experimentally, since generating waves from both ends of
one setup is simpler than analysing two separate configurations, and analytically, as it preserves a clear
correspondence between spatial coordinates and structural layout.

Similarly to the case when the wave propagated from left to right, by varying the delamination length
and position, we can calculate and use the phase shift, as depicted in Figure 4.13, to determine the
structure configuration. This provides another effective tool for detecting delamination, particularly in
situations where the wave propagation in the lower layer is not observed, such as when the lower layer

has a significantly higher characteristic wave speed.
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Figure 4.13: A plot of the change in phase shift, with reference to the fully bonded case, for Zo = 1250 to
Zo = 1500 in the upper waveguide, when the wave propagation is from right to left.

In Figure 4.13, a similar fan shape is observed in the upper layer as was observed when the wave moves
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from left to right. As an example of how this can be applied, for a phase shift of -0.342, from Figure
4.13 we observe one of the intersections occurs at o = 1450 with corresponding delamination lengths of
D = 300. For left-to-right propagation, a phase shift of -1.415 corresponds to a delamination length of
D =300 at x5 = 250. Figure 4.14 shows the structural configurations for the phase shift values of -1.415
when the wave propagates from left to right and -0.342 when it propagates from right to left, both in the

upper layer.

Wave Propagation — o0 X @ ————
] |

x = -100 x=0 x = 250 x = 550 x = 2000

4 — Wave Propagation
I [

& = 2000 % = 1750 X = 1450 =0 X =-100

Figure 4.14: Structure configurations for phase shifts of -1.415 with wave propagation from left to right
(top) and -0.342 with wave propagation from right to left (bottom), both observed in the upper layer.

From Figure 4.14, we observe that the delamination length and position are the same for both struc-
tures, confirming that the delamination is from z = 250 to x = 550. This method is applied only
to the upper layer due to overlapping phase shifts in the lower layer, making it difficult to detect the

corresponding delamination lengths and positions.

4.4 Summary

In this chapter, we extended the analysis from Chapter 3, which focused solely on the upper layer of a
two-layered structure, to include both layers. Previous studies have examined similar cases with identical
layers and perfect bonding [45,47], as well as soft bonding with similar material properties [47]. However,
in these last two chapters, we have investigated the emergence of Ostrovsky wave packets in systems where
the layers have distinct properties.

We modelled the longitudinal displacements within the waveguide using coupled Boussinesq equations
and applied a direct numerical simulation method, as detailed in Appendix A. We then applied a semi-
analytical approach based on matched asymptotic multiple-scale expansions and averaging with respect
to the fast space variable. Our results showed that the semi-analytical approach was approximately 97.5%

faster than the direct numerical simulations. We then compared the results from both numerical schemes
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and demonstrated that they agree well around the main wave packet, with some divergence observed in the
trailing radiation. This could be addressed by including higher-order corrections in the weakly-nonlinear
solution, as shown for the corresponding initial-value problem for a single section in [76]. Our numerical
simulations further revealed the emergence of Ostrovsky wave packets within the soft bonded regions and
solitons in the delaminated region, across both waveguides. We also applied the linear dispersion relation
to the KdV and Ostrovsky equations to predict the wave speed in the soft bonded region and validated
our simulation results for various values of c.

We found that varying the delamination length caused a phase shift in the leading wave peak position
compared to the case with no delamination, for various delamination starting positions. We plotted these
phase shifts and identified common delamination lengths and positions for given phase shift values in both
waveguides, revealing the structural configuration and providing a tool for detecting delamination. When
the layers have significantly different characteristic speeds, such as ¢ = 1.0 in the upper layer and ¢ = 2.0
in the lower layer, we observed substantial overlap among the xo phase shift curves in the lower layer,
making it difficult to interpret the results. In such cases, we used the phase shifts for waves propagating
in the opposite direction through the upper layer. This represents a significant advancement in the study
of detecting delamination within layered structures, as it is the first instance, to our knowledge, where
nonlinear waves have been used to identify both the position and length of a delamination. Previous
studies [47,48] and Chapter 3 only identified the delamination length

Throughout this thesis, we have mostly utilised phase shifts and the theoretical prediction of wave
speed from the linear dispersion relation. In the next chapter, we will instead leverage the wave’s amplitude

and the Inverse Scattering Transform (IST) to explore additional methods for detecting delamination.



Chapter 5

Scattering of a radiating solitary

wave in a two-layered waveguide

In this chapter, we will examine the scattering of a long longitudinal solitary wave as it propagates through
the layers of multi-layered structures that feature delamination at the centre, with either perfectly bonded
or soft bonded regions on either side of the delaminated region. In the perfectly bonded scenario, we will
consider waveguides of identical materials, which are governed by a system of Boussinesq equations. For
the soft bonded case, the longitudinal displacements will be governed by coupled Boussinesq equations,
similar to those discussed in Chapter 4. However, in contrast to Chapter 4, the two layers will have
characteristic speeds that are more closely matched.

In the case of perfect bonding in Section 5.1, we construct a weakly-nonlinear solution to derive
leading order solutions, then the Inverse Scattering Transform (IST) is used to theoretically predict wave
amplitude, and while this is similar to Section 3.4.2, we will explore the IST in greater depth in this
chapter. In a similar way to Chapters 3 and 4, our goal is to determine the delamination length through
numerical simulations. However, unlike the previous chapters, which focused on phase shift relative to
the case with no delamination, here we will analyse the amplitude difference between the incident wave
in the first region and the transmitted wave in the third region for various delamination lengths and Full
Width at Half Maximum (FWHM) values, a common soliton measure in experiments.

We will also consider various structure configurations and geometries as well as a range of FWHM
values. Based on these findings, we will develop a scaling that generalises all FWHM cases to match
the results of a single case, allowing us to compute just one case, thereby enhancing the computational

efficiency.

81
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In the soft bonded case, we use the difference in the numerically observed wave amplitudes between
the first and second soft bonded regions, rather than creating a measure with the IST, which cannot be

applied to the coupled Ostrovsky equations. The results of this chapter are partially summarised in [103].

5.1 Perfectly bonded case

Figure 5.1: Bi-layer structure with an initial perfectly bonded region for zy < x < z1, a delaminated
region for z; < x < xo and a perfectly bonded region for xo < z < x3. We assume that the materials in
both layers are identical.

Figure 5.1 illustrates a perfectly bonded two-layered structure with delamination in the centre. Al-
though the scenario depicted in Figure 5.1 shows two layers, the arrangement can accommodate any sym-
metrical number of layers, assuming uniform material properties and identical bonding (or lack thereof)
between each consecutive pair of layers. For example, this could be extended to three layers, as shown in

Figure 5.2.

Xo X1 X2 X3

Figure 5.2: Tri-layer structure with an initial perfectly bonded region for g < = < x1, a delaminated
region for 1 < x < x9 and a perfectly bonded region for x5 < x < x3. We assume that the materials in
all layers are identical.

For our study, we will examine the scattering of long longitudinal solitary waves within the waveguides
of an n-layered structure, where the bonded and delaminated regions are consistent with those shown

in Figures 5.1 and 5.2 across all layers. Here, n denotes the number of layers in the structure. The
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displacement of the long longitudinal solitary waves within each layer of the structure are governed by
the following regularised non-dimensional Boussinesq equations:

ugi) — C?ug’g = ¢ [-120;ulDul) + 25#&;;4 . (5.1)
Here, © = 1,3 denotes the perfectly bonded regions, while ¢ = 2 represents the delaminated region. The
coefficients «; and (; are geometrical parameters, and ¢; is the characteristic wave speed. These values
could vary between sections, indicating a waveguide with different materials in each section; however, for
our analysis, we assume uniform material properties across all sections. The parameter £ denotes the
small wave parameter. By differentiating (5.1) with respect to x and setting u,(i) = ) we derive the
governing equations for the strain of the long longitudinal solitary waves in the form

. . N\ 2
1) = 48 = ¢ | =60 (1)

x

REA 5.2

These equations are complemented with continuity conditions, namely continuity of longitudinal displace-

ment
u® = ot , (5.3)
and continuity of normal stress
O—(z)|x:r, = U(i+1)|r:zm (54)
where ¢() is defined by our original equation (5.1) when written in the form
(i) _ do®
gy = dz
We consider o; =1 for all ¢, 513 =1 and
n? + k?
k)= ——=, 5.5
52(7% ) n2(1 + ]{,‘2) ( )

where k is determined by the geometry of the layer. Referring to Figure 5.1, and similarly to structures
with more layers, the cross-section of each layer has a width of 2a, and height of 2b/n, with k defined as
k =b/a. In our subsequent numerical simulations, we will examine the wave behaviour for various values

of n and k.
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5.1.1 Weakly-nonlinear solution and initial conditions

We construct a weakly-nonlinear solution for each section of the bar within the outlined n-layered struc-

ture, following the approaches used in [47,48,77,93], and resulting in
FOa,t) =T X) + RO (0, X) + PO (€0, X) + O (%) (5.6)

where £ = ¢ — ¢it, n = x + ¢;t, and X = ex. The functions T' and R represent the leading order
transmitted and reflected waves, respectively, while the function P is the higher-order correction. Note
that T() represents the incident wave in the first region. By substituting (5.6) into (5.2) and considering

terms up to O(e), we find

@) _ (&) _ (i) i) (i) () _ % p(i) pli i
—2P) = (TX - 60—2T( )T} +&-T€55>5 + (RX - 6?2}2( 'R miRggn)
v Y]

?

