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Abstract

Electroencephalography (EEG) hyperscanning refers to simultaneous
EEG recordings from multiple subjects. This scenario has become
popular for studying group performances by social science activists
to investigate human competing or collaborative actions. However,
the use of EEG hyperscanning had not become practical in brain-

computer interfacing (BCI) prior to this research.

In this thesis, we investigate the use of EEG hyperscanning for two
BCI scenarios; one where the BCI tasks are performed in an uncon-
trolled environment in which the brain is naturally engaged in multi-
task activities, and the objective is to enhance the BCI training accu-
racy. The other one is to assess how well a subject’s brain can follow
another brain. The latter scenario can be useful in brain rehabilita-
tion, i.e., after stroke, or for investigating brain plasticity where new

motor region substitutes the inactive zone.

For the first scenario, a new formulation for common spatial patterns
for EEG hyperscanning (namely hyperCSP) has been proposed. It
learns a rotating matrix to best derive the desired (common between
multiple subjects) motor task and remove all the undesired (uncom-
mon between the subjects) ones caused by the uncontrolled environ-
ment. It has been demonstrated that in an uncontrolled environment,
learning from two subjects can significantly enhance the motor clas-
sification rates, achieving a best classification accuracy of 0.82 using
an SVM classifier.

For the second scenario, the concept of adaptive cooperative network-

ing has been exploited to investigate the collaboration or similarity



in function between multiple brains. A brain functional connectivity-
informed single task diffusion adaptation has been used for this pur-
pose, achieving the lowest error compared to competing methods. In
this scenario, the EEG sensors for each subject are considered as the
agents of a connected network, that cooperate to achieve a desired
task prescribed by a second subject. The outcome of this achieve-
ment can boost brain rehabilitation process where the collaboration
or difference between a healthy and a subject under rehabilitation is

investigated.

Finally, given that the brain can be considered as a connected network,
a prolonged physical task can be classified by assessing the variation
in such network through cooperative networking using diffusion adap-
tation. In this study, the 3-D body movements are segmented and 1-D
orthogonal vectors, in this case Bessel functions, are allocated to the
segments. These orthogonal vectors are used as the targets for clas-
sification of the brain tasks, obtaining a best inter-subject validation
accuracy of 0.83 under a non-ideal situation. The outcome of this
research paves the path for the use of BCI with no feedback (forward

BCI) for developing brain-driven cybernetic devices.

The research in this thesis is concluded by suggesting combination of
hyperCSP and other proposed methods for obtaining inclusive BCI

systems and a pipeline for real-time applications.

Each chapter of this thesis is followed by extensive sets of experiments

and involves in-house data recordings (some made publicly available).
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Chapter 1
Introduction

Latest advances and improvements in neurorehabilitation techniques for patients
with complete, partial, or chronic neurological injuries are not yet able to re-
store or improve damaged neural pathways, even more in the presence of brain
plasticity. In these cases, where more traditional therapies are not enough, brain-
computer interfaces (BCI), which are systems that allow people to interact with
the outside world through the identification and classification of neural activities,
have shown positive results as an alternative neurorehabilitative approach [1].
This approach can help restore the lost motor function, heal the damaged brain,

and reduce the neurological deficits.

1.1 Brain Physiology and Motor Activity

The human brain is composed of billions of interconnected neurons that form a
complex network, and is considered the most complex evolutionary biological sys-
tem. This organ, together with the spinal cord, constitute the major components
of the central nervous system (CNS), which is the main part of the human ner-
vous system responsible for integrating and processing the sensory information,
and coordinating the body responses based on this information.

In the CNS, the brain processes the sensory inputs as stimulus and generates
neural signals as responses to these stimulus through the interaction of neurons via

synapses, where neurotransmitters are released to propagate the signals. Then,
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the spinal cord transmits these neural signals between the brain and the rest of
the body.
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Figure 1.1: Diagram of a neuron representing its three main parts.

These neurons transmit electrical impulses, which are fundamental in all brain
functions, and are formed of three main parts: the cell body, the axon, and the
dendrites, as shown in Fig. 1.1. The cell body is the central part of the neuron
that contains the nucleus, which stores the cell’s genetic information. The axon
and dendrites are thin prolongations of the neuron, where the axon transmits the
electrical impulse from the neuron to other neurons, and the dendrites is used
to receive the electrical impulse from other neurons. These two parts allow for
the communication within the neural network. Therefore, neurons form networks
that underlie all brain functions, and these networks are organised in specific
ways within different brain regions, allowing the specialised functionality of each
region.

Generally, the brain can be divided in three main parts: the cerebellum, lo-
cated at the back of the brain and in charge of motor coordination, balance,
and precision of movements; the brainstem, which connects the brain with the
spinal cord and regulates many involuntary responses and vital functions, such
as heartbeat and breathing; and the cerebrum, located at the uppermost region
and responsible for higher cognitive functions, such as sensory perception, cog-
nition, motor control, and decision-making. The cerebrum is divided into two
hemispheres, left and right, each controlling the opposite side of the body. Each

hemisphere is specialised in different functions and they can further be divided
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into four main lobes: frontal, parietal, temporal, and occipital [2]. The frontal
lobe is involved in decision-making, problem-solving, planning, voluntary move-
ment and speech production, and in the control of emotions, social behaviour and
personality. The parietal lobe processes sensory information from the body, such
as touch, and contributes to the spatial orientation and perfection. The temporal
lobe is involved in the processing of auditory information, and it is also crucial
in memory formation and retrieval. Finally, the occipital lobe is mainly respon-
sible for the processing of visual information. The cerebrum is also composed of
other additional key components: the basal ganglia, a group of structures deep
within the cerebrum involved in movement control and coordination; the white
matter, which is the inner tissue of the cerebrum and connects different parts of
the cortex and links the cortex and other brain regions and the spinal cord; the
corpus callosum, a band of nerves that connect the left and right hemispheres,
allowing for communication between them; and the cerebral cortex, which is the
outer layer of the cerebrum and is involved in higher brain functions.

The cerebral cortex can further be divided into functional areas, referred to
as brain regions, that correspond to specific sensations. During mental tasks,
including motor execution, these brain regions engage in continuous communica-
tion to refine and execute the desired task. Some of the main cortex regions of

interest in BClIs are [3]:

e Primary Motor Cortex: located in the frontal lobe, it is primarily respon-
sible for executing voluntary motor commands. It contains the motor ho-
munculus, which is a topographical map of the body where different parts

of the cortex correspond to different muscle groups in the body.

e Supplementary Motor Area: located in the medial aspect of the frontal lobe,
it is responsible for complex movements and the coordination of two-handed
movements. This cortex area is associated with the initiation of movements

that are internally guided rather than as a reaction to external stimuli.

e Primary Visual Cortex: located in the occipital lobe, it is responsible for

the processing of visual stimuli.
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e Primary Auditory Cortex: located in the temporal lobe, it is responsible

for the processing of auditory stimuli.

A summary of different parts of the brain can be found in Fig. 1.2.

Primary Motor Cortex

Supplementary Motor Area

Frontal Lobe Parietal Lobe

Occipital Lobe
Cerebrum —

Primary Visual Cortex

Temporal Lobe  Brainstem Cerebellum

Spinal Cord

Figure 1.2: Visual representation of the different parts of the brain.

The visual and auditory cortex are highly involved in the development of
BClIs since the majority of the currently developed BCls are designed so the
user receives feedback from the device or action performed. This is done so the
user can understand how well they are controlling the BCI, they can adjust their
mental strategy accordingly, and it is also easier for the system to recognise the

neural activity that represents the user’s desired task.

1.2 Brain-computer Interfaces

Traditionally, BCIs have been developed mainly for medical purposes, either as
a rehabilitation tool or an assistive technology, such as through the development

of neuroimaging-based prostheses [4], and have shown promising results in the
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recovery of motor disorders, like stroke or spinal cord injuries, and the recog-
nition, monitoring and improvement of cognitive diseases, such as Alzheimer’s
or Parkinson’s [5-7]. However, thanks to the development of cheaper and more
accessible high resolution non-invasive brain signal recording systems [8], and the
improvement of advanced signal processing and machine learning techniques for
biomedical signals in the last decade [9], BCIs have also started to be implemented
in other fields for non-medical applications, such as in arts [10] and games [11].

We can divide BCIs in two types: passive and active BCIs. Passive BCIs are
considered systems which deduce the user’s cognitive or emotional state without
the need for any intentional control. On the other hand, we can define active
BClIs as systems that interpret the user’s intentional brain activity associated
with a specific task with the purpose of controlling an external device.

Some types of BCIs can be considered as passive or active interchangeably.
Passive BCIs tend to be associated with systems focused on emotion recogni-
tion [12,13], detection of stress or fatigue [14], and monitoring of cognitive work-
load [15]. Active BCIs are more commonly associated with systems related to
error-related potential (ErrP), detecting brain responses to errors and unexpected
events and commonly used to help fine-tune other BCIs by correcting their mis-
takes through a feedback mechanism; auditory evoked potential (AEP) and visual
evoked potential (VEP), making use of brain’s responses to auditory stimuli and
visual impulses respectively; motor imagery (MI) and imagery speech (IS), which
involves the mental execution of motor movements or imagined words and gener-
ate unique patterns in the brain associated with the tasks performed or imagined;
and spellers, relying on the recognition of patterns in the brain responses associ-
ated with choosing specific letters or symbols, and can be used to help the user

communicate [16-18].

1.2.1 Neuroimaging Techniques in BCI

The synchronised activity of neurons in the different regions of the brain can be
detected by different neuroimaging techniques. Therefore, different neuroimaging
systems can be used for the acquisition of brain signals for the development of

BClIs, which can be divided into invasive and non-invasive methods. Under in-
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vasive methods, the most common is electrocorticography (ECoG). On the other
hand, under non-invasive methods, we can find functional near infrared spec-
troscopy (fNIRS), magnetoencephalography (MEG), functional magnetic reso-
nance imaging (fMRI), and electroencephalography (EEG).

Although all these neuroimaging techniques can be used for the development
of any of the previously mentioned passive and active BCIs, EEG is the most
popular method for non-invasive BCIs, especially active BClIs, due to its low

cost, high accessibility, high temporal resolution, and high portability [19].

1.2.2 Electroencephalography

The brain is composed of neurons that communicate through electrical impulses.
These neurons use electrochemical processes, generating a small electrical charge,
to generate and transmit signals across different brain regions. When a group
of neurons generate electrical charge or signals simultaneously, they generate
electromagnetic fields in the brain. These fields are mostly concentrated near the
surface in the cerebral cortex, and this ultimately creates an electrical activity
that can be detected externally.

EEG is able to capture this surface-level electrical activity using electrodes
placed on the scalp to detect the brain’s electrical fluctuations caused by the
underlying neural activity, and therefore recording the brain’s activity patterns
using a more secure non-invasive technique. Even so, the recording of these signals
from the scalp surface and not directly from the cerebral cortex, where they
originate, means that the recorded signals are obtained after travelling through
various brain anatomical layers. These layers are the cerebral cortex, where
the brain signals are generated; the cerebrospinal fluid, which is a fluid layer
surrounding the brain that slightly attenuates the signals as they pass through;
the meninges, which are three protective membranes surrounding the brain; the
skull, which is the bone layer that significantly attenuates the signal due to its
low conductivity; and the scalp and skin, which are the outermost layers and can
provide additional resistance and introduce noise from muscle and other non-brain
sources to the recorded signal.

All these layers, especially the skull and scalp, distort the EEG signal, reducing
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its amplitude and quality, and limiting the EEG spatial resolution. Furthermore,
signals from different brain regions are distorted and might be mixed while passing
through the different layers, which might result in the signals recorded at the scalp
containing overlapping information from multiple sources, making it challenging
to precisely localise the different sources, which is known as volume conduction.

The recorded brain activity differs depending on the brain region where it
originates as well as the frequency of the electrical activity, generating distinct
EEG patterns, which allows us to analyse how the brain functions and to obtain
information from different cognitive and physiological states. Therefore, we can
say that these electrical signals fall within different frequency bands. Although
these frequency ranges are not exact, each approximate range is associated with
different states of consciousness, cognitive processes, and brain functions, and
may be linked to specific brain regions.

The main brain frequency bands are:

e Delta (0.5-4 Hz): have a high amplitude and are most prominent during

deep relaxing and restorative stages of sleep.

e Theta (4-8 Hz): associated with light sleep and creative states. It is also

linked to deep state of meditation and the subconscious mind.

e Alpha (8-13 Hz): associated with a relaxed, wakeful state, and is more
prominent with eyes closed, when the mind is at rest but not asleep. Normal

alpha elicits around the brain occipital region.

e Mu (8-10 Hz): part of the alpha frequency band. It is generated during the
performance of voluntary motor imagery or actual movement. Contrary to
the alpha rhythm, which is suppressed with eyes open, this rhythm does
not change independently of the state of the eyes. Mu rhythm elicits within

the brain motor area.

e Beta (14-30 Hz): associated with active, alert states, cognitive processing

and active concentration. Beta elicits around the brain frontal region.

e Gamma (30-100 Hz): associated with higher-order cognitive functions, such

as perception, consciousness, attention, and neural synchronisation across
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different brain regions.

These frequencies are lower during both, childhood and old ages.

Due to their characteristics, the mu and beta rhythms are highly relevant and
frequently used in the development of motor-related BCI.

Through the study of these frequency bands and their associated brain regions,
we can better understand how different neural circuits contribute to specific men-
tal states and behaviours, and study the dynamic interactions between different

brain regions during specific mental tasks.

1.2.3 EEG-based BCls

BCIs can use different EEG manifestations or patterns to decode the user in-
tentions. Although multiple features can be used, the most commonly used in

traditional BCI systems are the following seven:

e Event related synchronisation/desynchronisation (ERS/ERD) [20]: it re-
flects changes in the power of certain EEG waveforms, such as alpha, beta,
and mu rhythms. In these systems, ERD reflects cortical activation dur-
ing tasks executions, such as in MI applications, while ERS is a post-task
phenomenon that indicates the return of the sensory-motor cortex to its
resting state. These EEG patterns are highly relevant especially to motor

BClIs used in neurorehabilitation.

e Readiness potential (RP) [21]: it precedes voluntary movements and reflects
the planning and intention for a movement. This signal activity can also
be detected during imagery movement, even when no physical movement
occurs, so it is commonly used in BCIs designed for users with severe motor

impairments.

e Event-related potentials (ERPs) [22]: Although other components could be
used, the P300 is particularly commonly used in BCIs. The P300 wave
is a positive deflection which occurs approximately 300 milliseconds after
an infrequent or significant stimulus, and it can be divided into two sub-

components, P3a and P3b. P3a is associated with the attention to the
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novel stimuli while P3b is linked with the decision-making processes. These
features are highly reliable, making the P300-based BCIs ideal for non-

motor applications such as spellers.

e Mismatch negativity (MMN) [23]: also based on ERPs, this feature reflects
the brain automatic detection of deviations from an expected pattern in
auditory stimuli. This response occurs within 100-250 milliseconds after
a deviation instant making it a rapid and unconscious mechanism. This
feature is commonly used for the development of BCIs that can adapt to
environmental changes and support users with impaired attention, enabling

responsive and intuitive interfaces.

e Steady-state visually evoked potentials (SSVEPs) [24]: these responses are
triggered by flickering visual stimuli at specific frequencies, with the brain
responding at the same frequencies. They are commonly used in applica-

tions that require high-speed communication, such as VEP-based BCls.

e Slow cortical potentials (SCPs) [25]: they represent gradual shifts in cor-
tical activity, which is commonly linked to arousal or attention cognitive
states. These manifestations are particularly useful in neurofeedback and
neurorehabilitation BCIs, where the user learns to modulate their brain

activity to improve their focus or regain motor control.

e Error-related potential (ErrP) [26]: this manifestation occurs from the an-
terior cingulate cortex when the brain detects a mismatch between an in-
tended action and the resulting outcome. These brain responses are partic-
ularly useful in the implementation of error-correction mechanisms in BClIs

that enhance system responsiveness.

The use of any of these responses depends on the paradigm used during record-
ing of the brain signals as well as the final desired application of the system. In

some BCI scenarios a combination of these responses may be utilised.
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1.2.4 Pros and Cons of using EEG for BCI

EEG-based BCI was introduced in 1973, by J. Vidal [27]. Since then, other
neuroimaging techniques, including fMRI, MEG, and fNIRS, have been used in
various BCI paradigms.

ECoG, the predominant invasive EEG recording, has been proven to provide
a better spatial resolution and a higher quality signals for BCI, allowing for a
more precise identification of neural activity. However, this method requires
the patient to undergo a surgery for electrode implantation, which has its own
associated risks. Therefore, this technique is mainly only used for clinical or
therapeutic applications where the benefits highly outweigh the risks, such as for
epilepsy treatment or in cases of motor impairment [28].

On the other hand, non-invasive neuroimaging techniques are considered more
practical and secure, while providing an acceptable signal quality. This makes
these techniques ideal for a wide range of BCI applications. Out of the most
popular non-invasive techniques, fMRI has the higher spatial resolution, which
allows for the imaging and monitoring of the whole brain, including deep brain
structures. However, it has a low temporal resolution, which limits its use in real-
time BCI applications. MEG, on the other hand, although it offers a lower spatial
resolution than fMRI, has a better temporal resolution. However, the fMRI and
MEG recording systems are considerably more expensive than EEG or fNIRS.
This, together with the development of wireless and more cost-effective EEG and
fNRIS recording systems, makes the use of EEG and fNRIS more appropriate.

Even so, EEG and fNRIS also have their own disadvantages. Although fNIRS
offers a high spatial resolution and is less susceptible to electrical noise and arti-
facts, it has a very low depth of penetration, which is only few millimeter. This
limits its suitability for general BCI use. In contrast, EEG offers a high temporal
resolution (in the order of milliseconds), making it ideal for these applications.
Nevertheless, EEG has a low spatial resolution and a low signal-to-noise ratio
(SNR). Still, EEG is the established neuroimaging technique for non-invasive
BCI at the moment.

10
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1.2.5 EEG-based BCI Limitations

Regardless of the increased research in BClIs in recent years, several challenges
remain for the feasible implementation of these systems outside of laboratory
experiments, particularly in uncontrolled environments. Some of the main chal-
lenges in BCIs are the subject dependency of the system, the SNR in EEGs,
and the complexity of accurately identifying highly similar, or continuous motor
tasks [29]. These challenges are further exacerbated in uncontrolled environments
through the presence of additional sources of noise and environment variability,
such as fluctuating lighting conditions, background stimuli, and the subject’s
brain natural tendency to multitask, all of which can degrade signal quality and
system reliability.

Recent advancements in deep learning have considerably improved the per-
formance of BCIs [30,31], especially through deep learning architectures such as
transformers [32, 33], and autoencoders [34,35]. However, these methods often
require large amounts of data, making them resource-intensive and difficult to
scale in practical applications.

To mitigate some of these limitations, transfer learning approaches have been
proposed [36], which aim to reduce training data requirements by adapting mod-
els across subjects or domains. Even so, all these approaches still have high
computational demands, often requiring advanced computational resources and
extensive training time, limiting their feasibility in clinical or resource-constrained
environments. Furthermore, these methods are predominantly evaluated under
controlled laboratory settings with common motor tasks, such as hand or leg
movements, which makes comparisons across studies easier, but limits their gen-
eralisation to more complex, prolonged, or overlapping motor tasks, often present
in more realistic settings [37].

As discussed previously, several methods have been developed for the identi-
fication and classification of these neural activities for BCIs, such as RP, VEPs,
or ERS/ERD among others. These methods however, have difficulty in precisely
and effectively distinguishing motor tasks that have highly similar neural activity,
such as fine movements. Although some advances in the decoding of fine move-

ments has been done, [38,39], especially with the development and improvement
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of deep neural networks [40], an accurate classification using low computational
cost systems still remains a research challenge for BCI systems.

Existing methods also fail in identification of prolonged or continuous move-
ments, since most of them rely on the prediction and classification of the start
of a task, or the spontaneous execution of the task, but not on the prolonged
and continuous execution of that. Furthermore, feedback BCI methods require
the presence of some audio, visual or haptic feedback for the correct recognition
of the mental task, which increases the difficulty of implementing these BCIs in
real-world scenarios.

Altogether, these limitations highlight the need for the development of more
robust preprocessing, feature extraction and classification strategies that can fa-
cilitate the reliable implementation of BCIs in more realistic, uncontrolled, and
varying environments with minimal computational resources.

The communications between brain regions are expected to convey important
information for the development of effective BCIs that can better mimic natural
movements and responses even in the absence of direct feedback. Therefore, for a
non-feedback BCI, these communications can be translated into actions, whether
they are desired or prescribed movements. In this context, cooperative learning
over networks offers a promising solution.

Previous studies [41-46] have demonstrated that cooperative learning, par-
ticularly by means of diffusion adaptation (DA) [47], is well-suited for modelling
the dynamic propagation of neural information across brain regions. This method
can effectively capture the distributed and cooperative nature of brain activity,
allowing the system to integrate and leverage the communication flow between
brain regions during the execution of cognitive processes. By incorporating these
interactions, DA enhances the decoding of motor intentions and cognitive states,
leading to improved accuracy and robustness in BClIs.

Although other distributed signal processing strategies, such as graph theory-
based signal processing methods [48], have been successfully applied to model
neural interactions, these approaches typically require extensive signal prepro-
cessing, and often rely on a fixed graph topology or require global knowledge
of the network [49,50], limiting their adaptability to dynamic and noisy EEG

environments, and their suitability for robust, real-world BClIs.

12
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In contrast, DA operates in a fully distributed and adaptive manner, enabling
real-time updates with minimal data and computational resources. Additionally,
it does not require heavy preprocessing for a considerably good performance.
These features make DA particularly well-suited for real-time and real-world BCI
implementations.

In this thesis, for the first time, we develop novel approaches for the identifica-
tion and classification of neural activities through the use of EEG hyperscanning
and cooperative learning over networks to improve the BClIs performance while

reducing their subject dependency.

1.3 Motivation

As discussed earlier, due to the time-variant psycho-neurophysiological and neu-
roanatomical factors present in individuals’ brain waves, EEGs can suffer short
and long-term signal variations within and across subjects. This requires each
BCI to be trained for each individual for high performance. This can be tedious
and time consuming, especially in situations where the same system might need
to be used by several people in a short time frame, such as in game applications
or for rehabilitation. These signal variations tend to be aggravated in some pa-
tients, such as stroke patients, where the brain rhythms that contain the motor
states might be diminished or the brain source localisation of the motor move-
ment might be misplaced, creating further challenges on the ability of the BCI
to recognise a motor movement.

On the other hand, most recent BCI studies still tend to rely on the use
of brain waves recorded in ideal scenarios where the experiment is undertaken
in a controlled environment and the subjects are asked to fully concentrate on
a single motor-related task. This also poses some additional challenges in the
implementation of these systems in a more realistic scenario, where the brain is
inherently engaged in multiple tasks.

To help overcome these challenges, we propose the use of hyperscanning [51].
EEG-based hyperscanning, also known as EEG multi-brain recordings, has great
potential in BCI systems used for monitoring mental and physical rehabilitation.

The hyperscanning technique involves the recording of brain activity from mul-

13
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tiple brains simultaneously, which allows us to study not only the neural connec-
tions of a specific individual, but also how these neural connections change when
interacting with other individuals [52]. An example of an EEG hyperscanning

recording setting can be seen in Fig. 1.3.

Figure 1.3: A representation of an EEG hyperscanning recording with two sub-
jects involved.

So far, most hyperscanning studies have focused on the study of social inter-
actions between individuals [53], where they analyse how the participants’ inter-
and intra-brain connections change depending on the tasks they perform. These
have provided some insights on how the information in the human brain is pro-
cessed while in a social setting [54]. All these studies show that interpersonal
coordination of action includes mutual synchronisation of neural dynamics, flow
of information between brains, and causal effects of one brain upon another.
Thanks to this synchronisation of neural dynamics, the information flow between
brains can be measured and infused into a cooperative learning network strategy,
such as DA [47], where the set of electrodes is considered as the distributed net-
work, for the better recognition of a desired motor task from the synchronised
brain waves.

Furthermore, as discussed in [55], given the results obtained after the use
of hyperscanning in other social settings, the development of an effective EEG
hyperscanning-based BCI for motor neurorehabilitation group therapy could im-
prove the accuracy and speed of the rehabilitation process. This could reduce

the training error and time in multi-task scenarios, opening a new and promising
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direction for the development of data-efficient and adaptive BCls in changing en-
vironmental and task conditions. However, this has not been explored in depth
yet due to the technical challenges involved in the setting of an EEG hyperscan-
ning motor task recording scenario. The two main technical challenges can be
summarised as: 1) the difficulties associated with setting a motor rehabilitation
scenario for hyperscanning, and 2) the complexity of analysing the EEG hyper-
scanning signals for motor tasks recognition.

Although the development of new wireless and easy to synchronise EEG
recording devices in the last few years has helped with the first challenge, the
second challenge still remains, with not much research exploring this possibility.
This could be due to the lack of publicly available EEG hyperscanning data.

Therefore, here, it is intended to overcome the previously mentioned challenges
in the development of an EEG hyperscanning-based BCI for motor tasks, through

the following actions:

e The recording and release of a public dataset containing EEG hyperscanning
motor task data to encourage further research on this relatively new research
field.

e The development of a novel filtering technique that synchronises the two
EEG recordings to best extract the common task and avoid the undesired

ones.

e The development of novel approaches for the analysis of motor-related tasks
EEG hyperscanning BCI scenarios through the use of a cooperative learning

strategy.

e The development of a novel technique for the recognition of prolonged motor
movements to improve the system’s performance for highly similar motor
tasks.

