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Auxetic structures, known for their unique mechanical properties, have gained significant attention across 

diverse fields. This study designs, manufactures, and optimizes bioinspired auxetic structures for 

biomedical applications, specifically bone and tendon tissue regeneration. A comparative analysis was 

conducted to evaluate the compressive and tensile properties of various auxetic designs. All structures were 

optimized using a cost-effective methodology that integrates the finite element method with data-driven 

supervised machine learning, maximizing Young's modulus with minimal porosity changes. The findings 

reveal that design variables significantly influence both auxeticity and mechanical properties. For instance, 

Young's modulus increased by 135.5% in sharp sinus (SS) and curved sinus (CS) structures while 

maintaining similar auxeticity. In contrast, the star (St) design showed a 76.5% increase in Young's 

modulus, with auxeticity increasing from -0.45 to -0.915. The modified re-entrant (M-Re) structure 

mailto:synam@pknu.ac.kr


exhibited higher Poisson's ratio values, closely mimicking cancellous bone. Additionally, structures with 

higher auxeticity using re-entrant (Re) designs proved suitable for tendon tissue engineering. SS, CS, and 

St structures offer versatility in achieving a diverse Young's modulus range, making them well-suited for 

tendon tissue engineering alongside the Re structure. 

 

1. Introduction 

Tendon injuries and bone-related disorders are prevalent in modern life, causing severe pain and 

decreased quality of life [1]. Tissue-engineered scaffolds, involving pre-designed porous structures 

with similar physical and mechanical properties, can serve as a housing for cells to accelerate the 

healing process of bone and tendon injuries [2]. In this regard, utilizing complex bioinspired 

structures with exceptional properties can be an effective strategy to mimic host tissues [3].  

Metastructures, including auxetic metastructures, represent a method for fabricating light-weight 

architectures with unique and multifunctional properties [4]. These structures exhibit expansion 

under tensile loads, indicating a negative Poisson's ratio (NPR) [5]. This uncommon behavior leads 

to high energy absorption [6], variable permeability [7], improved fracture toughness [8], and damage 

properties of the porous structures [9]. Additionally, auxetic structures can isotopically deliver loads 

to cells and enhance cell proliferation [10]. Furthermore, some human tissues, including cancellous 

bones and tendons, show various levels of auxeticity. The Poisson's ratio can vary near zero for 

cancellous bones and reach high negative values (approximately -3) for natural tendons [11]. Hence, 

adapting complex auxetic structures can facilitate the biomimicry of human tissue with NPR 

behaviors [12]. 

Crafting intricate auxetic structures to replicate the characteristics of natural human tissues 

requires meticulous fabrication techniques. Additive manufacturing, involving the layer-by-layer 

deposition of materials, is promising for creating these auxetic structures [13]. However, after high-

precision fabrication using additive manufacturing, an effective evaluation method to accurately 

assess the mechanical properties of auxetic structures is essential due to their high sensitivity to 

small structural changes, leading to varied mechanical properties under different conditions [14]. 

Evaluating the mechanical properties of porous auxetic structures is best achieved through 

experimental methods; however, the cost and time involved in those tests compel researchers to 

integrate these investigative approaches with computational-based methods. In this context, 



computer-aided design (CAD)-based finite element methods (FEM) offer a cost-effective and 

highly accurate strategy for predicting the mechanical properties of scaffolds [2c, 15]. Moreover, 

FEM reveals structural deformations and stress distributions, addressing the challenges of a 

comprehensive evaluation of mechanical hardness [16]. However, determining the optimal design 

variables using FEM necessitates the creation of multiple CAD models, a process that can be time-

intensive [17]. 

