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Abstract
Summary: Pan-genome analysis is a fundamental tool for studying bacterial genome evolution; however, the variety in methods used to define and 
measure the pan-genome poses challenges to the interpretation and reliability of results. Using Mycobacterium tuberculosis, a clonally evolving bacte
rium with a small accessory genome, as a model system, we systematically evaluated sources of variability in pan-genome estimates. Our analysis 
revealed that differences in assembly type (short-read versus hybrid), annotation pipeline, and pan-genome software, significantly impact predictions 
of core and accessory genome size. Extending our analysis to two additional bacterial species, Escherichia coli and Staphylococcus aureus, we ob
served consistent tool-dependent biases but species-specific patterns in pan-genome variability. Our findings highlight the importance of integrating 
nucleotide- and protein-level analyses to improve the reliability and reproducibility of pan-genome studies across diverse bacterial populations.
Availability and implementation: Panqc is freely available under an MIT license at https://github.com/maxgmarin/panqc.

1 Introduction
Even within the boundaries of defined bacterial species, gene 
content can vary substantially (Tettelin et al. 2005, Medini 
et al. 2020). The concept of the pan-genome, often defined as 
the union of all genes found across a population (Vernikos 
2020), emerged from the necessity to describe this variability 
in genomic content. Originally developed in the context of 
bacterial genomics, the pan-genome concept is now applied 
to genome comparison across the tree of life (Richard 2020). 
Genes in the pan-genome are typically divided into two cate
gories: core genes, which are shared by nearly all members of 
a population, and accessory genes, found only in a subset of 
the population (Vernikos 2020). Multiple mechanisms drive 
variability in bacterial genomic content, including horizontal 
gene transfer, recombination, sequence duplication, deletion, 

and rearrangement (Lassalle and Didelot 2020). With in
creasing frequency, pan-genome analyses are generating new 
insights into the genetic diversity and adaptability of bacterial 
populations, with important implications for fields such as 
medicine, agriculture, and environmental science (Tettelin 
et al. 2005, Croucher et al. 2014, Rouli et al. 2015, Pacheco- 
Moreno et al. 2021, Rosconi et al. 2022, Yebra et al. 2022).

Numerous bioinformatic tools have been developed to ana
lyze genome content within and between species, but they of
ten differ in how they define and measure the pan-genome. 
For example, a recent review identified over 38 distinct pan- 
genome analysis pipelines, reflecting the diversity of available 
tools and approaches (Vernikos 2020). Although a wide 
variety of tools exist, most pan-genome analyses follow a 
common structure and depend on two key decisions: (i) the 
unit of sequence compared across genomes and (ii) the 
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criteria used to assess sequence similarity and homology. For 
example, analyses may compare the entire genome sequence 
or instead focus solely on annotated genes. In gene-focused 
approaches, an additional consideration is whether to com
pare nucleotide sequences or their predicted amino acid 
translations. Even after a sequence unit is selected, comparing 
sequences involves selecting a comparison method (e.g. align
ment or k-mer-based approaches) and setting thresholds for 
the level of similarity required to consider sequences equiva
lent (Fu et al. 2012, Hauser et al. 2016, Steinegger and 
S€oding 2018, Li et al. 2020). These methodological choices— 
varying in resolution and sensitivity—can substantially influ
ence both the amount and type of detected variation, shaping 
downstream interpretation of the pan-genome.

Adding to these methodological complexities, the set of 
genomes analyzed and whether they adequately capture the 
population diversity can also influence the predicted pan- 
genome (Tonkin-Hill et al. 2023a). Inclusion of confounding 
genomes (such as genomes from misidentified species, engi
neered strains, or contaminants) can distort findings by both 
reducing core genome estimates and inflating accessory ge
nome estimates (Wu et al. 2021). Additionally, the sequenc
ing technology used (e.g. short- versus long-read) and 
assembly strategy can affect genome assembly accuracy and 
completeness (Tonkin-Hill et al. 2023a). Even small or infre
quent errors in a genome sequence may lead to incorrect con
clusions about the presence or absence of a gene’s coding 
sequence (Tonkin-Hill et al. 2020, 2023a,b). Together, these 
sources of bias introduce a further layer of variability that 
complicates interpretation and hinders comparison 
across studies.