— 6a; (21 RY) + TORY) + T RY). (5.7)

For the first region, where ¢ = 1, by assuming that the left boundary of the waveguide tends to negative

infinity, we average the left-hand side of equation (5.7) with respect to the fast space variable z, as

1 1
lim / ...de. (5.8)

To—>—00 L1 — X0 zo

Given that all functions and their derivatives are assumed to remain bounded and decay sufficiently

rapidly at infinity to avoid secular terms in the asymptotic expansions, at constant £, we have

1 2w —¢&
1 1 221§
i PVdy — lim L / PPay= tim [PV " =0 (5.9
Zotoo 1 — T / & T e 2 — a0) e e 2y — o) L€ Jomee (5.9)
xo 2x0—§

A similar process is applied at constant 7, which also results in the left-hand side of (5.7) tending to
0 after the averaging process has been applied. Now by averaging the right-hand side of (5.7) at both
constant & and 1 we yield the following Korteweg-de Vries (KdV) equations

(1) _ @@ p(1) (1) 1 _
T 6C%T TV + JiT =0, (5.10)

Rgp _ 6%}3(1)3%1) + ﬂle) -0, (5.11)

nn
1
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and by substituting our KdV equations into (5.7) and rearranging to make P the subject, we obtain

the higher-order correction as
PO =30, <2T<1>R<1> +RM /T(Udg +1) /R(Udn) + M€ X) + oD (n, X), (5.12)

where (1) and ¢(!) are arbitrary constants. We apply a similar averaging across the remaining sections,
assuming for each that the left boundaries tend to negative infinity. This allows us to express the leading

order equations in a general form for all sections as

i Qi 1 (3) i i
T - 60—2T( T + BT =0, (5.13)
(4) Qi (i) p(i )
RY - 6ER(Z)R£,’) + BiR), =0, (5.14)
and the higher-order correction as
PO =3¢, (2T<i>R<i> +RY / T0d¢ + 1 / R<i>dn> + (& X) 4+ ¢ (n, X). (5.15)

To determine the initial conditions, we apply a process similar to that in Chapter 3. For brevity, we will
provide a brief overview. By substituting our weakly-nonlinear solution into the continuity conditions
(5.3) - (5.4), we derive values for T' and R at the interface, expressed in terms of the previous transmitted
wave, as

RO |pey, =COTO | _, T _ = CWDTO|, _, (5.16)
where the reflection and transmission coefficients take the form

2
C; (1+Cz)

(@ _¢ci—1 (i) _
Cr e+ 1 Cr =

(5.17)

Given our assumption that the waveguide comprises uniform material (i.e., ¢; = 1 for all i), we observe full
transmission and no reflection. If the value of ¢; varies between sections of the bar, ¢ = 1,2, 3, implying
the material in a single layer varies across the bar, then the coefficients should be computed using the

respective values of ¢;. This avenue could be explored in future investigations.

5.1.2 Theoretical prediction from the incident wave

In [45], the wave amplitude for an incident soliton entering a delaminated region was theoretically predicted

using the IST. Here, we briefly outline this approach and introduce an initial condition expressed in
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terms of the FWHM of the incident soliton, defined as the distance between the points where the wave’s
amplitude is half of its maximum value. Later in Section 5.3.3, we extend this to consider solitons entering
the second bonded region. Similar to Section 3.4.2, we can rewrite the transmitted wave equation (5.13)
in the form

Ur — 6UUy + Uyyy =0, Ulro = Up(x), (5.18)

where x and 7 are characteristic variables written in standard IST notation. For a sufficiently rapidly
decaying initial condition Up(x) on the infinite line, the solution to (5.18) is related to the spectral problem

for the Schrodinger equation given by
Vyx + [A = Uo(x)]¥ =0, (5.19)

where A is the spectral parameter. Determining the evolution of scattering data for both discrete and
continuous spectra and using this to reconstruct the solution to the KdV equation is known as the IST
method [12]. We assume an incident soliton in the first region, which, being a traveling wave solution,
will propagate over time while preserving its shape. To illustrate the theoretical predictions of the wave
amplitude, we will examine the second region, where S5 is defined as in (5.5). The initial condition for

(5.18) in the second region then takes the form

X v 2
U — — A sech? (7), A=— |I=—, 5.20
o) l e = (5.20)
where v > 0 is the phase speed. In this scenario, the solution will consist of either a single soliton
or a series of solitons, characterised by eigenvalues in the discrete spectrum, along with accompanying
dispersive radiation determined by the continuous spectrum. In certain instances, we may observe the
fission of the initial soliton, where more than one soliton is generated, particularly when o # 1. The

discrete eigenvalues of (5.19) are expressed as A = —k2, where

ko = % [\/1 T AAR — (20— 1)] , (5.21)

for n = 1,2,..., Ny, where Ny € Z is the number of solitons. The number solitons generated in the

delaminated region is determined by the largest integer satisfying the inequality

1 / 8
NT<2( 1+52+1> (522)
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From (5.22), we observe that when 2 = 1, only one soliton will form, while for 85 < 1, multiple solitons
will be generated, with more arising as #5 decreases. This behaviour corresponds to an increase in layers
in the waveguide or a change in geometry. As 7 — 0o, the solution evolves into a train of solitary waves,
ordered by amplitude, propagating to the right, along with some dispersive radiation (a dispersive wave

train) moving to the left in the moving reference frame. Thus, we have
N
Z 2k2sech? (k, (x — 4k%T — X)) + radiation, (5.23)

where x,, represents the phase shift. If the delamination is infinite, the solitons will separate in rank order,
with the largest soliton at the front. However in our scenario where delamination is finite, separation occurs
only if the delamination is large. This will allow us to establish a measure of the delamination length
when we evaluate our numerical simulations later in this chapter by comparing the wave amplitude of the
leading wave peak at the end of the bar with the theoretical prediction.

We introduce the incident solitary wave for 7)), which is the exact traveling wave solution of (5.13)
in the first region of the structure, as

TW (e, X) = —gsechQ (‘f (€ - vX)) . (5.24)

The soliton peak in (5.24) occurs for the maximum value of T(W (¢, X), when sech®(0) = 1 at £ = v X,
therefore, we obtain

TO(vX, X) = —%. (5.25)
To find the half-maximum value, we take half of (5.25), and so

v v v
—isech2 <\2F (& — vX)) =71 (5.26)
Solitary waves are often measured in experiments using their FWHM. Since £ —vX is the position relative
to the centre of the wave, and due to the symmetry of the wave, the full width corresponds to twice the
distance from the centre to the half-maximum value. Therefore, we set FWHM/2 = £ — vX and rewrite
(5.26) as
—gsech2 (*fFWHM) = —%, (5.27)

and hence we obtain

- (FWHM cosh™ (ﬁ))z . (5.28)

This allows us to generalise the FWHM to any size of incident solitary wave.
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5.2 Imperfect bonding case

Let’s delve into the scenario illustrated in Figure 5.3, of a two-layered structure with an initial homoge-
neous region, followed by a delaminated region ‘sandwiched’ between soft bonded regions. The layers are

composed of similar materials.

z
1 ] ] 1
! / / ' '/
| h . ! — |
1, 1 &= 1 ~ 1
1 v 0 '
1 i Lo = — e
|

Figure 5.3: Bi-layer structure with an initial homogeneous region for xo < x < x; followed by a delami-
nated region for x9 < x < x3 ‘sandwiched’ by soft bonded regions. We assume that the materials in both
layers are similar, that is, their material properties differ by O(e).

The longitudinal displacement in the homogeneous regions is described by the following regularised

non-dimensional Boussinesq equations,

ug? — u(i% =c [712u¥)u$) + 2u§i) } ,

T T txx
wl) ) = = [1200u + 20l ). (5.2
for ¢ = 1, while in the bonded regions we have the following coupled regularised Boussinesq (cRB)

equations:

uld — ) — [—12u§}')u;2 WO } — e — ),

ttxx

wt(z) - cQw:(jg =¢ [—120411)?111&2 + 2ﬁwt(i) } + E’Y(U(i) — w(i)), (5.30)

trxx

for i = 2,4, and in the delaminated region we have

ugz) B ugc:g =€ [*IQUSEZ)UJQ(;) + 2u(i) } 7

x ttxx

wt(z) —Pwl) =¢ [—12awg)w§f£ + 2,8wt(i) } ) (5.31)

(
T trx

for ¢ = 3. Differentiating the governing equations with respect to = and denoting ugf) = () we obtain
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the Boussinesq equations for the longitudinal strain in the homogeneous region
0) ; 0\’ (i)
fo' — fé? =€ [_6 (f(l)) + 2fttzz:| )
) ) N2 .
gy — gl =e [6 (g(”)m + 2gt(?m] , (5.32)
for ¢ = 1, while in the soft bonded regions we have
i i )2 i i i
W I = [—6 (r9) + 2ft&;x] —e8(f — ),
. , N2 ; ) ,
g —Pgl) = ¢ [—Ga (g(”)m + 259&&4 +er(f@ - g), (5.33)
for 4 = 2,4, and in the delaminated regions we have
(i) ; ) (i)
ftt _fagzcv) =€ |:_6 (f(1)> +2ftta:x:| )
(@)