Due to the difficulty of providing various designs, replicating the physical properties, such as 

Poisson's ratio, of human tissues poses a considerable challenge. Consequently, numerous 

researchers focus exclusively on identifying mechanical properties akin to those found in human 

tissues [18]. Nevertheless, the practical implementation of diverse structures to mimic the physical 

properties of human tissues can prove to be a time-consuming and costly endeavor. In this regard, 

machine learning (ML) can be beneficial in expediting the optimization of auxetic design variables 

and programming their properties [19]. These data-driven methods deploy and learn from existing 

data to make predictions about future outcomes [20]. Additionally, they offer numerous advantages 

in predicting mechanical properties due to their high adaptability to various designs, independence 

from specific physical designs, and lower computational costs compared to relying solely on FEM 

[21]. In accordance with these positive impacts, researchers have employed various ML methods to 

predict the mechanical properties of porous structures, including auxetic architectures [19b, 22].  

To address the gap pertaining to the consideration of various physical and mechanical properties 

of scaffolds, this study implements ML methods to comprehensively investigate five distinct 

bioinspired auxetic structures and predict their corresponding Young's modulus. The study also 

aims to enhance Young's modulus within these designs while minimizing alterations to porosity 

levels and aligning with the auxeticity observed in human bone and tendon tissues. As presented 

in Figure 1, multiple bioinspired and conventional structures were designed using CAD software 

and meticulously fabricated by additive manufacturing techniques. Subsequently, the mechanical 

properties of the auxetic structures underwent rigorous examination through experimental methods. 

To facilitate data-driven ML approaches, design variables for each structure were systematically 

modified and mechanically evaluated using FEM simulation. Ultimately, the optimal structures 

were predicted by an ML technique and manufactured, and their performances were 



experimentally verified based on the ML results. This study demonstrates the potential of machine 

learning in advancing the fabrication of bioinspired auxetic structures for biomedical applications. 

 
Figure 1. Overview of the process of design, fabrication, and evaluation of auxetic structures. 

 

2. Results 

2.1. Assessment of mechanical properties 

For clarity and consistency, the following abbreviations are used throughout this study: re-entrant 

(Re), modified re-entrant (M-Re), sharp sinus (SS), curved sinus (CS), star (St), decision tree (DT), 

random forest (RF), gradient boosting (GB), support vector machine (SVM), normalized mean 

square error (NMSE), mean squared error (MSE), coefficient of determination (R2), and cross-

validation (CV). To curate a dataset for data-driven methodologies, variables were systematically 

adjusted, guided by the insights from Table 2 and Table 5, with a focus on minimizing alterations 

to the porosity of scaffolds. Subsequently, the newly devised structures underwent rigorous 

scrutiny by FEM to quantify the Young's modulus. Each of these procedural stages is meticulously 



delineated in Figure 2, Table 1, and Table 2. Furthermore, the printing resolution of the auxetic 

structures and the differences between the designed and measured porosity are presented in Table 

S21. These results confirm the reliable quality of the printed auxetic structures in this study. 

Consequently, distinct sets of designs—42 for Re, 42 for M-Re, 27 for SS, 81 for CS, and 72 for 

St structures—were generated. The mechanical analysis of all structures under both tensile and 

compressive loads is graphically represented in Figure 3 and Figure S1. Details of physical 

variables and Young's modulus are presented in Table S1-S5. 

 
Figure 2. (a) Compressive mechanical properties and (b) tensile mechanical properties of auxetic 

structures and their numerical validations. 

  

 

Table 1. Experimental and numerical values of Young's modulus, porosities, and Poisson's ratio 

of different auxetic structures. 

Structure 

Experimental 

compressive 

modulus 

(MPa) 

Experimental 

tensile 

modulus 

(MPa) 

Numerical 

compressive 

modulus 

(MPa) 

Numerical 

tensile 

modulus 

(MPa) 

Porosity 

(%) 

Poisson's 

ratio 

Re 84.23 106.19 83.15 103.05 71.89 -1.632 

M-Re 243.32 279.31 242.53 286.18 70.19 -0.684 

SS 10.54 17.23 10.76 17.62 81.3 -1.11 

CS 12.74 19.06 13.1 19.85 80.8 -1.05 

St 35.41 66.12 35.09 66.91 70.5 -0.45 

  
 



Table 2. Variables of the design of different auxetic structures and their intervals. 

