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ABSTRACT
Citrus fruits are crucial globally, impacting economies and livelihoods. However, climate 
change is affecting water availability and usage, posing challenges for managing water 
in citrus crops. This paper introduces CARP-flux, a new model designed to assess water 
needs in citrus orchards, specifically addressing the limitations of traditional methods 
under changing climates. The study was conducted in El Hundido, an irrigation village 
located in the Vega del Guadalquivir Valley near Cantillana, Seville (Spain), acknowledged 
as a significant citrus trade area at both the European and national levels. To adjust the 
model to contemporary climate conditions, time-series data from the Sentinel-1 
Interferometric Wide (IW) satellite (VV and VH polarizations) from 2021 and 2022 were 
employed. Employing genetic algorithms and the Weibull distribution, the study 
incorporated 3D radiation models from backscatter data, a spatial interpretation of 
water and radiation dynamics, which, in turn, validated CARP-flux’s performance. This 
model proved effective in identifying land-use changes and evaluating radiation 
intensity, which are critical factors for understanding crop water needs in climate 
change scenarios. CARP-flux offers a precise alternative to the conventional Hargreaves 
technique for citrus groves, which underestimates water requirements in irrigated and 
humid regions with ample soil moisture, such as the Vega del Guadalquivir.

1.  Introduction

To monitor the condition and performance of citrus orchards using satellite remote sensing, image time 
series should be of high spatial and temporal resolution. Similarly, ground campaigns should cover the 
full crop cycle, including regular data collection over the full study area. According to Vidican et  al. 
(2023), the growing number of satellites and the accessibility of free data have offered new possibilities 
for land cover and crop type classification through the integration of multi-sensor images in coherent 
time series. To achieve this, considering the revisit time of the satellites used is crucial. Sentinel-1 oper-
ates in a near-polar, sun-synchronous orbit, repeating its path every 12 days and completing 175 orbits 
per cycle for one satellite. Sentinel-1A and Sentinel-1B are in the same orbital plane but are phased 180° 
apart. When both satellites are active, the repeat cycle is reduced to six days (ESA, 2024a, 2024b). 
Sentinel-2A and Sentinel-2B satellites, also sun-synchronous, are spaced 180 degrees apart and revisit all 
areas every five days under identical viewing conditions. The overlap between swaths from adjacent 
orbits increases the revisit frequency but with different viewing conditions (ESA, 2024b). The joint use of 
Sentinel-1 and Sentinel-2 allows for improved identification of various growth cycle stages that are often 
difficult to perceive when relying on infrequent data (Vidican et  al., 2023).

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

CONTACT Daniel Antón  danton@us.es  Departamento de Expresión Gráfica e Ingeniería en la Edificación, Escuela Técnica Superior de 
Ingeniería de Edificación, Universidad de Sevilla, Seville, Spain

https://doi.org/10.1080/23311932.2025.2544960

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

ARTICLE HISTORY
Received 12 May 2025
Revised 31 July 2025
Accepted 2 August 2025

KEYWORDS
Citrus orchards; water 
requirements; sentinel-1 
time series; 3D point 
clouds; 3D radiation data; 
3D backscatter data

SUBJECTS
Agriculture & 
Environmental Sciences; 
Soil Sciences; Image 
Processing

http://orcid.org/0009-0003-2166-165X
http://orcid.org/0000-0002-4267-2433
http://orcid.org/0000-0002-5861-7949
http://orcid.org/0000-0003-2907-8496
mailto:danton@us.es
https://doi.org/10.1080/23311932.2025.2544960
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/23311932.2025.2544960&domain=pdf&date_stamp=2025-8-12


2 E.-J. CABELLO-FRANCO ET AL.

Research has integrated optical and microwave images to enhance the precision of mapping in agri-
cultural settings (Adrian et  al., 2021; Frau Orynbaikyzy, 2023; Komisarenko et  al., 2022; Kpienbaareh 
et  al., 2021; Shrestha et  al., 2021; Tufail et  al., 2022). Synthetic Aperture Radar (SAR) data are not affected 
by the amount of sunlight but by the wavelength, roughness, geometry, and material composition of 
the surface being observed. By contrast, optical data are significantly impacted by cloud cover and 
depict the amount of solar radiation reflected from a specific area. Remote sensing for land and water 
resource administration has also been used (Ellis et  al., 2024; Food & Agriculture Organization of the 
United Nations (FAO), 2024). The ability to regularly observe, combined with high-resolution multispec-
tral data, enables accurate and cost-effective mapping of citrus orchards and irrigated areas (Jovanovic 
et  al., 2020).