. N\ 2 .
9P — g = [6a (99) + 2/39,52136] , (5.34)

for i = 3. As with the perfectly bonded case, these equations are complemented with continuity conditions

at the interfaces between the sections. We have the continuity of longitudinal displacement
D]y, = w0 ® ey, = Y|y (5.35)

and the continuity of normal stress

Uq(j)‘x=xi = UT(Li+1)|$=xi’ O-T(if)|x=xi = U’l(lf+1)|x:xi’ (5.36)

for ¢ = {1, 2,3}, where o, and o, are implicitly defined by (5.30) as

Lol o
ugt) = g; —e6(u® —w®),

of)

dx

wiy = +ey(ul —w®), (5.37)
respectively. We'll focus solely on deriving the leading order solutions for the soft bonded region since the
homogeneous and delaminated cases addressed in Sections 4.2.1 and 4.2.3, respectively, involve the same
derivation, despite the characteristic speed in the lower layer being different in the delaminated region in

this scenario. Here, since the materials in the layers have similar properties, we have c—1 = O(e). In this
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scenario, the cRB equations provide solutions in the form of radiating solitary waves. Thus, we note that

-1
5

c-1=0() = —0Q1), (5.38)

which is also observed in [48]. Using (5.38) we can rearrange equation (5.33) to obtain

o) ol = ¢ [oalg )+ 2800 + S0 e (50— 0). (5.39)

Therefore, unlike in Section 4.2.2, we can use a single set of characteristic variables to construct the

weakly-nonlinear solutions to (5.33), which are described as

FO(a,t) =T X) + R (, X) + PP (€0, X) + O(e?), (5.40)

9@ (2,t) = SD (&, X) + GP(n, X) + QP (&,1,X) + O(?), (5.41)

respectively. The characteristic variables are defined as £ = x —t, n = x +t, and X = ex. In the second
section, T and S denote the transmitted waves, while R and G® represent the reflected waves, in
the upper and lower layers, respectively. The higher-order corrections are denoted by P and Q) for
the upper and lower layers, respectively. We substitute (5.40) and its corresponding derivatives into the

upper layer equation in (5.33) with ¢ = 2, while only considering terms up to O(e). This yields

~4p{) = (218 — 121 T + 21} ) - 5 (T - 5@)
+ (21-2572;( —12(RPR?), + 23572,)7,77) —5 (R<2> - G<2>)

~12 (TR + TORE) + 21 RY)) . (5.42)

Similarly, substituting (5.41) and its respective derivatives into the lower layer equation in (5.39), while

also considering terms up to O(e), gives

—4QY) = (25§§2 +° 12a(S® 5P + 265§25> +(T® - 5@)

2
( Gf,))( G<2 120(GPGY), + 25Gnmm> +7 (R(2) — G<2>)
~12a (sé?am + DGR + 250G (5.43)

As the solution is analysed from the moment the waves enter the region at x = x; until the reflected

waves from x = 9 return to x = x1, and because x = x5 is assumed to be sufficiently distant, we consider
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the averaging

lim ! / ...dz. (5.44)

Ta——00 Ty — T )

Similarly to the approach in Sections 3.2 and 4.2, we apply averaging by integrating (5.42) with respect
to x while keeping ¢ constant, and we apply the same procedure to (5.43), which yields the coupled

Ostrovsky equations

(T)(?)—GT(Q)Tf)—&—ng){ ( 2 _ R(2>) (5.45)

O (r

2

@ @ _ 6as@g®@ (2) T (@ _ g@
(s 10 _gas@s® + 55&5)5 S (5@ —a®). (5.46)
Similarly, applying averaging to (5.43) and (5.43) while fixing constant n gives

(Rg§> 6R® R2>+R2>) = (R<2> —T<2>), (5.47)
n

N2 NI

2
@ -1 (2) (2) _ 2 2
(GX + G~ 6aGIGR + 50,7,7,7)77 (G<LS< >), (5.48)

aligning with the findings from the time-averaged derivation in [72]. Coupled Ostrovsky equations com-
monly arise in the modeling of nonlinear waves in layered waveguides, in both solid and fluid media [48,74].
By substituting (5.45) and (5.47) into (5.42) and integrating with respect to the characteristic variables,

we obtain
P® =3 (2T<2>R<2> +R® / Tde + 1 / R<2>dn) + 62 X) + 0P (n, X), (5.49)

where ¢§2) and 1/J§2) are arbitrary functions. Likewise, by substituting (5.46) and (5.48) into (5.43) and

integrating with respect to the characteristic variables, we find
Q® = 3a (25<2>G<2> +GO / S@de + 88 / G@)dn) + 026, X) + 68 (n, X), (5.50)

where ¥?) and ¢(22) are arbitrary functions. To establish our initial conditions, we use a methodology
similar to that discussed for the perfectly bonded case in Section 5.1.1, so we will omit the details here.

Since the coupled Ostrovsky equations cannot be solved using the IST, theoretical predictions of the
wave amplitude in the soft bonded region are not possible. Consequently, we will rely solely on the wave
amplitudes from the numerical simulations to detect delamination in this scenario.

To relate the initial condition to the incident soliton’s FWHM, we first consider (5.31), leading to the
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strain solitary wave in the delaminated section of the structure taking the form

2_ 2 7 _ 2
wy(x,0) = f%sechz (25\/%(33 + :L'o)) . (5.51)

Integrating w, (z,0) with respect to x gives the initial condition for w as

w(z,0) = (5.52)

vy/2eBVv? — 2 v2 —¢?
B w— [tanh <2U 3 (x + xo)> — 1] ,

where the constant of integration is chosen so that the waves are propagating into an unperturbed medium.
We study the effect of varying the FWHM of the incident soliton on wave amplitude for different delami-
nation lengths. To establish a correspondence between the initial condition and the soliton’s FWHM, we

use (5.51) to solve

2_ 2 Vo ) 2_ 2
L) e (Y= gy | = =) (5.53)
dae 2v+/2ef S8ae
for the phase speed, v, which yields
2FWHM?
= /- ¢ . (5.54)
323arccosh(v/2)2 — FWHM

5.3 Numerical results

For our numerical study, we will first present the scattering of transmitted solitons for various delamination
lengths in both the perfectly bonded and soft bonded cases in Section 5.3.2. Next, for the perfectly bonded
case in Section 5.3.3, we will introduce a measure, o, based on wave amplitudes in different sections of
the structure from our simulations and the IST. This measure is compared against various delamination
lengths and FWHM values to identify correlations between o and the delamination length, aiding in the
detection of delamination. For the soft bonded case in Section 5.3.4, we apply a similar process. However,
since the IST cannot be used in the soft bonded region, we base our measure, (, solely on the wave
amplitudes in different regions. For both the perfectly and soft bonded cases, we scale the measures o
and ( for incident waves of different FWHM to a reference incident wave of a single FWHM value. This
scaling reduces the computational effort by allowing us to calculate results for different FWHM values

from a single reference case.
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5.3.1 Numerical methods

We will apply the finite difference scheme from Appendix A, following the approach in [77], to solve our
systems of Boussinesq equations. Additionally, a semi-analytical method will be employed based on a
pseudospectral scheme applied to the KAV equations in the perfectly bonded case (Appendix B.1) and
to the coupled Ostrovsky equations in the soft bonded case (Appendix B.3). For all simulations, the grid
spacing and time step for the finite difference scheme are set to Az = 0.01 and At = 0.01, respectively.

For the semi-analytical method, we use AX =5 x 10~% and A¢ = 0.1.

5.3.2 Examples of scattering

Firstly, let’s examine the impact of delamination on the scattering of an incident solitary wave for the
perfectly bonded case described in Section 5.1. Figure 5.4(a)-(d) shows the scattering near the end of the
bar for simulations on a spatial domain, x € [—100,1000], with the delamination starting at z = 0 and
varying in length across three cases: D = 0, D = 50, and D = 300. The figure also includes a comparison
between the semi-analytical and finite difference methods for D = 300.

In Figure 5.4(a), without delamination, the soliton propagates without any change in shape or struc-
ture. However, when delamination is introduced, as shown in Figures 5.4(b) and 5.4(c), the soliton evolves
differently. For D = 50, the second soliton starts to form but is still partially obscured by significant radi-
ation. By D = 300, the second soliton is much clearer and more distinct from the radiation. Figure 5.4(d)
demonstrates a reasonable agreement between the direct numerical simulation and the semi-analytical
method for D = 300, with only minor discrepancies in their positions along the x coordinate and slight
differences in amplitude. These discrepancies should reduce for smaller values of ¢, although this would
also result in less wave evolution.

As with the perfectly bonded case, we examine wave propagation in a soft bonded structure. The
spatial domain, = € [-500,1000], featuring a homogeneous section for x € [—500,—400] to generate
an incident soliton in both layers. The first soft bonded region is for € [—400, 0], with delamination
at x € [0, D] and the second soft bonded region is for x € [D,1000]. We present three scenarios: no
delamination, a shorter delamination with D = 100, and a longer delamination with D = 300.

The wave scattering for the soft bonded case in the upper layer is shown in Figure 5.4(e)-(h). The
waves in the lower layer exhibit similar behaviour; therefore, a depiction of them is not presented. For
the case without delamination, Figure 5.4(e), a solitary wave with a one-sided oscillatory tail, known as
a radiating solitary wave, is observed. Details on radiating solitary waves are outlined in Section 2.3.4.