1.4 Thesis Layout and Key Contributions

In this thesis some key new developments are presented in the field of EEG

hyperscanning-based BCI through a cooperative learning strategy over distributed
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networks. These developments are effective and practical methodologies for sev-
eral applications, with some discussed throughout this thesis. The key contribu-
tions are as follows:

Chapter 2: First, the DA strategy over distributed networks is reviewed. In
addition, some application examples to model simulated data are presented. The
performance of the system is evaluated and compared for non-cooperative and
cooperative strategies.

Chapter 3: An overview of the recording process for an EEG motor task hy-
perscanning setting is presented and evaluated. The recorded EEG hyperscanning
data is described, and its limitations discussed. Explanation on how to access
the public dataset is also provided.

Chapter 4: A novel EEG hyperscanning analysis technique is introduced and
evaluated. This technique is based on a brain connectivity-informed DA model
and can be used as a new rehabilitation platform where the state of the patient
under rehabilitation is analysed based on how well the patient is able to follow
the tasks performed by the healthy subject.

Chapter 5: A novel approach for the recognition of prolonged motor move-
ment and highly complex fine movements, where the system can learn a move-
ment without requiring any audio, visual or haptic feedback, is presented. A DA
strategy is used to model the interface between the brain neural activities and
the corresponding gesture dynamics. The method is evaluated using real EEG
multi-task data and compared against well-established deep learning models for
the recognition of complex fine movements.

Chapter 6: A new filtering technique is proposed by reformulating the well-
known common spatial patterns (CSP) method for hyperscanning data during the
performance of collaborative tasks. This is highly effective for the development of
a BCI in an uncontrolled environment. An overview of CSP is provided and the
method is evaluated and the proposed hyperCSP compared against the traditional
CSP.

Chapter 7: The thesis is concluded by summarising the results, and discussing

possible future work.
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1.5 Conclusions

The motivation for this research, together with an overview of the thesis contri-
butions, has been presented in this chapter.

This chapter outlined the need for more robust and adaptive BCI systems, par-
ticularly for motor neurorehabilitation in real-world, uncontrolled environments.
It also highlighted the potential of group therapy, introducing EEG hyperscan-
ning as a promising approach to enhance neurorehabilitation through the analysis
of shared neural dynamics.

The main neuroimaging techniques were reviewed, with EEG identified as
the most suitable due to its non-invasiveness, high portability, low cost, and high
temporal resolution, despite its inherent signal variability and sensitivity to noise.

The main challenges associated with the development of EEG hyperscanning-
based BCIs were also discussed. To overcome these challenges, this thesis proposes
the development of novel cooperative analysis methods based on hyperscanning
and DA. These methods aim to model and exploit intra- and inter-subject neural
communication through distributed cooperative learning strategies to improve
BCI reliability and performance.

The following chapter provides a comprehensive review on the DA strategy
along with other cooperative learning strategies, evaluating their suitability to
the proposed EEG hyperscanning scenario. The DA formulation introduced in
Chapter 2 serves as the foundation for the EEG analysis methods presented in
Chapters 4 and 5 of this thesis.
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Chapter 2
Cooperative Networks

Traditional EEG analysis systems often do not take into consideration the topo-
logical relationship among electrodes reflecting the brain network dynamics. As
a result, most of these methods present limitations in the effective study of the
neural activity patterns generated by the distributed synaptic currents. Such
methods fail to capture the complex spatial and network-level interactions be-
tween different brain regions. To overcome these limitations, an analysis method
based on the cooperative network theory that incorporates diffusion adaptation
(DA) [47,56] is introduced.

2.1 Cooperative Learning

Cooperative networks refer to distributed adaptive systems (or networks) where
multiple agents, also referred to as nodes, work together to achieve a common
goal by solving an estimation or optimisation problem.

In this system, each agent has access to local information and all the agents
collaborate and exchange information with their one-hop neighbours in the net-
work in order to solve the global common target. This allows the system to
solve the problem more efficiently compared to a centralised system with a single
agent [57]. Fig. 2.1 shows an example of such network, where an agent k is
connected to all the agents within its neighbourhood, represented by N,. Node

k is able to communicate with all the connected agents.
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2. Cooperative Networks

Figure 2.1: An example of a distributed adaptive network, where an agent k is
connected to its neighbours within the neighbourhood N;. Agent k is represented
in blue, the other agents are represented in grey, the connected agents are depicted
by black lines, and the neighbourhood Ny is depicted by a red dashed line.

Therefore, each node k of a multi-agent distributed network in N}, is interested
in estimating an unknown parameter vector w. Each node £k has access to dj;, a
scalar that represents the desired target, and a local measurement 1x M regression
vector uy,; at each time instant ¢. The parameters of each node are assumed to

be related to w through the linear regression model:

dkﬂ' = ukﬂ-wo + Vi (21)

where 74 ; is the measurement noise of node k at time instant ¢, and w? represents
the estimated optimum value of w, that can be estimated for each node k by

minimising the cost function:

Jk('l.l)> = E|dk72 — ’Ll,k7i’l.U|2 (22)

where [ is the statistical expectation operator. Furthermore, the global cost func-
tion of the system can be obtained through the aggregation of the cost functions

of each node k, and can be represented as:

Ny
J (w)9torel — ZE’dlm — up;w|? (2.3)
k=1
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2. Cooperative Networks

In these systems, the agents are able to adapt their behaviour based on the in-
formation they receive from their neighbours, allowing the network to dynamically
adapt to the changes in the environment. The exchange or flow of information
between the agents is constrained by the network topology and any restrictions or
communication limitations between the agents. Therefore, the learning abilities

of the agents directly influence the performance of the system.

2.2 Distributed Learning Strategies

Although different distributed learning strategies have been introduced to min-
imise the cost function in (2.3), three main strategies have shown a higher suitabil-
ity in signal processing: incremental [58,59], consensus [60,61], and DA [62,63],
with DA showing the best results by better exploiting the network topology and
guaranteeing convergence [57,64]. These strategies are discussed below.

For easier and meaningful comparison between the three strategies as well as
the non-cooperation strategy later in this thesis, we define the strategies using
the following stochastic gradient algorithm used for centralised implementation

as the starting point [59, 63]:

N,

w; = Ww;—1 — uszJk(wz_l) 7 2 0 (24)

k=1
where V,, J represents the gradient vector of Ji(w;_1) with respect to the complex-

conjugate transposition of w;_1, and u is the updating time step.

2.2.1 Incremental Strategies

Incremental strategies involve the sequential processing of the information across
the nodes, with each node obtaining a local estimation of the desired target and
providing this information to the next node in the sequence. The local estimation
is obtained based on the local information the node has access to as well as
the local estimation of the target obtained and received by the preceding node.
Therefore, a cyclic trajectory needs to be decided based on the network topology

in order to determine the sequence in which the nodes will be processed, as shown
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2. Cooperative Networks

Incremental Update at Agent k
wr i Wi
B U
stochastic
gradient M
L ) Fkvwo'k(wm)

Figure 2.2: Given the network from Fig. 2.1, a cyclic path is defined so all
the nodes are covered for the incremental strategy. The nodes are numbered
representing the sequential order, from node 1 to node N. Information exchanged
received or sent from node k is depicted in blue, while information exchanged
between the other nodes is depicted in purple. The diagram at the right illustrates
the incremental strategy calculations performed by agent k.

In this strategy, given N nodes in the network, at each time instant i, the
centralised implementation (2.4) is divided into N successive incremental steps,

with each step performed locally by one of the nodes [57,59]:

( H
i = Wi — ——VyuJ i—
Wi, w;—1 N, 1('w 1)
Wy ; = W14 — Nithb(wl,i)
k
W3 ; = Wy — iij3(w2,i) (2-5)
N,
k'wN,i =W; = WN-1; — NikijN(le,i)

Here, N, represents the network and total number of nodes. The last iteration
of the cyclic sequence at time instant 7, where we obtain wy ;, coincides with w;
as in Eq. (2.4). Therefore, in this implementation the information travels from

one agent to the next one until all the sequential nodes are covered during each
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2. Cooperative Networks

time instant . Then, all the steps in Eq. (2.5) are repeated for each time instant,

and it can be summarised as [57,59]:

Wy = Wg—1; — Nﬂkijk(wk—u) (2.6)

where the first term, wy_; ;, on the right-hand side refers to the cooperation while
the second term assists with the decentralisation of the system.

Although this implementation offers a distributed solution to the cost func-
tion, it presents several limitations and disadvantages compared to other strate-
gies. Due to its sequential dependency, the information from several nodes cannot
be processed in parallel, contrary to the consensus or DA strategies, which could
create possible bottlenecks on the information flow. At the same time, it limits
the scalability and adaptability of the system to similar scenarios with different
number of nodes, such as when used for the development of an analysis method
for EEGs. In this scenario, once the system is developed for a specific number of
nodes, or electrodes, it will be difficult for the system to be adapted to new EEGs
recorded with a different number of electrodes, which shows the limit adaptabil-
ity to changes in the network topology. Furthermore, if one of the nodes of the
sequence fails, it will affect all the posterior nodes.

Therefore, due to the incremental strategy characteristics, this implementa-
tion is best suited for applications where data arrives sequentially, when resources
are limited, or when the data needs to be processed in a step-by-step manner.
Even so, in applications related to the processing of physiological signals, this
strategy has been used successfully for the sequential or real-time processing of

EEG signals, such as in the development of adaptive filters [65].

2.2.2 Consensus Strategies

In a consensus strategy, multiple nodes of a distributed network work together to
reach a common estimate of the unknown parameter w that minimises the cost
function from (2.3) while only having access to local information, as shown in
Fig. 2.3.

In this strategy, the first term on the right-hand side of Eq. (2.6) is re-

placed by a convex combination of the information available to each node from
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Consensus Update at Agent &
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Figure 2.3: An example of a distributed adaptive network, where an agent k is
connected to its neighbours. Agent k is represented in blue, the connected nodes
to agent k are represented in red, and the other nodes are represented in grey. All
the connected agents are depicted by a black line, except for agents connected to
agent k, which are depicted by a red line. Information exchanged between node k
and its connected nodes is depicted in blue. The diagram at the right illustrates
the consensus strategy calculations performed by agent k, which is connected to
nodes 2, 6, 7, and 9, depicted as nodes s, lg, I7, lo.

its neighbours. On the other hand, the second wj_;; term is replaced by wy,;_;.

Therefore, the consensus strategy for each node k is given by [57,60]:

Wy, = Z appwii—1 — e Vi (Wei—1) (2.7)

lENg
where p, is the agent-dependent step-size, and a; are non-negative scalar com-

bination coefficients that satisfies the condition:

Ny
Qay g > O, Z apr = 1, and apr = 0, if 1 ¢ Nk (28)
=1

and represents the weight assigned by node k to the information received from
each node [ in its neighbourhood.

Therefore, in this implementation each agent k performs two steps at each
time instant ¢. In the first step, each agent aggregates all the estimates of its
neighbours. In the second step, the agent updates its information by its local

gradient vector.
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This implementation has been used successfully in applications where data is
distributed across multiple sensors, and centralised processing is either impracti-
cal or undesirable [66—68]. It has also shown good results in distributed processing
scenarios where the network can afford the communication overhead necessary to
reach the common solution. With respect to physiological signal processing ap-
plications, this strategy has been used in multiple scenarios, such as for eye blink
artifact removal [69].

Even so, this application also presents a number of disadvantages and limita-
tions. As explained before, this strategy presents the term wjy,;_; on the second
step of its implementation, and a convex combination of the estimates on the
first step. It has been shown that this asymmetry between the cooperation and
the decentralisation terms can lead to an unstable growth over the network, es-
pecially in scenarios that require a continuous adaptation and learning of the
system [47,57,64]. This instability due to the asymmetry issue can be solved by
DA strategies, and are therefore considered the best solution for applications that

involve adaptation and learning over networks.

2.2.3 Diffusion Adaptation Strategies

In the DA strategy, self-organised networks are formed of a set of nodes, where
each node of the network communicates with its one-hop neighbours sharing their
intermediate parameters in order to achieve a common target, as shown in Fig.
2.4.

Although several variations have been formulated to solve the DA strategy for
cooperative adaptive distributed networks, two well-established main variations
remain the predominant solutions: combine-then-adapt (CTA) and adapt-then-
combine (ATC). These two solutions to the strategy can be applied equivalently

to the same scenarios.

2.2.3.1 Combine-then-Adapt Diffusion Strategy

For the CTA variation, the same convex combination used in the consensus strat-
egy is used for both, the cooperation and decentralisation terms of the formula-

tion. This way, the two terms are symmetric, overcoming the asymmetry concerns
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CTA Diffusion Update at Agent k
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Figure 2.4: An example of a distributed adaptive network, where an agent k
is connected to its neighbours. Agent k is represented in blue, the connected
nodes to agent k are represented in red while the other nodes are represented in
grey. All the connected agents are depicted by a black line, except for agents
connected to agent k, which are depicted by a red line. Information exchanged
between node £ and its connected nodes is depicted in blue. The diagram at the
top right illustrates the CTA strategy calculations performed by agent k, which
is connected to nodes 2, 6, 7, and 9, depicted as nodes Iy, lg,l7,lg. The ATC
strategy is illustrated at the bottom right.

from the consensus strategy. Given all this, CTA can be formulated as [47]:

W = Z QrWpi—1 — Mkijk(z ajl,k'wl,i71> (2-9)

lEN,, lEN,,
where each node k performs two subsequent steps, combination and adaptation.
This way, at each time instant i, each node k combines all the estimates w;;_,
from its neighbours [ to obtain its own intermediate estimate wy;_;. Then, this
estimate is used subsequently to approximate node k gradient vector and obtain
the final estimate of node k, wy.

Therefore, and as shown in Fig. 2.4, this formulation can be divided into
two equations, where the first equation, representing the combination, is used to
evaluate the convex combination term into an intermediate state variable (b ; ),

and then used to obtain the gradient update, as in:
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'lvbk,ifl = Z aj Wi i—1
lENg (210)

Wy ; = ¢k,z’—1 - MkaJk(¢k,i—1)
As for the consensus strategy, a;j is the combination weight that represents

the information received from each node [ by node k and satisfies the same con-

dition as for the consensus strategy, defined in Eq. (2.8).

2.2.3.2 Adapt-then-Combine Diffusion Strategy

As explained previously, the CTA and ATC diffusion strategies can be used com-
parably in the same scenario since they are fundamentally similar and the only
difference between them is the order in which the combination and adaptation
steps are performed.

While in CTA we saw that the final estimate wy; is obtained during the
adaptation step, in ATC it is obtained in the combination step, as shown in
Fig. 2.4. Therefore, in ATC, at each time instant i, each agent k obtains the
intermediate estimate 1, ; using wy; 1 and the approximate gradient vector.
Then, the agent k& combines all the intermediate estimates of its neighbours to
obtain the updated wy ;.

The ATC DA strategy can be written as [47]:

T,bk,z' = Wg,i—1 — Mkijk(wk,iq)

(2.11)
Wi = ZleNk a Ky

Although both variations can be used indistinctly in similar scenarios, ATC
tends to be preferred in most cases over CTA [47,57,62]. This is due to the order
of the adaptation and combination steps. Performing the adaptation step first
allows the system to obtain a faster convergence and a better adaptation to local
conditions, which can be translated into a more efficient handling of asynchronous
updates of the system. This is particularly relevant in scenarios that present a
highly dynamic and noisy environment, such as for the modelling of biological

networks [70], or for the modelling of social networks [71].
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2.3 Single Task and Multitask Distributed Net-

works

Cooperative learning strategies can be applied to distributed networks where
there is only one common objective or target [72-74], known as single task net-
work applications, as well as to scenarios where the network has more than one

objective or target [44,75,76], known as multitask network applications.

2.3.1 Single Task Applications

In a single task DA strategy, as described in previous sections, each node k of
a multi-agent distributed network neighbourhood N is interested in estimat-
ing an unknown vector of parameters w from the collected local measurements
{dy.,i, u;} at each time instant i. We consider the least-mean square error (LMS)
problem, where each agent k observes realisations of zero-mean wide-sense jointly
stationary data. This is achieved through estimation of the global parameter w
that minimises the cost function in (2.3). Using the DA ATC strategy, Eq. (2.11)

can be reformulated as [62,63]:

T/Jk,i = Wg,i-1 — uku}ﬁi (ki — wp W 1] (2.12)

Wg,; = EleNk al,k’lpl,z’

T
where u; ; represents the transpose of uy ;.

The adaptation of this formulation has been used in multiple applications
[72-74,77,78], including for EEG analysis [46,56]. As an example, in the following
sub-section we describe how (2.12) could be reformulated to model and monitor

a crowd moving through a varying width environment.

2.3.1.1 Diffusion Adaptation for Crowd Motion Modelling

This sub-section is an expansion of our published work in [79].
The proposed system models crowd movement in a dynamic environment and
a distributed manner depending on the information the agents receive from each

other and the changes in the environment. This allows for tracking the agents
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(people), including people with disabilities, who share a connected network. The
environment may include well-defined constraints, such as walls and fences, ticket
control barriers, objects, or people moving in unpredictable directions. To per-
form this analysis, we use the concept of adaptive cooperative networks by means
of the diffusion adaptation mechanism [47,59] to model the crowd motion while
passing through geometrically varying areas.

In this work, the agents (or nodes representing people) share their position
coordinates and each agent communicates with other agents within its one-hop
neighbourhood. As long as an agent can detect the positions of the other nodes
(agents) in its neighbourhood, it adjusts its speed and distance with others and
the barriers while moving towards its destination (e.g., the exit gate in a metro
station). This helps in more accurately calculating and maintaining safe dis-
tances between the general public and people with disabilities as well as safe
social distances in pandemic situations. To achieve this, the movement speed,
the distance between the agents, and possibly their movement directions must
change (within allowed limits) with respect to the variations in the pathway ge-
ometry (e.g., width) and any obstacle preventing them in reaching their target.
This can be achieved simply by being aware of the nodes within a neighbourhood
and the geometrical constraints. In this scenario, people can make a compromise
between their distances and speeds, to keep themselves safe.

To model a crowd moving through a geometrically varying environment over
time, we introduce a mobility model of people, represented as nodes or agents of
a connected network, using the previously defined single task DA.

Consider the crowd as a collection of people distributed over a space 22 with
a defined geometry. The collection of people, with the ability to communicate to
each other and share information, forms an adaptive network. They adapt their
movement to those of agents in the neighbourhood as well as geometrical /spatial
constraints while moving towards their target which, in this example, is at the end
of the predefined path (e.g., an exit door). This also helps the crowd members to
self-organise themselves based on the information exchanged within their one-hop
neighbours. Fig. 2.5 illustrates a group of agents, their neighbourhood, and an
exemplar of the surrounding environment.

The general objective of such a network is for each node & to reach the location
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Figure 2.5: The network agents confined by two walls move in a geometrically
varying environment whereby their speeds and their proximities can change ac-
cordingly. The neighbourhood of agent k£, which represents the agent with dis-
abilities in the network, is denoted by Nj represented by the dashed line.

of the target in a fully distributed manner. The model presented here is therefore
a variation of the models studied in [73,78], and [80]. This variation allows the
network to move towards a target smoothly through a predefined path while
avoiding possible obstacles. Consider a connected network of N nodes where
each node k wants to estimate an unknown parameter w from the collected local
measurements {dy;, wg;, Tr;} for each node k at time instant ¢. This forms
a global cost function as in Eq. (2.3). In this scenario uj; represents a unit
direction regression vector pointing to the direction of the target. 7, is the
location vector of node k relative to a global coordinate system at each time
instant ¢, and, in this scenario, dj; represents the scalar distance between the

location of the target and 7, and is given by the inner product:

dk,i = ukz(w - Tk,i) (2-13)

To solve this optimisation problem, we apply the DA strategy given in Eq.
(2.12), where the nodes in node k£ neighbourhood share their intermediate es-
timates {¢l7i,dk,i,uk7i} after each iteration. Since the model is geometrically

bearing, it can be simplified under reasonable approximations to [81]:
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Yy, = (1 — pg)wp,i—1 + prwy;

(2.14)
Wi = Zzavk Ky

In this application, similar to mobile networks, in the crowd movement sce-
nario, the relationship between the movement speed and two consecutive agent

locations is defined as:

Thitl = Thi + At Vgt (2.15)

where Ai is the time step (time difference between two consecutive states) and
Vy.i+1 1s the velocity vector of node % in the next time instant 7 + 1. From now
on, we focus on estimating the velocity vector and the current position of each
agent k at each time instant i, denoted by 1.

In this model, there are two factors that influence the velocity vector of the
nodes. The first factor is the spatial constraint involved in identification of the
location of node k at each time instant 7. In the model, we want the crowd to
navigate through a predefined path from a start point to the end point. In Fig.
2.5, we see how the distance between the two surrounding walls of the pathway
can change. The moving direction for the crowd (from left to right) is denoted by
an arrow. In such a scenario, while the safe social distancing is followed, in the
wider areas the people can walk normally and have moderate to large distances
between them. Nevertheless, in the narrower regions the subjects should move
faster while allowing a minimum, smaller (yet permitted) social distancing to
avoid a traffic jam in narrow areas.

The objective of the model is to estimate the position of agent 7 ;, while the
agent moves between the two walls and keeps its permissible distance limit from
other agents.

The second factor that influences the velocity vector of the nodes is the desire
of the agents to move in synchrony and avoid collisions by maintaining a safe
distance r between the nodes. As described in [81], this can be achieved by
updating the velocity vector as follows:

"’Z,z‘+1 = ’UZ,Z- + YOp, (2.16)
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where 7 is a non-negative scalar and dy; is given by:

Ok = Lt (71 = Tl = 7)wni (710 — Th) (2.17)
[Ny —1
b 1N\ {k}

vy, refers to a local estimate for the velocity of the centre of gravity of the

network and is obtained by the ATC diffusion strategy as:

g _ CAP’) v
i = (L= pp)vp ;) + vk,
g __ v g
Vi = ZleNk al,k"»bl,z‘
where pp is a positive step size, and aj, are the combination weights from the

ATC strategy.

To model a more realistic crowd motion Eq. (2.15)—(2.18) are modified so the

(2.18)

speed of each node k and the distance between the nodes can be scaled depending
on the width of the crowd pathway where node k lands at time instant ¢ and the
distances between individual nodes and the target (effectively for the narrow
regions).

In order to predict (or estimate) the new speed and location for agent k,
we need to re-calculate the above parameters based on the closeness of the two
surrounding walls. In this simulation, we assume that the agents move inside a
region restricted by two walls, where the dimensions are approximated by the
chords of circles tangent to both walls at time instant i. The chord links the two
tangent points. The position of node £ is considered to be on the corresponding
chord (i.e., the chord where k falls on). Fig. 2.6 clearly shows the concept. The
agents also maintain a minimum predefined safe distance from the walls.

To enable a more realistic scenario, we assume that the people often go as
slow as one step and as fast as three steps per second with approximately 0.6
to 1.2 m strides, respectively. This assumption is essential for setting the initial
and the baseline crowd speed. This means that the speed of node k at time
instant ¢ (vg;) can vary between vp;, = 0.6 m/s and vy = 3.6 m/s. This
gives an average speed of v,,, = 2.1 m/s and can be assumed fixed for all the
agents representing the general public. Agents representing the individuals with

disabilities are assumed to have half of the normal speed. Given their physical
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Figure 2.6: Using tangent circles to estimate the varying width of the space in R?
at each instant for each agent k£ between the start and end points of the path with
coordinates (xg,yx). The circle chord length (between the two tangent points)
that contains node k best represents the width of the pathway.

condition, it is reasonable to assume that they always move at a slower speed
than individuals without disabilities. The same assumption could be made for
toddlers and older people if we were to include them as part of the simulated
crowd.

On the other hand, the minimum social distance r can also vary inversely
proportional to the speed (or according to the closeness of the walls) between a
lowest (e.g., rmin = 1 m) and a highest (e.g., rq, = 2 m) value. For people with
disabilities, the minimum social distance is higher than for those of the general
public given the same speed.

The objective of the new model is to allow the nodes to have a higher speed
and a reasonably lower distance between the nodes for the narrower regions (closer
walls) and vice versa. Based on this assumption, the effective social distance in

the neighbourhood of node k at time instant ¢ can be defined as:

bri—Th,i
. maw N [ | 219
Tk,i — (rmaz - rmin) + T'min ( . )
Umaz — Umin

where ¢; in this case represents the target (or end point) location vector at each
time instant i.
This shows a linear (but negative) dependency between the social distancing

of agent k and its speed at time instant 7. Therefore, as long as the speed is
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known by the agent, the social distance can be estimated instantly. Individuals
with disabilities are expected to have double the social distance compared to
individuals without disabilities.

To estimate the speed, we refer to Fig. 2.6. At each time instant i, agent k
falls on the chord of a circle linking the two tangent points between the walls and
the circle. This is an unique chord for each agent. The agent’s speed is inversely
proportional to the corresponding chord length at that time.

Therefore, the chord length of node k at time instant ¢, which is the main
parameter for geometrical adaptation, is calculated as:

1/2

Lii = ((yi — wi)* + (2% — 2)%) (2.20)

where, in this scenario, (z},y;) and (z2,y?) represent the coordinates of node
k at time instant ¢ relative to the same global coordinate system. In the chord
equation, they represent the tangent points of the two walls and the circle, given
that all circles fall on the centre dashed line, as shown in Fig. 2.6. In this
equation, we drop the time index ¢ for simplicity.