Crop water demand refers to the amount of water required to compensate for water lost (to the 
atmosphere) through evapotranspiration in a cropped field, and it is a fundamental aspect of both 
agronomy and environmental science. In citrus orchards, it varies depending on growth stage and 
plot location. The FAO Penman-Monteith approach (Allen et  al., 1998; Allen et  al., 2007a, 2007b); 
Bastiaanssen et  al., 1998), defines and calculates the reference evapotranspiration (ETo). From crop 
surfaces under typical conditions, crop evapotranspiration (ETc) is based on crop coefficients (Kc) that 
establish the relationship between ETc and ETo. The dual crop coefficient approach divides Kc into two 
distinct coefficients: one for crop transpiration (Kcb, basal crop coefficient) and another for soil evap-
oration (Ke).

Remote sensing contributes to estimating crop evapotranspiration by leveraging vegetation reflect-
ing features and the correlation between evapotranspiration and crop attributes such as the Leaf Area 
Index (LAI) and crop coefficient (Kc). ETc can be computed from remote sensing data by physics-based 
approaches that rely on the surface energy balance (Allen et  al., 2007b, 2007a; Bastiaanssen et  al., 1998; 
Friedman, 2024; Sahaar et  al., 2022), or through empirical methods that utilize vegetation indicators 
(Dari et  al., 2020; De Michele et  al., 2020; El Hajj et  al., 2023; Jovanovic et  al., 2020; Osann Jochum, 
2006). Physics-based techniques are used to estimate the transfer of latent heat through the surface 
energy balance. However, the challenges associated with measuring its components have resulted in a 
greater reliance on empirical methods, which determine the crop coefficient using the vegetation indi-
ces methodology. ETc estimation using vegetation indices, often the Normalized Difference Vegetation 
Index (NDVI), is a modified version of the crop coefficients approach (Doorenbos & Pruitt, 1977; Pereira 
& Allen, 1999). According to Salgado and Mateos (2021), ETo is derived using meteorological data, and 
Kc incorporates information specific to the studied crop. These methods frequently rely on tabular val-
ues to obtain crop data, which offer broad information for multiple crops (Allen et  al., 2007b, 1998; 
Bastiaanssen et  al., 1998). To enhance the precision of estimating crop water requirements, the Kc 
curves must be characterized. This can be achieved by utilizing remote sensing data, as there is a 
strong correlation between crop attributes and spectral reflectances (Pôças et  al., 2020; Steduto et  al., 
2012). Therefore, the Kc-NDVI technique establishes a practical connection between Kc values obtained 
through field measurements and NDVI values extracted from remote sensing optical data (Dari et  al., 
2020; De Michele et  al., 2020; El Hajj et  al., 2023; Jovanovic et  al., 2020; Osann Jochum, 2006). Once 
calibrated and validated for a specific area, the equations for estimating Kc values based on vegetation 
indices can provide accurate estimates of ETc (Jovanovic et  al., 2020; Pôças et  al., 2020; Steduto 
et  al., 2012).

This study proposes a genetic algorithm-based flux model, CARP-flux, to estimate water requirements 
in citrus orchards using Sentinel-1 radar satellite imagery. Time series from multiple orbital directions are 
employed to achieve high spatial (10 m) and temporal (daily to 3–5 days) resolution. This enables the 
evaluation of orchard conditions through Vegetation Indices (VIs) and VV + VH backscatter data.

To validate the CARP-flux model, an ad hoc method was developed to generate 3D radiation data 
from Sentinel-1 imagery. This spatial representation of 2D radar backscatter enables the characterization 
of soil moisture, detection of land use changes, and estimation of both fruit quality and grower practices. 
The method consists of automated image segmentation and conversion into 3D point clouds, allowing 
qualitative and quantitative analysis of backscatter behavior via histograms and statistical metrics.