Structure a (mm) b (mm) R (mm) α (°) β (°) θ (°) Porosity (%) 

Re 7-9 4-5 - 55-65 - - 64.29 - 77.12 

M-Re 7-9 4-5 - 55-65 - - 65.36 - 76.24 

SS 4.5-5.5 - - 20-30 85-95 - 75.5 - 83.07 

CS 4.5-5.5 - 2.5-3.5 20-30 85-95 - 76.24 - 82.92 

St 4-5 - - 20-30 85-95 30-40 65.31 - 76.42 

 

2.2. Machine learning performance 

The performance of machine learning models was assessed through the calculation of the MSE, 

NMSE, and R2 using Equation 4, 5 and 6. The best model for each dataset was selected based on 

the lowest values of the MSE and NMSE, and the highest value of the R2. Figure 4, Table 3, and 

Table S6-S20 illustrates the training of all datasets using four distinct ML methods, aiming to 

determine the optimal ML approach for predicting mechanical properties. A lower MSE and 

NMSE, along with higher R2 value, signifies superior learning performance. Furthermore, 

hyperparameters were meticulously tuned with MSE, NMSE, and R2 as evaluation metrics. The 

details of this selection process are provided in Table S6-S20. It is worth noting that the ratio of 

splitting a dataset into training and testing datasets can extensively affect the performance of the 

prediction of a machine learning model [23]. Accordingly, three distinct training test size ratios (0.1, 

0.2, and 0.3) and two cross-validation (CV) values were examined. This procedure can extensively 

improve predictions. For example, NMSE decreased from 3.703 in DT to 0.244 with the SVM 

model in the M-Re structure under tensile load. To deepen the scrutiny of the best models, an 

analysis of the correlation between predicted and actual Young's moduli was conducted and 

presented in Figure 5. The best ML models for each dataset were selected based on the prediction 

accuracy, and those models were implemented to predict Young's modulus. 

 



 
Figure 3. Investigation of the mechanical properties of different auxetic designs with FEM: (a) 

Re, (b) M-Re, (c) SS, (d) CS, and (e) St structures with different (f) dataset sizes. (g) Maximum 

tensile and (h) compressive mechanical properties of auxetic structures. 



 

Figure 4. ML performance of (a) Re, (b) M-Re, (c) SS, (d) CS, and (e) St structures based on the 

NMSE. 

 

 

 



Table 3. Selection of the best ML models for different structures. 

Structure 
Best ML 

model 
Test size ratio CV NMSE 

Re 
Compressive RF 0.2 5 0.152 

Tensile RF 0.2 5 0.131 

M-Re 
Compressive SVM 0.3 5 0.212 

Tensile SVM 0.2 5 0.244 

SS 
Compressive SVM 0.3 5 0.278 

Tensile RF 0.3 5 0.334 

CS 
Compressive DT 0.1 5 0.170 

Tensile GB 0.1 5 0.171 

St 
Compressive RF 0.3 5 0.0875 

Tensile RF 0.3 5 0.162 

 

2.3. Predictions by ML models 

The mechanical properties of all auxetic structures can be investigated by experimental and 

numerical methods. However, sequential processes, including designing, fabricating, and FEM 

evaluating the porous auxetic structures, can be time-consuming and costly. In this regard, 

supervised ML methods were used to precisely predict the mechanical properties of scaffolds. 

Figure 6a-e illustrate predictions of the mechanical properties of auxetic structures based on ML 

methods, accompanied by experimentally calculated mechanical properties of auxetic structures 

as presented in Figure 6f and 6g. Figure 6a-e and Figure S2-S6 are displayed to analyze the 

dependency of the mechanical properties and physical variables of scaffolds. Based on the ML 

optimization, specific structures with the highest Young's modulus were selected to fabricate and 

verify using experimental results.  

 



 
Figure 5. Fitting actual values with prediction values for (a) Re, (b) M-Re, (c) SS, (d) CS, and (e) 

St structures.   