Finally, we need to utilise the information about the maximum and mini-
mum widths of the pathway, which represent the maximum and minimum chord
lengths, respectively, to adjust the agent speed and, accordingly, social distance.
Given these two values of L,,;, and L,,.., and associating them, respectively, to

Umaz and vp,,, the speed factor Vi ; can be approximated to:

Lmax - Lk,i

1; = -
' Lmax - Lmzn

’Ulf: (Umaz - Umin) + Umin (221)

In practice, for large crowds, we may assume that there is no chord (path-
way width) of less than 1 m in width and no need for any concern about social
distancing for pathways of more than 10 m in width (chord length).

The new estimated speed is applied to the overall velocity vector of node k
in order to scale and adjust the speed depending on the cross-section of the area
where the node is located at time instant . To ensure that the system works if

the crowd interacts with an obstacle, the new velocity vector is set as follows:
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Li—Th
Viis1 = ij(lltk’i_m’iu) hi—(Pra—0) (&) (2.22)
~Cri(Frrmtonman — D (mimmeman) - )
where, in this case, R is the radius of the node k neighbourhood, p; ; represents
the location vector in the coordinates (z,y) of the obstacle that node k wants
to avoid at time instant ¢, and « is an adjustable coefficient that allows the
node to maintain a safe distance from such an obstacle. In this example, C};
is a coefficient that regulates the speed of each node k at each time instant ¢
depending on the path width.

When node k does not face any static obstacle such as a barrier or walls, vy ;4
follows Eq. (2.22a) and moves towards the target ¢;,. However, when node k
detects an obstacle close to its location, it avoids the obstacle and moves in the
direction opposite to the obstacle, following Eq. (2.22b).

According to (2.14)—(2.22), we propose the following mechanism by which
V41 can be set for node k. This mechanism is a modification and extension of

the one proposed in [73] and is defined by:

Viir1 = MNPy ) + (1= /\)vi,i + 0k, (2.23)

where, in this scenario, {\, 3,7} are adjustable non-negative weighting coeffi-

cients. Algorithm 1 summarises the methodology.
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Algorithm 1 Adaptive Cooperative Crowd Modelling using ATC

Require: 71, tgi, Ly,

for i = 1 to Numberlterations do
for £k =1 to N, do
Adaptation step:

if 7, ~ p,,; then

R Tk,i— (Pp,;—)
v¢ . - — [ S—— L R
kyi+1 Ok’l ( H"’k,i*(Pk,i*a)” ) ( H"’k,i*(l)k,i*a)” )
else
a _ o tki— Tk
Viin = Crilfe=cy)
end if

5k,z’ = ﬁ ZleNk\{k} (HTl,i - Tkz“ - T)Uk,i (Tl,i - Tk,i)

Vi1 = MBvE ) + (1= v, + 70k,

g __ v g v
o= (1= p)vi, | + pivk

Given vy, 41, we obtain the next location vector of node k
Thitl = Thi + At Vgt
Combination step:
g __ v g
Vi = ZleNk al,k":bl,z‘
end for

end for

During each step of adaptation, people with disabilities can be advised on the
direction and speed of their movement based on an estimate of the angle between
the movement direction and the direction towards the destination. This can be

mathematically defined as:

. o — T
ek,i — COS_I < Tk Tki-1 . ki Tk, ) (224)
17k = Trizall Eri — el
where ‘- refers to vector internal product and ||-|| refers to the Euclidean distance

between two location vectors. In this example, %, ; is the target (or desired end
point) of each node k, T ;_; is the previous position of node k, and 7y ;, represents
its current position. 6 ; can be delivered to the subjects with disabilities (or to

their wheelchairs) to correct their directions where necessary.
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To show the correct performance of the system, the crowd motion through a
predefined path from a start to an end point is simulated. For a better evaluation
of the proposed method, we simulate the crowd motion under a highly constrained
situation. Therefore, the pathway chosen for the simulation presents a bottleneck
situation, such as what the crowd encounters when passing through a narrow
corridor, as shown in Fig. 2.7a, an under bridge passage, as in Fig. 2.7b, or a

metro station corridor, as in Fig. 2.7c.

o) ©

Figure 2.7: Illustration of pathways with possible bottleneck represented by the
simulated pathway. (a) Narrowing of a passageway, (b) an under bridge passage,
and (c) the corridor of a metro station.

In the simulation, we consider the same target for all the nodes over time as

the end point such as:

tri~t (2.25)

where ¢, in this scenario, represents the approximate target location, given that
the agents keep their social distances evenly close to the target and, therefore,
they do not converge exactly to a single target point.

The simulation parameters are set as follows. Consider a crowd of 40 people
each representing a node of the network, where one node is a person with dis-
abilities and the others are the general public. The step size, p, and pj, are set

to 0.05. For a safe distance from the walls, the coefficient « is set to 0.5. For
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velocity control, the coefficients {\, 5,v} are, respectively, equal to {0.5,1,1}.
The other parameters are set as defined previously. For a more realistic repre-
sentation, some random noise was added to the speed of the nodes as well as the

distances between each other.
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Figure 2.8: Simulation of the movement of a crowd over time. The average speed
(vg,i) of all the nodes is given for i = 0, ¢ = 70, ¢ = 130, and ¢ = 200. The
path is represented by blue dots, the general public by red dots, the people with
disabilities by a black dot, and the end point of the path by a green “*”.

Fig. 2.8 illustrates the movement of the crowd (mobile network) described

above in #2. The green symbol “*’

on the right represents the end point (the
target destination), the red dots represent the positions of the nodes considered
as the general public, and the black dot represents the position of the people with
disabilities over time. Finally, the blue lines define the walls of the path.

At the start of the simulation, in Fig. 2.8a, the nodes are located at some
random positions on the left side of the path. This represents the initial locations

(start point) of each node showing the stage we start running the algorithm.
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These initial locations are generated randomly for simulation purposes. Later,
all the nodes move towards their desired destination within the defined path. In
Fig. 2.8b, ¢, the nodes adapt their speeds and distances depending on the width
of the path. Finally, in Fig. 2.8d, which shows the end of the simulation time,
the nodes gradually approach the desired destination.

In addition, Fig. 2.9 provides the evidence that the nodes have effectively
reached or will reach the target over time. This figure represents the Euclidean
distances calculated using the equation:

1/2

i = ((te =700 = (8 = 741, (2.26)
The Euclidean distance is calculated for each node k at each time instant .
Fig. 2.9 shows that the average distance between all the nodes and the target
decreases over time until it reaches a distance close to 0, which means that the
nodes have reached the target. At the end of the simulation, some nodes have
already reached their desired destination, while others, including those of the
people with disabilities, are still approaching it. As explained previously, the
people with disabilities maintain a lower speed, so it will always take them longer
to reach their destination than other nodes. This is also in line with the simulation
presented in Fig. 2.8, where it can be appreciated how people with disabilities
fall behind the general public.

Table 2.1 shows how the chord length changes with respect to the path, and
how the speed of the nodes is changed accordingly. The larger or smaller the
chord, the lower or higher the speed of the node. The changes to the speed of the
people with disabilities can also be appreciated in this table. For a similar chord
length, the speed for node k = 7, the general public, is considerably higher than
the speed for node k = 5, the people with disabilities.

These results show that the proposed method obtains a considerable improve-
ment in accurate modelling of the movement of the crowd through a constrained
path, compared to the results presented in [78,80], while proving that cooperative
communication networks through DA can be used successfully for crowd motion
modelling.

This application demonstrated how cooperative networks, and specifically the
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Figure 2.9: Representation of the average Euclidean distance between node k
(T1;) and the target (t) at each time instant ¢. The blue bars represent the
average distance of all the general public nodes, while the red bars represent the
people with disabilities.

DA strategy, can effectively model complex real-world interactions, such as a
crowd moving towards a common target or exit, or brain regions interacting to
perform a cognitive task. It also illustrates the convergence of the DA model,
appreciated through the concurrence of all the nodes of the network in the final
target location.

As reviewed and proven in [47,57], the stability and convergence of the DA
strategy is strongly influenced by the learning step size, a key algorithmic param-
eter. Therefore, the selection of this parameter requires careful consideration.
Although a large value could accelerate the convergence of the system, it may
also lead to the instability of the system and the generation of oscillations in its
estimates. On the other hand, a small value may lead to the slow convergence of

the network and may fail to track dynamic changes. This value is then chosen
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Table 2.1: Length of the chord (Ly;) that goes through nodes k =7 and k =5
at several time instants 7 and speed (v} ;) of nodes k = 7 and k = 5, respectively.
Node k£ = 5 represents the individual with disabilities.

1=2 1=40 2 =80 2=100 =150 <<= 200

Lz; (m) 547 331 2.36 2.03 3.32 5.75
g, (m/s) 211 283 3.15 3.26 2.83 2.02
Ls; (m) 457 463  3.99 3.68 2.13 2.53
v, (m/s) 1.2 1.2 1.30 1.35 1.61 1.54

empirically to maintain a balance between the network convergence speed and its
stability.

In this example, a fixed step size is assigned to all agents and remains con-
stant throughout the adaptation process. This uniformity not only simplifies the
convergence analysis but also ensures consistent learning dynamics across the
network.

Similar principles apply to the hyperscanning scenario presented in this thesis,
where instead of crowd members, it is necessary to model the dynamic interactions
between brain regions engaged in motor or cognitive tasks. This application
provides the foundation for the DA-based algorithms developed in Chapters 4
and 5, where the underlying principles of stability, cooperation and parameter

sensitivity remain.

2.3.2 Multitask Network Applications

In some scenarios, each group of the network agents might be interested in a
separate objective instead of all having one in common. In this situation, the
network consists of different clusters of agents with different objectives [75,76,82,
83], as shown in Fig. 2.10.

In a multitask DA strategy, we consider a connected network N, of N nodes,
where each node is interested in estimating a set of unknown vectors of parameters
wyy, from the collected local measurements {dy,i,u;} at each time instant i.
This can be obtained through the minimisation of the cost function in (2.3). The

number of unknown vectors of parameters represent the number of tasks of the
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Figure 2.10: An example of a multitask distributed adaptive network, where
an agent k is connected to its neighbours. The network consists of N = 11
nodes and 3 clusters, also referred to as tasks, where nodes from each cluster are
represented in a different colour. The clusters are represented by wyy,, wyy,, and
w ), respectively.

system, and therefore the number of clusters. In this case, each node k has to
estimate its own optimum vector of parameters wj, where the optimum vectors
of parameters are only constrained to be equal within each cluster. It is assumed
that there are similarities and relationships between the neighbouring clusters,

which can be represented as:

wy, = wy,, for ke M, (2.27)
wy, ~ wy,, if M, M, are connected (2.28)

where M, and M, denote two cluster indexes, and ~ represents the similarity
between the neighbouring clusters. It is assumed that two clusters are connected
if there is at least one edge linking a node from one cluster to a node in another
cluster.

Therefore, considering a cluster M}, to which node k belongs, Eq. (2.3) can

be rewritten as [82]:

In this formulation, some prior knowledge on the relationship between the
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tasks is necessary. These similarities can be defined by the user or established in
several ways, such as through mean regularisation [84], low rank regularisation
[85], or clustered regularisation [86] among others. In this case, we will focus on
the formulation for the multitask network where the similarity between nodes is
determined based on the distance between them, obtained through the squared

Euclidean distance as:

A(’ka,’le) = Hka - leHZ (230)

Combining both equations, we obtain a regularised global cost function:

N Ny
T (awpy,, - wag,) = Y Bldes — ufwag [P+ > D prellwag, — wag |
k=1 k=1 IleNy

(2.31)
where 15 > 0 is the regularisation strength, and p; are the regulation factors
that satisfy:

Ny
Zpl’k = 1, and p”g = 0 lf l §é Nk\Mk (232)
=1

and penalise the distance between the vectors of parameters wy,; and w;.
Similar to the single task global optimisation problem over distributed net-

works, the cost function in (2.31) can be solved through several strategies. In

this case, using the ATC DA strategy defined in Eq. (2.11), Eq. (2.31) can be

represented as [82]:

Vyip1 = Wi + <21€Nkka wyldy; — ulj;;wk,i] + ZleNk\Mk p(wr; — wlm))
W it1 = ZleNkﬁMk W rWr it
(2.33)
Although this formulation presents certain limitations due to its necessity to
some prior knowledge about the relationship between the agents and the tasks, the
authors in [83] presented an adaptation of the multitask DA strategy where the
nodes do not know which other nodes share similar objectives. This adaptation

overcomes the limitations of the example presented here.
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The multitask scenario is common in many applications, and the above for-
mulation has been adapted to several applications, such as in web page categori-
sation [87], web-search ranking [88], disease progression modelling [89], and many
others, including EEG analysis applications [44,45]. As an example, it has been
shown that the DA multitask network formulation can be highly useful in BCI

applications, where multiple motor tasks need to be classified.

2.4 Conclusions

Despite its major applications in communications and social networks, coopera-
tive networks, as a new and powerful approach, has also been used successfully in
the analysis of physiological signals. Specifically, in EEG signal processing, the
set of electrodes forms the distributed network (as shown in Fig. 2.11), and each
electrode, representing each agent or node, captures a part of the brain’s electri-
cal activity. In this scenario, a neuron receives and sends information to other
neurons depending on the brain topological connectivity. Therefore, the signals
from all the electrodes are processed in a distributed manner through one of the
established distributed learning strategies. This method allows for a more accu-
rate and comprehensive analysis of brain dynamics, especially when considering
the topological relationship between the electrodes [56].

When choosing the most appropriate distributed learning strategy for this
scenario, it is extremely important to take the EEG characteristics into consid-
eration. One aspect to consider is that the EEG could be obtained through a
variable number of electrodes. Therefore, the development of an analysis method
that can adapt to a varying network size and topology is essential. Due to this and
considering the non-stationary nature of these signals, the incremental strategy,
which suffers from several limitations including its difficulty to adapt to systems
with variable number of nodes, is not appropriate.

As explained previously, these signals present high variability in time. There-
fore, it is necessary that the chosen learning strategy can handle the real-time
data variability while providing the best results for a system that requires contin-
uous learning and adaptation. This makes the consensus strategy not appropriate

due to its asymmetry issues, which can cause instability of the optimisation al-
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Figure 2.11: An illustration of a set of electrodes which forms the distributed
network, where each electrode represents a node or agent. Agent k, which is con-
nected tonodes 11, 12, 15, 16, 20 and 21, depicted as nodes l11, l12, l15, l16, [20, l21, 1S
represented in blue. The connected nodes to agent k are represented in light blue
while the other nodes are represented in white. Information exchanged through
the diffusion adaptation strategy between node £ and its connected nodes is de-
picted in black.

gorithm [64]. Therefore, DA is the most appropriate strategy for the application
presented in this thesis.

On the other hand, the suitability of DA for EEG applications has already
been proven in several studies, where it also showed the high efficiency of this
technique in the study of brain dynamics [41,46] as well as for the classifica-
tion of complex EEG signals [43,44] compared to other learning strategies and
non-cooperative models. When applying the DA strategy in this scenario, the
nodes share the estimated vector of parameters (w) after each iteration of the
adaptation process.

Even so, so far DA has not been used in the analysis and study of the brain
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dynamics in an hyperscanning scenario. The suitability of DA for the analysis
and classification of complex EEG signals shown in previous studies, informed
our decision to choose this strategy as the based of the analysis and classification
techniques proposed in this thesis for EEG hyperscanning scenarios.

The following chapter provides a detailed description and discussion of the
EEG hyperscanning scenarios, with the EEG hyperscanning dataset used to eval-

uate the proposed DA-based methods described, and its limitations discussed.
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Chapter 3

EEG Hyperscanning for BCI;
System Setup and Multi-subject
Data Recording

Nowadays, a primary factor limiting BCI research is the scarcity and difficulty of
accessing the necessary data. This is due to the diverse range of body movements
and postures creating considerable ambiguity. There are some publicly available
datasets containing physiological data that could be used for BCI development,
such as the BCI Competitions datasets [90]. However, most of them contain
data from similar BCI paradigms, which limits the scope of the research and
advances in the field. Most of these datasets have also been recorded in controlled
environments, which hinder the development and testing of techniques that can
be applied in daily life.

As previously discussed in Chapter 1, the transition from controlled laboratory
settings to uncontrolled environments, such as in real-world neurorehabilitation
clinics, introduces additional challenges in the development of accurate and reli-
able BCIs. In these scenarios, the quality and consistency of EEG recordings can
further be degraded due to external factors like ambient noise, variable lighting,
background movement, and spontaneous subject behaviour. These factors can
introduce additional unrelated neural activity by the subject, either consciously

or unconsciously, increasing the presence of artifacts, reducing the SNR, and

46



3. EEG Hyperscanning for BCI; System Setup and Multi-subject
Data Recording

increasing the difficulty to extract meaningful neural information, posing addi-
tional challenges for signal processing and classification. Moreover, in these set-
tings, subject dependency becomes more pronounced, as inter-subject differences
in brain dynamics are further influenced by environmental unpredictability. The
high similarity between fine motor movements further adds to these challenges,
making it difficult to distinguish between these movements without advanced
preprocessing and modelling techniques [29].

The lack of standardisation in recording and analysis of these data prevents
researchers from sharing and combining different publicly available datasets into
a single BCI paradigm, to better validate their methods under various conditions
and develop more versatile applications. Even so, with the development of new,
more precise and cheaper wireless EEG recording systems, such as the Emotiv
Epoc [91], in the last few years, it has become easier for researchers to record
their data using designed paradigms, allowing them to work on a wider range of
BCI applications.

The challenges associated with the analysis of single-subject EEG data are
intensified in the recording of hyperscanning data. At the time of writing, only
two hyperscanning datasets have been made publicly available [92, 93], where
none of them contains mental or motor-related tasks that could be of help in the
development of new hyperscanning motor rehabilitation BCIs. For this reason, it

was decided to record new suitable EEG hyperscanning data.

3.1 EEG Hyperscanning Data Acquisition

In multi-subject settings, the human brain is inherently engaged in multi-tasks
at the same time. The tasks often involve both mental and movement activities.
Therefore, extraction of EEG activity related to a particular movement in a nat-
ural environment involves a great deal of uncertainty and error. The main aim of
EEG hyperscanning is to reduce this uncertainty by mathematically restoring the
common desired task from the others. Using simultaneous recording of multiple
interacting brains, recent studies have been able to examine the brain function
underlying social cognition beyond passive observation [94].

Multiple hyperscanning studies have been carried out, most of them focusing
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on studying the neural synchronisation and interaction between the subjects in
different social settings [52-54], with few studies analysing movement paradigms,
such as [95-97]. Some multi-brain studies have also been implemented and anal-
ysed in gaming setups, as reviewed in [98]. However, in these implementations,
although the brain waves from multiple subjects are recorded simultaneously, the
signals from each subject are analysed independently. Therefore, they should
not be mistaken as pure EEG hyperscanning-based BClIs, where the signals from
multiple subjects are recorded, preprocessed, and jointly analysed.

The findings of these movement related hyperscanning studies, together with
the previously mentioned development of more affordable and portable recording
systems, have paved the way for a higher interest in using this BCI modality
mainly for rehabilitation purposes [55]. These studies have discovered that there
is an increased synchrony between subjects during imitation tasks where the
gestures are not completely mirrored. This indicates that inter-brain synchroni-
sation, known as the synchronisation between multiple subjects’ brains, may not
exclusively depend on the precise execution of a particular movement. This is
particularly relevant to motor rehabilitation scenarios or paradigms that involve
a healthy subject and a subject under rehabilitation. For this reason, in this
research we focus on the recording of EEG motor-related hyperscanning data for
the first time. This follows the idea that, during interpersonal interaction between
two or more individuals, time-varying relationships in brain activation may arise
and reveal important findings about inter-brain dynamics.

In an EEG hyperscanning recording session, the data acquisition follows the
same procedure used for single-subject EEG recording sessions, but with consid-

eration of the time synchronisation between the subjects.

3.2 EEG Signal Recording

EEG was first introduced by Hans Berger, who recorded human EEG for the first
time in 1924, making him the first person to detect and document the brain’s
electrical activity using a non-invasive neuroimaging technique [99].

Although some other non-invasive neuroimaging technologies, such as fMRI,

provide a higher spatial resolution than EEG, they suffer from low time resolution
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and other limitations, as discussed in Section 1.2.4. Given all that, over the years
EEG has proven to be the most popular method for the development of BCI
due to its low cost, good brain coverage, sufficiently high time resolution, and
portability.

As discussed in Section 1.2.2, EEG measures the electrical brain activity
caused by neural active potentials during the synaptic excitation of the neural
dendrites within the cortex. These electrical signals are aggregated and recorded
by the scalp EEG electrodes. The position of these electrodes can vary depending
on the desired application. However, the majority of EEG recording systems tend
to follow a specific standardised positioning, such as the popular 10-20 interna-
tional electrode placement system [100, 101]. Different types of electrodes might
be available, each with their own properties, advantages, and disadvantages. The
EEG electrodes may be wet or dry.

Wet electrodes require conductive gel to establish the electrical contact be-
tween the scalp and the electrode. This conductive gel reduces the impedance of
the electrodes, allowing them to record higher quality signals. Due to the lower
impedance, the recorded signals tend to be less noisy, which is highly beneficial in
applications requiring high-resolution data. However, the application of the gel
to each electrode can be tedious, time consuming and difficult, and often requires
trained personnel for the optimal setup of the system, and their posterior clean-
up. Furthermore, the gel that is applied to the electrodes can dry out during the
recording of long sessions, requiring its re-application.

Dry electrodes, on the other hand, do not need any conductive gel, and rely on
conductive materials that are directly in contact with the skin. While this reduces
problems related to the use of conductive gel, and leads to a faster system setup
and clean-up, it may suffer from lower conductivity between the scalp and the
electrodes. This results in lower quality signals with more noise.

Therefore, wet electrodes are preferred in clinical and research applications,
where high quality signals are required for accurate diagnosis and detailed brain
activity analyses. Dry electrodes, in contrast, are preferred in consumer EEG
devices and in-field applications, where an easier and more convenient setup is
important and the signal quality is less critical. Even so, new advances and

improvements in dry electrodes suggests that in near future, these system are
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likely to provide similar signal quality to that of wet electrodes, allowing their
implementation in clinics [102].

The most common sampling frequencies for EEG recording systems are 250,
500 and 1000 Hz [103]. The higher the sampling frequency, the higher the sig-
nal resolution with more detailed brain activity recorded. On the other hand,
following the 10-20 electrode placement system introduced above, we might find
systems with a low number of electrodes (typically 21 or 19-32). These systems
are commonly used for clinical settings for routine EEG recording. They are easy
to use and have low, but sufficient, spatial resolution suitable for monitoring the
main brainwaves. We can also find systems with a high number of electrodes (be-
tween 128-256 electrodes), also known as high-density systems. Although these
systems offer a high spatial resolution and detailed spatial information about
brain activity, they are more complex and expensive. For this reason, these sys-
tems are usually used in research that requires high-resolution brain mapping,
such as cognitive neuroscience studies. Finally, we can also find multiple systems
that use a medium number of electrodes (between 32-64), having higher porta-
bility than high-density systems. These systems are popular for wireless EEG
recording devices and are considered the most suitable for real-world applications
like BCIs or field studies.

Depending on the desired application, the most appropriate system setup is
chosen. For example, for motor-related tasks, the EEG signals of interest are
often recorded from over the sensorimotor cortex, where motor-related potentials
and rhythms (mu and beta) are modulated during motor planning and execution.
These minimum requirements for the recording system allow us to obtain brain
signals that capture detailed enough motor information.

A next step in conditioning the EEG data is preprocessing, which is performed
for mitigating noise and artifacts. Often, electrode re-referencing can reduce
the existing noise due to the nature of differential amplifiers in EEG systems.
Notch or finite impulse response (FIR) stop-band filters are used to remove the
national grid frequency. Common average referencing (CAR) is used to reduce
noise [103,104]. Other more advanced techniques can also be used for the online
removal of muscle, ocular and heart artifacts, such as regression, blind source

separation (BSS), empirical-mode decomposition (EMD) or wavelet transform
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techniques, as reviewed in [105, 106].

3.3 Multi-system Setup

The setting for an hyperscanning recording session is considered highly complex
since it requires careful experimental design, synchronisation techniques, and ro-
bust data aligning methods. As mentioned in [55], although a number of commer-
cial EEG recording systems can be used for the collection of EEG hyperscanning
data, well-designed EEG hyperscanning paradigms require precise time synchro-
nisation between all the systems, which is not always easily achievable. Small
discrepancies in timing can introduce artifacts or distortions, making it difficult
to accurately interpret the neural interactions between the participants. Further-
more, when multiple EEG recording devices are used in the same environment,
there is possibility of electromagnetic interference between the devices, which can

further worsen the signal quality.

Figure 3.1: A g.Nautilus system with 32 wet electrodes from g.tec medical engi-
neering GmbH.

Taking this into account, the data were recorded using two g.Nautilus systems
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(see Fig. 3.1) following the recording standards and recommendations given in
the system user manual. These systems were chosen for their high signal quality
recording and wireless characteristics. Each recording system has 32 wet elec-
trodes and the data were recorded at 250 Hz sampling frequency. Therefore, in
total, 64 channels, 32 channels per subject, were recorded. The electrode loca-
tions for each system followed the standard 10-20 international EEG electrode
placement, as shown in Fig. 3.2. Each system has a GND electrode located on

the forehead of the subject and a reference on the right earlobe.
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Figure 3.2: The electrode setup used for the experiment. The locations of the
electrodes follow the standard 10-20 international EEG electrode placement sys-
tem for 32 electrodes.