As the delamination length increases the solitary wave loses amplitude and sheds energy into its tail
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Figure 5.4: The waves in the final section of the structure in any layer for the perfectly bonded cases
(a) - (d) at t = 900 and in the upper layer for the soft bonded cases (e) - (h) at ¢ = 1200, shown for
various delamination lengths, and calculated via the direct numerical method (blue solid line, f (4)) and
the semi-analytical method (red dotted line, T(4)). For the perfectly bonded case, the parameters are
e =0.1, FWHM = 5.0, n = 2, and k = 2, with a computational domain of = € [—100,1000], and the
pseudospectral method using N = 32,768 points. For the soft bonded case, parameters are ¢ = 0.05,
FWHM = 5.0, c=1.025,a = 3=1.05,§ =y =1, and N = 65,536 with 2 € [—500, 1000].
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due to energy exchange between the layers, as shown in Figures 5.4(f) and 5.4(g). These changes serve
as indicators of delamination, where we can use the amplitude decay to provide us a measure of the
delamination length. Figure 5.4(h) shows excellent agreement between the two numerical schemes at the
leading wave peak, similar to the perfectly bonded case, though the agreement diminishes further from
the peak, which could be improved with higher-order corrections.

Figure 5.5 builds upon the simulations shown in Figure 5.4 by illustrating wave scattering in the final
perfectly bonded region for different values of n and k. As these values increase, there is a noticeable rise
in background radiation and the appearance of secondary solitons. This behaviour aligns with previous

expectations, as a decrease in s in (5.5) leads to the generation of more solitons.

5.3.3 Measure of delamination length for perfect bonding

We will extend the observations from the previous section by introducing a measure, o, based on the
amplitudes of the leading solitons in the perfectly bonded regions and the theoretical wave amplitude
predictions from the IST method, as outlined in Section 5.1.2. We aim to calculate o for various de-
lamination lengths to identify a correlation, that could be used to help detect delamination based on
the o value. This approach assumes that the solitons are well separated from any background radiation,
with greater separation observed for larger delamination lengths. We will then generalise the ¢ value for

different FWHM values. Firstly, we consider

1 1
Ag = AKEKS, hy = 5 (,/1+ﬂ8—1), k3:§<\/1+862—1), (5.55)
2

where A; is the amplitude of the incident soliton, and Ajs is the amplitude of the leading soliton in the
second bonded region, as predicted by the IST. The eigenvalues k; and ks are related to the leading
soliton amplitudes in the second and third regions, respectively. The leading soliton’s amplitude in the
second bonded region from the numerical simulation is expressed as Anum. Using these amplitudes, we
now introduce the measure o as

Apam — A

o 1
o= g X 100, (5.56)

This formula is the same as the one used in [77], where only FWHM = 5 was considered. We extend our
analysis to a range of delamination lengths expressed in terms of FWHM, rather than nondimensional
units D, to explore delamination curves for different FWHM values.

In Figure 5.6, we observe that at D = 0, 0 = 0. This is consistent with Figure 5.4(a), where a
delamination length of D = 0 shows that the wave remains in the same form as the incident wave,

and therefore, the amplitude is unaffected. As the delamination length increases, so does o, for all
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Figure 5.5: The waves at ¢ = 900 in the final section of the bar for the perfectly bonded case are
shown for a delamination length of D = 60 using semi-analytical simulations, for a computational domain
x € [—100,1000]. The parameters are e = 0.1, FWHM = 5.0, and N = 131,072.
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Figure 5.6: Plot of o against delamination length from 0 to 45, in terms of FWHM, for various FWHM
values. Parameters used are ¢ = 0.1, n = 2, and k = 2.

FWHM values. For smaller FWHM values, such as FWHM = {4,5}, o tends to converge towards 1.
For FWHM = {6,7,8,9}, o appears likely to approach 1 if larger delamination lengths were considered.
To address the limitation of insufficient delamination lengths, we extend our study to include larger
delamination lengths and various n and k values, as shown in Figure 5.7. This extended analysis focuses
on smaller FWHM values, which have already shown a tendency to converge to 1, allowing for more
insight than the larger FWHM values. We observe similar results as shown in Figure 5.6, but now for
FWHM values in the range [4,7] with increments of 0.5 across all n and k cases.

To generalise this approach, we use (5.28), which relates the phase speed v to the FWHM, where v
is inversely proportional to the square of FWHM. By using FWHM = 5 as a reference, because it is the
last curve to reach 0 = 1 within the given delamination range, we express ¢ as a function of delamination

length parametrised by FWHM, and introduce the scaling

FWHM?
&(D;FWHM) = Ta(D; FWHM). (5.57)

The plots in Figure 5.8 show the scaled cases of Figure 5.7, derived using (5.57), for varying delamination
lengths, and for n = 3, ¥ = 3 and n = 4, £ = 3. The scaled plots overlap for all FWHM curves,
although for larger FWHM values, the curves stop earlier within the delamination length range. With
longer delamination lengths, the alignment would continue further. Consequently, by computing only the
curve for the smallest FWHM, which extends the furthest, we can replicate the subsequent curves for any

other FWHM value through scaling. This approach improves experimental efficiency of our simulations

for incident waves of different widths.
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Figure 5.7: Plots of o against delamination lengths from 0 to 80 in terms of FWHM, for various FWHM,

n, and k values, with ¢ = 1.
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Figure 5.8: Plots of the scaled data from Figure 5.7 for n = 3, k = 3 and n = 4, k = 3, with the scaling

given by (5.57).
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5.3.4 Measure of delamination length for soft bonding

We now turn to the soft bonded case discussed in Section 5.2. The analysis in [48] considered only a
single value of FWHM, whereas our study will extend to a broad range of FWHM values using the
finite difference scheme outlined in Appendix A. In this case, the IST cannot be applied to predict wave
amplitudes in the bonded regions due to the non-integrability of the coupled Ostrovsky equations.

We define the amplitude in each region from the numerical simulation as A;, where 7 indicates the

region index. We introduce the measure

|A1 — As

100 5.58
S, (5.58)

(=

which quantifies the change in amplitude between the two soft bonded regions. This measure, ¢, will be
analysed to assess whether it correlates with the delamination length, potentially providing an additional

metric for delamination detection.
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Figure 5.9: Plot of ¢ against delamination lengths, from 0 to 60 in terms of FWHM, for the upper layer of
the structure in Figure 5.3. The curves correspond to different FWHM values, with parameters € = 0.05,
d=~v=1.

Figure 5.9 shows ( for various FWHM values, computed for the upper layer of the structure in Figure
5.3, for various delamination lengths. Generally, as the delamination length increases, the  value also
increases. Similar behaviour is observed for the lower layer, but those results are omitted for brevity.

Following a similar approach to the perfectly bonded case, we aim to scale the curves for different
FWHM values so that they overlap with a chosen reference curve. This would allow us to reproduce all
other curves using the data from just that single reference curve. Unlike the perfect bonding scenario,

where o decreases with increasing FWHM, in this case, ( increases as FWHM grows. Given this trend,
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and selecting FWHM = 5 as a reference value, we propose a scaling of the form

¢
p+q FWHM + r FWHM"

(= , prgt+r=1, (5.59)

where

FWHM = - WHM

(5.60)

and p, ¢, and r are constants. Notably, setting p = ¢ = 0 and r = 1 aligns with the inverse of the scaling
utilised in (5.57) for the perfectly bonded scenario. However, this choice fails to give a good fit in the soft
bonded case. To address this, we generalise the scaling to encompass any quadratic expression in FWHM,
with coefficients subject to a normalisation constraint p+ g+ 7 = 1. The outcomes for p = 0.49, ¢ = 0.28,

and r = 0.23 are depicted in Figure 5.10.
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Figure 5.10: Plots of the scaled data from Figure 5.9, with the scaling given by (5.59) with p = 0.49,
q =0.28, and r = 0.23.

Figure 5.10 shows excellent alignment across all FWHM values up to a delamination length of 40
FWHM, after which it begins to deteriorate slightly but remains generally satisfactory. This fitting
process is based on trial and error rather than a theoretical prediction, as in the perfectly bonded case.
Although there is potential to find a more precise fit using advanced nonlinear optimisation techniques, a

task that extends beyond the scope of this thesis, we have established a workable solution.

5.3.5 Material parameters

In Figure 5.10, we observe excellent agreement between the various FWHM cases of 5 up to 40 units

of FWHM, after which the agreement begins to deteriorate slightly, corresponding to a minimum of
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200 in nondimensional units. Therefore we use the scaling to transform our nondimensional variables
into dimensional material parameters, allowing us to compare experimental data to confirm whether a
delamination length of 200 is reasonable.

Referring to the dimensional form of the DDE in (2.14), we transition the scaling to nondimensional

form via
T - f .t
T = — = — = — . 1
'1: X’ f F7 t T’ (5 6 )
where
X2 2oy, 72X po 120y (5.62)
—V 2e0¢? 1 e’ N B ' '

We can determine the corresponding material length from the nondimensional length. Considering the
PMMA bar and parameters outlined in Table 3.5, also stated in [46], we find that for ¢ = 0.1, a de-
lamination length of x = 200 in nondimensional units corresponds to a dimensional delamination of
approximately = 520 mm. This length is significant considering that experimental materials are typi-
cally around 600 mm long in total. Hence, it is reasonable to confine our considerations to delamination

values less than 200 nondimensional units in the context of practical applications.