Overall, this research lays the groundwork for estimating water requirements in citrus orchards using 
evolutionary algorithms based solely on radar satellite data.
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2.  Materials and methods

2.1.  Study area

This research was conducted at the El Hundido community of irrigators, located within the larger irriga-
tion area of the same name (Figure 1). The El Hundido community is on the right bank of the Guadalquivir 
River, immediately upstream of its confluence with the Viar River, in the municipality of Cantillana in 
Seville (Andalusia, Spain).

Both rivers and the urban center of Cantillana delimit the area. Its perimeter is indicated in Figure 1 
in red color with its centroid ‘C’, whose coordinates, 37.59458°N, 5.84059°W, are also specified in the 
caption of subsequent satellite images of the study area. The coordinates of the boundary polygon’s 
vertex with the lowest latitude and longitude (i.e. the southwesternmost point) are 37.585497° N, 
5.861256° W.

Most of the irrigated surface (270 hectares) is dedicated to orange orchard cultivation. It is mainly 
irrigated by the flooding system, except for 3% to 4% of the surface (drip irrigation). The area is divided 
into 206 plots, belonging to 122 owners who constitute a community of irrigators. The slope in the study 
area is less than 4%.

Currently, irrigation water is sourced directly from the Guadalquivir River, which is then elevated to 
the main irrigation canal through pumping. The pumping station consists of two motors, each with its 

Figure 1. L ocation of the study area and arrangement of its crops.
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respective pump, and steel pipes. To enable gravity irrigation of the entire study area, a concrete channel 
was built (into which the pumped flow of the Guadalquivir is poured).

All plots are distributed along both banks of the canal and receive water from a series of intakes 
arranged along the entire pipeline, configuring a network of thorn-form ditches. Additionally, the irri-
gated area has four wells located next to the canal and in the middle of its route that, if necessary, can 
pump water to the main canal. The total flow rate of these wells amounts to 120 l/s.

Finally, it is worth noting that this research’s study area is highly representative of its significant role 
in both national and international citrus trade.

2.2.  Citrus orchards characteristics

The study area’s citrus plantations, with a mean age of 15 years, were grown with an average spacing of 
5 m between rows and 3.5 m between trees within the row.

To have production throughout most of the year, the El Hundido community of irrigators has a wide 
variety of cultivars (Navelate, Navelina, Lane Late, Salustiana, and Chislett) grafted onto the Carrizo 
citrange rootstock (Hayat et  al., 2022). They all originate from spontaneous or induced mutations of 
established orange varieties, are characterized by vigorous trees, notable organoleptic qualities, and fruit 
well-suited for fresh consumption or juice production, each with distinctive features in flavor, color, and 
ripening time (Seminara et  al., 2023; Singh et  al., 2021).

2.3.  Climatology and physical environment

Water is the main limiting factor for the productivity and profitability of citrus plantations in Cantillana. 
Climate data retrieved from Copernicus Climate Change Service information between 1991 and 2021 
(Climate Data, 2024) reveal that Cantillana’s characteristic precipitation pattern is seasonal (with a marked 
summer drought) and insufficient (521 mm of annual rainfall compared to the approximately 1,200 mm 
needed annually by a mature plantation). Therefore, irrigation is one of the most important cultivation 
practices for achieving optimal fruit production and quality.

However, Cantillana not only faces issues of water scarcity and/or low quality in many of its 
citrus-producing areas, but climate change also threatens to worsen this situation by the end of the 21st 
century (Pérez-Pérez et  al., 2020). This will further reduce available irrigation water and prolong droughts, 
intensifying aquifer exploitation and degrading water quality.

In addition to the effects of climate change on the availability and quality of water for irrigation, other 
effects on environmental conditions are expected, such as increased temperatures (average annual tem-
perature of 18.8 °C in Cantillana (Climate Data, 2024) and other adverse climatic phenomena, as well as 
impacts on soil quality (erosion, loss of organic carbon, and decreased biodiversity). These factors could 
affect the physiology of the trees, threatening the development, production, and profitability of the crops.