Due to the limited available recording systems and resources, each hyperscan-
ning experiment only consisted of two subjects. To allow for the recording of more
realistic data, the recordings were performed in a standard office space, more sim-
ilar to a standard neurorehabilitation clinic space, where some electrical devices
might be present. Following the standard procedure, the office space used for the
recordings had a number of electrical devices, which may influence the recording

of the signals. Possible distractions such as external noises, stimuli, and other
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distractors were reduced from the recording space to increase the concentration
of the subjects on the tasks of the experiments. However, the environment is
still affected by outside noise, sound clutter, varying window lighting, and likely
engagement of the brains in irrelevant mental or physical tasks, which provides

an uncontrolled recording situation.

3.3.1 Challenges in Multi-subject Recordings and Data
Handling

Several challenges can arise during an hyperscanning recording session, including
the experiments’ paradigms, the setup and synchronisation of the systems, the
availability of subjects, and those associated with the handling of the recorded
data.

The current publicly available hyperscanning experiments’ paradigms are mostly
customised for the study of social interactions between subjects, such as the ex-
periments reviewed in [52], where the researchers are not concerned with synchro-
nised or mirrored motor movements between the subjects. In contrast, for single
EEG recording experiments, as discussed in [107], despite several studies, the
majority still follow the experiment paradigms presented in [90]. This shows how
well-established and evaluated paradigms are usually preferred. Such setups pro-
vide quality data for good motor movement recognition results and their outputs
are easily comparable to previously developed techniques.

Even so, the paradigm used in our research is unique, has not been used
before, and is tailored to our objectives. This incremented the complexity already
associated with the design of EEG experiments. To overcome this challenge,
the experiments’ paradigms were designed following popular BCI motor-related
recordings best practices, as in [90], and EEG hyperscanning paradigms proposed
in [54]. This paradigm is suitable for the recording and analysis of the EEG for
competing or cooperative brain activities. Nevertheless, along the way we made
the necessary changes to the paradigm to best suit our objectives.

In EEG hyperscanning, the higher the number of subjects, the more complex
it gets to setup and synchronise all the systems. In motor movement paradigms

with subjects freely moving around, each subject should have their own indepen-
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dent wireless system. This increases the cost of the recording session, and the
possibility of introducing delays in the transmission of simultaneous data from
such a high number of systems. Furthermore, the synchronisation and connection
of all these systems together can be challenging since a high number of commer-
cially available EEG recording systems do not currently support hyperscanning
settings or the simultaneous connection of multiple systems to a single PC. A
possible solution in that case would be to have each recording system connected
to an independent PC and all the PCs synchronised. However, this still further
increases the cost of the recording session. The PCs may also introduce artifacts
on the recorded signals, degrading the quality of the signals. However, in a perfect
EEG-based multi-subject BCI setup and synchronisation, using higher number
of participants can boost the training accuracy of the system. This is because
the common motor task can be isolated with higher accuracy.

More challenges are related to system preparation, and availability and di-
versity of the participants. Furthermore, there are complexities associated with
the simultaneous recording of multiple subjects whose brain signals are different
in nature, such as a group of paralysed and non-paralysed subjects, or a group
of young and old individuals. These differences between groups of people could
also affect the speed of movement between the subjects, which would need to be
mitigated or effectively exploited either during the recording or the preprocessing
phase.

Finally, another challenge associated with the recording of EEG hyperscan-
ning data is how to save and handle the recorded data. For a real hyperscan-
ning setting, the data should not only be recorded simultaneously, but it should
also be analysed simultaneously, sample by sample for all subjects. The higher
the number of subjects involved in the experiment, the more storage space and
computational resources that would be necessary, and the more computationally
costly the preprocessing and analysis of the data. Furthermore, it is highly im-
portant that the synchronisation between the EEG data from all the subjects
is maintained. For example, a commonly used technique for the removal of bad
data segments or artifacts such as eye blinks, is the removal of the bad segment
or bad channel. However, this technique must be applied with caution when

working with hyperscanning data. To maintain consistency across all data, if a
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bad channel is removed from one subject, often the same channel should also be
removed from all the other subjects of the group. Furthermore, to maintain the
synchronisation between the subjects, if a bad segment containing an artifact is
removed from one subject, it needs to be removed from those of all the other
subjects. The higher the number of subjects, the higher the possibility of some
subjects presenting multiple bad segments and channels, which could decrease

the quality of the data and the results.

3.3.2 Multi-subject Multi-task Dataset Description

Most EEG-based BCI studies tend to rely on the use of large training datasets.
This poses some challenges in the later implementation of these systems in an
uncontrolled environment and when working with non-ideal and smaller datasets
given that the brain is inherently engaged in multiple tasks. Furthermore, as men-
tioned previously, the data is not readily available and the recording of such data
is difficult. Therefore, it is essential to develop a system that can perform well
even for small datasets and in uncontrolled environments for an easier implemen-
tation of the system in real-world. To support this, we present and release a small
but highly valuable dataset containing non-ideal data from several motor-related
hyperscanning scenarios.

For the recording of these BCI paradigms, we consider non-ideal data where
in addition to the common desired physical tasks between the subjects, there are
other possibly strong undesired mental or motor tasks, inherently or intentionally
performed by the subjects.

In this experiment, the data were recorded under the ethical approval from
the Nottingham Trent University, School of Science and Technology non-invasive
Ethical Committee, under the application number 20/21/103. All the volunteers
gave their written consents.

The dataset contains the EEG hyperscanning data recorded from a total of
five subjects, distributed in three pairs (Subjects 1 and 2, Subjects 3 and 4, and
Subjects 1 and 5). For each pair, all the experiments were recorded on the same
day. All the subjects were healthy and between 20-30 years old. Out of the

five subjects, there were four males and one female. Experiments 1 to 5 contain
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between 19 to 29 trials each. Additional experiments that also included other
subjects were conducted and analysed, but not used or released with this thesis.

A total of five multi-task experiments were recorded and made publicly avail-
able under CC BY-NC 4.0 in [108]. During each one, both subjects performed
a common (similar to each other) task and an uncommon (different from each
other) task simultaneously. The subjects performed all the experiments with their
eyes open. Here, we describe each of the experiments.

During experiments 1 and 2, we recorded two sessions of the experiment for
each pair of subjects, and the subjects were asked to sit comfortably on their
chairs one next to each other. However, for experiment 3, 4, and 5, only one
session of each experiment for each pair of subjects was recorded, and the subjects
were standing in front of each other.

Experiment 1: During this experiment, the two subjects were asked to open
and close their right or left hands in a random order determined by a sequence of
orders given to Subject 1. The left or right movement was also alternated with
some randomly determined short free movement time. During the free movement
time, the subjects were relaxing and free to move. During the movement, the
whole arm was extended and flexed following the opening and closing of the
hands. The arm was extending when opening the hand and flexing when closing
it. Both subjects were asked to perform the movements at a slow pace and try
to synchronise their movements. Subject 1 was leading the movement following
the instructions received through a visual stimulus presented on a monitor, while
Subject 2 was following Subject 1. Fig. 3.3a shows how the whole arm is moved
when the hand is opened or closed.

Experiment 2: Like in the previous experiment, the two subjects were asked
to open and close their right and left hands while extending and flexing the cor-
responding arm in a random order determined by a sequence of orders given to
Subject 1. During this experiment, both subjects were also asked to simultane-
ously move another part of their body in a random order decided by themselves.
Here, for the secondary movement, Subject 1 moves their right leg back and
forth, while Subject 2 taps their feet. Fig. 3.3b shows the secondary movements
performed by both subjects.

Experiment 3: During this experiment, both subjects were asked to open
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(a) Experiment 1 (b) Experiment 2
SUBJECT 1 SUBJECT 2

‘ @Extension and Flexion ‘ ‘

Right leg @Both feet

(c) Experiment 3
SUBJECT 1 SUBJECT 2

Movement 1:
smooth clapping

Up and Downy

Movement 2:
hand shaking

@ Shake Up
and Down

Both Ie& ﬁth legs

Movement 1: Movement 2:
alternate back kick  alternate knee up

(d) Experiments 4 and 5

SUBJECT 1: SUBJECT 2:
alternate back kick smooth clapping

® ®
Right Ie&

Figure 3.3: The schematic of movement performed by the subjects during all the
experiments, (a) open and close hand movement performed while extending and
flexing the corresponding arm for experiment 1 and 2, (b) secondary movements
performed by subjects 1 and 2 during experiment 2, (c¢) two secondary movements
performed by each subject during experiment 3, and (d) secondary movement
performed by each subject during experiments 4 and 5.

and close their both hands simultaneously following a slow motion. During this

experiment, as opposed to experiments 1 and 2, only the hands were moving.
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Both subjects were asked to try to synchronise their opening and closing hand
movements. It was observed that the subjects were able to synchronise their
movements most of the time. In a random order, Subject 1 was given three
sets of instructions: to freely move their hands, to open and close their hands
and to perform a secondary movement, while Subject 2 follows Subject 1 for
the prescribed movement. During the freely-moving time, both subjects were
allowed to relax their hands and move them freely, as in previous experiments.
During the secondary movement time, both subjects performed two movements
each in a randomly self-decided order. Here, Subject 1 alternatively performed
back kicks with each of their legs or alternatively moved one of their knees up.
Subject 2 either performed a smooth hand shake between both hands or smoothly
clapped. Subject 2 performed continuous smooth movement of their arms and
hands. Fig. 3.3c shows the secondary movements performed by both subjects. In
these experiments, the main objective is to isolate the common task performed
by both participants.

Experiment 4: This experiment was a repetition of experiment 3, with a single
change. Here, when the subjects were asked to perform the secondary movement,
both performed a separate single movement instead of choosing between two
movements. Subject 1 performed back kicks with their right leg, while Subject
2 simulated a smooth continuous hand clapping. Fig. 3.3d shows the movement
performed by both subjects during the secondary movement time.

Experiment 5: This experiment was a repetition of experiment 4, with a single
change. During this experiment, instead of only Subject 1, both subjects were
given the instructions as to when to move freely, perform the secondary move-
ment, or open and close their hands. They were still asked to try to synchronise
their movements.

For the evaluation of some of the developed techniques, another experiment
was carried out. This experiment was performed by the previous pair and a new
pair of subjects, consisted of one subject in common with previous experiments
and another new unrelated subject. The data from this experiment was not
made publicly available. Two sessions per pair of subjects were recorded for this
experiment, with several trials recorded as part of this experiment per session.

Experiment 6: In this experiment, two right-handed subjects were asked to
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Table 3.1: Summary of EEG hyperscanning dataset. Left and right are abbrevi-
ated as L. and R, and S1 and S2 represents Subjects 1 and 2 respectively.

Experiment  Subjects — Trials Primary Task Secondary Task(s) Posture  Instructions
1 4 (2 pairs) 29  Open/close L/R hand None Sitting  Visual stimulus
with full arm movement to Subject 1
2 4 (2 pairs) 29 Same as Experiment 1 S1: right leg movement Sitting  Visual stimulus
S2: feet tapping to Subject 1
3 4 (2 pairs) 23 Open/close both hands S1: back kicks or knee raises  Standing Visual stimulus
(no arm movement) S2: hand shake or smooth to Subject 1
clapping
4 4 (2 pairs) 19 Same as Experiment 3 S1: back kicks Standing Visual stimulus
S2: smooth clapping to Subject 1
5 4 (2 pairs) 22 Same as Experiment 4 Same as Experiment 4 Standing Verbal instructions
given to both
subjects
6 6 (3 pair) 12 Draw clockwise and None Sitting ~ Verbal instructions
anti-clockwise circles given to Subject 2
only

perform a cooperative task, with one subject acting as the leading subject (in
this case Subject 2) and the other subject acting as the follower subject (in this
case Subject 1). Both subjects had their eyes open during the experiment. Both
subjects were asked to draw clockwise and anti-clockwise circles following a slow
and continuous movement. The leading subject was provided instructions on
how many circles to draw in each direction, following a set sequence, before the
start of the recording. The follower subject was asked to draw a circle following
the sequence of directions from the leading subject. The experiment ran for
approximately 10 minutes.

The sequence of directions given to the leading subject was:

1. Draw a circle clockwise for three times.

2. Rest for 30s.

3. Draw a circle anti-clockwise for three times.
4. Rest for 30s.

5. Repeat steps (1)-(4).

Table 3.1 provides a summary of the key characteristics of each experiment

presented here, including the number of trials per session, and a brief task de-
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scription. Although other recording sessions and experiments were obtained, they
were discarded due to their low signal quality or lack of synchronisation between

the data received by both systems.

3.3.3 EEG Hyperscanning Dataset Limitations

As most datasets, the dataset described in this chapter presents certain limita-
tions. It consists on recordings from only five subjects. Although this is con-
sistent with other EEG hyperscanning studies, such as [109, 110], the relatively
small number of participants could impact the dataset’s ability to robustly assess
inter-subject variability and generalisability in BCI performance.

To mitigate this limitation, careful consideration was given to the selection
of the subjects, emphasising their diverse demographic, gender, and behavioural
characteristics.

On the other hand, although the number of trials per experiment may be
considered modest, especially in comparison to large-scale EEG datasets, the
number of trials is evenly distributed across the different experimental conditions.
This balance helps mitigate possible biases during model training and evaluation,
while supporting a fair comparison across different task conditions. Moreover, the
sample size is also similar to other small size EEG motor-related datasets, such
as the datasets reviewed in [111].

Nevertheless, taking the sample size into consideration, cross-validation has
been adopted as part of the evaluation strategy in later chapters. This approach
facilitates the optimal use of the available data while providing a robust and
reliable estimate of the model performance.

Even so, despite its limitations, the recorded data contains high-quality motor-
related EEG hyperscanning recordings, making it highly valuable for the explo-
ration and development of EEG hyperscanning-based BCI approaches.

3.4 Conclusions

EEG data recording for multi-subject BCI (a.k.a. hyperscanning) has been at-
tempted in this chapter. Although the number of subjects, and data size are
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limited, the presented dataset remains suitable due to the diversity of subjects,
and the high quality signals.

Increasing the number of participants under ideal and non-ideal conditions,
as well as the data size and the experiments can enhance the accuracy of the
BCI training system and the corresponding results. However, it increases the
complexity in the setup and requires the availability of diverse participants for
longer periods of time, and well-tuned and synchronised recording systems, which
can be challenging and not always possible.

Due to the necessary parallel preprocessing and analysis of the hyperscanning
data, many common and well-established EEG techniques cannot be used. There-
fore, in addition to the basic signal preprocessing techniques, the development of
new techniques especially tailored for hyperscanning settings, such as new pattern
recognition methods, is essential. However, other related popular preprocessing
methods, such as CAR or independent component analysis (ICA) [112,113], can
be used after minor modifications or when applied to each subject’s data inde-
pendently as long as the synchronisation of the data is maintained.

Despite various problems, limitations, and challenges, a useful dataset from
two pairs of participants have been recorded, conditioned, and preprocessed to
be used by the algorithms proposed in the later chapters of this thesis. In the
next chapter, a novel hyperscanning analysis technique is presented and evaluated
with the help of the dataset described in this chapter. The proposed method is
based on the DA strategy previously introduced in Chapter 2, and can be used as
a new rehabilitation platform where the state of a patient under rehabilitation is

assessed based on their ability to follow the tasks performed by a healthy subject.
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Chapter 4

Diffusion Adaptation for
Hyperscanning BCI

This chapter is an expansion of our published work in [114].

As discussed in Chapters 1 and 3, the hyperscanning technique allows re-
searchers to study not only the neural connections of a single person, but also
how the transfer of neural information change when individuals interact with
each other [52,115]. Although multiple hyperscanning studies have been carried
out so far, they were mostly related to studying social interactions between in-
dividuals [53]. To study these interactions, the researchers focused on studying
the connectivity between different regions of the brain, within a subject’s brain
regions (referred to as intra-brain connectivity), or between different subject’s
brain regions (referred to as inter-brain connectivity). Statistical approaches are
used to study the causal relationship for the above two cases. However, the use of
such information within the hyperscanning data has not been attempted in BCI
context so far.

Depending on the type of activities and interactions the subjects are involved
in an hyperscanning setting, we can separate these mostly social studies in two
main groups: collaborative and competitive [54]. In cooperative settings, such
as the scenarios discussed and presented in Chapter 3, the subjects perform at
least one task in common. On the other hand, in a competition hyperscanning

setting, the subjects perform tasks against each other, such as playing a card
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game [110]. Due to such brain interactions, there are new added information
exchange among the network nodes and relationships between the subjects’ brain
regions as compared with the traditional, non-hyperscanning setting.

As discussed in Chapter 1 and [55], more advanced preprocessing, analysis
and classification techniques specifically tailored for hyperscanning data become
necessary. These techniques are mainly to exploit the intra- and inter-brain com-
munications in BCI systems used for neurorehabilitation.

More specifically, we propose a brain connectivity-informed diffusion adap-
tation (DA) method. The proposed method is applied to the EEGs from two
brains recorded while performing collaborative tasks. In such scenario, at least
two subjects perform a collaborative task together, where one of the subjects
leads the task while the other subject follows. The state of the patient can then
be identified depending on his ability to follow the task performed by the leading
subject (usually a healthy subject).

4.1 Brain as a Connected Network

As discussed in Chapter 2, the human brain can be considered as a connected net-
work, composed of billions of neurons organised into regions that are structurally
and functionally interconnected. These regions communicate through complex
pathways that enable the brain to process information, make decisions, and con-
trol actions. Using scalp EEG, the nodes can represent the brain zones under the
electrodes.

Several studies have demonstrated the necessity to study not only the func-
tionality of each part of the brain, but also the connections and relationships
between the brain regions, how they change over time, and how they relate to dif-
ferent mental or motor tasks. Furthermore, some studies have demonstrated that
the changes in brain connectivity help identify different neural disorders [116-120].
Several methods have been proposed to estimate the causal relationships of brain
zones, namely casual and functional brain connectivities.

As discussed in Section 2.4, cooperative learning strategies have been used
previously for analysis of physiological signals, where the brain is represented as

a connected network, as shown in Fig. 2.11. In such a network, each electrode
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is considered as a node or agent of the network. In these studies, cooperative
learning strategies, especially DA, have proven to be an excellent resource to
model the pathway between the brain network dynamics and the desired motor
task [42,44,45]. This method can be even more useful when a subject sets the
target and other subjects try to mirror, follow, or achieve that. This is the
scenario proposed in this chapter.

Therefore, we establish a cooperative adaptive model informed by the brain

connectivity information from one brain to follow the other.

4.1.1 Brain Connectivity Estimation

Several methods can be used for the study of brain connectivity and, depending
on the purpose and scope of the analysis, they can be divided into three main
groups: structural, functional and effective connectivities [121]. Structural con-
nectivity is anatomical and time independent. On the other hand, functional
connectivity reflects the statistical relationships, such as temporal correlation or
synchrony, between neural activities in different regions over time. Finally, effec-
tive connectivity focuses on the causal influence that one brain region has over
another. Therefore, when estimating the connectivity strength and direction be-
tween different regions, we focus on functional or effective connectivity study
methods.

Although effective connectivity methods provide the direction of the infor-
mation flow between brain regions, as discussed in [121] and [122], functional
connectivity methods are more widely used in these studies.

There are different methods for estimating the functional connectivity of EEG
signals, such as the methods reviewed in [122,123]. These methods may further
be divided into two groups: non-parametric and parametric. Methods based on
the multivariate autoregressive (MVAR) model are non-parametric as the data
distribution is not involved in the estimation. The most commonly used methods
to measure brain connectivity in EEGs are cross-correlation, when measuring
connectivity in time domain [121]; phase-locking value (PLV) [124] or phase-lag
index (PLI) [125] for phase-based measures; and partial directed coherence (PDC)

[126], directed transfer function (DTF) [127] or the multivariate autoregressive
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extension of Granger causality (GC) [128] for multivariate time series measures.
GC was initially introduced based on linear autoregressive (AR) models of time
series [129], and was later extended to the multivariate formulation for its more
effective use for the analysis of multichannel data such as EEG.

Although most of these methods can be used for brain connectivity analysis
in hyperscanning settings, some of them are more appropriate than others for the
scenario presented in this chapter. In hyperscanning settings, it is common to
have a time lag between the two brains. These time lags as the result of desyn-
chronisation between the brains’ neural activities can be measured and analysed
to provide some important insights into the brain dynamics of a multi-subject
cooperative task. However, in a scenario such as the one presented in this chap-
ter, where a subject is mirroring or following the task of another subject, the
time lag between the leading brain and the following brain can be considerable.
Therefore, in this scenario, other measures for intra- or inter-brain connectivity,
such as GC, DTF or PDC, would be sufficiently suitable.

Given all this, in this chapter we employ the multivariate extension of GC,
which is one of the commonly used hyperscanning connectivity estimates. This
method also shows if there is some level of cooperation, presented as similarity
between the two EEG patterns.

The traditional GC studies the existence of a causal influence to a driven
process from a driving process such as from z;; to xy; in the time domain. This
is known as a pairwise causal analysis. Therefore, the traditional form of GC
may better estimate the relationship or statistical dependency between any two
time series in more detail compared to other methods by exploiting their true
probabilistic models. Furthermore, the multivariate linear GC analysis allows us

to assess the direct influence between pairs of signals.

4.2 Modelling Brain Motor Activity

In this section, we propose a method to model the brain responses of an indi-
vidual based on the brain responses of a second individual under a cooperative
EEG-based hyperscanning scenario. We establish a cooperative adaptive model

between two brains informed by the connectivity information from the EEG sig-
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nals.

Cooperative distributed learning has been used previously for EEG process-
ing and task classification [45,130], as a filtering approach for modelling brain
responses to motor tasks [42], and in BCI multi-tasks scenarios [44]. However, it

has never been used to model the connection between two brains.

4.2.1 Different Possible Models

Considering the brain as a multi-agent distributed network of connected nodes,
the brain of each subject can be represented as a connected network, where each
electrode represents a node or agent of that network, as shown in Fig. 2.11.
Therefore, the distributed networks consist of N, nodes each. In these networks,
the nodes try to estimate the unknown vector (w) given the shared information
{dk,,ur,} that minimises the cost function in (2.2). As discussed in Section
2.4, although there are multiple cooperative learning strategies for solving this
optimisation problem, the most appropriate and chosen learning strategy for this
scenario are the DA strategies.

In the application presented in this chapter, only the set of electrodes from one
of the two individuals, the subject whose brain responses will be modelled, are
considered as a distributed network. The corresponding electrode signal from the
second individual is instead considered as the global target of the first individual’s
distributed network. This scenario could also be considered as a multitask dis-
tributed network application, where each electrode from the first individual has a
corresponding electrode from the second individual as target of the network [44].

In a DA network the agents, or nodes, cooperate with each other to solve a
global optimisation problem over the network, as discussed in detail in Chapter
2. In classic DA, the objective for all the nodes is the same. However, in the sce-
nario proposed in this chapter, each node, representing each EEG channel, tries
to estimate its own M x 1 unknown vector (wy) given the shared information
that minimises the cost function in (2.2). This is known as a multitask DA strat-
egy. However, this scenario could also be considered as a single task application
instead, where the set of electrodes from the second individual is considered as

a single multidimensional target, as proposed in [41]. Most importantly, despite
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Figure 4.1: An illustration of the cooperation in the proposed hyperscanning
setup. The nodes from the left head cooperate between each other while trying
to follow the signal from their equivalent electrode from the right head. The
right head represents node ¢ from the individual leading the activity while the
head at the left represents node k£ from the individual following the activity. i
represents the neighbourhood of node k when k£ = 17.

various brain activations, here there is only one physical task to be considered
and studied. In this case, the desired signal target (dy;) may be represented by
the average of the signals that correspond to the desired target class (the leading
subject). Another option is to have separate distributed networks each with an
independent objective, such that the objective or target is the signal from the
corresponding electrode of the leading subject. Therefore, we model the relation-
ship between the signal of each node k of one individual based on the signal of
the corresponding node ¢ of another individual, as in Fig. 4.1.

For simplicity and to reduce the computational cost of the proposed system,
we consider the proposed scenario as a single task DA problem. Therefore, to
solve the optimisation problem in Eq. (2.2), we use the ATC DA strategy defined
in Eq. (2.12).

In the ATC formulation the combination weights a;; represent the weight
of information received by node k from its neighbours [. It is represented as
a N, x Nj combination matrix of non-negative values at time instant 7. Ny is

the neighbourhood size. In single task DA applications where the weights are not
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measurable, it is presumed that these combination weights are the same and equal
to a;, = 1/Nj, for all the nodes [ in the neighbourhood of each node k. However,
in the scenario presented here, the a;; coefficients are estimated through brain
connectivity measurement to provide a more realistic and accurate information
exchange between the nodes, as proposed in [41] and [42] for traditional, non-

hyperscanning BCI settings.

4.2.2 Incorporating Connectivity Measures into the Dif-

fusion Adaptation Formulation

Here, the intra-brain connectivity measures from the first individual are used as
the combination weights for the DA formulation.

As discussed in Section 4.1.1, although different methods have been estab-
lished to study the information flow between a group of EEG signals, some meth-
ods are more appropriate than others to be used in the scenario proposed here.