5.4 Summary

This chapter builds upon the methodologies introduced in Chapters 3 and 4, where we examined the scat-
tering of a bulk strain solitary wave in a delaminated bi-layer structure with perfect bonding between the
layers, as well as the behaviour of radiating solitary waves in a similar structure with soft bonding. The
longitudinal displacements are described by either Boussinesq equations (for perfectly bonded, homoge-
neous or delaminated sections) or coupled Boussinesq equations (for soft bonded sections), with continuity
conditions imposed on the interface. In both cases, we developed a weakly-nonlinear solution and derived
corresponding initial conditions. Incident solitary waves undergo fission upon entering delaminated regions
in both perfect and soft bonded structures, providing a clear indicator of delamination.

We develop theoretical estimates for the soliton amplitudes after propagating through a delaminated
region by employing the IST to analyse the transmitted waves. Wave scattering behaviours in both bond-
ing scenarios were examined across various delamination lengths and geometric configurations, revealing
a correlation between these parameters and the observed number of solitons.

A measure, o, is used leveraging both theoretical and observed data of the wave’s amplitude to estimate

the delamination length. This measure is extended to accommodate incident waves of varying FWHM.
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A quadratic scaling is used to align all delamination curves to a single reference curve. This shows that
the curves overlap, allowing us to compute just one curve and apply the scaling to get the results for
the others. This approach significantly reduces computational time and enables efficient exploration of
incident waves of various widths.

For the soft bonded structure, theoretical estimates are unavailable through the IST. Instead, we use
the wave amplitudes in the first and second soft bonded regions from the numerical simulation to create
our measure (. A quadratic scaling is identified, showing mostly strong agreement and is consistent across
both layers of the structure.

Expanding on the findings of this chapter, the accuracy of the semi-analytical scheme could be en-
hanced by implementing higher-order corrections. Involving higher-order corrections would increase the
potential to yield even more precise results than those obtained at leading order. Further details on this

will be provided in Chapter 6.



Chapter 6

Conclusion

6.1 Overview

In this thesis, we investigated the scattering of long longitudinal bulk strain waves in multiple layered
structures with varying bonding types between the layers. Since our goal was to detect delamination, we
developed and used numerical techniques for each structure to analyse the wave’s amplitude, speed, and
position in both bonded and delaminated regions. Previous studies have explored delamination detection
methods for two-layered structures [47,48]. Building on this work, our research applied new detection
methods to both previously and newly studied structures.

In Chapter 3, we examined a two-layered structure featuring an initial delaminated region to generate
a solitary wave, followed by a second delaminated region sandwiched between two soft bonded regions - a
structure similar to that used in the experimental study [46]. We constructed weakly-nonlinear solutions
and obtained equations describing left and right propagating waves to leading order, with corresponding
initial and continuity conditions, by using a similar methodology to previous work [29,45]. We then
used the numerical schemes presented in Appendices A and B to perform ‘base case’ simulations for a
scenario with infinite delamination in the structure, finding excellent agreement between the two numerical
schemes. In the soft bonded region, the leading peak evolved into an Ostrovsky wave packet, while in
the delaminated region, it evolved into a solitary wave followed by secondary solitons and radiation. By
applying the Inverse Scattering Transform (IST) to the Korteweg-de Vries (KdV) equation and using the
linear dispersion relations for the Ostrovsky and Boussinesq equations, we derived theoretical predictions
for the leading wave peak amplitude and wave speed, both of which showed excellent agreement with
the simulations. By varying parameters such as € and 4, we further validated the theoretical predictions,

finding consistent agreement with the simulations. In the case of finite delamination, the wave in the second
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soft bonded region evolved into an Ostrovsky wave packet once again. We then varied the delamination
length from D = 0 to D = 300 and calculated the difference in wave amplitude and phase shift relative to
the D = 0 case for ¢ = 0.001 and € = 0.005. As the delamination length increased, the amplitude decreased
mostly linearly for smaller ¢ and nonlinearly for larger £. The phase shift increased with delamination
length for smaller e, and for larger ¢, it also increased linearly but more significantly following an initial
nonlinear behaviour at smaller delamination lengths. These results show that amplitude and phase shift
can be used to identify the delamination length without prior knowledge of its value, thus addressing
the research project’s objective. Using experimental parameters from [100] for waveguide properties and
geometry, we ran a simulation and observed an Ostrovsky wave packet in the soft bonded region and
solitons in the delaminated region, though not fully separated due to the bar’s shortened length. This
simulation provides insights into expected real-world outcomes.

In Chapter 4, we extended the analysis from Chapter 3 by considering the lower layer of the structure
to have a characteristic speed difference of ¢ — 1 = O(1), where the upper layer has a unit wave speed.
In a similar approach to Chapter 3, we outlined equations for the longitudinal displacement and strain,
along with continuity conditions. We developed a weakly-nonlinear solution and derived equations for
the leading order left- and right- propagating waves, along with their respective initial conditions, and
outlined the numerical methods. In our ‘base case’ simulation for a structure with infinite delamination,
the wave propagation in the upper layer was similar to that observed in Chapter 3. The only difference
was a slightly smaller £ value was used, which resulted in a reduction in wave evolution. The waves in the
lower layer evolved less than those in the upper layer, due to its higher wave speed. Similar effects were
observed in the second soft bonded region for the finite delamination case. We varied the characteristic
wave speed, ¢, in the base case simulation and compared it with theoretical predictions derived from the
linear dispersion relation, finding good agreement between the two. To enhance our understanding of
delamination detection, we varied the delamination position from x5 = 0 to xo = 1500, the delamination
length from D = 0 to D = 400, and the characteristic wave speed, c¢. For most delamination starting
positions, as the delamination length increased, the phase shift of the leading peak in the second soft
bonded region also increased, primarily in a nonlinear fashion, except at x5 = 0, where the increase was
linear. A ‘yoyo’ effect was observed, with the gradient of the phase shift increasing to a certain point,
then decreasing, and repeating this pattern. In the lower layer, where we considered ¢ values such as
¢ =1.25 and ¢ = 1.5, there was less variation between each x5 curve due to reduced wave evolution. For
¢ values such as ¢ = 2.0, the variation between x5 curves was minimal, leading us to omit further analysis
of these higher ¢ values. For arbitrary phase shift values, we identified a common delamination length

and position for both layers by using our phase shift plots. This demonstrates that specific waveguide
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configurations can be determined without prior knowledge of the setup. Additionally, we analysed the
phase shift for waves propagating from right to left in the upper waveguide. We then demonstrated
that, while the phase shift might decrease with increasing delamination length, the overall wave packet
consistently moved forward as the delamination grew. This observation aligns with the theory that the
delaminated region has a greater group speed than the soft bonded region [26].

In Chapter 5, we focused on analysing wave behaviour in multi-layered structures to further our
understanding of delamination detection. We first studied a multi-layered waveguide with a delaminated
region ‘sandwiched’ between perfectly bonded regions, where the structure could extend to any number
of layers since the materials were identical. We formulated the governing equations for the longitudinal
wave displacements, constructed the weakly-nonlinear solutions, and established the initial conditions.
We expanded upon the IST method introduced in Chapter 3, generalising the incident solitary wave
to account for the Full Width at Half Maximum (FWHM). We then examined a similar structure,
which was the two-layered waveguide from Chapter 4; however, in this case, both layers were composed
of similar materials, resulting in the generation of radiating solitary waves. We conducted preliminary
simulations for various waveguide configurations and geometries, n and k, and observed that as the n and
k values increased, more solitons were generated in the regions following delamination. We then varied
the delamination length in the perfectly bonded scenario and compared it against a measure, o, derived
from the wave amplitudes in the perfectly bonded regions, based on both the simulation results and IST
wave amplitude predictions. Across various FWHM values, an increase in delamination length led to a
corresponding increase in o, which approached a theoretical limit of o = 1, the maximum relative change
in wave amplitude between the regions. In some cases, the value nearly reached this limit but fell short
due to the range of delamination lengths tested in the simulations. This pattern was consistently observed
across different n and k values. We scaled ¢ so that all FWHM curves overlapped with the FWHM = 5
curve, meaning we could derive the results for FWHM = 5 and then use our scaling to obtain the results
for the other FWHM cases. In the soft bonded case, since the IST couldn’t be applied to the Ostrovsky
equation, we used the wave amplitudes in the first and third regions to create a measure, ¢, which we then
compared to varying delamination lengths. We observed that as the delamination length increased, ¢ also
increased in a mostly nonlinear fashion across all FWHM curves. Similar to the perfectly bonded case,
we then scaled the curves for different FWHM values using g: , so that they overlap with a reference curve
at FWHM = 5. We then scaled our Boussinesq equations to nondimensional form, utilising experimental

data parameters to determine delamination lengths in practical setups.
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6.2 Further work

For future work, implementing higher-order corrections to the weakly-nonlinear solutions is expected to
improve the agreement between the semi-analytical approach and the finite difference method, particularly
for waves further from the leading wave peak. In the bonded region discussed in Section 4.2.2, we could

construct the following weakly-nonlinear solutions:

FO(a,t) =TV (6, X) + RV (1, X) + ePD (¢,n, X) + 2P (£,n, X) + O(e%), (6.1)

9 (a,t) = D (1, X) + GD (¢, X) + Q) (v, ¢, X) + £2Q (1,¢, X) + O(), (6.2)

where PQ(i) (&,m,X) and Qg) (v, ¢, X) are higher-order correction terms that could be included. Similarly
to the leading order case, we would substitute f(? and ¢(?) into the Boussinesq equations for longitudinal
wave displacement, then use averaging techniques to derive the higher-order solutions. With these higher-
order solutions, we would apply the pseudospectral scheme to obtain numerical approximations for the
wave propagation. Although the methodology is similar to that used when incorporating up to leading
order terms in the weakly-nonlinear solutions, the mathematical complexity of incorporating higher-order
terms is significantly greater and beyond the scope of this thesis.