For this research work, concerning the climate evolution of the study area, precipitation and tempera-
ture variables have been considered, respectively, from 2006 to 2100 (Ministerio para la Transición 
Ecológica y el Reto Demográfico, 2024). As a starting point, the average values of these variables were 
considered under the SSP3–7.0 Scenario and the MCG CMCC-ESM2 mathematical model from the Local 
Climate Change Scenarios of the Junta de Andalucía (Andalusian Regional Government), based on the 
6th report of the Intergovernmental Panel on Climate Change () for the Consejería de Sostenibilidad’ 
Medio Ambiente y Economía Azul (Junta de Andalucía) (IPCC, 2022).

Regarding the physical environment, and according to Fernández Cacho et  al. (2010), the municipality 
of Cantillana is divided into two distinct areas. The first includes the urban center and the entire South 
from the Arroyo Valsequillo, Ricache and Carretera de Córdoba. The rivers, in their descent from the 
mountain range, have carried clays (alluvial deposits), to form a plain known as the Vega del Guadalquivir. 
The second area corresponds to the north of the municipality and features a more varied orography, 
characterized by alternating plains and mountains. Its average altitude varies from 50 to 150 m, rising in 
the western vertex where the highest heights are reached, with Loma de Enmedio at 316 m the highest 
peak. These lands, formed from various types of rocks, are resistant to erosion: slate and agglomerates 
in the lower areas, and dark granites and basalts at the highest elevations in the North.
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2.4.  Data and preprocessing

2.4.1.  Fieldworks
Field data collection was carried out within a five-year research project from 2015 to 2020 (the first 
project indicated in the Funding section) to infer, among other parameters used in this paper, the Citrus 
orchards LAI located in the study area. Specifically, the LAI measurement was carried out using a repre-
sentative sample of ten specimens (from each one, 50 leaves were chosen, evenly distributed throughout 
the tree crown) per citrus plot. The length and width of each leaf were then measured to obtain the unit 
area per leaf (oval shape). Afterwards, all the values for each leaf per tree were added up, and finally, 
the results per tree were averaged (see Eq. (1)).

	 LAI
Leaf area Treedensity per plot

Plot area
=

⋅
	 (1)

On the other hand, in September 2020, fieldwork was carried out in all the citrus orchards of the El 
Hundido community of Irrigators in Cantillana to establish field control points (the second research proj-
ect mentioned in the Funding section). The process of mapping was carried out utilizing a portable GPS 
device to identify three separate management units that had diverse agricultural backgrounds. These 
histories provide information about the land kind or use before the establishment of citrus orchards, the 
moment of conversion into citrus orchards, and the cropping patterns used for each year of land use as 
citrus orchards. The city council of Cantillana supplied the documents of these histories. Furthermore, 
data were collected in every citrus plot within the El Hundido community of Irrigators.

2.4.2.  Sentinel-1 time series data
According to the ESA (2024a, 2024b, 2024c), the Sentinel-1 mission captures images using C-band SAR 
technology regardless of weather conditions, both during the day and at night. Sentinel-1A was deployed 
on 3 April 2014, whereas Sentinel-1B was deployed on 25 April 2016. Sentinel-1A incorporates SAR imag-
ing in four distinct imaging modes, each offering varying resolutions (as low as 5 m) and coverages (up 
to 400 km). This mission captures data using both horizontal and vertical polarization, has extremely 
short intervals between revisits, and delivers products quickly. One Sentinel-1 satellite can potentially 
create a map of the whole landmasses on Earth using interferometric wide (IW) swath mode every 
12 days in a single pass, whether it is ascending or descending. The two satellites provide a precise 
repeat cycle of 6 days at the Equator. Due to the variation in orbit track spacing with latitude, the revisit 
rate is considerably larger at higher latitudes compared to the Equator.

In this work, 294 Sentinel-1A images were downloaded from the Copernicus Browser under the 
Copernicus Data Space Ecosystem (ESA, 2024c). The image date frame was from 1 January 2021 to 31 
December 2022 (from now on, full time range). All satellite images were downloaded as 8-bit TIFF 
‘enhanced visualization’, sized 2500x1380 pixels, and with a resolution of 72 dpi (Figure 2).