For the model proposed in this chapter, we calculate the combination weights
a;, based on the multivariate GC analysis in the frequency domain.

Consider Xy ; = (g, (1), 2k, (1), ... @y, ()] a signal that satisfies a MVAR
of the form [131]:

p Ne p
X = Z Ak X ki—m + Z Z At X 1i—m + Ep (4.1)
m=1 =1 m—1
I£k

where Ny is the total number of EEG channels that forms the regression model,
p denotes the MVAR model order, e, is the regression residuals, A, are
the regression coefficients, and Ay, ,, are the coefficients that encapsulate the
dependence of X, on the past sample m of X, given its own past. Eq. (4.1) can

be summarised to:

p
Xii=Y Ay Xiim+er, (4.2)
m=1

where €}, are the cross-term residuals, and A}, , are the reduced regression

coeflicients.
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We transform Eq. (4.2) to the frequency domain and obtain the transfer
matrix H (f), which contains all the information about the relations between the
nodes (k,[):

-1
(1) =[ .- ZAkkm in] (43)

where Iy, is the Nj x N identity matrix, and e~327fm is the Fourier transform
kernel, where j = v/—1.
Given the transfer matrix and the reduced MVAR model, the cross-spectral

density matrix is found as [132,133]:

S(f) = H(f)%,,., H (/) (4.4)

where each element Sg;(f) of S(f) represents the spectral relationship between

signals x; and x;, H*(f) represents the Hermitian transpose of H(f), and X/

Tx]
is the residual covariance matrix of the reduced MVAR model such as X} =
cov(e} ;).

Given this, we can assess the direct influence of node x; on node xj, also

referred as the GC index, as:

1Sk (f)]

L—i(f) = 1Sk (f) — Hia (/) =] 0 Hi ()]

(4.5)

given 3 =0 for I # k.
Furthermore, given Eq. (4.3) and Eq. (4.4), DTF, which estimates casual in-
fluences based on the transfer function H(f) and provides directional connectivity

across full frequency range, is estimated as:

[ Hiu(f)I?
S i ()12
where Hy(f) is the element in the k-th row and I-th column of H(f). Fur-

thermore, PDC, which identifies direct causal influences between signals in the

DTF,—.(f) =

(4.6)

frequency domain, is obtained as:
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[Aw(f)?
>y [ A ()2
where Ag(f) is the element in the k-th row and I-th column of A(f), which is

the Fourier-transformed, or frequency-domain equivalent, of the MVAR model

PDC(f) = (4.7)

coefficient matrix, defined as:

p
A(f) =TIy, =) Ap,e ™ (4.8)
m=1

The above three connectivity measurements provide similar information, and
the choice between GC, DTF, and PDC depends on the scenario where they are
applied to, and the exact information to be extracted. Often, the three measures
can be equivalently applied to the same scenario. For the application presented
here, given the coefficients obtained for the multivariate GC (I;—(f)), where
the MVAR model is estimated from the EEG signals, we obtain the combination
weights a; ; by normalising (between [0 1]) and averaging them over the frequency
band of interest, such as 8-20 Hz for mu rhythm. This a; is then used in Eq.
(2.12).

The length of the EEG signal segment, together with the selection of the
MVAR model order p, significantly influence the quality and reliability of the
estimated connectivity measures. Estimating an MVAR model assumes that the
underlying signal is stationary over the analysis window. A longer segment pro-
vides a greater number of data points, which improves the statistical robustness
and stability of parameter estimation. However, this may come at the cost of vio-
lating the stationarity assumption, thereby degrading the accuracy of the MVAR
and derived connectivity estimates. Conversely, a shorter window is more likely to
preserve local stationarity but may result in unreliable MVAR estimation due to
insufficient data, potentially failing to capture important temporal dependencies.

Furthermore, the model order p determines how many past samples are con-
sidered in predicting the current signal value for each channel. A higher order
allows the model to capture more complex temporal and cross-channel depen-
dencies, which can enhance the detection of functional interactions, while it also

increases the risk of overfitting and the inclusion of spurious dependencies. In
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contrast, a model order that is too low may fail to capture essential interactions
and underlying dependencies.

Given this, the window lengths and the MVAR model order should be selected
taking the nature of the neural activity into consideration, providing a reasonable
compromise between estimation reliability and responsiveness to dynamic changes

in brain connectivity.

4.2.3 Diffusion Adaptation for Translating Mind to Ac-
tion for BCI

Fig. 4.2 summarises the proposed connectivity-informed DA model. Suppose
we acquire the EEG signals from Ny electrodes from the individual whose brain
signal we want to model (uy,) and acquire the same number of EEG signals from
the individual used as the system target (dg,). Each electrode k forms a neigh-
bourhood N with all the electrodes that are at a maximum of one-hop distance
from electrode k. Each electrode k has access to time realisations {dg,, ux,} of
the electrodes from its neighbourhood and the equivalent electrode, node g, from
the other individual (see Fig. 4.1).
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Figure 4.2: An illustration of the proposed method. a;j represents the average
of the connectivity matrix obtained from the GC analysis for the frequency band
of interest after being normalised.

For each electrode k from the first individual, we use the EEG signals to form

71



4. Diffusion Adaptation for Hyperscanning BCI

a 1 x M regression vector in the form:

i = [we(i) we(i—1) - w(i+M—1)] (4.9)

where M is a non-negative scalar that sets the cooperative filter length and the
corresponding signal segment duration.

As discussed previously, di, is taken from a global or local desired signal. In
the scenario presented here, di, is taken from the EEG signals acquired from the
second individual, which is the person leading the task during the cooperative
EEG-based hyperscanning study. The main goal of the system is to create a model
that corresponds to the brain activity from the target individual by defining the
network topology with parameters from the brain connectivity information of
the first individual, the follower. Using this model, we can analyse if the first
individual follows the activities from the second individual and to what degree.

We use ATC defined in Eq. (2.12) at each time instant ¢ to update the
estimates wy,. Before applying the combination weights a;j; obtained from the
proposed connectivity analysis to Eq. (2.12), they are normalised to satisfy the
condition in Eq. (2.8). The DA vector of parameters is then iteratively estimated.

In real-world, such an adaptive system can be applied to the brain under study
(rehabilitation) and evaluate the degree of brain recovery. In a BCI scenario, the
model is used to assess how well the first individual follows the second one.

The selection of algorithm parameters highly influences the performance and
convergence ability of the proposed method. The filter length M defines the
number of past samples that will be included in the regression vector uy;, which
determines the temporal memory of the adaptive system, influencing the infor-
mation included in the selected feature space, and the stability and convergence
of the system. As discussed in Chapter 2, a balance between the convergence
speed and the stability of the system is necessary through the selection of the
algorithm parameters.

In the scenario presented in this chapter, a longer filter length allows the model
to capture more temporal dependencies from the EEG signals, highly valuable in
longer intervals of neural dynamics exchanges, such as during continuous motor

movements. However, this also increases the dimensionality of the filter vec-
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tor, increasing the computational complexity of the system in each adaptation
step. This will also require more data to be available, which could destabilise the
adaptation process. In contrast, a shorter filter length reduces the complexity
of the system and improves its convergence stability, but increases the possibil-
ity of missing important temporal dependencies. Furthermore, in the proposed
method, M also determines the signal segment duration, used to estimate the
MVAR model.

Therefore, careful consideration is taken during the selection of this parame-
ter, chosen through manual observation based on the sampling rate and neural
activities under study to maintaining a balance between the temporal resolution

and the learning dynamics stability of the system.

4.3 Data and Experiment

We employ the cooperative hyperscanning data from Experiment 1 (referred to as
Dataset 1) and Experiment 6 (referred to as Dataset 2), both described in Section
3.3.2. For Dataset 1, both subjects were asked to open and close the right and
left hand in a random order. The leading subject (represented by Subject 1)
was asked to lead the movements following a given sequence of instructions. The
follower subject (represented by Subject 2) was asked to follow the sequence of
movements from the leading subject. For Dataset 2, the leading subject was
asked to draw a perfect circle instead following specific given instructions while
the follower subject was asked to draw the same circle following the movements
from the leading subject.

For both datasets, a total of 64 EEG signals were recorded from two systems,
each associated to one subject, during the cooperative hyperscanning study. Each
EEG system has 32 channels following the standard 10-20 EEG electrode place-
ment system, as described in Section 3.3.2. Since the experiment consists of the
two subjects performing some motor tasks, as shown in Fig. 4.3, in this scenario,
from the 32 channels of each system, we only retain and use 10 channels per
system associated with the brain motor area. Although this is a moderate num-
ber of electrodes, the spatial resolution of the experiment is still acceptable since

the number of brain sources used in this experiment is expected to be less than

73



4. Diffusion Adaptation for Hyperscanning BCI

1

@

PN

©® 0 @ ©

@0 ?H 17@12 16@]3 |

@ 19e 90@ 2‘1e 22

3 4 29@5 6
©

Figure 4.3: An illustration of the electrode setup used for the experiment. The
location of the electrodes follows the standard 10-20 EEG electrode placement
system. The highlighted electrodes are the electrodes corresponding to the motor
area, which are the electrodes used during the performance of the method pro-
posed here.

the number of sources. Even so, if we were to use a higher spatial resolution, it
is likely to obtain a higher resolution and, therefore, the system might achieve
better results.

Any bad channel or channel with sever artifact is removed from the EEGs
of both systems. Then, Infomax ICA from EEGLAB [134] is used to mitigate
other artifacts (such as eye-blinks). Then, we perform bandpass filtering to the
signals to retain only the frequency bands of interest (alpha and beta, i.e. 8-20
Hz). Finally, the model order of the MVAR model is decided using the Akaike
Information Criterion (AIC) [135]. The multivariate GC in the frequency domain
(L= (f)) is estimated with the help of FieldTrip Toolbox [136].
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4.4 Results

In this section, we present the results obtained by the proposed method when

used to model the EEG signals acquired during the above experiments.

4.4.1 EEG Hyperscanning Analysis with Single task Dif-

fusion Adaption

We can confirm that the signals acquired during the experiment present some
cooperation between Subjects 1 and 2 based on the similarity between the two
patterns and the estimated inter-subject functional connectivity, as shown in
Fig. 4.4. However, from this connectivity study, only the normalised intra-brain
connections (a; ) from the second subject (follower individual) are used. In this
work, the inputs (ug,) to the system are the EEG channels (over motor area) of
the second subject and the global target (dy,) are the temporally and spatially
filtered EEGs of the first subject. The filtering process provides a smooth signal
less affected by noise and the neighbouring channels.

Fig. 4.5 shows the GC-based connectivity patterns, obtained following Eq.
(4.6), between the channels of the second subject for the hyperscanning experi-
ment over the alpha and beta frequency bands after the EEG signals are prepro-
cessed.

To assess the efficiency of the proposed method, we calculate the error between
the desired EEG signals (signals from leading subject) and the modelled EEG
signals, which are the signals from the follower subject generated after applying
the proposed connectivity-informed DA model.

The error for each node k to achieve its target dj, may be estimated as:

L

1 2

where, in this scenario, L represents the number of EEG channel samples, dj,
represents the EEG signals from Subject 1, as defined in Section 4.2, and wyxy,
represents the modelled EEG signals, constructed with the set of coefficients

obtained from the proposed method for Subject 2. xj, represents the EEG signal
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Figure 4.4: Inter-subject GC-based connectivity analysis estimated through
I, (f) between the leading and following subjects over the alpha and beta fre-
quency bands after the EEG signals have been preprocessed. (a) the connectivity
matrix for Dataset 1. (b) the connectivity matrix for Dataset 2. The highlighted
green and red squares show the intra-subject connectivity for the follower and
leading subjects respectively, while the remaining quadrants, left-bottom and
right-top, represent the inter-subject connectivity. The numbers in the axis rep-
resents the channels: 1 to 10 from follower and 11 to 20 from leading subject.

of node k at time instant i.

4.4.2 EEG Hyperscanning Analysis with Multitask Diffu-

sion Adaption

As discussed in Section 4.2.2; the desired target of the distributed network is the
neural activity from the brain of the leading subject, which is recorded through
multiple channels. In the scenario presented here, the desired target of each node
k is a corresponding node such as g. Therefore, it can be considered as a DA
multitask scenario, where each node g represents its own cluster. This related
optimisation problem is then solved through multitask DA.

For the multitask approach, the same considerations and steps defined in Sec-
tion 4.2.3 for the single task approach are followed. The single task formulation,
defined as Eq. (2.12), is replaced by the multitask formulation, defined by Eq.

(2.33). In the multitask formulation, the combination weights a;; are obtained
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Figure 4.5: Combination weights after normalisation in the frequency domain
between a set of nodes represented by the EEG channels. (a) the combination
weights from Dataset 1. (b) the combination weights from Dataset 2.

from the connectivity estimation (I,—x(f)) from the following subject. The reg-
ulation factors p;j from Eq. (2.33), that satisfy the conditions in (2.32), are
obtained through the connectivity estimation (I;—(f)) from the leading sub-
ject.

To evaluate the multitask approach against the single task approach, Ej and
the model’s average running time for all trials are obtained and compared for
both approaches. For easier comparison, the proposed and comparison models
were evaluated on an Intel Core i5 CPU.

Fig. 4.6 shows the comparison between connectivity-informed single task,
multitask, and classic single task DA (where the combination weights are similar)
methods in terms of error in achieving the targets. The error is calculated as the
average over the number of trials.

From this figure, the proposed connectivity-informed single task and multitask
DA methods show considerably better performance than the classic approach for
all the channels when applied to the same scenario. This confirms that using the
combination weights obtained from a connectivity analysis showing the realistic
information flow for each channel leads to significantly more accurate results,
especially in complex scenarios such as the scenario from Dataset 1.

When comparing the performance of multitask and single task DA approaches,
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Figure 4.6: Comparison between the average estimation errors of the proposed
connectivity-informed single task, multitask, and classic single task DA algo-
rithms over the trials. (a) The performances of the three models for Dataset 1,
and (b) the performances for Dataset 2.

10 logl0{E})
o e o = =
i M [s:] - ra E-Y

o
(S}

o

it can be appreciated from Fig. 4.6 that the performance of both approaches is
highly similar. Fig. 4.7 shows the running time for the two proposed models
and the classic approach, showcasing the considerably higher computational cost
required by the multitask approach over the single task one. Given the higher

computational cost of the multitask approach, which provides an approximately
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Figure 4.7: Comparison between the running time of the proposed connectivity-
informed single task, multitask and classic single task DA algorithms over a single
trial.

similar performance to the single task approach, it can be concluded that, al-
though both approaches are suitable, the single task approach is preferred in
general due to its lower computational cost. However, the multitask approach
might be preferred when dealing with more complex data or neural motor activ-
ity, when the higher computational cost might be acceptable in exchange for the
better performance of the system.

Given the results presented in this section, it can be appreciated that the
proposed method can lead to better analysis and classification of brain responses
in hyperscanning scenarios compared to the classic DA model. These results

encourage researchers to use BCI hyperscanning studies in the rehabilitation field.

4.5 Conclusions

In this chapter, we proposed a connectivity-informed adaptive cooperative net-

work based on a single task DA that can model the brain responses of a person
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based on the brain activities from a second person.

The multitask DA formulation is also implemented and compared against the
single task DA formulation for the proposed application. Both formulations are
compared in terms of error between the reconstructed and the desired signal as
well as in terms of computational cost. After evaluating both approaches, it is
established that the suitability of the single or multitask approach depends on
the complexity of the system and the involved computational cost.

Two distinct motor task scenarios were employed to evaluate the proposed
method: one involving hand opening and closing (Dataset 1), and the other
involving continuous circular drawing (Dataset 2). While both tasks require bi-
lateral coordination, they differ significantly in motor complexity, temporal struc-
ture, and the nature of the underlying neural coordination.

Task synchronisation in Dataset 1 presented greater challenges due to the
involvement of a higher number of fine motor actions, such as individual finger
movements, which are inherently more variable and demanding in terms of neu-
ral control. In contrast, the circular drawing task in Dataset 2, although still
requiring coordinated motor execution, involved more continuous and gross mo-
tor movements. This reduced the likelihood of temporal mismatches between
the two subjects, leading to a higher degree of movement synchrony and motor
pattern similarity.

Such potential inter-subject desynchronisation, whether due to task complex-
ity, timing delays, or inconsistencies in gesture execution, can negatively affect
the performance of the proposed method. Nevertheless, the results presented in
this chapter demonstrate that the proposed approach effectively models inter-
brain relationships across both task types. This suggests that task complexity,
in terms of motor control precision, duration, and cognitive engagement, can in-
fluence the method’s performance. However, the results also confirm that the
proposed method maintains a reasonable degree of robustness, even in the pres-
ence of moderate task-related variability and desynchronisation between subjects’
motor behaviours.

In addition, both datasets were recorded in simulated uncontrolled environ-
ments that included natural sources of noise, such as changing lighting conditions

and spontaneous ambient disturbances. These factors introduced real-world vari-
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ability into the EEG recordings, manifesting as fluctuations in signal quality,
muscle artifacts, and inconsistencies in subject attention and engagement.

Despite only minimal preprocessing, the proposed method maintained accept-
able performance, demonstrating its resilience to moderate levels of environmental
and physiological noise. Even so, it is important to acknowledge that, like most
EEG-based modelling techniques, the system remains sensitive to certain noise
sources. High levels of muscle contamination, suboptimal electrode impedance, or
severe inter-subject asynchrony could impact connectivity estimation and affect
the signal reconstruction accuracy.

The proposed method suggests new possibilities for the analysis of motor
task related hyperscanning studies and therefore, a further and improved use
of hyperscanning in the rehabilitation scenario. Furthermore, although in this
chapter the proposed method has been implemented in a hyperscanning scenario
with only two subjects, this method can be extended and applied to a higher
number of subjects, where one subject is the leading subject and the remaining
subjects are treated as multiple followers. In that case, the same proposed method
would be applied to each pair of leading-following subjects.

In the next chapter, a new approach for the recognition of prolonged motor
movements, such as the continuous drawing of a circle discussed in this chapter,
as well as fine movements, such as hand opening and closing, is introduced. The
proposed method makes use of the introduced DA strategy to model the relation-
ship between the brain neural activities and the corresponding gesture dynamics.
This method can complement the method proposed in this chapter, contributing
to the development of a more accurate motor-related EEG hyperscanning-based
BCI.
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Chapter 5

Cooperative Classification of
Prolonged Body Movement from
EEG for BCI without Feedback

This chapter is an expansion of our published work in [137].

As discussed in Section 1.2.3, EEG-based BCI systems rely on the identifica-
tion and classification of neural activities identified and extracted from the EEG
signals, such as RP, ERPs, or ERS/ERD. However, these methods have difficulty
in precisely and effectively distinguishing mental motor tasks that have highly
similar neural activity, such as different fine or prolonged movements.

Although research in BCI that focuses on decoding fine motor activity from
brain signals has attracted considerable attention for many years [39, 138, 139],
its accuracy highly deteriorates in uncontrolled environments. Furthermore, to
the best of our knowledge, the decoding or detection of prolonged uninterrupted
motor tasks, also known as prolonged movements, in the absence of any audio,
visual or haptic feedback, has not been explored yet.

The ability to accurately detect and evaluate the continuation or sudden in-
terruption of a motor movement is important. Moreover, identification of the de-
sired movement trajectory, and therefore, a specific prolonged movement, could
be highly beneficial in applications such as rehabilitation of stroke patients or the

development of more precise assistive technology for fully paralysed individuals.
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Figure 5.1: An illustration of a prolonged physical motor movement; in this case
the flexion of an arm, that also contains progressive closing of the hand. The
start and end of the movement are shown respectively in (a) and (e). (b)-(d)
show the sequence of sub-gestures that compose the prolonged movement, where
each image represents a sub-gesture of the sequence.

In this chapter, we present a novel approach for the recognition of prolonged
motor movements from a subject’s EEG using orthogonal functions to model a
sequence of sub-gestures. In this approach, an individual’s EEG signals corre-
sponding to physical (or imagery) continuous movement for different gestures
are divided into segments associated with their related sub-gestures, as shown in
Fig. 5.1. Then, a diffusion adaptation (DA) approach is introduced to model
the interface between the brain neural activity and the corresponding gesture
dynamics. In such a formulation, orthogonal Bessel functions are utilised to rep-
resent different gestures and used as the target for the adaptation algorithm. This
method aims at detecting and evaluating the prolonged motor movements as well
as identifying highly complex sub-gestures.

Some of the most common challenges in the implementation of EEG-based
BCI in neurorehabilitation include high subject dependency and long training
time required by these systems to adjust to each subject. This means that such

systems need to be re-trained every time they are used for a new subject [140].
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Therefore, the proposed method in this chapter aims at achieving a good inter-

subject performance.

5.1 EEG-based Prolonged Movement Decoding

As previously discussed, most BClIs rely on the prediction and classification of the
start of a task, associated with a specific brain response, but not on its prolonged
and continuous execution. Due to the complex and noisy nature of EEG signals,
it can be difficult to differentiate between closely related motor movements. Ex-
amples include sequential finger movements, small movement segments involved
in flexion and extension of an arm, or closing and opening of a hand. Decoding
these details enhances the accuracy in modelling the entire movement. This in-
creases the complexity of decoding a prolonged movement, even when treating it
as a set of consecutive small similar gestures.

There have been incredible advances in the BCI field with excellent results
on the recognition of motor movements. However, most of these studies focus
only on the recognition of the decision to move a specific part of the body, such
as to move a left or right arm, a left or right leg, or tongue, but they do not
consider any specific trajectory of such movements without feedback. Therefore,
they cannot be used to decode and differentiate multiple prolonged movements.
Some successful works have explored the continuous 2D reconstruction of fine
movement kinematics and trajectories from brain activity based on parameters

such as movement speed or direction, as in [141] and [142].

5.2 EEG-based BCI for Fine Movement Classi-

fication

The proposed method in this chapter for the decoding of prolonged movements

relies on treating a prolonged movement as a set of sequential sub-gestures.
Accurate decoding of fine movements, such as finger movements of the same

hand, from EEG is challenging and has been under research for years. The

successful outcome of this research can lead to modelling long and continuous
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movements without any audio or visual feedback.

Traditional classifiers such as support vector machines (SVM), linear dis-
criminant analysis (LDA), or k-nearest neighbours (KNN), have been exten-
sively used for the classification of EEG signals [107]. Even so, only a small
amount of studies have attempted the decoding of complex fine movements, such
as in [38,39,143,144]. These studies relied on the combination of traditional clas-
sifiers with advanced preprocessing and feature extraction techniques, such as
wavelet-CSP [145] or principal component analysis (PCA) [146]. However, these
studies obtained only an average of 40-70% accuracy during the classification of
multiple fingers from the same hand, showcasing the difficulty of the task.

In recent years, thanks to the development and improvement of deep neural
networks (DNNs), more studies have focused on these complex tasks, obtaining

better results compared to using traditional classifiers [39,40, 147].

5.3 Deep Learning Algorithms for Complex EEG

Classification Tasks

In the last few years, deep learning methods have shown outstanding results
in applications such as computer vision [148], speech processing [149], or image
classification [150], motivating their applications for the classification of more
complex MI EEG signals. These methods are able to learn high-level and latent
complex features directly from the EEG data [151]. However, the main disad-
vantage of these models, and the reason why DNNs algorithms are still not being
used extensively in EEG classification tasks, is due to lack of sufficient data.
Nevertheless, the use of DNNs for recognition of EEG motor-related tasks
has become prevalent in the last decade. Given their ability to recognise motor
movement patterns directly from the raw EEG, these methods require minimal
preprocessing steps, which allows for a more realistic online implementation of
the classification systems. Furthermore, the combination of DNNs and more ad-
vanced preprocessing techniques for feature extraction preceding the deep learning
model, has proven to improve the classification results while introducing minimal

acceptable delays to the online BCI implementation and reducing the amount of
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data necessary to train the DNNs [152-154].

Deep learning techniques have shown promising results in the classification
of more complex EEG motor movements, such as fine hand [147] and finger
movements [40]. Even so, the performance of these models for fine movements
still require improvement. So far, DNN methods implemented for multi-task
fine movements classification still require access to a high volume of data and
significant computational resources, hindering their implementation in neurore-
habilitation clinics, where access to these resources and large amounts of data
may not always be possible.

Although many types of DNNs have been used for EEG classification, for EEG
motor movements, and more specifically, for fine movements, two main types of
DNNs have proved to provide the best results: convolutional neural networks
(CNNs) and long short-term memory (LSTM) networks [30,31, 151].

LSTMs have been proven to be highly successful in processing and finding pat-
terns in time series data due to their ability to capture temporal dependencies and
long-range patterns in sequential data. It has also been demonstrated that they
can provide a considerably better performance than traditional machine learning
algorithms and CNNs [155-157]. Given their ability to learn long-term sequential
patterns, they are considered to be highly suitable for the processing and clas-
sification of continuous time series data, such as the classification of continuous
prolonged movements, as the ones presented in this chapter. However, they can
only learn patterns sequentially, which limits their ability to process data in par-
allel in comparison with other DNNs. They also require larger datasets compared
to other methods to avoid overfitting. This makes these systems computational
intensive compared to other DNNs, limiting its feasibility to be implemented in
real-world scenarios. Furthermore, due to the high inter-subject variability of
EEGs and the model’s ability to learn subject-specific temporal features, these
models usually have a low robustness to subject-variability compared to tradi-
tional methods and CNNs, meaning that they require model adaptation and
fine-tuning when used for a different subject.