Another avenue for future work could involve incorporating relaxed bonding between the two layers of
the structure. This type of bonding is much weaker than soft bonding and was modelled by an asymptotic
long-wave model in [29]. Analysing the wave behaviour in this relaxed bonded case would improve our
understanding of a broader range of structures, increasing the applicability of delamination detection,
as real-world applications often involve various bonding types. Similar to the reason that higher-order
corrections were not explored, the mathematical complexity of finding leading order solutions and applying
the semi-analytical method requires significant additional work, which is why it is beyond the scope of
this thesis.

In Chapter 5, we partially explored a three-layered waveguide structure with perfect bonding. Since
the materials of each layer were identical, the solution for one layer applied to all, simplifying the problem
to solving for just one layer. However, when the waveguides consist of different materials, as in the soft
bonded cases, it becomes necessary to solve for each of the three layers individually, significantly increasing
the mathematical complexity. If the wave speeds in each layer are similar, solitons will evolve into
radiating solitary waves. The interactions among these waves across the three layers will complicate the
interpretation of the scattering results. This added complexity, combined with the extensive computational

effort required, limited our ability to explore this scenario within the scope of this thesis.



Appendix A

Finite difference method

In this appendix, we will apply the finite difference method to two cases: a single Boussinesq equation and
the initial value problem for a system of M coupled Boussinesq equations. This approach will encompass
all instances of the finite difference method used throughout this thesis.

We will begin with the finite difference method applied to a single Boussinesq equation. This will
involve discretising the equation over a defined spatial and temporal domain and substituting the necessary
finite difference approximations into our Boussinesq equation. By reducing the continuous equation to
a discretised form, we expect to obtain a tridiagonal matrix representation that can be solved using the
Thomas algorithm [104]. This formulation will effectively incorporate boundary conditions and ensures
accurate numerical solutions for the Boussinesq equation.

This initial case lays the groundwork for treating M coupled Boussinesq equations, as discussed in
Chapters 4 - 5. In this case, we will consider the general formulation, from which specific cases can be
derived by simply adjusting the coefficient values. The method is also applicable in Chapter 3 where
the lower layer is neglected. We again employ a discretisation process while introducing ghost points to

manage boundary conditions effectively throughout the derivation of our numerical scheme.

107
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A.1 Boussinesq equation

Firstly, let us recall the following general Boussinesq-type equation (2.20) as:
Upy — gy = £(QULULe + Blhttzz)- (A1)

We consider the discretisation process, which involves dividing the domain [—L, L] x [0,7T] into a grid
with uniform spacing, represented by Az in the spatial direction and At in the temporal direction. We
approximate the analytical solution u(x,t) by the finite difference scheme, denoted as u(iAz, jAt) = u; 4,
where we have ¢ = 0,1,..., N and 7 = 0,1,..... Consequently, the time derivatives are represented by

second order central differences as

Wi j41 — Ui j—1 Ui j+1 — 2Ui 5 + Ui j—1
wp = L L O(AP) and gy = RS T

oAt + O(A?), (A.2)

and the spatial derivatives are also represented by second order central differences as

Uit1,j = 2Uij + Uiz,

Uy = % +O(A2?) and g, = A + O(Az?). (A.3)
For simplification, we introduce the notation
Dwx(ui,j) = A.I?quw R Uig1,j — 2U4 5 + Ui—1,5- (A4)

Multiplying the approximations for u, and u,, together after omitting O(Ax?) gives

(wij+1)® = 2(wig) (wigr1) + 2(wij) (wij—1) — (wij—1)*
+1 +12Ax3 1 1 ) (A5)

UgUgy =

To determine the central finite difference representation for .., we first apply the second time derivative

operator to the second spatial derivative operator and then apply the resulting operator to . This yields

gpay Ao LI 2ui 41+ Uim1j11 n —2uiq1,5 +4ui — 22U 4 G 2ui -1+ U151
e At2Ax? At2Ax? At2Ax?
(A.6)
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Now substituting the respective finite difference approximations into (A.1) yields
Uij+1 = Uiy + Uij—1 o Daa(Uiy)
At? Ax?
o
=2 |5 (1) = A ) () = 4im15) (i) + (wio)?)

+ 3 Ui 1,541 — 25 541 + Ui—1 j41 n —2u 41,5 + 45 — 2ui_1 AR 22U j1 + Uj—1,5—1
At2Az? At2Az? At2Az? '

(A7)

After some rearrangement, (A.7) can be expressed as

(A$2 + 265) Ui j41 — EBU1 541 — EBU—1 541
= AtQCQDM(ui,j) + (2A$2 + 46,8) Us 5 — (A$2 + 2€ﬂ) Us -1

20 N2 (A.8)
% — 2eaAt* (uit15) (i) + 200> (w1 5) (i )

EOéAtQ (UZ‘,17J‘)2

N — 2efuiq1,; — 2ePui_1,; +eBuiypr i1 +eBuU—1,5-1.

We can denote the right-hand side of (A.8) as f;, thus yielding

(Az® + 2eB)u; j11 — eBuit1,j41 — EBU—1 541 = fi- (A.9)

Now we can express (A.9) in tridiagonal matrix form as

Ax? +2¢ —2¢83 UQ,j+1 fo
—e Ax? +2¢3 —ef U141 f1
= , (A.10)
—ef Az? +2¢8 —e8 UN_1,j+1 In-1
—ef Az? + 23 UN,j+1 In
for j = 0,1,.... This tridiagonal system can be solved via the Thomas algorithm which is an optimisation

of Gaussian elimination [104]. Since we’re dealing with localised initial displacement data, we can achieve
zero boundary conditions for the displacement by selecting a sufficiently large value for L. With v = 0
imposed on the boundaries within the interval [—L, L], we also impose u, = 0. Applying a central

difference approximation to this condition gives

Wit1,j — Ui-1,j
2Ax

Uy = =0 = Ui41,5 = Ui—1,5, (Al].)
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for j=1,2,...at ¢ =0 and i = N. Since the bar length is sufficiently large, the boundary conditions are

imposed far enough from the propagating waves, allowing us to set
Up,j = UN,j =0 Vj S {1,2,3,} (A12)

The initial conditions are chosen to represent a solitary wave solution, assuming that the initial state
corresponds to a traveling soliton. Consequently, the solutions after the initial conditions are shifted by
v1At. Thus, we set

Azy/cf —1 Az — v At) /2 — 1
Ui,0 = 3(@% — 1) sech2 <W> , and ug = 3(C% _ 1) SeCh2 <(7/ r — v )\/T)

2¢; N 2c1

(A.13)

If the boundary values are not assumed to be zero, we calculate the values at the boundary points for

Jj =1,2,..., ensuring that the tridiagonal matrix is modified to include the term u_; j4i. To apply the
Thomas algorithm in this case, we introduce the variables p; and po, where p; = Ax? + 2p, and py = 8.

Substituting these terms into (A.10) simplifies the tridiagonal system to

p1 —2p2 Ug,j4+1 fo
—-p2 p1 —p2 UL, j+1 f1
= 1, (A.14)
—p2 P11 —p2 UN—1,j+1 fy-1
—2p2  p1 UN,j+1 In
which can be expressed as
1 7 UQ,j4+1 go
0 1 UL 41 g1
0 1 Y3 U2 5+1 g2
! = , (A.15)
0 1 ~ynv—1 UN-1,j+1 gN—1
0 1 UN j+1 gN
where the values y; = —31p27 go = 5—2, v = /nﬂgjﬁ fori = 2,3,...,N —1, and g; = % for

i =1,2,...,N. The left boundary point, i = 0, in implicit form, can be determined by substituting -,
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and go into the first row of (A.15), allowing us to express ug j4+1 in terms of the iterative point:

2eBuy 41+ fo

Uo.j+1 = A e T 2e8 (A.16)

A similar process can be applied to determine the values for the remaining points, including the right

boundary point, ¢ = N.

A.2 Initial value problem for a system of M coupled Boussinesq
equations

In this thesis, we examined structures consisting of multiple regions, with the wave displacement governed
by a set of Boussinesq-type equations with boundary and continuity conditions. While Section A.1 applied
the finite difference method to the single Boussinesq equation, this approach alone is insufficient for solving
the entire system. Thus, we must extend our methodology to address the full system of Boussinesq-type
equations.

Let us extend the finite difference method from Section A.1 to a two layered structure with M sections,
each described by a system of coupled (¢cRB) or uncoupled Boussinesq equations. The equations for each

section are given by

) — ulf) = 26 [~6uDull) + il — 3 ()~ w )] .
wg) —Gull) =2 [—604110:(!)709(52 + Blw(l) + (U(l) - w(l)ﬂ ;o T-1 <X < Ty

ttrxx

where the variables retain the same meanings as in the previous section, with the exception of §; and 7,
which are coupling coefficients dependent on the properties of the soft bonding layer, and are the only
unknowns, obtained through parameter rescaling. The subscripts 1 and 2 refer to the coefficients for
the upper and lower layers, respectively, and z; represents the interface position between sections. The
equations are defined for each section Il =1,2,..., M.