Sentinel-1A C-band SAR images were provided in IW mode, utilizing a dual polarization method (VV + VH). 
The photos were disseminated as Level-1 products, specifically as single look complex (SLC) and ground 
range detected (GRD) on all dates. The ground resolution for SLC imagery is 5 m × 20 m, whereas for GRD 
images it is 10 m. The acquisition of all the images was done in ascending mode, with incidence angles 
varying between 38.87° and 39.26°. Sentinel-1A Level-1 SLC and GRD assets used were in high resolution. 
According to the ESA (2024b), for the Sentinel-1 IW products, multi-looking is performed on each burst 
individually. All bursts in all sub-swaths are then seamlessly merged to form a single, contiguous, ground 
range detected image per polarization. However, since the usual SAR data processing, which generates 
Level-1 images, does not incorporate radiometric corrections, and there is still a considerable radiometric 
bias, it becomes imperative to apply radiometric adjustments to the SAR images. Further, the radiometric 
correction is necessary when comparing SAR images obtained from the same sensor but at various time 
points, as demonstrated in this study. The process of radiometric calibration was implemented by utilizing 
Eq. (2) as described by MacDonald’ Dettwiler and Associates Ltd (MDA 2011).

	 γ
i

i

i

DN b

A
=

+( )2

	 (2)
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In Eq. (2), the gamma calibration vector for the i-th element is denoted as Ai, the constant offset is 
represented by b, and the intensity is indicated by DN

i

2. Level-1 products include four calibration look-up 
tables (LUTs) that can be used to generate β σ γi i i

0 0
, , , or a digital number (DN). The Look-Up Tables (LUTs) 

implement a gain that varies with the range, incorporating the absolute calibration constant. Regardless 
of the chosen LUT (in this case, σ i

0), for each pixel ‘i’ that lies between points in the LUT, the Ai value is 
determined by bilinear interpolation.

Despite the above, the enhanced visualization Copernicus script-product (ESA, 2024c) used in this 
work combines the already calibrated gamma of the VV and VH polarizations in a false color visualiza-
tion. This script-product shows all pixels with surface water in cyan, while land appears in different 
shades of yellow/green. Vegetated areas are shown in mustard green and bare ground in a darker green. 
Each month, Copernicus enhanced the visualization script-product to offer between 7 and 11 images.

According to the ESA (2024b), Sentinel-1’s Enhanced Visualization imagery includes cyan points that 
often highlight features or phenomena identified during processing. These colors do not represent nat-
ural tones but emphasize elements significant in radar data.

•	 Sentinel-1 and radar imagery: Sentinel-1 uses SAR, emitting radar signals and capturing their reflec-
tions. As the imagery is not based on visible light, it requires Enhanced Visualization methods to 
improve interpretability.

•	 Calibrated data: Calibrated and radiometrically corrected radar signals accurately reflect surface charac-
teristics, e.g., roughness, moisture, and structure. Calibration ensures consistent backscatter intensity.

•	 Meaning of cyan points:
•	 Cyan in Enhanced Visualizations: Cyan, which blends blue and green, is frequently utilized to high-

light specific artificial objects, cities, or intense reflections. In SAR images, these predominantly rep-
resent regions with significant radar reflectance, including structures like buildings, bridges, or other 
metallic constructs that effectively bounce back the radar signal.

•	 Cyan points in unexpected locations may suggest a particular type of land cover, geological feature, 
or even regions with standing water or ice, e.g., smooth surfaces such as tranquil water bodies or 
flat roofs can occasionally reflect radar in a manner that produces cyan shades in enhanced 
products.

•	 Other Possible Meanings:
•	 Based on the context, the cyan points may indicate areas of significant radar backscatter change 

between two observations.
•	 Cyan points may sometimes indicate regions of limited or sparse vegetation based on the interaction 

between the radar signal and the terrain.

Figure 2.  Sentinel-1 IW (VV+VH) Enhanced visualization image. Case study area with scale. Coordinates of the study 
area centroid are 37.59458° N 5.84059°W, and those for the southwesternmost point (bottom-left corner) are 37.585497° 
N, 5.861256° W.
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2.5.  Methods

The methodological approach is depicted in Figure 3 and developed in the following subsections.