The bacterial pathogen Mycobacterium tuberculosis (Mtb) 
serves as a compelling case study for understanding the chal
lenges of pan-genome analysis. Mtb differs from many bacte
ria for its lack of horizontal gene transfer (HGT) and 
interstrain recombination (Boritsch et al. 2016, Gagneux 
2018). This clonal evolution has led to a slowly evolving pop
ulation with high genome conservation and limited structural 
variation (Boritsch et al. 2014, Gagneux 2018, Orgeur et al. 
2024). Comparative genomic studies over the past two deca
des have shown that the Mtb accessory genome is shaped pri
marily by small, lineage-specific deletions and gene 
disruptions (Brosch et al. 2002, Tsolaki et al. 2004, Soler- 
Camargo et al. 2022, Behruznia et al. 2024, Silva-Pereira 
et al. 2024). A recent analysis evaluating the frequency of 
gene disruptions across a diverse collection of Mtb isolates 
found that approximately 16% of protein-coding genes were 
pseudogenized in at least one strain (Soler-Camargo et al. 
2022). Another notable feature of the Mtb genome is the 
presence of the pe and ppe gene families, which together ac
count for approximately 7% of its coding potential (Gr€oschel 
et al. 2016, Ates 2020, Gupta and Alland 2021). Certain sub- 
families (such as PE-PGRS and PPE-MPTR) are particularly 
prone to frameshift mutations and pseudogenization due to 
their repetitive sequence structure (Banu et al. 2002, Ates 
2020). These characteristics make Mtb a methodologically 
challenging case for pan-genome analysis.

Despite substantial evidence of remarkable genome content 
conservation in Mtb, published estimates of its pan-genome 
size vary greatly, ranging from 506 to 7618 accessory genes 
(Kavvas et al. 2018, Reis and Cunha 2021, Behruznia et al. 
2024, Silva-Pereira et al. 2024). These dramatic differences in 
results appear to be primarily driven by the methodological 

choices used in each study. For instance, studies with largest 
accessory genome estimates typically used tools that define 
gene absence based solely on CDS amino acid clustering, 
whereas smaller estimates came from methods that evaluated 
gene presence/absence at both the CDS and nucleotide level. 
Additionally, the largest accessory genome predictions came 
from studies using short-read assemblies, which are prone to 
fragmentation and assembly errors, whereas the smaller esti
mates more often relied on complete genomes produced 
through hybrid assembly. These discrepancies highlight how 
methodological differences can lead to drastically different 
pan-genome estimates, even for an organism with no ac
tive HGT.

In this work, we focus on understanding the confounding 
factors and biases in bacterial pan-genome analysis. To 
achieve this, we used a curated dataset of Mtb isolates to sys
tematically benchmark different analysis approaches. This 
dataset allowed us to examine how assembly quality, annota
tion pipelines, and pan-genome prediction software affect the 
results of pan-genome analysis. We first built a pan-genome 
graph to characterize structural variation between Mtb 
genomes. We found that a majority of the structural variation 
in the Mtb genome involves reconfiguration of existing nucle
otide sequence content, instead of loss or gain of novel geno
mic sequences. Then, we benchmarked common bacterial 
pan-genome analysis tools and found that several pipelines 
are prone to overinflating the size of the accessory genome 
due to CDS annotation discrepancies, and that this pitfall can 
be worsened by the use of fragmented short-read assemblies 
as input. Finally, to highlight broader challenges in pan- 
genome analysis, we expanded our benchmarking to include 
curated datasets of Escherichia coli and Staphylococcus au
reus, two phylogenetically distinct pathogens of clini
cal relevance.

2 Materials and methods
2.1 Dataset of clinical Mtb isolates with long- and 
short-read WGS
We compiled a dataset of 151 Mtb isolates with both short- 
read (Illumina) and long-read (Oxford Nanopore, PacBio) se
quencing data. This includes both previously published data 
(n¼ 143) and newly sequenced isolates (n¼ 8, PacBio HiFi 
and Illumina WGS). Due to significant variations in sequenc
ing depth and read lengths of generated long-read WGS, we 
used stringent selection criteria for inclusion in analysis. 
Specifically, we selected only isolates that could be assembled 
into a single, circular contig when using the Flye long-read 
genome assembler. This selection was crucial to ensure that 
the hybrid assemblies reflect truly complete Mtb genomes. 
Supplementary File S2 details all relevant ENA/SRA run 
accessions and metadata for all Mtb genome sequencing 
data used.

2.2 H37Rv reference genome and annotations
The H37Rv (NCBI Accession: NC_000962.3) genome se
quence and annotations was used as the standard reference 
genome for all analyses involving Mtb. Functional category 
annotations for all genes of H37Rv were downloaded from 
Release 3 of MycoBrowser (https://mycobrowser.epfl.ch/ 
releases). The H37Rv reference sequence was also annotated 
with the Bakta (v4.8) and PGAP (v6.4) pipelines for compar
ison with the official H37Rv annotations. The DNA Features 
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Viewer python library was used to generate programmatic 
visualizations of the NCBI, PGAP, and Bakta H37Rv annota
tions (Zulkower and Rosser 2020) shown in Supplementary 
Fig. S5 and in Supplementary Files S9 and S10.