We enforce continuity of the longitudinal displacement and normal stress at the interface between the
equations, given by

u(l)|f1::.7:l = u(l+1)|$:m“ w(l)|m:xl = w(l+1)|$:m“ (A18)
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and

ul + 2¢ [—3 (ug)) + ugl]

2
Qw;l) + 2e {30&1 (wé”)

. [_3 (w0 uggﬂ

b

=T =T

2
+ 5lwm] ’ = cF i 4 2 {30%1 ( (+1 )> + 5i+1wt(il£:1)]

Tr=x

(A.19)

respectively, for [ = 1,2,..., M — 1. To find a numerical solution for the equation system (A.17) - (A.19),
we again make use of central difference approximations, similarly as in the previous sections. Note that
the discretisation in x can vary across sections, allowing for finer mesh in regions with complex waves and
a coarser mesh where the solution is simpler, improving the computational efficiency. The time step At

will be determined by the smallest spatial discretisation, i.e., Az, = min;—j 2 . mAx;. Substituting

,,,,,

the respective approximations into system (A.17) results in a coupled system of tridiagonal equations, of

the form
- 2€u5421 i1+ (de + Azf) ;H - Zeugl’jﬂ = (At® — 4g) Dy, (ug)
@ 6 At? ! 2 1 2 ! ! H «
roactul) - 500 (0, ) - ()" - 20l o) + 2l
+ 2eul?) (45 + Az ) o + 2eul?) — 2e0;A 2At2 l) @.) A.20
i+1,5—1 1) %51 i—1,5—1 18T Wi 5| (A.20)
and

— 2551101{217]-“ + (45 + A:UZQ) wi?H — 2€6lwl(l_)1,j+1 = (Athl2 — 4sﬁl) D, (wz(l]))

(l) 6eoy At? o 2 o \? ) (l) oI
+2Aml A%l (wi+1$j) ( w; - 13) _2w1+1j —|—2’LU jWis1,j

+ 2€ﬁlw§21’j71 — (4B + Az}) Z(lj) 1+ 25w2@1)j | — 2emAzi A ( @ wl(lj)) , (A.21)
for i = 0,1,..., N;. Assuming the domain [z;_1,2;] X [0,T] is discretised, the number of points in each
section is calculated as N; = (z; — x1—1)/Ax;, with ¢ = 0,1, ..., N;. Thus, the continuity condition (A.18)

becomes

l I+1 l I+1
SV)I g+l T u(() ]+)1’ wgv? Gl = w((J,j+)1- (A.22)

We substitute the central difference approximations into the continuity condition (A.19), introducing

“ghost points” in the form of ug\lfzﬂ’jﬂ, u(_lﬁ)“, wg\l,zﬂ’jﬂ, and wgﬁl_l, consequently transforming the
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first equation in (A.19) into the form

2 (, 1 ) ) ) ) @)
Az At (“N;+1,j+1 - “lel,j+1> — 28z (2“Nl+1,j+1 = 22Uy, g1 T DUy DUy

l l l l
) g1 g~ AUy~ U T “sz—l,j—z)
Af2e | (y® S0 PO 0
— 3At% (uNz+1,j+1) + (“Nl—l,j+1> — 2UN, 11,4 1UN - 1,41

Aa? n?
= Al () - u ) o 6<2u(l+1) —2a"7) 5l TV + 5ulT) + au{ T

- Az —1,5+1 hisa 1,j+1 —1,j+1
(1)) ) Az} (o [\ (ot Vg ) a4 A
T -l ) A (w) + (k) — 2T | (a23)

and similarly transforming the second equation in (A.19) to obtain

l l l l l l
Az At?c} (wEV3+1,j+1 + w§V3—1,j+1> +2A8zefy <2w5v3+1,j+1 —2wR) 4 g BWN BN

) ) ) )
FAwy o AN o T W wNzl,j2)

) 2 0} 2 ) 0}
_ 3At25al |:<le+1’].+1> + (leiijLl) — 2le+1,j+1wNz1,j+1]

Ax? I+1 141 Ax? 141 141 I+1 I+1
_ At2e2 ((%)_ (+,)) 9 l oY) 9, 5 (41 | g (D)
Az e Wyt — Wty ) Al‘z+1gﬁl+1 W1j+1 Wo1,5+1 wy ;" oWy
I+1 I+1 41 I+1
+ 4wt — 40T — w0l + w(—Lj)—?)
Ax? 141)) 2 +1) )2 I41)  (1+1
35 Afean [(w{jﬁl) () = 2l e (A.24)
I+1

for u and w respectively.

As we are again considering localised initial data for strains, choosing a sufficiently large L allows us
to impose zero boundary conditions for the strain, i.e., u, = 0. Enforcing the boundary conditions at the
first and last sections gives

(1 (1 M (M)
ul) o =l and G = ey (A.25)

and equivalent relations for w. Therefore, since we have consistently applied central difference approxi-
mations, we now have a second-order scheme.

In each domain there are two ghost points: one at the left boundary and one at the right boundary.
The exceptions are the first domain, which has no ghost point on the left, and the M—th domain, which
has no ghost point on the right. To accommodate these exceptions, we rearrange the boundary conditions.

Accordingly, we define the right-hand side of (A.20) as fi(l) and that of (A.21) as gfl) for the corresponding



APPENDIX A. FINITE DIFFERENCE METHOD 114

values of 7 as

l l
fo= )+ 25U(—)1,j+17 fN, = + 25“§V),+1,j+1» (A.26)

l ~ l
go - g( ) + 256IUJ_1 FESE gé\[l = g](\lz + 25ﬂlw]vl+1 G410 (A27)

We can express (A.20) in matrix form for each section, with two exceptional cases at the boundaries. In

the first section, for i = 0,1, ..., N1, we have

1 1 1 _ 1 1 (1
4 (UE)J)Jrl’ ’U/g ])+1’ Tt ug\/l) 1,541 S\fl) ]+1> - (f(g )7 fl( )7 ey le 1 ](Vl)) . (A28)

For the final section, we similarly have:

M M M M _ | F(M (M M
AN W W00 w0 ) = (00, FAN g0 ). (a9)

For all other regions where 1 < [ < M, the system of linear equations takes the form

A s e W w@ ) = (R0 A0 0 D) (As0)
where
4e + Ax? —4e
—2¢ 4e + Az? —2¢
A= : (A.31)
—2¢ de + Azx? —2¢
—2¢ 4e + Az?

A similar system can be formed for (A.21), but we omit this expression for brevity. We now have the
tridiagonal systems for the functions v and w, which can be solved implicitly using the Thomas algorithm,
while considering the ghost points at both the left-hand and right-hand boundaries. As a result, the
solution at each point can be expressed in terms of the explicit solution, when ghost points are absent,

and a multiplicative factor from the ghost points as
1 (1 (1 l H
(,;Jrl =; v +; 2 ( 41t W( )UEV)H FERE (A.32)

where we have a similar relationship for w, and ¢Z(-l) wl@ and wgl) are coefficents from (A.28)-(A.30). We
note that wgl) =0 and wZ(M) = 0 because there are no ghost points at these far boundaries.

From the system of linear equations (A.28)—(A.30), we can estimate the coefficient vectors ¢ and w.
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Using the Thomas algorithm, we observe that these coefficients depend on Az, the step size, which we
assume to be small enough so that we can omit it. To simplify the estimation, we neglect terms greater
than order Az in the estimates that follow. Under this assumption, for ¢ = 0, 1, ..., IV}, the coefficients are

determined as
N +1—1 o _ 141

A.33
N+2 @ Y TN+ (A.33)

vl =

For a sufficiently large domain, or small Az, the coefficient of the left ghost point approaches zero at the
right-hand boundary, and similarly, the right ghost point at the left-hand boundary. Our calculations for
N = 50000 yielded a boundary value of essentially zero (O(1073%°)), which is below machine precision
(O(10716)). This indicates that a suitable Az and corresponding N can be determined for most domain
sizes. As a result, we can simplify the problem to solving just two equations at each interface, involving
two ghost points. To derive this nonlinear equation, we first rewrite u Jlr ])H in terms of ug\lfz 141 using

(A.22). Then, we substitute the expressions for ug\l,) 11 and up o ) from (A.32) in terms of the ghost

points. Substituting these into (A.22) yields

l H I+1 14+1) (141
¢>sz tw () §v2+1 Gl = ¢( T 7/’( : (—1 ])+1’ (A.34)
and therefore we have
0 1+1 IR
(I+1) PN, ¢(() '+ 1(V3“§V3+1 G+l
U_1,5+1 = (I+1) ’
0
WD) gD o (+1) 0 0
U141 = + $FD (¢ — %0 YN YN+ J+1) (A.35)

We follow a similar approach for w. By substituting (A.32) and (A.33) into (A.23), which results in a

quadratic equation for ug\l,)l 41,541, written explicitly as

l l
ho (w041 N) +hyul) )+ he =0, (A.36)
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where

M \?2
Can (N R A1 s [ W, a+) )2
— —3A¢% (W), — 1) +3Aml+1m (wé””) (w0 1),

mo= (1wl 1) (AnA +48me + 6202265 )
@)
(1 _ (l+1)) “N, Az} N szz c_6 Az} At2e (l+1)
¢(1+1 AJJH_l A$l+1 A.Tl+1

6 Az? A2 8WNZ ((25(1) z+1)) ( (z+1)> ot ]

Az}, (w(()l+1)> 1
2
hg = — — ¢§\l, (AZL‘IAt + 4A£EZE) - 3At2 ( 9 1)
! ! 1 ! ! !
+24me ( U 41+ B, 1y A 51— AU e UEV)L—l,j—2)
(l) (D) 2
13 Az} l A2e ( ng))Q + PN ( §z+1) B 1)
Az} T4 w(lﬂ)
(z+1 (z+1)
+2 (p{* - 1) (ki — ™)
1 b (1+1)
0
(l+1)
Axl A 1+1) (15 (14+1)
At 44— MEL ISR - ( —1
<A$l+1 + AJZH_l ) [¢1 T w(lJrl) wl )
Az} (4D | gy D) 4 gy () gy (H) | 01)
B 2€A.’L'l+1 ( bu + 5u Uyt du —duy g-1 " Ui ot _17.j_2> . (A.37)

If hg = 0, a linear boundary equation must be solved. When the nonlinearity coefficients are the same
across both sections of the bar, i.e., oy = 1, this condition hg = 0 holds. However, when hg # 0, and the
nonlinearity coefficient varies between sections, we must select the correct sign in the quadratic equation.
This sign is chosen to align with the behaviour of the solution in the adjacent regions.