2.5.1.  Evolutionary algorithms
This section provides an overview of genetic algorithms, an optimization technique inspired by the prin-
ciples of natural selection. This foundational knowledge supports the development of the new CARP flux 
model, which aims to estimate water requirements for citrus orchards.

Biological processes drive the evolution of living organisms (Gupta, 2020). Genetic algorithms mimic 
natural selection by assigning individuals a fitness score that reflects their adaptive, competitive, and 
reproductive capabilities within a model. Those with higher fitness have a greater chance of contributing 
to subsequent generations, thereby increasing the success of certain genetic lineages (Gupta, 2020).

The efficacy of a genetic algorithm depends on its programming quality. These algorithms address 
problems without established solutions (Ramírez-Juidías et  al., 2015) and improve outcomes when only 
partial solutions exist.

A genetic algorithm comprises five distinct phases: initialization of an initial population, evaluation of 
a fitness function, selection of individuals, crossover of genetic material, and mutation of selected indi-
viduals. The population embodies the challenges to be addressed. The individual is distinguished by the 
A1 and A2 binary data (gene and chromosome). The fitness function quantifies the binary code’s capac-
ity to solve the problem. The selection comprises the programming that will ascertain the optimal com-
binations of ‘genes’ and ‘chromosomes’ to be read, hence determining the most effective programming 
code for solving the given task. The crossover phase is the most pivotal stage in the genetic algorithm. 
The crossover point is selected at random and reflects the genetic material from each ‘parent’ that is 
utilized to solve the problem.

Similar to offspring in biological organisms, genetic algorithms can yield random mutations. Although 
mutations may initially seem detrimental to a population, they prevent premature convergence; i.e. in an 
algorithm, this is when a satisfactory solution has been reached.

Understanding evolutionary algorithms involves the following steps:

•	 Objective function definition → The evolutionary algorithm is applied to minimize the error in the 
estimation of ETc as per Eq. (4). The optimization objective is to determine the best-fitting functions 
for Kc, Kcb, and ET0, using LAI and other remote sensing-derived parameters. The error function to 
minimize is the difference between the modeled and observed ETc over a known time series.

Figure 3.  Methodology flowchart carried out in the study area.
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•	 Solution encoding and representation → Candidate solutions (chromosomes) are encoded using 
real-valued representations corresponding to coefficients in empirical relationships. For example, in 
Eq. (11), all constants were optimized through the genetic algorithm by encoding them as gene 
values within the chromosome. A similar process was carried out for Eqs. (12) and (13).

•	 Fitness function → The fitness function evaluates how well each solution estimates ETc and water 
demand using radar-derived LAI inputs. A higher fitness score corresponds to lower root mean 
square error (RMSE) between observed and modeled water needs at the plot level.

•	 Optimization of model equations → Using this process, the evolutionary algorithm optimized: a) The 
empirical function relating GNDVI to LAI [Eq. (13)]; b) The functions relating LAI to Kc and Kcb [Eqs. 
(11) and (12)]; c) The equation for ET0 as a function of LAI and the monthly adjustment factor f [Eq. 
(10)]; d) And indirectly, the estimation of Ks via temperature ratios [Eq. (6)], and Ke [Eq. (9)] from the 
rest of the components.

•	 Parameter refinement and generalization → The final equations used in the CARP-flux model were 
those yielding the best performance across the Sentinel-1 time series data from 2021–2022. The 
genetic algorithm was instrumental in fitting these equations to local environmental conditions in 
the Guadalquivir Valley, ensuring the parameters are both accurate and robust.

The application of a genetic algorithm was crucial to developing the new model flux, which infers 
water requirements in the study area through the patented process by E. Ramírez-Juidías et  al. (2015).

2.5.2.  Data processing
According to Navarro et  al. (2016), the gamma VV + VH bands were utilized to ascertain the average value 
for each plot of citrus orchards and for each time period. After computing the average values, they were 
transformed from a power scale to a logarithmic scale to accurately represent decibel (dB) values using 
Eq. (3).

	 γ γ
i i
dB( ) = ⋅ ( )10 10log ,	 (3)

where γ i represents the gamma-calibrated backscattering coefficient that has been obtained from Eq. (2) 
for each pixel of the SAR images.