In contrast, CNNs can be used to learn spatial features directly from raw EEG
signals [158,159]. They can also perform feature extraction and classification si-

multaneously, allowing the system to provide acceptable results without the need
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for extensive preprocessing steps, and sometimes, even outperform LSTM mod-
els [151,160,161]. Furthermore, their ability to learn spatial features allow them
to process the data in parallel across time and space, reducing their dependency
on large datasets. This means that they can make better use of the available
resources, leading to lower computational requirements and faster training times,
making them more practical for real-time and real-world applications.

Therefore, although LSTMs might provide better final results for EEG clas-
sification tasks, especially in the classification of prolonged movements and fine
movements, CNNs are still preferred. This is due to their lower computational
cost, and smaller dependency on large datasets, resulting in higher feasibility to
be implemented in real-world scenarios. Even so, although smaller than LSTMs,
CNNs still require access to a considerably large amount of data and resources
for its correct performance.

Given that, these methods alone are still unable to obtain high performance
while maintaining a low computational cost. Hence, the accurate classification
of fine movements using low computational cost systems still remains a research

challenge for BCI motor rehabilitation systems.

5.4 Problem Formulation for Diffusion Adap-
tion with Orthogonal Target

Through the use of cooperative learning and DNNs, the proposed method models
the interface between each sub-gesture and the related neural activity. The ag-
gregate of these sub-gestures provides sufficient and detailed information for the
classification of the entire movement.

In this section, we propose a novel approach for the detection and classification
of continuous movement, referred to as gesture, from EEG signals by assigning
orthogonal basis functions for representing different sub-gestures. This is mainly
to translate each 3-D gesture movement profile to a 1-D signal from an orthogonal
set, as shown in Fig. 5.2. This method makes use of a cooperative learning
technique for the development of a cooperative regressor which, together with a

DNN, can identify each gesture. Various order Bessel functions [162] are used
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Figure 5.2: Tllustration of the translation of a 3D prolonged movement (gesture),
such as flexion of an arm as shown in Fig. 5.1, to a 1D signal profile composed of
a sequence of Bessel functions representing various sub-gestures. (a) shows the
EEG signals that are recorded for the full gesture, and how they are divided so
different segments of the signal represent various sub-gestures that compose the
full gesture. (b) shows a visual representation of the sequence of sub-gestures that
compose the gesture, where each sub-gesture corresponds to an EEG segment of
the initial EEG prolonged movement. The Bessel function assignment to the
sub-gestures is depicted in (c) and a dictionary of Bessel functions in (d).

for this purpose and assigned to each sub-gesture. However, the size and number
of orthogonal Bessel functions is limited, so similar sub-gestures are allocated
similar functions. The number of sub-gestures is decided based on the duration
and characteristics of the performed motor task.

In the proposed approach, the single task DA strategy, defined in Eq. (2.12),
is employed for the reconstruction of each sub-gesture that forms the sequence of
sub-gestures (or full gesture). In the approach proposed in this chapter, for each

sub-gesture, dj,; represents the assigned order Bessel function.

5.4.1 Bessel Functions as Orthogonal Targets

Bessel functions [162] are the solutions to the Bessel’s differential equation, de-

fined as:

2y d
2 i (@ - )y =0 (5.1)
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They have been used in multiple applications, such as for solving physics or
engineering problems [163]. Some techniques based on Bessel functions, such as
the Fourier-Bessel expansion [164], have also been extensively used as feature
extraction techniques for the modelling and classification of brain responses [165,
166]. However, they have never been used for translating 3-D profiles to 1-D
orthogonal vectors which can be used as distinct targets for adaptation.

Although there are different types of Bessel functions, the most common types
are the Bessel functions of the first and second kinds. In this application, we make
use of the Bessel functions of the first kind, defined by:

()
. i\ — 4
Jo(i) = (5) ;% n!l'(v +n+1) (5:2)
where I' represents the Gamma function, n is a non-negative integer that in-
dexes the terms in the series representation, and v is a constant parameter that
determines the order of the Bessel function.

Other orthogonal time series, such as Fourier functions [167], could also be
used. However, the Bessel functions of first kind are selected due to their analyt-
ical simplicity. These functions manifest more variations in shape and amplitude
compared to sinusoids, and have the ability to accommodate variable boundary

conditions.

5.4.2 Diffusion Adaptation with Orthogonal Target for
EEG-based BCI

For the proposed method, as in Chapter 4, consider a set of EEG electrodes that
form a cooperative network. Each electrode k£ forms a neighbourhood N with
all the electrodes. Each electrode k has access to time realisations {dj ;, uy;} of
the electrodes from its neighbourhood, as shown in Fig. 5.3. For each electrode

or channel k, we obtain a 1 x M regression vector in the form:

where M is a non-negative scalar equal to the number of taps in the cooperative

89



5. Cooperative Classification of Prolonged Body Movement from
EEG for BCI without Feedback

4, (7)

Figure 5.3: An illustration of the cooperation in a DA setup. The electrodes
displayed in this figure follow the 10-20 international electrode placement system
for 32 electrodes. The nodes from the neighbourhood cooperate between each
other while following the target signal d]. Nj represents the neighbourhood of
node k when k = C,. J,(i) is the Bessel function of the first kind of order v
associated with the target signal d.

adaptive filter or the corresponding signal segment duration.

Prior to the application of DA, we need to allocate a limited set of Bessel
functions to the existing sub-gestures. Each sub-gesture is represented by a dif-
ferent order Bessel basis function. This basis function is then used as the common
target dj; of the DA strategy for all the nodes, which results in that sub-gesture

G, such as:

&= J,(i), veD (5.4)

where D is the dictionary of selected Bessel functions, and 7 represents the num-
ber of sub-gestures. In the presence of multiple gestures, each containing a num-
ber of sub-gestures, each sub-gesture is assigned a Bessel basis function, with

similar Bessel functions allocated to similar sub-gestures. Therefore, there is a
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", Extension /
N .
\ Flexion
|
Figure 5.4: Representation of a continuous arm motor execution.
Q ={Gi,Gs,---,G,}, where @) represents the arm extension or arm flex-

ion gesture, which is composed of n sub-gestures.

ratio between 7 and v, and generally, n > v. This implies that the larger the
dictionary of Bessel functions, the better performance of the system is expected

and vice versa. Given all this, Eq. (2.12) can be re-defined as:

Vi = Wri1+ /Lkuf,i [d} — wpwp ;1] (5.5)

Wy = Z ar (5.6)

lEN,,
Figs. 5.2 and 5.4 demonstrate a clear view of what the considered sub-gestures
of a motor executed movement are.

Finally, for a more realistic approach, the combination weights a;;, as in
Chapter 4, are estimated through estimation of the brain connectivity. For this
approach, it was decided to employ the time-domain MVAR GC [168] between the
EEG channels as the brain connectivity estimation due to the higher dependency
of the proposed method on small changes on the connectivity measures over time.
The time-domain MVAR GC is defined as [133]:

D

TET]

GC, Ly, =1
S SR

(5.7)
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where X,,,, = cov(eg;) and X = cov(e}, ;) are the residuals covariance ma-
trices of the MVAR model as an approximation to GC. e;; and €} ; are defined
in Chapter 4. As in Chapter 4, the MVAR model is estimated from the EEG

signals.

5.5 Application of Diffusion Adaptation with Or-
thogonal Targets for EEG prolonged move-

ments

The proposed DA with orthogonal target method models the interface between
the brain and each sub-gesture. The estimated output signals are then given to
a DNN classifier.

Before applying the proposed method, the data are preprocessed to mitigate
the effects of EEG artifacts. Although nowadays several artifact detection and
rejection techniques have been successfully developed [104,134], EEG artifact
removal is still considered a difficult task as it depends on the BCI tasks, spurious
brain functions, and the nature of the recorded data. For this reason, and to
reduce the preprocessing time and complexity of the system, only minimal artifact
removal and preprocessing steps are applied to the data.

For validation of the method, two EEG motor movement datasets are used.
For the first dataset (Dataset 1) we use the data from experiments 1 and 2
described in Section 3.3.2. In these experiments, the subjects were asked to
perform an extension and flexion of the left or right arm and the simultaneous
opening and closing of the respective hand. For simplicity, only the left arm
movement was considered in this application. Although the experiments contain
hyperscanning data, we separated the EEG data from each subject out of each
pair and analysed each individual’s EEG independently.

The second dataset (Dataset 2) was obtained from a public dataset available
at [169]. It contains EEG data from 52 subjects performing imagery and physical
motor movements. For simplicity and consistency with the previous dataset, only
the physical left hand movements from the first sixteen subjects were considered

in this application. This allows us to evaluate the proposed method on a consid-
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erably small dataset, and compare the method’s performance to those of other
methods that have previously used the full size dataset. The movement recorded
in this dataset involves continuous movement of all the fingers, starting from the
index and touching each finger to their thumb within 3 seconds. The subjects
were given time to practice and get used to the task before the recording sessions.
The data from this dataset were recorded at 512 Hz sampling frequency using 64
channels per subject.

We selected these two datasets since, compared to other publicly available
motor-related EEG datasets, they contain recordings of complex fine movements.
At the same time, we validate the proposed method on two datasets containing
different motor tasks and recorded under completely different settings. This is to
prove the ability of the proposed method in providing good performance under

different settings.

5.5.1 Data Preprocessing

For both datasets, the motor movement segments x; are obtained for each sub-
ject in the form of a Ny x L, x S matrix, where N represents the number of
channels, L, represents the segment length, and S represents the number of seg-
ments. A bandpass filter of 830 Hz is applied to the data to reduce possible
power line noise and retain the frequency bands of interest associated with motor
movements (alpha and beta).

Then, the two datasets are analysed independently and the bad channels are
removed. In Dataset 1, channel 27 of odd subjects and 32 of even subjects present
a low electrode-skin impedance value across most of the recording sessions, so they
are considered bad channels (both channels are distant from the motor area so
they do not affect the analysis). For consistency across all the subjects of Dataset
1 and simplicity of the system, both channels are removed from the EEGs of all
the subjects. Dataset 2, on the other hand, does not contain any bad channels.

After the signals are filtered, the baseline is also removed from the signals
by subtracting the mean from the filtered signal. The MVAR model is obtained
from the EEG data and the GC matrix is estimated for each subject and motor

movement. If the signal length of each sub-gesture is enough to obtain a stable
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MVAR model, for each sub-gesture, we potentially have different weights. The
MVGC MATLAB toolbox [133] is used to calculate the MVAR model and GC

values. Finally, the preprocessed signals are normalised.

5.5.2 Feature Augmentation

Once all the segments are preprocessed, we decide on the desired number of sub-
gestures and the dictionary of Bessel functions. The window length for each

sub-gesture is obtained as:

Ly == (5.8)

For each sliding window a:Zz with no overlap over each motor movement seg-
ment, we apply Eq. (5.5)-(5.6) to estimate the optimum wy;. Then, we obtain

the estimated sub-gesture signal segments as:

n

Yii = wzzwlm (5.9)

)

These estimated segments obtained using DA, which contain differentiable
signals for each sub-gesture, are used to estimate the DA filtered output matrix
(YQ) that represents each gesture. The output signals are given as the input to
the chosen classifier. Algorithm 2 shows the pseudocode to obtain the estimated

signal segments.

5.5.3 Classification

Once the estimated signals are obtained, a classifier is selected and trained to
recognise the sequences of sub-gestures.

Given the discussion presented in Section 5.3, it was decided to implement a
CNN as the classifier for the proposed system. The implemented CNN architec-
ture follows the recommendations reviewed in [30] for implementation of a shallow
CNN for EEG pattern recognition. This CNN consists of a 2D input layer, 2 hid-
den layers (two 2D convolutional layers), and a fully connected output layer. A
rectified linear unit (ReLU) is used as the activation function for the two 2D con-

volutional layers. Each 2D convolutional layer has 8 filters of size 4x4. Finally,
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Algorithm 2 DA with Orthogonal Targets

Input: EEG Segment (EEG: Nj x L)
Prerequisites: Window Length L, Initial segment signal point i, d, ay
while L,, +i — 1 < Segment Length (Ls) do
x), = FEEG(i i+ L, —1)
while i + M < L,, do
for k=1to N, do
Yy, = Wi 1+ Mkuii[d? — U W i—1]
Wy = ZleNk kP,
end for
end while
yZ,i = fBZ@wm
10:  i=1+ L,
11: end while
Output: estimated sub-gesture signal (y]. ;)

7

a Softmax activation function is used in the output layer for decision making.
The CNN is trained using a maximum of 30 epochs and a minimum batch size
of 8, with cross-entropy as the loss function and an Adam optimiser. The initial
learning rate is set to 0.001. The hyperparameters were selected following hyper-
tuning and based on the recommendations given in [30], which reviews the most
common CNNs and hyperparameters used for EEG classification that leads to
the best results.

The same CNN was used for both datasets, with 90% of the full dataset
used for training and validation, and the remaining for blind testing of the
trained model. During training, we followed a leave-one-subject-out k-fold cross-
validation for the split of the training and validation data, and used the model of
the fold with the best validation accuracy as the final trained model. To verify
the robustness of the model against subject-dependency, we followed an inter-
subject evaluation approach for the models, where the split between the training,
validation, and testing data sets were done per subject, and not per observation.
Therefore, the data from the same subject is always given to only one of the
sets, either training, validation, or testing. We used this approach to evaluate
the subject-independency of the system. This way, the system is tested, during

validation and blind testing, against the data from subjects not used for training.
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Figure 5.5: Schematic diagram of the proposed CNN. The proposed CNN is a
shallow CNN which consists of an input layer, 2 hidden layers (two 2D convolu-
tional layers) and a fully connected output layer. Multichannel EEG is applied
to the input as 2D data. Both 2D convolutional layers are composed of 8 filters
of 4x4 size. ReLU and Softmax activation functions are used respectively for
the convolutional and output layers. The proposed CNN is trained using a max-
imum of 30 epochs and a minimum batch size of 8, with an initial learning rate
of 0.001. It is trained using an Adam optimiser together with cross-entropy as
the loss function.

The detailed pipeline of the implemented shallow CNN is shown in Fig. 5.5.
Fig. 5.6 summarises the steps for classification of the DA estimated sequence
of sub-gestures. The EEG segments for each sub-gesture are obtained as depicted
in Fig. 5.2. The proposed DA with orthogonal targets is abbreviated as DAOT.
The classifier is trained using the DA filtered signals thanks to the dictionary of
Bessel functions. In the testing stage, the filter output is classified as one of the
Bessel functions in the dictionary, which corresponds to one of the sub-gestures.
It is assumed that the size of Bessel functions dictionary is always less or equal
to the number of sub-gestures. In the next section, the effect of dictionary size is

evaluated.

5.6 Results

To validate the performance improvement of the proposed method against state-
of-the-art methods, it is compared with EEGNet [170], a well established CNN
model that has been successfully used as a benchmark model for motor-related

EEG classification. We also compare the proposed method against another highly
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Figure 5.6: A step-by-step illustration of the proposed method. The number
of tasks to classify depends on the number of sequence of sub-gestures. The
proposed DA with orthogonal targets is abbreviated as DAOT.

successful and more recently developed CNN model, called SCCNet [171], which
has shown promising inter-subject results.

Both competing methods, EEGNet and SCCNet, use the EEG signals directly
after applying the preprocessing steps defined in Section 5.5.1 and described in
[151] as the input. For consistency, the raw signals are segmented for the proposed
method, and the same filtering and normalisation techniques, which enhance the
quality of the data, are applied to the raw signals before applying each method.
For further consistency, the data are split in the same way for all the methods, and
the data from the same subjects are used for the same training, validation, and
testing sets of each system. For easier comparison, we calculated the accuracy,
which measures the proportion of correct predictions of the model, as:

Acc = TP IN (5.10)
TP+TN+ FP+ FN
where TP represents the true positives, T'N the true negatives, F'P the false

positives, and F'N the false negatives, and the sum of all of them represents the
total number of observations. We also obtained the F-score, which is a metric
that combines the precision and the recall. It reflects the model effectiveness in

identifying positive cases and avoiding false positives. F-score is estimated as:

precision x recall

F-score = 2 x — (5.11)
precision + recall
where the precision metric is obtained as:
TP
ision = ————— 5.12
precision = -5 (5.12)
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and the recall as:

recall = _rr (5.13)
TP+ FN

We also obtained the average area under the curve (AUC) score for each fold
to estimate the model’s generalisability and robustness. This is the area under
the Receiver Operating Characteristic (ROC) curve, across all the classes for each
fold. Finally, we estimated the pairwise p-value between the proposed method
(under the ideal, n < v, and non-ideal, n > v, situations) and each comparison
method for both datasets. Although multiple statistical tests could be used, we
chose to perform a Quade test [172], followed by the Nemenyi test [173], which
are non-parametric statistical tests suitable for the comparison of multiple mod-
els across repeated samples. Furthermore, the Quade test incorporates relative
rankings within each fold, making it an ideal test for the leave-one-subject-out
cross-validation approach. Compared to other non-parametric statistical tests,
this test also places weights on different folds, to consider the complexity of dif-
ferent folds. We make use of the validation accuracy during each fold of the leave-
one-subject-out cross-validation to estimate the Quade test statistics. Then, if
the statistical test is significant, we perform the Nemenyi test, which is a com-
monly used post-hoc statistical test, across pairwise models to obtain the p-value
for each method, with the significance level as 0.05.

As previously mentioned, the size of Bessel functions dictionary affects the
performance. It is expected that by decreasing the number of orthogonal targets
the overall performance drops and vice versa. This has been validated by progres-
sively increasing the number of Bessel functions from one to the total number of
sub-gestures from all considered gestures for Dataset 1 and the results are shown
in Fig. 5.7. When the size of Bessel functions dictionary is smaller than the
total number of sub-gestures, similar Bessel basis functions are allocated to sim-
ilar sub-gestures. Two symbolic hypothetical movement (gesture) trajectories,
each with four sub-gestures, are illustrated in Fig. 5.8. From this figure, it can
be appreciated that the correct allocation of the same Bessel basis functions to
similar sub-gestures can influence the performance of the system and allow for

the correct recognition of the two sequences of sub-gestures. On the other hand,
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Figure 5.7: Average validation accuracy when classifying a number of sequences
of sub-gestures of Dataset 1 for the proposed method using different dictionary
sizes of Bessel functions. A low number of gestures represents two gestures while
a medium number of gestures represents four gestures. Two sub-gestures per
gesture are considered a low number of sub-gestures, while four sub-gestures per
gesture are considered a medium number of sub-gestures. What is considered
a low or high number of gestures and sub-gestures per gesture depends on the
characteristics of the recorded gestures to be classified as well as their nature,
and the dictionary size that is available.

it can be appreciated in Fig. 5.7 that the higher the number of sub-gestures,
the more orthogonal functions are necessary to obtain a good performance. The
overall number of gestures (movements) that can be classified is also radically
affected by the number of selected basis functions (dictionary size).

In comparison to Fig. 5.7, for Dataset 1, EEGNet obtained an average vali-
dation accuracy of 37.50% for the recognition of four gestures with a low number
of sub-gestures, and 50.00% for the recognition of two gestures with a medium
number of sub-gestures, while SCCNet obtained 26.79% and 64.29%, respectively.

The proposed method can also be used to accurately recognise highly complex
sub-gestures, such as finger movements. This enables the proposed CNN model to
accurately classify the sub-gestures, obtaining an inter-subject average validation
accuracy of 69.59% for Dataset 1 and 87.68% for Dataset 2, under a non-ideal
situation (v = 2/3n) for the classification of ten sub-gestures for Dataset 1 (five
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Figure 5.8: Hypothetical 2D signals trajectories of two movements (gestures),
each divided into four sub-gestures, with some sub-gestures in common. This
represents a non-ideal situation where the number of available Bessel functions
is smaller than the total number of sub-gestures (n > /), so similar sub-gestures
are assigned the same Bessel functions. In this example, two different gestures,
each composed of four sub-gestures, which yields a total of 8 sub-gestures, is to
be represented with a Bessel functions Dictionary (D) of size 4 (v = 4) for (a),
and size 2 (v = 2) for (b).

Movement trajectory
(unit of distance)

A 4

sub-gestures obtained from the extension of an arm and the other five sub-gestures
from the flexion of the same arm) and 4 sub-gestures for Dataset 2 (each sub-
gesture representing the movement of one finger: index, middle, ring and little).
The recognition of each finger movement as a sub-gesture of sequential finger
movements allows comparing the proposed method’s performance against the
performance of other methods for the recognition of the same fine movements.
Under an ideal situation (v = 1), we obtained 99.99% average accuracy for
Dataset 1 and 100% for Dataset 2. As expected, when each sub-gesture is filtered
using a different orthogonal function as the DA target, the classification accuracy

of these sub-gestures is close to 100%. This is due to denoising by adaptive fil-

100



5. Cooperative Classification of Prolonged Body Movement from
EEG for BCI without Feedback

Table 5.1: Model performance of the proposed and competing methods for sub-
gestures classification. The high accuracy of the proposed method is as expected
due to denoising by adaptive filtering and the Bessel basis functions’ orthogo-
nality. The low performance of the competing methods is also expected due to
the strong EEG noise, variability in movement, and small size datasets. The
reported metrics are the inter-subject metrics of the models, obtained using data
from different subjects for the training, validation, and testing sets. For valida-
tion, we performed leave-one-subject-out cross-validation. The best F-score is
the metric from the fold with the best validation accuracy. The reported p-value
is obtained for each pairwise (proposed method vs. compared method) for each
dataset, where we consider the significance level p-value< 0.05.

Dataset 1 Dataset 2

DAOT,-, DAOT,—y/3, EEGNet SCCNet  DAOT,—, DAOT,—y/3, EEGNet SCCNet

Best Validation Acc 1.00 0.83 0.50 0.40 1.00 1.00 0.75 0.75
Best F-score 1.00 0.78 0.41 0.30 1.00 1.00 0.67 0.67
Avg. Validation Acc 0.99 4 0.004 0.70 £ 0.094 0.17 £ 0.144 0.11 2 0.122 1.00 % 0.00 0.88 £ 0.150 0.48 &= 0.199 0.68 = 0.113
Avg. Validation F-score 0.99 £ 0.004 0.65 % 0.094 0.12 £ 0.12 0.06 = 0.090 1.00 % 0.00 0.85 £ 0.178 0.40 = 0.200 0.58 = 0.130
Avg. Validation AUC score 1.00 4+ 0.00 0.94 % 0.041 0.57 = 0.100 0.52 % 0.080 1.00 = 0.00 0.97 & 0.044 0.74 & 0.180 0.79 = 0.090
Testing Acc 0.99 0.72 0.15 0.10 1.00 0.80 0.25 0.50
Testing F-score 0.99 0.72 0.15 0.10 1.00 0.76 0.12 0.53

pvalue - 0.170052  0.000008  3.64e — 07 - 0459525  0.000003  0.001086
(DAOT,—, vs. Competing Method)

p-value 0.170052 - 0.027748  0.004232  0.459525 - 0.001903  0.105335

(DAOT,—y/3, vs. Competing Method)

tering, making the outputs more orthogonal and separable. The lower accuracy
is expected for Dataset 1. This is because the sub-gestures are more similar and
there are higher number of classes to be classified compared to Dataset 2. On the
other hand, with EEGNet we obtained an average validation accuracy of 17.14%
for Dataset 1 and 48.21% for Dataset 2, and 10.71% and 67.86% respectively for
SCCNet. Although, as expected, SCCNet shows a better inter-subject classifi-
cation performance than EEGNet, both competing methods still show a worse
performance than the proposed method. The low accuracy obtained for both
competing methods can be associated with the strong EEG noise, the variability
in movement, and the small dataset size, compared to the successful performance
of EEGNet in [170] and [174], and SCCNet in [171], where both models were
trained with considerably larger datasets.

Furthermore, for Dataset 2, if we decrease the number of subjects from 16
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Figure 5.9: Confusion matrix obtained for the testing set using the DAOT method
under non-ideal conditions (v = 2/3n) for both datasets, where each class of the
confusion matrix represents a sub-gesture. The trained model with the best
validation accuracy and corresponding F-score was selected as the final model.
(a) shows the confusion matrix of the 10 sub-gestures obtained for Dataset 1,
while (b) shows the confusion matrix of the 4 sub-gestures obtained for Dataset
2.

to 8 for training the competing models, we obtained 32.14% average validation
accuracy for EEGNet, and 50.00% for SCCNet, which confirms that the meth-
ods obtain a better performance for a bigger dataset, and also obtain a worse
performance if the dataset size is reduced.

The confusion matrix in Fig. 5.9, which shows the accuracy of the proposed
method for the recognition of sub-gestures during testing, further verifies the
good performance of the proposed method. Evidently, the proposed method,
even under non-ideal conditions (e.g., v = 2/3n), can classify accurately the
majority of sub-gestures. As expected, the proposed method can classify with
no error all the sub-gestures that were assigned a unique Bessel basis function.
The classification error increases when similar Bessel functions are allocated to
relatively (not exactly) similar sub-gestures.