 
Figure 6. ML predictions of Young's modulus of (a) Re, (b) M-Re, (c) SS, (d) CS, and (e) St structures under compressive and tensile 

loads. Experimental mechanical properties of optimized auxetic structures under (f) compressive and (g) tensile loads. 



2.4. Fabrication of optimized structures 

To demonstrate the accuracy of the method presented in this study, all optimized structures were 

fabricated and tested under the same conditions. The results of the optimized structures are 

illustrated in Figure 6f-g, Figure 7, and Table 4. Figure 6f-g show the experimental investigation 

of optimized structures elaborated in Table 4. In the Table 4, besides the physical variables, 

numerical predictions of the mechanical properties are provided for comparison of the results. The 

results exhibited that the error can fall within an acceptable interval between 0.4% and 10.7%, 

which shows the reliability of the present method. 

 
Figure 7. Experimental and ML predicted mechanical properties of auxetic scaffolds under 

compressive and tensile loads. 



Table 4. Physical and mechanical properties of different optimized auxetic structures. 

Structure 
Loading 

condition 

a 

(mm) 

b 

(mm) 

R 

(mm) 

α 

(°) 

β 

(°) 

θ 

(°) 

Experimental 

Young's 

modulus 

(MPa) 

Predicted 

Young's 

modulus 

(MPa) 

Error of 

prediction 

(%) 

 

Porosity 

(%) 

Poisson's 

ratio 

Re  7 4 - 60 - - 

135.23 128.75 5% 

65.29 -1.219 

 

153.33 152.67 0.4% 

M-Re 

 
 

7 4 - 65 - - 

268.21 275.19 2.5% 

68.77 -0.115 

 

287.82 291.08 1.1% 

SS  4.5 - - 20 95 - 

21.43 19.95 7.4% 

76.84 -1.081 

 

38.43 35.37 8.6% 

CS 
 

4.5 - 3.5 20 95 - 

28.04 25.31 10.7% 

75.56 -1.011 

 

37.17 34.82 6.7% 

St  4 - - 20 90 30 

59.96 65.43 8.3% 

72.79 -0.915 

 

111.63 104.22 7.1% 



3. Discussion 

This study undertakes a comparative analysis and optimization of five distinct auxetic structures 

for potential emulation and utilization in biomedical engineering applications. Specifically, the 

investigation aims to replicate the physical and mechanical properties of bone and tendon tissues, 

encompassing a broad spectrum of auxeticity in scaffold design. These five structures were 

selected to represent a diverse range of geometries and Poisson's ratio behaviors, enabling the 

design of scaffolds tailored to the mechanical demands of various tissues, while also ensuring 

compatibility with 3D printing and computational modeling constraints. From a physical 

perspective, auxetic structures enable control over Poisson's ratio to meet specific biomechanical 

requirements—such as achieving near-zero Poisson's ratio for cancellous bone or higher auxeticity 

in tendon tissues [5a, 11b]. Previous studies have also highlighted the positive effects of NPR 

structures on cell growth and attachment, compared to conventional structures with a positive 

Poisson's ratio [5a, 10, 24]. Moreover, FEM was employed to generate data for data-driven approaches, 

offering the potential to reduce both the cost and time associated with scaffold fabrication and 

experimental investigation of mechanical properties. As illustrated in Figures 2, Table 1, and 

Figure 3, a singular experimentally fabricated structure suffices to initiate a data-driven 

methodology, as it can be complemented by FEM to augment the dataset. It should be noted that 

using only experimental or FEM approach cannot provide a deep understanding of the relation 

between physical variables and mechanical properties [2c, 13a, 25].  

In the Re structure, Young's modulus was increased by 65% and 44% under compression and 

tension, respectively. The porosity decreased by 6.6%, but the Poisson's ratio increased by 25%. 

These results show the dependency of the Re structures on Poisson's ratio. With a higher NPR, 

Young's modulus would increase extensively. This trend is counteracted by increased bending 

deformation in structures with higher NPR, which can lead to a reduction in overall modulus [26]. 