2.3 Selection of a diverse dataset of E. coli 
genome assemblies
A subset of 50 published genomes were selected from Shaw 
et al. a previous analysis of E. coli genomic diversity (Shaw 
et al. 2021). In this study, all genomes were assembled using 
an hybrid approach using both long and short-read genome 
sequencing data. In order to assure a diverse set of genomes, 
representative subset of isolates from the following nine E. 
coli phylotypes were selected from published metadata: A, 
B1, B2, C, D, E, F, G, and clade V. To complement the avail
able published hybrid assemblies, the paired-end short-read 
genome sequencing data for each isolate was downloaded 
from the NCBI Sequence Read Archive for de novo short- 
read assembly. Metadata for all evaluated E. coli isolates, 
including assembly and sequencing run accessions, are pro
vided in Supplementary File S2.

2.4 Selection of a diverse dataset of S. aureus 
genome assemblies
A dataset of 68 S. aureus genomes were selected from a pub
lished study of pan-genome variation of S. aureus clinical iso
lates (Houtak et al. 2023). In this study, all published 
genomes were assembled using a hybrid approach combining 
both long and short-read genome sequencing data. To com
plement the existing published hybrid assemblies, the paired- 
end short-read genome sequencing data for each isolate was 
obtained from the NCBI Sequence Read Archive for de novo 
short-read assembly.

2.5 Hybrid genome assembly with long and short 
read sequencing
The hybrid genome assembly and polishing process was tai
lored to the specific requirements of various long-read WGS 
platform and chemistry versions used for analysis (PacBio 
subreads [RSII and Sequel II], ONT v9.4.1, PacBio CCS/HiFi 
[Sequel II] reads), as well as taking into account the software 
versions available at the time of data processing. Refer to the 
Supplementary Methods for the exact combination of soft
wares and parameters used for genome assembly.

2.6 Short read de novo genome assembly
The following assembly approach was applied to all paired- 
end Illumina WGS data from Mtb, E. coli, and S. aureus iso
lates. First, the paired-end reads were trimmed with 
Trimmomatic (v0.39) (Bolger et al. 2014). After read proc
essing, de novo short-read assemblies were then generated us
ing Unicycler (v0.4.8), which serves as an assembly 
optimizer for SPAdes (v3.13) (Wick et al. 2017, Prjibelski 
et al. 2020). Prior to assembly of the Mtb isolates, the 
trimmed reads were additionally filtered using Kraken2 to 
keep only reads that were confidently classified as Mtb com
plex (MTBC, TaxID: 77643) (Wood et al. 2019). After as
sembly of the Mtb isolates, Kraken2 was used to select only 
contigs that were classified as MTBC (TaxID: 77643). This 
Kraken2 filtering was performed to minimize chances of con
taminating contigs from other species being included in the 
pan-genome analysis using short-reads. The standard 

complete Kraken2 RefSeq database was used for all se
quence classification.

2.7 Phylogeny inference of Mtb dataset
Genetic variants relative to the H37Rv reference genome 
were inferred for each hybrid genome assembly using minimap2 
and paftools.js (Li 2018). A concatenated SNP alignment 
was then generated by identifying and extracting single nucleo
tide polymorphisms (SNPs) from each genome assembly using 
bcftools (Danecek et al. 2021). From the SNP alignment, a maxi
mum likelihood phylogeny was inferred using IQ-Tree with the 
general time reversible model and a SNP ascertainment bias 
correction (Minh et al. 2020).

2.8 Phylogeny inference of E. coli and S. 
aureus datasets
To generate a core genome alignment for the E. coli and S. 
aureus datasets respectively, the hybrid assembly genomes for 
each dataset were processing using Panaroo with the follow
ing settings: –merge_paralogs, –clean-mode strict, –remove- 
invalid-genes, –alignment core, –aligner mafft. From the core 
gene alignment FASTA, a maximum likelihood phylogeny 
was inferred using IQ-Tree with the general time reversible 
model (Minh et al. 2020).

2.9 Assessment of high-level genome 
sequence similarity
For the Mtb (n¼151), E. coli (n¼50), and S. aureus (n¼68) 
datasets, FastANI version (v1.3) run with default parameters 
to estimate Average Nucleotide Identity (ANI) between all 
pairs of complete genomes (Jain et al. 2018). SourMash ver
sion (v4.8.2) was used to calculate the Jaccard Similarity of 
all unique 31 bp k-mers between each pair of complete 
genomes within a dataset (Pierce et al. 2019). To calculate 
the profile of all canonical 31 bp k-mers for each genome, the 
sourmash sketch dna command was run with the -p 
scaled¼1 parameter. The -p scaled¼1 parameter 
forces the comparison of the complete k-mer set (no down
sampling) of each genome. All k-mer signatures were then in
put into the sourmash compare command with default 
parameters. The Seaborn library was used to visualize heat
maps of estimated ANI and k-mer Jaccard Similarity across 
each bacterial population (Waskom 2021).