The proposed and the competing methods were trained on an Intel i9-13900F
CPU. The MATLAB Parallel Computing Toolbox was used to improve the per-
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formance of all the trained models through optimisation of the available resources,
using 8 cores. To compare the computational cost and complexity between the
proposed and competing methods, we obtained the training run time of all these
methods for the two datasets. Since the proposed method has a heavier prepro-
cessing stage but a smaller CNN the training run time includes the preprocessing
time. Given all that, the proposed method demonstrated a 32.74% improvement
in the training speed over EEGNet for Dataset 1, reducing the training time
from 3.74 to 2 minutes. For Dataset 2, it obtained a 25.54% improvement. When
compared against SCCNet, the proposed method obtained a 49.43% and 77.99%
improvement for Dataset 1 and 2 respectively. Although SCCNet obtains better
performance results than EEGNet, SCCNet is more computationally intensive.
Dataset 2 contains more data than Dataset 1, which increases the training time
for the models, and also explains the higher performance of all the models for this
dataset. Overall, these results prove the lower computational cost and training

time of the proposed method compared to latest state-of-the-art methods.

5.6.1 Ablation Study: Proposed Model vs Variations

To better understand the relevance of the different components involved in the
proposed method and how each component contributes to the overall perfor-
mance, we conducted an ablation study where we evaluated four variations of
the proposed method. Each variation was obtained by removing one of the main
features. For a better evaluation, we tested the ablated methods on Dataset 1,
the more complex and smaller dataset, following the leave-one-subject-out cross-
validation described in Section 5.5.3, and obtained the same metrics described
in Section 5.6. To evaluate the contribution of the proposed filtering method,
we also estimated the mean squared error (MSE) and SNR between the original
signal that represents a sub-gesture and its filtered version. MSE and SNR are
estimated only for the ablated models where the adaptive filtering is performed.
Therefore, these values are not estimated for the ablated model that does not
perform DA. This is because in this case, both pre- and post-filtered signals are
the same. In Table 5.2 we reported the average MSE and SNR over the first

sub-gesture for all the subjects. MSE is estimated as:
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Table 5.2: Ablation study results: the p-value is obtained between the full method
and each ablated method through the Quade test followed up by the post-hoc
Nemenyi test.

Experiment No Diffusion = No GC Reduced CNN Reduced CNN
perme Adaptation (a;x; = 1/Ny) (only 1 Conv2D layer) (num. Filters=2)

Best Validation Acc 0.30 0.90 0.91 0.94

Best F-score 0.27 0.87 0.90 0.94
Avg. Validation Acc 0.14+0.10 0.71 +£0.12 0.71 +£0.10 0.71 +0.16
Avg. F-score 0.10 £0.08 0.64 £0.12 0.67 £0.11 0.68 £0.16

Dataset 1

Avg. AUC Score 0.55£0.08 0.93+£0.05 0.93 £0.05 0.92 +0.07
MSE — 0.21 £ 0.02 0.20 = 0.03 0.20 = 0.03
SNR — -0.23 £+ 0.06 -0.30 £ 0.06 -0.30 £ 0.06
p-value 0.002 0.994 0.994 0.919

Ls—1
1 S
MSE = — X — X})? 5.14
7, D Xi-X) (5.14)
where X; represents the signal segment of length L, at time instant i, and X/,

represents the corresponding filtered signal. SNR is estimated as:

Ls—1
SNR = 10 * log;,( L;’:O Xi —) (5.15)
Zi:so (Xz - Xi>2

Through the ablation study, we are particularly interested in evaluating the
impact of the proposed adaptive filtering technique, and how the use of GC for
estimating the combination weights (a;x = GC,,—.,) affects the final system
as compared to applying the same combination weights to all the nodes (a;; =
1/Ny). We are also interested in confirming if a smaller CNN could be used.

As shown in Table 5.2, the full method outperformed the majority of ablated
models for every performance metric. The MSE and SNR values show the effi-
ciency of the proposed filtering method and that the use of GC as the combination
weights helps retain more information from the original signal. This increases the
robustness of the system against individual subjects” EEG variations, as shown

by the higher standard deviation of the average accuracy, F-score and AUC. The
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results obtained from the ablated model without DA testifies the importance and
relevance of the proposed filtering technique. The performance of the ablated
model with no DA also shows similar performance to the two competing meth-
ods, EEGNet and SCCNet, and therefore worse performance than the proposed
full system. This shows that a shallow CNN with no special preprocessing steps
is not enough for the highly complex task of EEG fine movement recognition.
Furthermore, based on the results obtained for the reduced CNN ablated
methods, we can conclude that the originally proposed CNN, depicted in Fig. 5.5,
provides the best performance with the smallest possible architecture. Although
the ablated models with only one 2D convolutional layer, or reduced number of
filters, obtain very similar results, the standard deviations of the average metrics
for this model are higher than for the full model, showcasing how the use of two
convolutional layers provides a more consistent performance across all subjects.

This leads to a robust system against inter-subject variations.

5.6.2 Discussions

As mentioned in previous sections, during the recognition of a prolonged move-
ment, denoted by a sequence of sub-gestures, the number of gestures to be recog-
nised and the number of sub-gestures that compose each gesture, can have an
impact on the method’s performance considering the non-ideal scenario where
we only have access to a limited-size Bessel functions Dictionary. In the specific
scenario of Fig. 5.7, due to the limited recording time for each available gesture
from Dataset 1, empirically, four sub-gestures per gesture have been selected.
Gestures with longer duration usually require more sub-gestures.

The two state-of-the-art methods, EEGNet and SCCNet, were selected for
comparison due to their successful performance in the recognition of EEG motor-
related tasks. EEGNet has been used successfully for the classification of fine
movements similar to Dataset 2 as in [175] and [174], making it an ideal method
for comparison. On the other hand, although SCCNet has not been implemented
for classification of fine hand movements, this method has been used for classi-
fication of more common motor task scenarios (i.e., left hand, right hand, both

feet, and tongue motions), and shown good results in inter-subject classification
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settings, showcasing the model’s ability to generalise and its robustness to EEG
subject variations.

Despite the fact that the proposed method outperforms the two competing
methods, similar to other methods, it performs worse for Dataset 1 compared to
Dataset 2. This is expected due to the more complex data of this dataset. Still,
the confusion matrix in Fig. 5.9 shows that the proposed method can recognise
highly similar sub-gestures with an acceptable accuracy even after filtering. This
shows that the filtered segments still retain their underlying unique information.

Table 5.1 verifies the above claims. The estimated p-values for the competing
methods further validate the statistical superiority of the proposed method. On
the other hand, the p-value of the proposed method under ideal and non-ideal
situations evidences that, by increasing the dictionary size above a certain level
for each dataset, the methods’ performance metrics no longer show any statistical
significant improvement.

It is also worth mentioning that EEGNet as well as other DNNs have already
been used for the classification of fine hand movements, such as in [174], where
EEGNet obtained an average intra-subject accuracy of 62.30% with a dataset
size bigger than the datasets used in this chapter. In [152], the authors proposed
an autonomous deep learning model instead, obtaining a subject-independent,
commonly referred to as inter-subject, average accuracy of 78%, showcasing a
similar performance to the method proposed in this chapter. Even so, their
proposed deep learning model is larger and more complex, which increases the
computational complexity of the method, and usually requires larger datasets.

These results further validate the advantages of the proposed method, which
can obtain a higher performance even with small datasets. This reduces the ne-
cessity for big datasets and the training time for a good performance. However,
although increasing the size of the datasets enhances the performance for the other
competing DNN methods, obtaining a more extensive dataset can be expensive,
difficult, and may not always be possible. Furthermore, increasing the size of
the training dataset also increases the computational cost and training time of
the models, reducing their feasibility for real-world implementation. This might
require adjustments to the changes to the motor tasks that the model should

recognise. Therefore, the low computational cost of the proposed method in com-
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parison to the two competing methods, as stated in the previous section of this
chapter, highlights the method’s suitability for rapid and resource-constrained re-
training. This shows that the proposed method can be implemented and trained
with standard hardware without the need for extensive and expensive compu-
tational resources, making the proposed method more suitable for cost-effective
applications, including those for neurorehabilitation.

Although the inter-subject variability still remains a major challenge in MI
classification, most current studies still focus on subject-dependent MI. This
makes such systems difficult to implement in real-world scenarios where the same
system may need to be used by different users without having time for recali-
brating the system [151]. The proposed method has high performance even when
trained and tested with small inter-subject data, showing the high robustness to
inter-subject variability of the proposed system.

Even so, regardless of its considerably good performance, certain aspects of
the proposed system could be further improved. In the current system, under
non-ideal conditions, similar Bessel basis functions are allocated to similar sub-
gestures. The number of Bessel functions (dictionary size) is directly related
to the number of gestures and sub-gestures, and complexity of the movement
trajectories, ranging from less than the number of gestures to as high as the total
number of sub-gestures, depending on the similarity between the movements and
the desired accuracy. To enhance the system, and improve its feasibility for real
real-world settings, a dictionary learning algorithm can be developed and used to
optimise the Bessel basis functions allocation process. In addition, the evaluation
of the proposed system with real data from subjects with neurological disorders

or under neurorehabilitation can verify its practical benefits.

5.7 Conclusions

In this chapter, we have established a new research direction in BCI where pro-
longation of physical movement is linked to the communications between different
brain zones within the motor cortex captured by scalp EEG. This interface has
been modelled as a cooperative network optimised by DA. In addition, incorpo-

rating the combination weights into the cooperative adaptive filtering algorithm
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boosts its accuracy.

Each EEG segment is decoded to a segment of hand movement called a sub-
gesture. The combination weights of the cooperative model are estimated through
GC estimation. The sub-gestures are then sequenced for recognition and identi-
fication of the prolonged movement. This, together with using a shallow CNN,
forms a regressor that can be used to classify the entire movement. The results
verify the high accuracy in recognition of fine movements, especially when the
movements are similar, meaning that their EEG signatures are highly similar.
Finger movement is an example of such fine physical activities. Allocation of or-
thogonal Bessel functions to the set of gestures further enhances the classification
accuracy.

The proposed method outperforms other state-of-the-art methods in the case
of inter-subject classification providing a high inter-subject performance with
a small training dataset and low computational cost. This allows the system to
adapt and re-train for different scenarios that might require different motor tasks,
on highly accessible low-cost devices.

Furthermore, through the use of leave-one-subject-out cross-validation, we
can evaluate the robustness of the proposed method to subject’s EEG variability.
Consequently, we can conclude that the proposed method is robust to subject
variability, alleviating the need for re-training for each subject, improving the
method’s feasibility to be used in a real-world setting, such as in a neurorehabil-
itation clinic.

Moreover, the robustness of the method was further validated under a range of
noise conditions and motor task complexities to assess its practical applicability in
real-world BCI scenarios. Two distinct datasets were employed for this purpose:
a publicly available dataset containing finger movements, and our own dataset
containing hand gestures performed in an uncontrolled environment, containing
spontaneous and unpredictable motor disturbances. These conditions inherently
resulted in increased signal variability, including artifacts induced by muscle ac-
tivity, variations in attention, and inconsistencies in gesture execution.

Despite the differences in recording environments and the greater susceptibil-
ity to spontaneous artifacts in the second dataset, the proposed method consis-

tently maintained high classification performance. This outcome demonstrates
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its strong resilience to real-world EEG noise sources and confirms the model’s ca-
pability to extract meaningful inter-regional neural information, even when data
quality is compromised. Furthermore, the method was evaluated under only min-
imal preprocessing, indicating its robustness to non-ideal input conditions and its
suitability for application in naturalistic or clinical settings where extensive pre-
processing pipelines may not be feasible, and the system might be subject to
higher signal noise.

The comparative evaluation between the two datasets also highlighted the
method’s adaptability to varying levels of motor task complexity. While both
datasets involved fine motor movements, the continuous hand opening and clos-
ing task presents greater complexity than easier to isolate finger movements. This
increased complexity arises from the need to coordinate multiple muscle groups
simultaneously, the temporal continuity of the gesture, the lower task synchrony
across trials, and the higher degree of intra-task similarity, which makes dis-
criminating between movement segments more challenging. Such gestures, char-
acterised by overlapping or gradually evolving EEG patterns, introduce subtle
noise that can interfere with accurate classification.

Even so, the proposed method demonstrated consistent performance even un-
der these challenging conditions. This contrasts with traditional approaches that
typically perform better on more discrete or well-separated motor actions, such as
binary hand open and close decisions. These results confirm the method’s robust-
ness not only to inter-subject variability, but also to significant signal degradation
and increased motor complexity. Its performance across datasets recorded under
controlled and uncontrolled conditions, and across tasks with varying levels of
temporal and neuromuscular complexity, even under only minimal signal prepro-
cessing, illustrates its potential for generalisation.

The small size of datasets used to validate the proposed method further proves
its suitability to be implemented in a real-world scenario. In such cases, access
to extensive human data is not easy and the recording time is highly limited.
These are still the main challenges in BCI [111]. The proposed method paves the
path for a new BCI generation where the system can learn a movement without
requiring any audio, visual, or haptic feedback.

To further facilitate the potential implementation of the BCIs presented in
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Chapter 4 as well as this chapter in uncontrolled environments, the following
chapter introduces a novel filtering technique specifically designed for hyperscan-
ning data. This proposed filtering technique is based on the reformulation of the
CSP method. Its effectiveness for uncontrolled environments is evaluated through
the use of the dataset described in Chapter 3.
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Chapter 6

Formulation of Common Spatial
Patterns for Multi-task
Hyperscanning BCI

This chapter is an expansion of our published work in [176].

Exploiting the data from multiple subjects performing the same task has great
potential for more effective training of motor-related BCI systems in an uncon-
trolled environment. This is mainly due to the brain engagement in performing
irrelevant mental or physical activities while performing a BCI task. Therefore,
an approach that extracts the common, or relevant, brain motor activity from
multiple brains and avoids the effect of undesired or irrelevant ones for training
the BCI system can be a significant outcome of multi-subject, or hyperscanning,
BCIL.

Over the years, many algorithms have been developed and improved for anal-
ysis of EEG data, such as the feature extraction techniques discussed in [177].
However, yet no feature extraction technique tailored to hyperscanning data has
been developed.

In hyperscanning settings, multiple subjects perform at least one task together
at the same time. This requires a level of cognitive involvement between the
subjects. As discussed in previous studies [54, 109, 178], this interaction also

results in an enhanced synchronisation between the subjects’ neural mechanisms,
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and some additional connections and relationships between different brain regions
for all the interacting subjects. This information therefore, is not present in
traditional, non-hyperscanning settings.

As discussed in Chapters 1 and 3, the majority of EEG motor-related stud-
ies have been performed under ideal scenarios, where the data is recorded in a
controlled environment and the subjects are asked to constantly concentrate on
a single motor-related task. This poses some challenges in the implementation
of these systems in an uncontrolled environment where the brain is inherently
engaged in multiple tasks. In most of these cases, the available dataset size is
small due to various practical limitations.

Through the use of additional brain connections between the subjects gen-
erated in hyperscanning settings, we can develop a system for non-ideal data to
establish a BCI that can perform favourably even in uncontrolled environments.
Specifically, we propose the development of a system that enables classification of
EEG hyperscanning data depending on whether the subjects are performing com-
mon tasks or not. Furthermore, the proposed system can classify motor-related
multi-task data where the tasks are all in common, even in the presence of strong
undesired tasks, inherently or intentionally performed by the subjects.

To achieve these goals, a new filtering technique based on the reformulation
of CSP [179] catered for hyperscanning data is introduced. The proposed fil-
tering technique can obtain satisfactory performance even when using a smaller
dataset than what is used in related studies [180]. The proposed system allows
for recording under non-ideal conditions, levering the potential of this technique
to be implemented in a real-world BCI. This new technique is proposed for a
scenario where the brain signals of at least two subjects are recorded simultane-
ously during the performance of common and uncommon tasks in a multi-task

scenario.
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6.1 Common Spatial Patterns; Concept and Ex-

tensions

CSP separates a multivariate signal into additive subcomponents which have
maximum differences in variance. It was first introduced in 1990 as a novel
technique to discriminate between the EEGs of two populations [179] through
the optimisation of the variance separation process for the two classes. This is
obtained through the projection of the EEG signals to a set of spatial filters. This
way, it maximises the variance of one state while minimising the variance of the
other state, enabling the extraction of discriminative features.

Therefore, given X € RV¥**L as a segment of EEG signal, where N, represents
the number of channels and L the number of samples, the traditional CSP cost

function is formulated as:

- wWIXTx\w wWi'e\w

— - 6.1
wixIx,w w'c,w (6.1)

J(W)

where W represents the filter coefficients that separate two classes of a brain
activity, or the two populations, and X; and X, represent the multichannel
signals from classes 1 and 2 respectively. In the classical CSP, C and C refer
respectively to the covariance matrices for the subspaces of the signals from tasks,

or states, 1 and 2 or those of the desired or undesired signals.

6.1.1 CSP Applications to EEG and BCI

Since its development, CSP has been widely used for the extraction of feature
matrices and the analysis of EEGs particularly for efficient BCI development. It
has been successfully used for the separation of different mental states, including
cognitive state estimation, for Parkinson’s [181] or epilepsy [182,183], as well as
for emotion recognition [184,185] or MI classification, introduced for the first time
in 2000 for imagery hand movement [186].

Even so, the original formulation presents some limitations, including sen-
sitivity to noise, non-stationarity, and overfitting in high-dimensional data. To

overcome these limitations, several extensions have been proposed to accommo-
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date the original formulation to multiple problem domains [187]. As reviewed
in [188], multiple regularisation techniques have been developed to mitigate the
overfitting problem of CSP and improve its generalisation. In problems where rel-
evant features are distributed in multiple frequency bands, variations to CSP have
been introduced to capture the frequency-specific information, such as the widely
known and used filter bank CSP (FB-CSP) [189], its regularised variant [190],
and other proposed frequency based extensions [191]. Furthermore, some CSP
extensions, such as [192,193], incorporated sparsity constraints to select the most
relevant spatial filters and reduce the dimensionality of the data.

Some CSP extensions have also been proposed to overcome inter-subject vari-
ability problems, such as composite CSP (CCSP) [194], or composite local tem-
poral correlation CSP (CLTCCSP) [195], where CSP is modified to include in-
formation from different subjects. This is particularly important in BCI, which
has become the main application of CSP and its variants.

The use of CSP for BCI incorporates further challenges, such as the necessity
for a shorter training time and a higher inter-subject robustness compared to the
use of CSP in other applications. For this reason, some CSP extensions have
been developed focusing on these challenges specifically for BCI settings and MI
classification scenarios. For example, in [196], the authors propose an extension
of the CSP formulation based on an Euclidean alignment together with transfer
learning to overcome these challenges.

Finally, another main limitation of the original CSP formulation is that it is
inherently binary, not allowing for the simultaneous discrimination of multiple
classes. This is especially relevant in its application to BCI, where multi-task
scenarios are highly common. Nevertheless, extensions like [197-199] have been

developed to allow CSP to successfully handle multi-task classification problems.

6.2 Problem Formulation for Hyperscanning CSP

In this section, we propose a novel CSP-based spatial filtering approach as a
feature extraction technique to support the classification of a common task per-
formed by at least two subjects, independently of what the specific task is. The
proposed hyperscanning CSP (hyperCSP) technique is a reformulation of the
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well-known CSP method.

6.2.1 Hyperscanning Common Spatial Patterns

The proposed hyperCSP aims to learn the spatial filters that maximise the vari-
ance of the EEG signals when a common task is performed by multiple subjects,
while minimising the variance for the uncommon tasks. In this way, the cost

function for hyperCSP can be approximated as:

wi(2E cow
TW) = WSk sk covw
(X D am1ath a,b)

In this equation, the global correlation Ciz,... i has been approximated by the

(6.2)

sum of mutual correlations, i.e. Cy.
Since C,p = Ch,, eq. (6.2) can be simplified to:

N 4O Y o)) 1
W (0 e Car) W

J(W) (6.3)

where K in this scenario is the number of subjects, W' is the spatial filter, C,
is the spatial covariance matrix for subject z, and C, is the mutual correlation
matrix of subjects a and b.

The use of multiple heads in EEG hyperscanning could enhance the classifi-
cation accuracy, especially in uncontrolled environments where the subjects are
free to perform undesired or irrelevant tasks. Here, due to resource limitations,
we only work with two subjects. Therefore, the cost function for hyperCSP in
(6.2) becomes:

_W(C+Cy)W
- wlic,w

where C'; and C5 represent the spatial covariance matrices for Subjects 1 and 2

J(W) (6.4)

respectively, estimated as:

X. X7

o ey 6.5
trace(X,X7) (6.5)
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X, = [®,1,%,0, ..., 1] represents a trial of EEG signal for subject z, and L
denotes the trial length. X T represents the transpose of X, and trace(C) is the
sum of the diagonal elements of matrix C. On the other hand, in (6.4), C; 2
represents the linear mutual correlation matrix between the two subjects, defined

as:

X, xr

Cip=—""+
’ trace(X , X7 )

(6.6)

where, in this scenario, X, and X, refer respectively to the EEG signals of

subjects a and b. Here, it is assumed that the signals have zero mean.

6.2.2 Solution to the hyperCSP Problem

To solve the maximisation problem in (6.4), we use the Lagrange multiplier
method, as shown in [198]. Following this method, the constrained problem

in (6.4) is converted to an unconstrained problem:
j)\,w = wT(Cl + CQ)’LU — )\('UJTCLQ’UJ — 1) (67)

where A is the Lagrange multiplier. Then, to calculate the spatial filter w, the

derivative of J \w 15 taken and set equal to zero with respect to w:

O\ w

= 2'wT(C’1 + Cz) — 2)\ch1,2 = 0,
ow

(Cl + CQ)'w = )\me; (68)

This leads to the eigenvalue problem. Therefore, we obtain the eigenvectors
of ¥ = Cl_é(C’l + C5), and the spatial filter w is estimated as the row of Y
eigenvector matrix corresponding to its largest eigenvalue. Such a filter also

alleviates the effects of other undesired brain sources and artifacts.
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6.3 Application of hyperCSP

In this section, we introduce the steps performed in the experiments to process
and analyse the raw EEG hyperscanning data using hyperCSP. Before applying
the method, the data are preprocessed to mitigate the effects of some EEG ar-
tifacts. The proposed hyperCSP is used to obtain the feature vectors that are
given to the classifier. To classify the spatial feature matrix containing all the
feature vectors, we employ a number of well-known classifiers.

The EEG hyperscanning data used in this experiment are the data from ex-
periments 1, 2, 3, 4 and 5, described in Chapter 3, Section 3.3.2.

6.3.1 Data Preprocessing

The raw EEG hyperscanning data is preprocessed to remove any bad channels
and main artifacts.

The data from both subjects are combined into a single data block X ..} in
the form of a 2V, x L matrix, where L represents the signal length. The first Ny
channels are the EEG signals from Subject 1 (a) while the other Ny, channels are
the EEG signals from Subject 2 (b). Then, X, is segmented into equal-length
blocks based on the labels associated to the EEG hyperscanning signals. In this
way, we obtain EEG hyperscanning blocks in the form of a 2N, x L, matrix,
where L represents the segment length with a single label, either Task 1 or Task
2 activity, both potentially including uncommon (undesired) tasks.

As in previous chapters, channel 27 from the first subject and channel 32 from
the second subject (both distant from the motor area) present a low electrode-
skin impedance value across most of the recording sessions, so they are considered
bad channels. Therefore, these two channels are removed from both subjects to
maintain the symmetry between the two subjects’ data. The locations of these
channels are coloured grey in Fig. 6.1. A FIR bandpass filter of 1-50 Hz is applied
to the data from both subjects to remove the baseline and reduce any possible
power line noise. Then, average re-referencing is applied to each subject’s data
separately. These preprocessing methods are applied with the help of EEGLAB
Toolbox [200]. No other artifact removal procedure is applied to the data since

the proposed hyperCSP method is also able to filter these undesired artifacts.

117



6. Formulation of Common Spatial Patterns for Multi-task
Hyperscanning BCI

1

DR
© 0 ©
@;IO ?11 17@12 16@]3

19e 20@ 2‘1e 22
3 4 29@5 6 7

Figure 6.1: The electrode setup used for the experiment. The locations of the
electrodes follow the standard 10-20 international EEG electrode placement sys-
tem for 32 electrodes. The highlighted electrodes in blue form a subsystem that
represents the motor area. The highlighted electrodes in grey represent channels
27 and 32 that have been removed during the preprocessing stage.

6.3.2 hyperCSP as Feature Extraction Technique

Unlike many CSP-based BCI applications, here the intention is to classify the
entire body movement rather than the movement onset. For that reason, once
the signals from both subjects are preprocessed, we select an appropriate window
size over which the signal is considered stationary and slide the window over all
the signal segments. In this case, we selected a window size between 2.7s and
3.3s, depending on the length of each segment, with no overlap. For each sliding
window, we apply Eq. (6.4)-(6.6) using the first N} channels from subject a
as X, and the second N, channels from subject b as X,. We obtain the right
eigenvectors that leads to the best W, as the desired spatial filters. Then, we sort
W in descending order of the eigenvalues and apply the filters W corresponding

to the largest eigenvalues to the signal window segment following the equations:
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Figure 6.2: A step-by-step illustration of the proposed method. The classification
of the tasks is done in the presence of strong uncommon tasks.

X =w'Xx, (6.9)
X, =wW'X, (6.10)

Given the projected signals, we apply a log-variance method similar to those
in [198], [201], and [202] to extract the feature vector from the projected signals.
Hence, we calculate the logarithm of the variances for the projected EEG window

segment of each subject and normalise them to have zero mean and unit variance:

f :10g< var(X')

W) (6.1

var( X
f, = 1og(ﬁ) (6.12)
Once the feature vectors for all the signal segments are obtained, they are
combined into a feature matrix, obtaining a Nj X S matrix, where S represents
the number of segments for both subjects. This feature matrix is the input to
the chosen classifiers. Fig. 6.2 summarises the steps defined in this section, while
Algorithm 3 represents the calculation of the feature matrix for each segment in

pseudo code.