2.5.3.  Modeling the water requirements for citrus orchards in the study area
As is well known, crop irrigation requirements refer to the total amount of water, measured in millime-
ters, that is applied to the crop during the entire irrigation season in order to fully meet the crop’s water 
needs (Doorenbos & Pruitt, 1977; Food & Agriculture Organization of the United Nations (FAO), 2024).

According to the FAO (2024), Doorenbos and Pruitt (1977), Steduto et  al. (2012), and Tenreiro et  al. 
(2021), the general model to obtain ETc is the one shown below (Eq. (4)):

	 ET K ET K K K ET
c c s cb e
= ⋅ = ⋅ +( ) ⋅0 0

	 (4)

Eq. (4) represents the relationship between several factors in the ETc (mm/day) calculation. Kcb is the 
basal crop coefficient, Ke is the soil evaporation coefficient, Ks is the water stress coefficient, and ETo 
(mm/day) represents the reference crop evapotranspiration. Ks elucidates the impact of water stress on 
agricultural transpiration. In situations when soil water is a limiting factor, the value of Ks is less than 1. 
Conversely, when there is no stress on the soil water, the value of Ks is equal to 1. Kc is the crop 
coefficient.

Conversely, the amount of atmospheric water vapor in the study area is crucial, as it directly affects 
optical depth and thus the intensity of reflected radiation per pixel.

Similarly, according to Ramírez-Juidías and José Cabello-Franco (2023), direct solar radiation lacks suf-
ficient heat to warm the atmosphere; instead, the soil converts part of the incident radiation into Short 
Wave Infrared (SWIR) radiation, which effectively heats the lower atmosphere. Physically, the temperature 
rise increases molecular speed and the frequency of collisions. If the SWIR-induced heating persists 
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alongside rising water vapor near the plant canopy, molecular speeds reach a level where high-speed 
elastic collisions cause the wave fronts to couple, forming a plane wave front. This leads to a phenome-
non known as thermal plugging, resulting in a decrease in Photosynthetically Active Radiation (fAPAR) 
(Ramírez-Juidías, 2022). Eq. (5) shows the relationship between fAPAR and average environmental tem-
perature (AET), in Celsius, affecting the plant canopy (Ramírez-Juidías, 2022):

	 fAPAR AET r R p= − ⋅ = = ≤( )0 564 0 011 0 83 0 7 0 001
2

. . . ; . ; . 	 (5)

At this point, the air layers progressively warm toward the canopy surface, leading to a decrease in 
relative humidity (RH, %). This temperature-dependent change significantly impacts the plant’s water 
stress and, therefore, Ks. In short, the resulting thermal inversion leads to a stress increase within the 
soil-plant-atmosphere system.

For this reason, Eq. (6) shows a new form of the water stress coefficient:

	 K
T

T
r R p

s

mean= = = ≤( )
max

0 901 0 89 0 001
2

. ; . ; . 	 (6)

where T
mean

 is the mean temperature and T
max

 is the maximum temperature, both in Celsius, of the min-
imum period considered for data collection in the study. In this work, the temperature and precipitation 
data are daily and have been downloaded from the Crop Monitoring application (EOS Data Analytics, 2024).

Meanwhile, according to Ramírez-Juidias et  al. (2024), the use of the G band in the GNDVI is associ-
ated with the fAPAR and is directly linked to the LAI. Therefore, GNDVI has a higher level of sensitivity 
toward chlorophyll content compared to NDVI. For this reason, regarding the calculation of both the  
Kc and the Kcb (Allen & Pereira, 2009; Pereira et  al., 2020), and using evolutionary algorithms, the follow-
ing equations (Eqs. (7) and (8)) were obtained based on the LAI, each of which was used in the present 
work. Under a user license, the Crop Monitoring application was used to download data corresponding 
to the GNDVI at different temporal resolutions, ranging from one to three days, utilizing both the 
PlanetScope satellite constellation and the Sentinel-2 L2A. The application automatically resizes the value 
per pixel based on the series of satellite images from which the user wishes to obtain said value, being 
GNDVI in this case study. These equations will be developed in the Results section.