2.10 Construction of the Mtb SV pan-genome graph
The Mtb SV pan-genome graph was built with Minigraph 
(v0.19, default parameters) using H37Rv as the initial refer
ence and with all 151 complete genome assemblies as input 
(Li et al. 2020). GFAtools was used for all graph manipula
tions and reformatting of bubble region and node informa
tion. The Bandage software was used for visualization of the 
resulting Mtb SV pan-genome graph (Wick et al. 2015).

2.11 Genome annotation
All hybrid and short-read assemblies were annotated with the 
Bakta (v4.8) and PGAP (v6.4) annotation pipelines 
(Tatusova et al. 2016, Schwengers et al. 2021). The GFF an
notation files output by each annotation pipeline were used 
as input to all pan-genome analysis pipelines evaluated. All 
genome assemblies (Hybrid and Short-read) and their respec
tive annotations used in this study are available on Zenodo 
(10.5281/zenodo.10846276).

Pitfalls of bacterial pan-genome analysis approaches                                                                                                                                                        3 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/5/btaf219/8127202 by guest on 18 July 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf219#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf219#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf219#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf219#supplementary-data


2.12 Benchmarking pan-genome analysis pipelines
We benchmarked four gene-centric pan-genome analysis 
pipelines (Panaroo, Roary, PPanGGolin, and Pangene) across 
datasets from three bacterial species: Mtb, E. coli, and S. au
reus. All of these analyses followed a standardized three-step 
workflow. First, genome assemblies were selected for analy
sis, using either hybrid assemblies (based on long- and short- 
read sequencing) or short-read-only de novo assemblies. 
Second, each genome was annotated de novo using Bakta or 
PGAP, producing gene and coding sequence (CDS) annota
tions (Tatusova et al. 2016, Schwengers et al. 2021). Third, 
annotated assemblies were analyzed using each pan-genome 
analysis software with varying internal parameter settings to 
assess the influence of gene clustering thresholds and heuris
tics on pan-genome estimates. For Mtb, analyses were con
ducted using both Bakta- and PGAP-annotated assemblies. 
For Eco and Sau, only Bakta annotations were used to sim
plify cross-species comparisons.

Each pan-genome tool was run across a range of parameter 
combinations to capture the impact of different gene cluster
ing setterings. For Panaroo, we varied the accessory gene fil
tering stringency using the –clean-mode parameter (strict, 
moderate, or sensitive) and toggled –merge_paralogs to 
control whether paralogs were merged or retained as separate 
genes. For Roary, we varied the minimum amino acid identity 
threshold used to cluster protein sequences (-i set to 80, 90, 
or 95) and whether paralogous sequences were merged (-s 
flag enabled or not). PPanGGolin was evaluated using nine 
combinations of minimum alignment coverage (–coverage 
set to 0.8, 0.9, or 0.98) and minimum sequence identity 
thresholds (–identity set to 0.6, 0.8, or 0.9). For Pangene, 
we followed its standard three-step workflow. First, we used 
CD-HIT to cluster CDSs based on amino acid similarity, 
varying the clustering threshold (-c) across 0.90, 0.95, and 
0.98. Second, the representative protein sequence from each 
CDS cluster was aligned to analyzed genomes using Miniprot 
(protein-to-genome alignment), varying the alignment iden
tity threshold (–outs) across 0.90, 0.95, 0.98, and 0.99 (Li 
2023). Third, the resulting Miniprot alignments were proc
essed by Pangene to build a gene-level pan-genome graph and 
generate a gene presence/absence matrix.

From these results we then evaluated the number of core 
genes (present in ≥99% of assemblies), and the number of ac
cessory genes (present in <99% of assemblies) defined by the 
gene presence/absence matrix of each analysis output. A com
plete summary of all pan-genome estimates generated for this 
study can be found in Supplementary File S8.

2.13 Overview of the panqc pipeline
The panqc nucleotide redundancy correction pipeline adjusts 
for both CDS annotation discrepancies and nucleotide redun
dancy within an estimated pan-genome with two steps. In 
step one, all genes absent at the CDS level are aligned to each 
corresponding assembly at the nucleotide level. This step is 
implemented using minimap2 to align the nucleotide se
quence of each gene to the corresponding genome assembly 
(Li 2018). By default if the absent CDS’s gene sequence is 
found with both 90% coverage and sequence identity it will 
be marked as a CDS annotation discrepancy, meaning the 
gene is absent at CDS level but present at the nucleotide level. 
The align coverage and identity thresholds are usable defin
able parameters. Next, all genes are re-clustered and merged 
using a nucleotide k-mer based metric of nucleotide 

similarity. Cases where two or more genes are divergent at 
the protein level but highly similar at the nucleotide level will 
be merged into a single “nucleotide similarity gene cluster.” 
An adjusted gene presence/absence matrix is then produced 
such that all gene clusters in the input are merged if they 
share substantial DNA sequence similarity.