The finite difference method has now been applied for the cases of a single Boussinesq and initial value
problem for a system of M coupled Boussinesq equations. This comprehensive framework will allow us

to run numerical simulations to explore wave propagation across the different layers.



Appendix B

Semi-analytical method -

Pseudospectral scheme

In the forthcoming appendix, we will present a detailed analysis of a pseudospectral scheme that offers
a semi-analytical solution for wave propagation, which is the second numerical scheme discussed in this
thesis.

We will address three equations: the Korteweg-de Vries (KdV) equation, the single Ostrovsky equation,
and the coupled Ostrovsky equation. These equations represent the leading order equations derived
from our analysis of weakly-nonlinear wave propagation in various structures throughout this thesis.
We will demonstrate how to apply the continuous Fourier transform to each equation, followed by the
Discrete Fourier Transform (DFT) for numerical analysis. By transforming the spatial domain to facilitate
computational methods, we will simplify the equations and implement the Fast Fourier Transform (FFT)
algorithm. The Runge-Kutta 4th-order method will then be employed to discretise the transformed

equations, in time, yielding accurate numerical approximations.

117
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B.1 KdV equation

Firstly, let us consider the following KdV equation

fr+affe+ Bfeee =0, (B.1)

where o and 3 are constants and the variables are defined as T' = et and £ =  —t. The continuous Fourier
transform yields a nonlinear ODE, which is difficult to solve analytically; therefore, the DFT will be used
to obtain a numerical solution. Currently, the domain is defined on the intervals ¢ € [0, T] and € € [-L, L].
We transform the spatial domain & € [—L, L] to fe [0, 27] using the transformation € = s + m, where

s =m/L. We then express the derivatives with respect to £ in terms of é , giving
fg = Sfé7 fggg = ngéff (B.Q)
Substituting these expressions into (B.1) and omitting tildes yields

fr+saffe+s°Bfeee = 0. (B.3)

To simplify the nonlinear terms we introduce the notation

ffe=(za)e = (f22>5 (B.4)

The solution is discretised at N equally spaced points across the interval A{ = 27 /N, where N is a power

of 2. This setup allows us to use the DFT

1 N—-1 )
N g Tye e, —

j=0

=

N
<k<L —
- T2

f(k,T) = —1, (B.5)

E

for each fixed T', where k is an integer representing the wavenumber. For k # 0, the Inverse Discrete

Fourier Transform (IDFT) is

f&T) =
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The FFT algorithm is utilised to efficiently compute these transformations [105]. In Fourier space, spatial

derivatives correspond to multiplication by powers of ik, such that

jg—m‘k, fe = ikf(k), feee — —ik® (k). (B.7)

Therefore, applying the DFT to (B.3), with respect to &, gives
fr +iskaz, —is*k*Bf = 0. (B.8)

We implement the Runge-Kutta 4th order method by assuming fj = f (k, jAT) is the solution at T = jAT
for (B.8). While Euler’s method, as derived in [74], provides a valid approach, we opted for the Runge-
Kutta method due to its higher accuracy and reduced error accumulation over time. Therefore, the

solution at T' = (j + 1)AT is given by

. A 1
Ir.G+yar = fejar + é(a +2b+ 2¢ +d), (B.9)

where a, b, c and d are functions of £ at time T and are defined as

R R a 2 b ;
a=ATF (fk,jAT) s b=ATF (fk,jAT + é) , Cc= ATF (fk,jAT + 21> s d=ATF (fk,jAT =+ Cl) .
(B.10)
The function F' is obtained by isolating the non-time derivative terms in (B.8), resulting in
A iskaz,
F(fy= ————. B.11
(h= s (B.11)
B.2 Single Ostrovsky equation
Let us consider the Ostrovsky equation
(Tx +oTT, + 8Tyu0), =T, (B.12)

where T' now represents a transmitted wave, with v = x 4+ ¢t and X = ex as characteristic variables.
Similarly to Section B.1, we map v € [~L, L] to 7 € [0,27] via the transformation 7 = Tv + 7, where
s = m/L and k is an integer representing the wavenumber, as defined previously. In addition, we define

the DFT as

—

N—
~ 1 )
T(k,X):ﬁ T(vj, X)e ™, —
—

=

N
<k< —
- T2

~1, (B.13)

<
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where k is defined as before. The IDFT is then given by

Y1
T, X) = —— T(k,X)e ™% j=01,..,N —1. (B.14)

— N
k=—%

Applying the DFT to (B.12), while omitting tildes, yields

Ty = —isk(T)? + Bis®k>Tyn, — 'yik(fT). (B.15)
s
We now apply the Runge-Kutta 4th order method similarly as Section B.1. Thus, the solution at X =
(j +1)AX is given by

R . 1
Tk, j+yax = Tk jax + 6(a1 +2by + 2¢1 + dy), (B.16)

where a;, b;, ¢; and d; are functions of v at X and are defined as
. . a
a; = AXyg (Tk:,jAT) , bi=AXg (Tk,jAT + ?1) ,

A ) A (B.17)
ci =AXyg <Tk,jAT + 2) , di=AXyg (Tk,jAT + Cl) .

where the function g represents Tx.

B.3 Coupled Ostrovsky equations

Building on the previous sections, we now extend the pseudospectral scheme to the right-propagating

coupled Ostrovsky equations, which are denoted by

(Ix+a1H§+61]§§§)575(175) =0, (Blg)

(Sx + a2SSe + B2Seee + ng)g +~(I—-5)=0, (B.19)

where w represents the coefficient of the S¢ term. The system above is presented in a general form that
includes this additional term to accommodate all cases discussed in this thesis, as required in examples
such as (5.46). In cases where this term is not present in the Ostrovsky equation, the same pseudospectral
method can be applied by setting w = 0. For the left-propagating coupled Ostrovsky equations, a similar
methodology is used, and so the details are omitted here. Transforming the spatial domain £ € [—L, L]

to £ € [0, 2] using the change of variables & = & + 7 and applying this to (B.18), while omitting the
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tildes, gives
0
(Ix 4+ anisklle — B1is’k*Ieee), — — (I — S) =0,
¢ sk (B.20)
(Sx + aziskSSe — Bais™* Seee + iskwSe)  + —-(1 = §) =0,
is
where, as previously defined, s = w/L and k is an integer representing the wavenumber. While the DFT

is

N-1
I(k,X) = 1 I(&, X)e e N <k< N 1,
VN = 2 2
| ne N N (B.21)
Sk, X) = —= Y S, X)e ™ = <k< = -1,
VN = 2 2
and the IDFT is N
N_1
1 =
I(é-vX):iN Z I(k X) ikt .7:0717 7N_]-7
k=—N
L (B.22)
|
1 N .
S, X)=— S(k,X)e ™% j=0,1,..,N —1,
VN =

where k is defined as before. Thus applying the DFT to equation (B.18) with respect to £ and denoting

the nonlinear terms as Il = (24)e = (g)g and SSe = (z)e = (g)g’ we obtain

fX — 0412'8]{),’2,1 — Blis3k3f = —Lk (f — S) 5
SZ_ (B.23)

and Sx + iskwS — agiskzy — Bais k3§ = — (S - 1) .

sk
These can be used to find the functions F; for ¢ = 1,2 as
U A R s . 3,37

Fi=Ix = e <I S) + aiskz, + Bris k1, (B.24)
and Fy = Sy = —i (S - f) — iskwS + aniskzy + ,6’2i53k35'. (B.25)

Next, applying the Runge-Kutta 4th-order method as before, we assume fj = I(k,AX) and Sj =
S(k, AX) represent the solutions at step X. Therefore, solution at X = (j + 1)AX is given by

. A 1
I iyyax = Ik jax + G (a1 + 2by + 2¢1 + d1),
(B.26)

N 1
Sk,(j+1)ax = Sk jax + g(az + 2by + 2¢2 + d3),
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where a;, b;, ¢; and d; are functions of £ at time X and are defined as

A~ N ~ a ~ a
a; = AXF; (Ik,jATa Sk,jAT) , b= AXE; (Ik,jAT + ?1, Sk,jar + ?2) ,
S b1 - b . N
¢ = AXF; (Ik,jAT + 51, Sk jar + ;) , di=AXF; (Ik,jAT +c1, Sk jar + 02) .

(B.27)

In summary, we have successfully extended the pseudospectral scheme for the KdV equation, single
Ostrovsky equation, and coupled Ostrovsky equations by applying the DFT and the Runge-Kutta 4th-
order method. This enabled us to derive solutions at each time step for the wave dynamics in the various

structures explored in this thesis.
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