However, in the M-Re structure, the Poisson's ratio has almost no effect on the mechanical 

properties of scaffolds. This phenomenon can be explained by controlling the moment by adding 

inclined struts to the basic Re structure. The small inclined struts in M-Re can control the rotation 

under tensile and compression loads, allowing for better manipulation of stress in M-Re scaffolds 

and decreasing local stress [2c]. Additionally, previous study illustrated that M-Re structure has 

higher capability of the stress distribution compared to Re structure [2c].  On the other hand, SS and 



CS structures, which feature more inclined struts in their unit cells, increased the complexity of 

the load-bearing behavior of these structures compared to the Re and M-Re architectures. 

Specifically, the mechanical properties in SS and CS structures improved by up to 135.5%, with 

almost no change in Poisson's ratio and around a 5% decrease in porosity. Comparing SS and CS 

structures clarified that adding curvature to the struts of auxetic structures does not extensively 

change the physical and mechanical properties in auxetic designs. The results imply that complex 

structures require a comprehensive optimization method to improve their mechanical properties. 

This conclusion was consistently valid for the St structure as well. In this design, the compressive 

and tensile moduli improved by 64% and 76.5%, respectively, with an increase of 2.29% in 

porosity. The Poisson's ratio significantly decreased from -0.45 to -0.915 in the St optimized design, 

showing the importance of optimization in complex auxetic structures. From the perspective of 

machine learning, the relationship between the testing and training data ratios is influenced by the 

distribution of mechanical outcomes. In computational simulations, the distribution of Young's 

modulus in CS structure does not adhere to a consistent pattern, unlike in other designs. 

Consequently, a higher proportion of training data is necessary to accurately predict the 

mechanical properties of these structures, as illustrated in Figure 3d, Table 3, and Figure 6d. 

Among all five structures, the M-Re structure exhibits the highest values for both Poisson's ratio 

and Young's modulus. Its optimized structure, characterized by a high Poisson's ratio (lowest 

absolute value), proves to be a suitable choice for applications in bone tissue engineering [2c, 11a]. 

Young's modulus of human cancellous bone typically falls within the normal range of 10 MPa to 

2 GPa with a near-zero Poisson's ratio. The optimized M-Re structure demonstrates favorable 

Young's modulus, Poisson's ratio, and porosity, further supporting its appropriateness for bone 

tissue engineering [2c, 11a, 27]. The mechanical properties of tendons are intricate and vary with 

factors such as gender, body mass, and age. Despite this complexity, tendons can exhibit a high 

level of auxeticity. For instance, Young's modulus of the Achilles tendon can range from 2.0 ± 0.4 

GPa to 140.5 ± 29.3 MPa with a Poisson's ratio falling between -0.39 and -3 [11b, 28]. Consequently, 

Re, SS, CS, and St structures can be employed in different study cases due to their coverage of 

diverse Poisson's ratios and mechanical properties. In addition to these static characteristics, 

dynamic performance is also a critical factor in scaffold design. For example, our previous study 

confirmed the suitability of the St structure under dynamic tensile loading. A future direction could 



involve conducting dynamic studies using larger datasets [29]. Another promising approach is the 

inverse design of auxetic structures for tendon and bone implants, which could further enhance 

their performance and better mimic the mechanical behavior of native tissues. Overall, the results 

of this study can be applied to cases with a wide range of auxeticity and Young's modulus, coupled 

with high porosity, which is suitable for applications in both tendon and bone tissue engineering. 

4. Conclusion       

This study used five different auxetic designs with four various machine learning methods to 

predict and optimize elastic modulus of these NPR structures. In this low-cost method, FEM and 

ML approaches were employed to predict the mechanical properties of auxetic designs under 

tension and compression. The results affirmed that the presented methodology effectively 

predicted the mechanical properties of porous scaffolds with minimal error. Furthermore, Young's 

modulus could be enhanced by up to 135.5% with slight adjustments in porosity. Moreover, the 

findings indicated that various auxetic structures could show different responses when changing 

the variables of the design. For instance, auxeticity could significantly affect mechanical properties 

in Re and St designs, whereas it did not extensively change the mechanical properties of SS, CS, 

and M-Re structures. In conclusion, designing various auxetic structures could cover a wide range 

of auxeticity and mechanical properties, improving the accuracy of choosing appropriate 

architectures with a low-cost method to mimic the physical and mechanical properties of human 

tissues, such as bone and tendons. 