In the DNA k-mer similarity graph used for reclustering of 
sequences, distances between genes are specifically computed 
as the maximum Jaccard Containment between their k-mer 
sets. The Jaccard Containment between the k-mer sets of 
genes A and B is calculated as Jaccard ContainmentðA; BÞ ¼
j A \ Bj ⁄ jAj, where jAj denotes the total number of k-mer 
in the set A, and jA \ Bj represents the number of k-mers 
shared between A and B. To account for different gene 
lengths, we use the maximum Jaccard Containment as this 
ensures that the k-mer similarity will be set to 1 if a shorter 
gene’s k-mer set is fully contained within a longer gene’s set.

3 Results
3.1 Curating a dataset of high quality Mtb genomes
We curated a collection of 151 complete assemblies of Mtb 
derived from diverse human adapted isolates. This was done 
using six previously published collections, as well as eight iso
lates newly sequenced for this study (Chiner-Oms et al. 2019, 
Lee et al. 2020, Ngabonziza et al. 2020, Peker et al. 2021, 
Marin et al. 2022, Hall et al. 2023). Each isolate was se
quenced using both short- and long-read technologies 
(Oxford Nanopore and PacBio), and both a short-read (SR) 
de novo assembly and a hybrid genome assembly (long-read 
de novo assembly with short-read polishing) were generated. 
The resulting dataset includes Mtb lineages 1–6 and 8, span
ning the global diversity of the Mtb phylogeny (Fig. 1). The 
curated genomes exhibit high sequence similarity and con
served genome characteristics: 99.8%–100% pairwise aver
age nucleotide identity (ANI), 0.94–0.99 pairwise k-mer 
jaccard similarity, a genome size of 4.38–4.44 Mb, 4020– 
4135 predicted proteins (CDSs), and 65.6%—65.6% GC 
content (Fig. 1 and Supplementary Fig. S2, Supplementary 
Table S1). As expected, short-read assemblies were consis
tently more fragmented, had a lower cumulative length, and 
fewer predicted coding sequences compared to their hybrid 
counterparts.

3.2 Most structural variation in Mtb is attributed to 
rearrangements of existing sequence, rather than to 
novel sequence content
We next aimed to characterize the structural variation (SV) 
landscape across our dataset of complete Mtb genomes and 
quantify its contribution to accessory genome content across 
the population. This analysis focused on distinguishing be
tween SVs that generate novel accessory sequence from those 
involving the rearrangement or duplication of existing geno
mic material. To achieve this, we constructed a pan-genome 
graph of SVs, using the Minigraph algorithm (Li et al. 2020). 
The Minigraph algorithm identifies all SVs ≥50 bp by itera
tively aligning genomes and incorporating new variants into 
a graph. By design, this approach prevents the collapse of re
peated sequences, preserving genomic context and co- 
linearity of the identified SVs.

We next classified the nodes of the pan-genome graph into 
Core nodes (genomic regions present across all isolates), and 
SV nodes (representing structural variants found between 
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genomes). The pan-genome graph contained 536 Core nodes, 
with a cumulative length of 3.9 Mb, and 2602 SV nodes, with 
a cumulative length of 1.3 Mb (Fig. 2). A genomic region con
taining structural variation may consist of multiple connected 
SV nodes; such regions are referred to as bubble regions in 
this study. They can range from simple insertions or deletions 
to highly complex regions with multiple distinct rearrange
ments. Two representative examples affecting genes belong
ing to the pe and ppe gene families are shown in Fig. 2A. In 
total, there were 535 distinct bubble regions identified.

Given the large number of SV nodes detected, we aimed to 
understand which nodes represented truly novel sequence 
content and those involving the rearrangement of existing 
sequences. For this, we implemented a computationally effi
cient k-mer comparison method that classified nodes as 
unique or redundant by assessing shared k-mer content 
across all nodes in the graph (Section 2). We identified 463 

SV nodes with unique k-mer content (Fig. 2D), indicating 
that only 23% (302 kb) of the total cumulative length of SV 
nodes represent novel sequence content. These results estab
lish a robust baseline for the expected amount of accessory 
genome content in downstream analyses.

We next classified redundant SV nodes according to the Mtb 
gene categories they comprise (Supplementary Table S2). 
Notably, we found that more than half (339 SV nodes, 489 kb 
of cumulative length) belonged to the Insertion sequences and 
phages category (Fig. 2D). Upon further inspection, a single 
type of insertion element, IS6110, was responsible for the vast 
majority (455 kb) of the redundant SV nodes. We found that 
only a minor fraction of the SV nodes (67 kb, 5% of the total 
length), represent sequences completely absent from the H37Rv 
reference genome. These SV nodes were spread across 65 bub
ble regions in the graph, and contain known deletions unique to 
specific Mtb lineages, such as TbD1 (Brosch et al. 2002, Bottai 

Figure 1. Summary of dataset of 151 complete Mtb genomes. Left: Maximum likelihood phylogeny of all 151 genomes, colored according to their 
lineage (L1-6, L8). Right: Heatmap of pairwise ANI. Below: Distribution of pairwise ANI values, and corresponding heatmap colorbar.
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et al. 2020) (Supplementary Fig. S3). The 18 largest bubble 
regions with sequence absent from H37Rv are highlighted in 
Supplementary Table S3.