6.3.3 Classification

Once the feature matrix is obtained, a classifier is selected and trained to classify

the tasks performed by individuals.
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Algorithm 3 Algorithm for hyperCSP

Input: EEG Segment (EEG: 2N, x L)
Prerequisites: Window Length L.,, Initial signal point i
1: while L,, + ¢ — 1 <Segment Length (Ls) do
2. X,=FEEG[l: Ny,i:i+ L, —1]
3: Xb:EEG[Nk+12Nk,lZ+Lw—1]

T x7T
4 Cl - tra(i(((;({f-:{(g) trac‘f(;();b)(g)
5 Co= o xT
6: W = eigenvalues(C', C5)
7. Sort W in descending order
& X =w'.X,
9. X, =W'. X,

10:  f,= zero mean log(var(X')/ >  var(X))
11:  f,= zero mean log(var(X

122 i =14 Ly

13: end while

Output: Normalised Feature Vectors: f,, f,

To better validate the performance of the proposed hyperCSP method, we
applied three well-known classifiers that have shown promising results in previous
CSP applications [197]. The chosen classifiers are linear kernel SVM, LDA, and
KNN with 3 neighbours. The number of neighbours was established through the
hypertunning of the KNN model.

The obtained feature matrix is divided into three subsets, one containing 75%
for training, another containing 15% for validation, and one for testing, containing
the remaining 10% of the feature matrix. In this scenario, due to the small size
of the feature matrix, we used a 10-fold cross-validation for the evaluation of the

models.

6.3.4 Online EEG hyperscanning-based BCI system

The use of the proposed hyperCSP as a filtering technique becomes especially im-
portant in EEG Hyperscanning-based BCls, where a long-duration common task
can be isolated. In this scenario, hyperCSP provides cleaner data, which helps

improve the performance of other feature extraction and classification methods,
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Figure 6.3: A schematic illustration of the proposed online BCI system. The sys-
tem incorporates the proposed hyperCSP method to filter the data and provide
cleaner data to the connectivity-informed DA method, described in Chapter 4.
This online BCI system can detect if a subject is following the motor activity of
another subject based on their neural activity. X, represents the EEG signals
from the following subject (individual under rehabilitation), while X}, represents
the EEG signals from the leading subject (healthy individual). X! and X] repre-
sent the filtered signals of X, and X, respectively, which have been filtered with
hyperCSP to remove undesired mental activity.

and therefore, improves the performance of the final BCI system.

Given this, it can be presumed that the other analysis and recognition tech-
niques for EEG hyperscanning and complex continuous movements, which were
introduced in Chapters 4 and 5 respectively, could further be improved through
the application of hyperCSP as part of the preprocessing steps of the systems.

Therefore, the proposed hyperCSP and the connectivity-informed DA method,
defined in Chapter 4, can be combined for the development of an online attention
evaluation hyperscanning BCI system, as shown in Fig. 6.3. Such a system can
detect if two subjects are performing the same task or not. This system can
further be extended to include multiple subjects instead of only two. In that
case, only one subject leads while the remaining subjects, one or more, follow.
This online system can be especially beneficial during neurorehabilitation sessions
to control if the follower subjects, i.e., those under rehabilitation, perform the
tasks correctly or get distracted. Providing feedback on the concentration of
the subjects during the neurorehabilitation sessions is essential to detect when
specific tasks may need modification.

For this system, the attention score was obtained based on obtained aggre-
gated error per electrode between the follower and the leader subjects. Therefore,

given Eq. (4.10), which provides the error per node, we obtain the aggregated
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eITror as:

1
Ezzgg'regate = m Z Ekz (613)
k=1

which provides a measure on the similarity between the EEGs from both subjects.

Given this, we can estimate the attention score as:

Attention Score =1 — E,5rm (6.14)

where E,omm is the normalised E,ggregate between [0 1]. For a more accurate
system, F,,m can be calibrated to be normalised between the Fyggregate Obtained
during full synchronisation and no synchronisation between the subjects.

Furthermore, given the BCI system proposed in Fig. 6.3, visual feedback in
the form of simple instructions, such as different colours representing the differ-
ent attention scores could be provided. This way the system is able to provide
real-time feedback that can guide not only the clinicians, but also the individual
under rehabilitation to inform them if the mental activity is not being followed
correctly. This same feedback can be used as control output signals when neces-
sary depending on the final purpose of the system.

The proposed BCI system was evaluated through the implementation of the
system in Simulink as an online real-time BCI system, as shown in Fig. 6.4. For
the evaluation of the system, the same data described in this chapter in Section
6.3 was used. The pre-recorded data was passed to the system as sequential
time series to emulate real-time online data for a more realistic evaluation of the
system. The same minimal preprocessing steps described in Section 6.3.1 were
also applied together with hyperCSP as preprocessing steps.

hyperCSP as well as the connectivity-informed DA method require an EEG
window segment to be passed instead of each signal time instant. For this rea-
son, the implemented system contains a buffer that enables the collection of the
data over each window before passing the data to hyperCSP. The window size is
adjustable and can be modified as needed depending on the nature of the data.
This reliance of the proposed methods on window segments generates a small

delay on the system, preventing it from been a fully real-time BCI system. Still,
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Figure 6.4: An illustration of the implemented online BCI system, implemented
in Simulink. Here, Fs represents the EEG sampling rate, and ConnNetworkMa-
trixSubject1, represents the estimated connectivity measures from Subject 1.

the use of window segments that incur a small delay on the real-time system is a
common and acceptable practice, usually necessary in these BCI systems. Even
so, through optimisation processes and reuse of the same window segment for
both the preprocessing and feature extraction methods, we are able to reduce the
delay of the system to a minimum acceptable delay that does not undermine the
final purpose of the system. The final delay of the system is mostly determined
by the window size.

The proposed system can also be implemented together with the DAOT sys-
tem, described in Chapter 5, after the reconstruction of X! for further improve-

ment.
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6.4 Results

Given the dataset described in Section 3.3.2, we present and analyse the results
obtained after applying the proposed hyperCSP and the traditional CSP un-
der two scenarios: a multitask scenario through the separation and classification
of two common tasks, left and right hand movement; and a filtering scenario,
through the separation of desired tasks (tasks in common) from undesired tasks

(tasks not in common) and their classification.

6.4.1 Multi-task Separation and Classification

For the classification of common multi-tasks performed by two subjects in the
presence of undesired tasks, a subset of the dataset described in Section 3.3.2
is used. Only experiments 1 and 2 were considered where the two subjects per-
formed two different common tasks (left- and right-hand movement) and each
performed a different (uncommon) task. Therefore, this subset of the dataset
contains 8 trials. In here, we show the results obtained when applying hyperCSP
and classifying the two common tasks: move right hand and move left hand, all
in the presence of strong undesired tasks.

To better validate the results, using the same dataset, we compare the results
of the proposed method against results obtained using the traditional CSP, as
defined in Eq. (6.1), using the data from one subject from each pair of subjects.
This can show how a movement classification using EEG can be affected by
undesired brain activities.

Fig. 6.5 shows the topoplots from Subject 1 for the first two trials of left-
hand movement before and after applying hyperCSP and the comparison system.
Since we are focusing on motor movements, the topoplots are represented for
alpha and beta band frequencies (also known as alpha-mu and beta-mu). In Fig.
6.5a, the topoplots before applying any CSP filtering are presented, and it can be
appreciated that there is a mix of sources due to the undesired tasks performed
by the subject while moving the left hand. In Fig. 6.5b, c, the topoplots after
applying the filtering are presented, and it can be appreciated that hyperCSP is
able to isolate the common task and obtain a clearer and more isolated alpha-mu

and beta-mu. On the other hand, due to the presence of different sources, CSP

124



6. Formulation of Common Spatial Patterns for Multi-task
Hyperscanning BCI

Figure 6.5: The topoplots from Subject 1 for the left-hand movement after ap-
plying CSP and hyperCSP to isolate the desired common task; (a) before any
CSP filtering, (b) after applying CSP, and (c) after applying hyperCSP. In the
left the activity in alpha band, and in the right the activity in beta band, have
been demonstrated. The main conclusion is that the hyperCSP better isolates
the brain’s common and desired prolonged activity.

is not able to clearly isolate the common task.

Table 6.1 shows the accuracy obtained for each of the mentioned methods
used to validate the proposed system during the testing and training phases for
each classifier. The results are the average validation accuracy and the standard
deviation of each system obtained after 10-fold cross-validation. A maximum
validation accuracy for each system, as well as the testing accuracy and the
F-score for the two classes, are obtained using the classifiers with the lowest
validation error.

As explained in Section 6.3.3, three classifiers are used. For consistency in
the results, the parameters for the classifiers remained the same for the proposed

and traditional methods.
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Table 6.1: Classification accuracy during validation and testing of hyperCSP and
the comparison systems during the classification of common multi-tasks.

hyperCSP CSp

SVM LDA KNN SVM LDA KNN

Avg. Validation Acc 0.63£0.08 0.60 £ 0.08 0.50 £ 0.08 0.44 + 0.07 0.44 +0.07 0.45 £ 0.07

Max. Validation Acc  0.76 0.74 0.71 0.59 0.59 0.59
Testing Acc 0.82 0.73 0.45 0.64 0.64 0.36
Testing F-score 0.82 0.73 0.45 0.61 0.61 0.34

As shown in Table 6.1, for the classification of right and left hand movements,
SVM results in the best performance for hyperCSP. We obtained an average
validation accuracy of 62.77%, with a maximum validation accuracy of 76.47%,
a testing accuracy of 81.82%, and a F-score of 0.82 for this model. On the other
hand, for the traditional formulation of CSP, the three classifiers yield a highly
similar performance. Still, SVM and LDA provides the best performance for the
traditional CSP, obtaining the highest F-score. Even so, the higher performance
of the proposed method can be verified based on these values, especially on the
F-score, which clearly shows the merit of hyperCSP for robust BCI compared to
the traditional CSP formulation.

6.4.2 Separation of Target tasks from Irrelevant Brain Ac-

tivities and their Classification

Now, we show that hyperCSP, similar to the traditional CSP, can separate a rele-
vant (desired task), which is in common between the participants, from irrelevant
(undesired) tasks.

For the classification of desired (common) and undesired (uncommon) tasks
for the two subjects, experiments 1, 2, 3, 4, and 5 from the dataset described in
Section 3.3.2, is used. This subset of the dataset comprises 14 trials in total. For
this experiment, we followed the same preprocessing steps and applied the same
parameters as in Section 6.4.1.

In Table 6.2, for both methods, the KNN classifier results in the best perfor-
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mance, even so the three models’ performance is highly similar. The proposed
method with the KNN classifier obtained an average validation accuracy of 64%,
with a maximum validation accuracy of 70.97%, and a testing accuracy of 68.29%.
This shows that the proposed system is able to distinguish between tasks per-
formed simultaneously in the presence of undesired (or random) individual tasks
without any prior information about the random tasks, even with a small dataset.
In comparison, the classical CSP obtained an average validation accuracy of 47%,
with a maximum validation accuracy of 57%, and a testing accuracy of 43%. This
shows that the competing method, CSP, is not able to deal with separating the
tasks in the presence of strong random or undesired tasks, while hyperCSP can
achieve a reasonable accuracy for such scenarios.

Table 6.2: Classification accuracy during validation and testing of hyperCSP and
the comparison systems during the classification of desired and undesired tasks.

hyperCSP CSP

SVM LDA KNN SVM LDA KNN

Avg. Validation Acc 0.53 +0.03 0.52 +0.03 0.64 & 0.03 0.45 +0.05 0.45 £+ 0.05 0.47 £+ 0.05

Max. Validation Acc  0.58 0.59 0.71 0.57 0.53 0.57
Testing Acc 0.71 0.68 0.68 0.48 0.57 0.43
Testing F-score 0.65 0.63 0.67 0.45 0.56 0.43

The results obtained in both experiments show that, given the same dataset,
CSP is not able to distinguish between two tasks performed simultaneously in
the presence of an undesired (or random) individual task without any prior in-
formation about the uncommon tasks performed individually.

Therefore, we can conclude that hyperCSP outperforms the popular and well-
established feature detection method, the traditional CSP formulation, mainly
because it benefits from more than one subject’s EEG to marginalise the uncom-
mon, unrelated, or spurious tasks. Due to practical limitations, in this study we
only worked with two subjects simultaneously. We expect that, by increasing the
number of subjects in the hyperscanning setting, the training error will decrease.
In addition, hyperCSP may also be regularised to better incorporate the task

properties and provide a better performance for the proposed system.
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6.5 Conclusions

In this chapter, we proposed a novel feature extraction technique based on CSP,
namely hyperCSP, that can be used to analyse EEG hyperscanning data and
classify different brain motor tasks. This is applicable to a synchronised multi-
brain study, where the subjects perform a common task in the presence of strong
undesired tasks, similar to what can be obtained in a real-world, uncontrolled en-
vironment. These uncontrolled environments are commonly characterised by the
presence of varying lighting conditions, unpredicted stimuli, involuntarily move-
ments, and spontaneous undesired neural activity, which introduce substantial
noise and artifact contamination in the EEG signals.

The results from this study show that hyperCSP can achieve a satisfactory
classification accuracy of 81.82% using an SVM classifier mainly because it ben-
efits from the synchronised data from two subjects during a common movement
task performance. The hyperCSP filter, W, can be applied to an individual’s
EEG to highlight the desired task and suppress all other undesired tasks. Fur-
thermore, this approach does not require prior heavy preprocessing of the signal,
avoiding the need for manual artifact removal, making the method highly suitable
for its implementation in more dynamic, real-world settings, where such noise is
unavoidable and difficult to remove.

To validate the robustness of the proposed method under various noise con-
ditions and task complexities, a dataset containing multiple distinct motor tasks
performed under uncontrolled conditions was employed. This dataset contained
diverse desired, and in common between the subjects, motor tasks as well as spon-
taneous and sporadic motor activity, different for each subject. In real-world,
uncontrolled scenarios, EEG recordings are often contaminated by involuntary
neural activity resulting from involuntary movements, fluctuations in attention,
and variations in task execution timing. The consistent performance of hyperCSP
on such diverse and noisy data provides strong empirical support for its resilience
to both signal noise and task variability.

Moreover, through its evaluation with this dataset, the proposed method
demonstrated its adaptability to diverse tasks with varying levels of motor com-

plexity. Tasks involving fine motor control and temporal continuity typically
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generate overlapping EEG patterns that are difficult to differentiate using tradi-
tional CSP. However, hyperCSP showed an enhanced ability to isolate the neural
activity from the desired tasks, even when the desired movements were embedded
within or followed by spontaneous motor noise. This robustness indicates that
the method is capable of generalising across a range of motor behaviours, from
simple hand movements to continuous and more complex gestures. The results
show that hyperCSP can therefore improve the performance of a BCI.

While this study focused on hyperscanning involving two participants, the
proposed method can be extended to scenarios involving a larger number of sub-
jects. In such scenarios, the common task across all participants would define the
desired task, while all other neural activity would be considered as the undesired
tasks and attenuated by hyperCSP. However, this extended setting introduces
some challenges, including increased computational complexity, task synchroni-
sation difficulties, and higher inter-subject variability. These factors can affect the
reliable extraction of common neural patterns, which could impact the robustness
of the proposed method.

Various regularisation techniques proposed for the conventional CSP by dif-
ferent researchers, such as in [180] and [188], can also be extended to hyperCSP
to further improve its performance. Finally, with a larger dataset, the applica-
tion of deep learning classification models, such as DNNs could be considered
in future works, which may enhance the system performance, as shown in other
studies [203,204].

The next chapter presents the thesis conclusions, containing a summary of the
key findings presented in this thesis, their potential limitations, and a discussion

on potential directions for future work.
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Chapter 7
Conclusions and Future Research

In this thesis, a new direction in EEG-based BCI has been established. In this
development, multi-subject data through hyperscanning have been analysed.

Exploiting the data from multiple subjects performing the same task has great
potential for more effective training of motor-related BCI systems in an uncon-
trolled environment. This is mainly due to the brain engagement in performing
irrelevant mental or physical activities while performing the desired BCI task.
Although over the years several signal processing and machine learning tech-
niques have been developed and improved for the analysis of EEG data and the
implementation of BCIs, none has been tailored to hyperscanning data.

In this thesis, we explored the possibility of implementing novel EEG hy-
perscanning BCI systems highly applicable to neurorehabilitation by exploiting
the cooperation parameters. More specifically, we developed three new analysis
methods, two based on the single task DA approach, and one as a reformula-
tion of the classical CSP especially tailored to hyperscanning data. Furthermore,
complex motor multi-task EEG hyperscanning data have been released to help
promote research in this field. This work opens up a new research direction for
the development and implementation of BCIs in uncontrolled environments. In
this chapter, we conclude the thesis with an overview of the main contributions,
discuss possible limitations of the proposed systems, and propose new possible
directions for future investigations.

The contributions of this work can be summarised as:
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e Generating the first publicly available multi-task motor EEG hyperscanning
dataset, which contains data from multiple subjects recorded in an uncon-
trolled environment [108]. Main challenges during the design paradigm and
data recording of hyperscanning scenarios are also reviewed and discussed,

and the guidelines on how to overcome them are provided.

e A new EEG hyperscanning analysis method has been proposed which can
be used to evaluate the state of a patient based on how well the patient can
follow the motor tasks performed by another individual. This technique is
based on improving the single task DA approach by brain connectivity anal-
ysis as the estimates for combination weights of the DA. In this approach,
the brain network of one subject and a target channel of the second subject

are used to model the pathway between the two subjects.

e A new classification technique is developed for the recognition of prolonged
and fine brain motor potentials. This method allows for a realistic and
accurate recognition of motor movements with no audio, visual, or hap-
tic feedback. This provides a new platform for the development of more
advanced prosthetic systems and BCIs. This new method makes use of
the previously developed connectivity-informed DA approach, where in this
case, the objective of the distributed network is represented by a member
of an orthogonal functions dictionary, each one associated with a specific

sub-gesture.

e Finally, a new formulation for CSP, namely hyperCSP, especially tailored
to hyperscanning data is developed. This method can be used to filter
undesired tasks from EEGs, providing cleaner data, and improving the final
performance of the BCI. The implementation of this technique leverages
the BCI implementation in a more realistic and uncontrolled environment,

where the subjects can be distracted.

Moreover, a pipeline for real-time multi-subject BCI has been proposed with
the possibility of combining hyperCSP and other proposed techniques. This shows
the feasibility of the proposed methods to be implemented as an online system,

showcasing their potential deployment in real-world scenarios.
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7.1 Limitations

While the proposed methods presented in this thesis demonstrate promising per-
formance for the development of novel EEG hyperscanning-based BCIs, certain
limitations remain.

A valuable contribution of this work is the introduction of a motor-related
EEG hyperscanning dataset comprising multiple subjects from diverse geograph-
ical, age, gender and backgrounds. However, as discussed in earlier chapters, the
dataset size is relatively small, which constrains the through evaluation of the
proposed methods, including their generalisability, and limits direct comparison
with some of the latest state-of-the-art distributed signal processing and BCI
approaches, such as graph neural networks (GNNs) [50] and transformer-based
models [33].

Even so, the dataset size is comparable to other publicly available small motor-
related EEG datasets, providing sufficient data to validate the effectiveness of the
proposed techniques. Moreover, whenever possible, the proposed methods were
additionally evaluated on larger publicly available datasets, further demonstrating
their adaptability, robust performance, and confirming that the proposed dataset
offers a representative evaluation framework comparable to established datasets.

Furthermore, this dataset was designed to approximate more realistic condi-
tions by recording it in a standard office environment, simulating a more realistic
neurorehabilitation clinic setting. This introduced common uncontrolled variables
found in real-world scenarios, including varying lighting conditions, auditory and
visual distractions, ambient environmental noise, and spontaneous motor move-
ments. These factors introduce artifacts, noise variability, and increase task com-
plexity, introducing additional challenges for the accurate recognition of neural
activity. Some of these conditions were however minimised to preserve data qual-
ity. This provides an opportunity for the proposed methods to demonstrate their
robustness against diverse noise conditions and task challenges as well as their
performance under uncontrolled environments, demonstrating their feasibility to
be implemented in real-world scenarios.

However, it should be emphasised that the dataset presented in this thesis

does not represent a fully uncontrolled environment, and the methods have not
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yet been tested in actual clinical settings. Consequently, the evaluation of the
system robustness and its feasible implementation outside of controlled laboratory
environments remains limited. Similarly, the assessment of the proposed methods
as an online BCI system is constrained by the fact that online performance was

simulated offline, rather than validated through real-time implementation.

7.2 Future Works

In this research, we laid the ground for hyperscanning BCI, which is in its infancy
stage. While the proposed methods show promising performance, several avenues
remain open for further exploration and enhancement.

Given the encouraging results obtained in this thesis, it would be interesting to
further analyse the proposed BCI and newly developed methods with a broader
dataset containing a more extensive collection of diverse motor and cognitive
tasks, as well as data from real patients undergoing neurorehabilitation with
different cognitive conditions. This would allow a more thorough evaluation of
the proposed methods.

The implementation of the proposed EEG hyperscanning-based BCI in a neu-
rorehabilitation clinic, with real patients, for a controlled long-term group therapy
study would further highlight the benefits and feasibility of this new neurorehabil-
itation method, while providing further evaluation of the feasible implementation
of the proposed methods under a more realistic environment. This study would
require careful consideration of the number of patients that would form the group
therapy, as well as the type of patients and type of neurorehabilitation exercises
that would be considered for the study. Furthermore, a control group with pa-
tients with similar conditions that follows a more traditional neurorehabilitation
therapy may be necessary for a more realistic statistical analysis of the possible
benefits of hyperscanning therapy compared to traditional therapy.

Furthermore, to help alleviate some of the previously discussed system limi-
tations, some improvements could also be explored to enhance the performance
of the newly developed methods.

The developed hyperCSP may be regularised by exploiting the statistical prop-

erties of the task signals to be extracted, similar to what has been done for the

133



7. Conclusions and Future Research

traditional CSP [188]. More robust methods, such as xXDAWN [205], can be
extended to the hyperscanning applications too. Exploring non-linear decompo-
sitions and source-space extensions could also enhance the interpretability of the
method.

On the other hand, to optimise the dictionary of orthogonal functions for the
DAOT method, there is a need for the design of an optimal dictionary learning
algorithm, which is beyond the scope of this thesis. Such dictionary learning
algorithm could facilitate the more dynamic allocation of the set of orthogonal
Bessel functions to the sub-gestures, increasing the automatisation of the pro-
posed method and its ability to adjust to a larger amount of prolonged motor
movements.

Moreover, with access to a larger dataset and the potentially future develop-
ment of more cost-efficient computational resources, latest signal processing and
feature recognition techniques could be analysed and combined with the proposed
methods.

Recent advances in graph signal processing and GNNs [206-208] have shown
promising results in the modelling of inter-brain connectivity, which could provide
more accurate estimations of functional connectivity measures. Its combination
with DA could enhance the proposed methods.

With no doubt, latest deep learning strategies could also be applied for this
research.

In particular, techniques such as generative adversarial networks (GANs) [209]
have shown promising results in syntetically augmenting EEG datasets, particu-
larly in clinical applications where data availability is often limited. By generating
diverse synthetic samples, GANs can improve model robustness and potentially
reduce overfitting. Furthermore, recent studies suggest that GANs could assist in
domain adaptation by mapping patient EEG signals to distributions resembling
those of healthy participants, which may help mitigate misclassification due to
inter-population variability. However, careful consideration must be taken when
using synthetic data for the proposed methods to avoid possible overfitting.

Techniques such as transfer learning [36,210] have also become increasingly
popular in EEG-based BCIs to improve subject-to-subject generalisation and re-

duce training data requirements. Pre-trained models can often be adapted to
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new users with minimal data, making them appealing for clinical settings. Nev-
ertheless, depending on the complexity of the model and the adaptation strategy,
transfer learning may require significant computational resources and training
time, which can hinder its feasible implementation in dynamic environments or
time and resource-constrained clinical scenarios.

While both GANs and transfer learning offer valuable solutions under con-
strained and limited data conditions such as those presented in this thesis, their
practical deployment remains limited outside laboratory-controlled environments
due to computational demands, implementation complexity, and the need for
thorough validation.

Recent advances in attention mechanism, such as transformer-based archi-
tectures [211,212], and representation learning techniques, such as autoencoders
[35,213], could also be developed and adopted in this emerging research field to
pave the path for highly desired semantic BCIs [214,215]. While transformers
could capture long-range temporal dependencies in EEG signals, autoencoders
and unsupervised methods might enhance feature extraction and representation
learning.

Despite their potential, these models require careful validation due to their
high computational cost, training complexity, and limited adaptability to clinical
environments. To help alleviate some of these challenges, the combination of these
methods with knowledge distillation [216,217] for EEG hyperscanning, which
allows for the compression of large models into more efficient architectures more
suitable for real-time applications, could be investigated.

Finally, the exploration of hybrid deep learning models [218] and multimodal
approaches, such as through the combination of EEG and fNIRs [219,220] could
provide a suitable solution for the development of more reliable neurorehabilita-
tion BClIs.

Given all this, we can conclude that this thesis has laid a strong foundation for
EEG hyperscanning-based BCIs, opening a new research field, and the proposed
future directions aim to transform this emerging field into a practical tool for

next-generation neurorehabilitation BClIs.
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