 

5. Experimental Methods 

5.1. Designing and fabrication of scaffolds: Five distinct structures were conceived based on 

mimicking human tissues. The structures for all five designs were generated using 3D CAD 

software (SolidWorks, Dassault Systèmes). These initial designs were diversified into 

combinations of variables to comprehensively investigate mechanical properties and furnish 

outcomes for data-driven approaches (refer to Supplementary Materials); however, physical 

properties such as porosity exhibited minimal variation. Table 5 presents a visual representation 

of the auxetic structures, re-entrant (Re), modified re-entrant (M-Re), sharp sinus (SS), curved 



sinus (CS), and star (St), and their respective dimensions. It should be noted that the depth of all 

samples is equal to 5 mm. Subsequently, the CAD models were converted to STL file format for 

fabrication using a 3D printer (3DWOX 1, Sindoh) based on fused deposition modeling (FDM) 

and polylactic acid (PLA) filaments, which have been widely used for biomedical applications. 

Furthermore, the following parameters were considered as the printing parameters: nozzle 

temperature: 200 °C, bed temperature: 60 °C, layer height: 0.2 mm, print speed: 10 mm/s, infill 

density: 100%, and nozzle diameter: 0.4 mm. To ensure the consistency, all parameters were kept 

same. Additionally, the present study aimed to encompass a broad spectrum of auxeticity, 

intending applicability for both bone and tendon scenarios. The thickness of all the struts in auxetic 

designs is equal to 0.8 mm except M-Re, which has a hierarchical structure with 0.8 mm and 0.4 

mm struts. The printing quality and the differences between the designed and fabricated structures 

are illustrated in Table S21. 

Table 5. Initial designs of auxetic structures and their dimensions. 

Structures Designs 
a 

(mm) 

b 

(mm) 

R 

(mm) 
α (°) β (°) θ (°) 

Re-entrant (Re) 

 

8 5 - 60 - - 

Modified re-entrant 

(M-Re) 

 

8 5 3 60 - - 

Sharp sinus (SS) 

 

5 - - 30 90 - 



Curved sinus (CS) 

 

5 - 3 30 90 - 

Star (St) 

 

5 - - 30 90 30 

 

Assessment of mechanical properties: According to ASTM D695 and ASTM D638, two bulk 

samples (cylindrical and dog-bone-shaped) were fabricated for utilization in the FEM simulation 

(Figure S7). The compression and tensile properties of both bulk and porous auxetic structures 

were assessed using a universal testing machine (LR5K plus, LLOYD Instruments) equipped with 

a 5 kN load cell. Additionally, a speed of 1 mm/min was set for the head of the universal testing 

machine to ensure quasi-static behavior in all samples. The height of the samples was decreased 

or increased by at least 20% to obtain the stress-strain curve of the samples. Three of each structure 

were fabricated and tested to validate the experimental mechanical outcomes. Additionally, the 

calculation of the Poisson's ratio was based on previous studies [2c, 29]. Briefly, a camera was used 

to capture images, which were then analyzed using ImageJ software. Subsequently, the following 

formulas were utilized to calculate Poisson's ratio (𝜈𝑥𝑦). In the following equations, 𝜀𝑥  and 𝜀𝑦 

represent the strains in the X and Y directions, respectively; 𝛥𝑥 and 𝛥𝑦 denote the deformations in 

the X and Y directions; and 𝑙𝑥 and 𝑙𝑦 refer to the initial distances between reference points in the 

X and Y directions, respectively.    