3.3 The choice of software and specific pipeline 
parameters can substantially impact pan-genome 
size estimates
In bacterial pan-genome analysis, most workflows begin with 
de novo genome annotation, followed by homology-based 
clustering of annotated coding sequences (CDS), but after 
this initial step, pipelines can diverge substantially in how 
they adjust and refine these clusters. Because some published 
studies appear to overestimate Mtb accessory genome size, 
we assessed variability in Mtb pan-genome estimates when 
using four commonly used pipelines: Panaroo, Roary, 
PPanGGolin, and Pangene (Page et al. 2015, Gautreau et al. 
2020, Tonkin-Hill et al. 2020, Li et al. 2024). We investi
gated three key parameter types known to affect analysis 

outcomes: (i) the assembly type of the input genomes (de 
novo short-read assembly versus hybrid genome assembly), 
(ii) the gene annotation pipeline applied to these genomes 
(Bakta or PGAP), and (iii) the gene clustering parameters of 
the pan-genome software (sequence identity threshold, merg
ing of paralogs, and pipeline heuristics).

Despite analyzing an identical population of 151 Mtb iso
lates, results across parameter combinations varied widely, 
with accessory gene estimates ranging from 277–3602 and 
core genes from 2868–3833 (Fig. 3A and Supplementary Fig. 
S4). We detected distinct trends in how different parameters 
influenced the results. First, using short-read assemblies sys
tematically resulted in smaller core genome, and larger acces
sory genome estimates. Using short-read assemblies predicted 
on average 551 more accessory genes and 368 less core genes, 
compared to using their respective hybrid genome assemblies. 
We found that when using short-read assemblies, 7%–13% 
of all predicted gene absences were a direct consequence of 

Figure 2. Characteristics of Mtb SV pan-genome graph. (A) Left: Circle representing the high-level view of the Mtb SV pan-genome graph. Right: Two 
bubble regions shown in detail. Bubble Region 20 is representative of regions with a simple insertion/deletion, containing a single SV node (186 bp) in 
gene pe4 (Rv0160c). Bubble region 309 is representative of a complex bubble region, containing 88 SV nodes (55 759 bp) spanning from gene plcC 
(Rv2349c) to ppe40 (Rv2356c). (B) Distribution of the number of SV nodes per bubble region. (C) Distribution of SV node length. (D) Hierarchical 
breakdown of Core and SV nodes in specific categories of interest, showing number of nodes and cumulative length.
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assembly failures (Supplementary Results, Supplementary 
Table S6).

Additionally, the annotation pipeline used also had a sub
stantial impact on analysis results. Compared to PGAP, using 
Bakta annotations consistently produced larger pan-genome 
size estimates, with an average increase of 430 total genes 
(Fig. 3A). We investigated the differences between the two 
annotation pipelines and found that PGAP consistently anno
tated fewer CDSs and more pseudogenes per genome (Fig. 3B 
and C, Supplementary Fig. S5, Supplementary Tables S3 and 
S4, Supplementary Results). This effect was substantial: 
PGAP annotated between 302–470 pseudogenes per genome, 
whereas Bakta annotated only 5–31. Notably, this 

corresponds to 7%–11% of genes being annotated as pseudo
genes in PGAP, which is critical given that pseudogenes are 
excluded from the initial CDS clustering steps in all evaluated 
pan-genome pipelines.

Finally, we found that each software tool differed in how 
consistent the results were under varying input parameters. 
Panaroo and Pangene were the most consistent across all 
tested variables, producing accessory genome size estimates 
that ranged from 313–1050 and 277–959 genes, respectively. 
In contrast, Roary and PPanGGolin accessory genome size 
estimates ranged from 538–2912 and 755–3602 genes, re
spectively (Fig. 3A). The robustness of Panaroo and Pangene 
suggests that these tools are less sensitive to discrepancies in 

Figure 3. Comparison of Mtb pan-genome predictions across different analysis parameters. (A) Comparison of the number of core and accessory genes 
estimated for the identical population of 151 Mtb isolates across all tested parameters: Assembly type (hybrid versus short-read), annotation pipeline 
(Bakta versus PGAP), and pan-genome software (Panaroo, Roary, PPanGGolin, and Pangene). Each data point represents a different set of gene 
clustering parameters of the specific software. (B) Number of predicted CDS features annotated by Bakta and PGAP across all hybrid Mtb genomes. 
(C) Number of predicted pseudogene features annotated by Bakta and PGAP across all hybrid Mtb genomes.
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CDS annotations, likely due to their cluster-refinement strate
gies, which incorporate nucleotide-level information rather 
than relying primarily on CDS annotations. As a result, they 
are more reliable when handling data of varying quality or 
when identifying complete gene gain or loss at the nucleo
tide level.

3.4 In Mtb, accessory genome inflation is driven by 
differences in coding sequence annotations rather 
than by actual nucleotide content variation
Given the drastic variability observed in Mtb pan-genome 
results under different parameters, we aimed to identify 
which trends were generalizable to other bacterial species and 
which were specific to Mtb’s unique genomic features. As 
with the Mtb dataset, we curated two additional datasets 
consisting of 50 Escherichia coli (Eco) and 68 
Staphylococcus aureus (Sau) isolates, each sequenced using 
both short- and long-read technologies (Shaw et al. 2021, 
Houtak et al. 2023). (Supplementary Figs S7 and S8). These 
bacterial species were selected because they belong to phylo
genetically distant groups, and, unlike Mtb, exhibit horizon
tal gene transfer and substantially greater sequence 
divergence within their populations. While the pairwise ANI 
within Mtb ranged from 99.8%–100%, it ranged from 
90.6%–100% and 97.2%–100%, in the Eco and Sau data
sets respectively (Supplementary Figs S7 and S8).

We conducted the same benchmarking experiments using 
Panaroo, Roary, PPanGGolin, and Pangene, using short-read 
and hybrid assemblies annotated with Bakta. Consistent with 
our findings in Mtb, the pan-genome estimates in Eco and Sau 
were highly sensitive to the specific parameters evaluated. 
Pan-genome estimates for the Eco population ranged from 
1418–3036 core genes and 9201–25 101 accessory genes, 
while pan-genome estimates for the Sau population ranged 
from 1323–2146 core genes and 1862–6366 accessory genes 
(Fig. 4A–C). Likewise, as observed with Mtb, Panaroo and 
Pangene deliver more consistent results, and exhibit greater ro
bustness to parameter selection. However, in contrast with 
our findings in Mtb, using short-read assemblies had an oppo
site effect on overall pan-genome size in Eco and Sau. For 
Mtb, using short-read assemblies on average increased the 
pan-genome size by 278 genes while for Eco and Sau it 
resulted in an average decrease of 559 and 99 total genes 
respectively.

For all three species, we aimed to understand to what ex
tent discrepancies in pan-genome estimates could be attrib
uted to differences in CDS annotation. Variations in 
predicted amino acid sequences can arise from several sour
ces, including assembly errors, frameshift mutations, or other 
genuine mutations that disrupt coding sequences. Yet, when 
the underlying nucleotide sequence is largely unchanged, 
such differences likely do not reflect true gene gain or loss. 
We found that, on average, 49% of all genes predicted to be 
absent Mtb pan-genome predictions were caused by discrep
ancies in CDS annotation (Fig. 4D). In contrast to Mtb, Eco, 
and Sau had a minimal proportion (�1%) of gene absences 
caused by CDS annotation discrepancies (Fig. 4D, 
Supplementary Tables S6–S8). These results highlight a chal
lenge unique to Mtb, in which repetitive sequences, frame
shift mutations, and gene pseudogenization can frequently 
result in CDS annotation discrepancies, which in turn inflates 
accessory genome size estimation.

3.5 Developing a tool to account for nucleotide 
redundancy within CDS based pan-genome  
estimates
Motivated by our observation that CDS annotation discrepan
cies can inflate the estimated pan-genome size, we developed 
panqc. panqc is a software that takes output files from com
monly used pan-genome prediction softwares, and readjusts 
the pan-genome estimates by reclustering CDSs with highly 
similar nucleotide sequence content. Our algorithm consists of 
two steps: First, it takes all the CDSs predicted to be absent in 
a genome, and queries the nucleotide sequence against the as
sociated genome assembly. If the nucleotide sequence is found, 
with a coverage and sequence identity >90%, the gene is clas
sified as being present at the DNA level, but absent at the CDS 
level. Second, genes are merged into nucleotide similarity clus
ters using a k-mer based similarity metric (Fig. 5A, Section 2). 
The final output is an updated pan-genome estimate that pri
oritizes differences in nucleotide sequence content over coding 
sequence differences.

We evaluated the effect of panqc readjustment on compati
ble pan-genome outputs of Roary and Panaroo for our Mtb 
and Eco datasets (Fig. 5A and Supplementary Fig. S9, 
Supplementary Table S9). Across all Mtb estimates, panqc re
duced the overall accessory genome size by 420 genes (44%) 
on average. Even when applied to the most conservative esti
mate produced by Panaroo (using hybrid assemblies, and the 
–clean-mode strict and –merge_paralogs options), 
the pan-genome size was reduced by 139 genes. For Eco, 
panqc modestly reduced the estimated accessory genome size 
by 80 genes (0.7%) on average (Fig. 5B and Supplementary 
Fig. S10, Supplementary Table S10). Although the absolute 
number of genes re-clustered is similar to that of Mtb, this 
represents a much smaller proportion of the overall Eco ac
cessory genome (estimated to be 9201–25 101 genes).