𝜀𝑥 =  
∆𝑥

𝑙𝑥0
 (1) 

𝜀𝑦 =  
∆𝑦

𝑙𝑦0
 (2) 

𝜈𝑥𝑦 =  −
𝜀𝑥

𝜀𝑦
 (3) 



 

FEM simulations: COMSOL Multiphysics FEM software (COMSOL Inc.) was employed for a 

thorough exploration of the mechanical properties of auxetic structures, incorporating various 

variables to generate a dataset for data-driven approaches. Additionally, the following parameters 

and linear solver were considered for the constitutive material properties in the FEM study: 

compressive modulus, tensile modulus, Poisson's ratio, and density, which were 1025 MPa, 1236 

MPa, 0.28, and 1.25 g/cm³, respectively. The primary objective was to establish a comprehensive 

dataset suitable for subsequent data-driven analyses. In the initial phase, once CAD models were 

imported into the FEM software, boundary conditions, mirroring real-world scenarios (fully 

constrained on one side and loaded on the opposite side), were systematically applied to each 

design. Subsequently, a 3D tetrahedral element was selected based on scaffold structures to mesh 

the 3D auxetic architectures. A sensitivity analysis was conducted to ascertain the optimal number 

of elements. 

Machine learning optimization: Four distinct machine learning models, namely decision tree (DT), 

random forest (RF), gradient boosting (GB), and support vector machine (SVM), were employed 

for training and predicting across ten diverse datasets. This study aimed to explore the 

effectiveness of different machine learning methods by employing various input variables and 

assessing their performance across the ten distinct datasets within the scope of this research.  

The DT algorithm is extensively employed in the supervised exploration of scientific inquiries. 

This methodology initiates from a parent (root) node and progressively divides into two nodes, 

continuing this process until the nodes reach an endpoint where further division is no longer 

feasible [30]. In the RF method, multiple decision trees are amalgamated to form a forest-like 

structure. Within this algorithm, the regressor computes the average of the outputs from different 

trees within the entire forest [31]. Moreover, the GB algorithm combines multiple base classifiers 

to enhance their performance, and it employs a gradient descent method to solve a minimization 

problem [32]. In addition, SVM establishes a non-linear relationship between inputs and outputs, 

seeking to identify a hyperplane within an N-dimensional space where an N-number of features 

can be considered for classification [33]. GridSearchCV in the Scikit-Learn toolkit in Python was 

employed to fine-tune the hyperparameters of the machine learning methods [20a]. Given the 

utilization of diverse datasets, the accuracy of all predictions was assessed using the mean square 



error (MSE), normalized mean square error (NMSE), and coefficient of determination (R2), 

calculated with the following formula: 

MSE = 
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1  (4) 

NMSE = 
∑ (𝑌𝑖−𝑌̂𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑛
𝑖=1

 (5) 

R2 = 1 - NMSE (6) 

where n, 𝑌𝑖, 𝑌̂𝑖, and 𝑌̅ are the number of observations, the observed value for the i-th observation, 

the predicted value for the i-th observation, and the mean of the observed values, respectively. 

Details of the GridSearchCV for tuning the hyperparameters are mentioned below. 

Decision tree:  

maximum depth of the tree: [None, 10, 20, 30] 

minimum number of samples required to split an internal node: [2, 5, 10] 

minimum number of samples required to be at a leaf node: [1, 2, 4] 

random forest: 

number of estimators: [50, 100, 150, 200] 

maximum tree depth: [None, 10, 20, 30] 

minimum samples required to split an internal node: [2, 5, 10] 

minimum samples required to be at a leaf node: [1, 2, 4] 

gradient boosting: 

number of boosting stages: [50, 100, 150, 200] 

step size shrinkage: [0.01, 0.05, 0.1, 0.2]  

maximum depth of individual regression estimators: [3, 4, 5, 6] 

minimum number of samples required to split an internal node: [2, 5, 10] 

support vector machine: 



regularization parameter: [0.1, 1, 10] 

epsilon: [0.1, 0.2, 0.5] 

kernel function: [linear, radial basis function, polynomial] 
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