4 Discussion
In this work, we systematically evaluated how various input 
data and software parameters influence pan-genome analysis, 
highlighting critical pitfalls in the process. We benchmarked 
commonly used bacterial pan-genome prediction softwares: 
Panaroo, Roary, PPanGGolin, and Pangene. We varied soft
ware specific parameters that affect gene clustering heuristics, 
as well as key characteristics of the input genomes, including 
assembly type and gene annotation pipeline used. We applied 
this benchmarking framework to three datasets of phylogenet
ically distinct bacterial species: Mtb, E. coli, and S. aureus. 
Across all three species, these parameters had a large impact 
on pan-genome size estimates, with differences in core and ac
cessory gene counts reaching into the thousands. The extreme 
variability observed across these results underscores how chal
lenging it is to compare and interpret pan-genome results 
across studies. Additionally, it emphasizes that researchers 
must understand and report the underlying assumptions and 
parameters of the pan-genome analysis tools used.

Although pan-genome results were highly sensitive to pa
rameter choices in all three species, Mtb was especially af
fected by discrepancies in CDS annotations across isolates. 
This sensitivity is largely due to its high content of repetitive 
sequences and a high rate of gene pseudogenization (due to 
frameshift, insertion and deletion mutations). Combined with 
a genuinely small accessory genome, these factors lead to a 
disproportionate inflation of accessory gene counts relative 
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Figure 4. Pan-genome tool comparison across three different bacterial species (A–C) Core and accessory genome estimates for Mtb, Eco, and Sau 
datasets across all tested parameters: Assembly type (hybrid versus short-read), and pan-genome software (Panaroo, Roary, PPanGGolin, and Pangene). 
Each data point represents a different set of gene clustering parameters of the specific software. (D) Percentage of gene absences due to CDS 
annotation discrepancy across Mtb, Eco, Sau. Each data point represents a different set of gene clustering parameters for Panaroo or Roary.
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to the amount of accessory nucleotide sequence. Supporting 
this, our graph-based pan-genome analysis revealed that 
while structural variation exists in Mtb genomes, it primarily 
involves rearrangement of existing sequence, instead of novel 
nucleotide content. Despite some studies reporting unexpect
edly large accessory genomes for Mtb (contradicting its well- 
established genomic conservation) our results suggest that 
how different pan-genome softwares handle protein coding 
differences (causing CDS annotation discrepancies) are the 
main drivers of inconsistency in accessory genome size. These 
findings raise the intriguing possibility that Mtb may com
pensate for its lack of horizontal gene transfer by leveraging 

disruptive mutations in coding regions as a major source of 
adaptive variation.

To address the potential ambiguity that arises from CDS an
notation discrepancies, we developed panqc. It takes output 
files from commonly used pan-genome softwares and allows 
the user to readjust the pan-genome estimates by reclustering 
CDSs with highly similar nucleotide sequence content, with 
transparent controls over how nucleotide redundancy is 
accounted for. By reporting whether gene presence or absence 
is due to differences in CDS annotation or nucleotide-level ab
sence, panqc provides valuable context for interpreting pan- 
genome results. This, in turn, enables more meaningful 

Figure 5. Overview of the panqc nucleotide correction pipeline and panqc adjustment of Mtb and Eco pan-genome estimates. (A) Diagram of the panqc 
algorithm: In Step1, all predicted gene absences making up the predicted accessory genome are identified. In Step 2, each absent gene’s nucleotide 
sequence is aligned against all genomes. In Step 3, alignments are analyzed to identify if the nucleotide sequence is still present despite the previously 
predicted absence. In Step 4, all genes are clustered based on the similarity of their nucleotide sequences. In Step 5, pan-genome estimates are 
readjusted accounting for presence/absence of nucleotide sequence. (B) Comparison of Panaroo and Roary pan-genome predictions before and after 
panqc re-adjustment with default parameters for Mtb and Eco datasets, for both hybrid and short-read assemblies. Each data point represents a different 
set of gene clustering parameters for Panaroo or Roary before or after panqc adjustment.
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comparisons between outputs from different tools and param
eter choices. We envision that panqc can be used in conjunc
tion with other tools available for quality control of 
pan-genome estimates, such as Panaroo’s suite of post- 
processing scripts or Panstripe (Tonkin-Hill et al. 
2020, 2023b).

While certain research questions can be addressed by fo
cusing primarily on either protein-level or nucleotide-level 
differences, a comprehensive view of the evolutionary dy
namics influencing genome variation will require methods 
that smartly integrate both levels of sequence information. 
We anticipate that improvements in the next wave of pan- 
genome analysis methods will continue to come from 
approaches that innovate on the integration of nucleotide 
and amino acid level information in biological meaning
ful ways.
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