	 K f LAI
c
= ( )	 (7)

	 K f LAI
cb
= ( )	 (8)

Thus, and considering Eqs. (4), (9) determines the soil evaporation coefficient (Ke):

	 K K K K
e c s cb
= − ⋅ 	 (9)

Finally, the reference crop evapotranspiration (ET0) (Eq. (10), after the adjustment obtained through 
evolutionary algorithms, also based on the LAI is:

	 ET
LAI

f
0
= 	 (10)

where f is a factor dependent on the month considered (see Table 1).
Authors have called this new methodology CARP-flux.

2.5.4.  From Sentinel-1 image data segmentation to 3D data modeling
In Antón and Amaro-Mellado (2021), Geographic Information System technology was used to compute 
the spatial Z coordinate from the digital number (DN) of each pixel in 2D infrared images, generating a 
3D point cloud with 3D thermal data. However, since the source images were thermograms, they lacked 
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differentiation between color shades and contextual details, requiring full-pixel processing for scene char-
acterization. This DN-based method has also been used to compute 3D point cloud intensities to detect 
surface damage (pathologies) in both modern and heritage buildings (Antón et  al., 2022).

In contrast, this paper introduces a method that segments only the pixels containing relevant data 
from their context, generating a 3D point cloud containing 3D radiation data. This segmentation was 
performed automatically by selecting pixel color ranges using image processing software such as Adobe 
Photoshop, a technique already validated by the scientific community for vegetation analysis in deserti-
fied areas (Tong et al., 2024). Thus, in the present work, satellite data in the chosen enhanced-visualization 
TIFF image were within the intensity range of blue color, so pixels with such shades were discriminated. 
Although this segmentation process is considered accurate given the 0–255 levels in the 8-bit images 
used, which are determined by the satellite data themselves, these selected data were examined to 
determine if any possible pixels had been overlooked after the automatic color selection. Next, the 
image was converted into grayscale to ease the association of the study area’s backscattering to each 
pixel’s DN. The pixels that accounted for relevant data were thus distinguished against the uniform black 
background (Figure 4).

Following this image processing, the open-source CloudCompare (Girardeau-Montaut, 2016) software, 
widely used by the scientific community for point cloud processing, was utilized. It allows importing 
various image formats and exporting 3D ASCII point clouds in TXT, XYZ, PTS, or CSV. With an image 
resolution of 2500 x 1380 pixels, the resulting point cloud contained approximately 3.45 million points. 
Both the original image and the generated (flat, XY) point cloud represent each pixel’s digital number 
(DN) as a Scalar Field, displayed by default using the ‘blue-green-yellow-red’ color scale. Before importing 
the ASCII file, the Scalar Field column was reassigned to the ‘Z coordinate’ attribute, automatically gen-
erating a third spatial dimension based on pixel grey tone intensity. The result is a monochrome point 
cloud (visualized in the ‘Grey’ color scheme), where Z values reflect backscattering data collected across 
the full time range (from 1 January 2021 to 31 December 2022) (Figure 5).

The dataset’s intensity distribution is shown in 3D and can also be represented as a histogram of 
pixels across DN intervals to relate these data to the study area’s water requirements. This will be 
explained in the Results section.

Table 1.  Monthly factor f values for calculating ET0 (mm/day).a

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2.24 1.80 0.72 0.82 0.53 0.47 0.49 0.54 0.98 1.20 2.19 3.43
aValues obtained through evolutionary algorithms for citrus orchards from the Vega del Guadalquivir. ‘f’ is a function of the average daily 
precipitation (P) of each month existing in the study area for a statistically significant period of at least 30 years (Climate Data, 2024). It can 
be obtained through the following relationship f = 0.5 + 0.95 · P (r = 0.79; R2 = 0.73; p ≤ 0.01).

Figure 4.  Automatic data segmentation. Satellite image conversion into grayscale.
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3.  Results

3.1.  Water requirements in the study area through the CARP-flux model

3.1.1.  Estimation of crop and basal crop coefficients (Kc and Kcb)
As previously specified (see Subsection 2.5.3), and taking into account Pereira et  al. (2024), Kc and Kcb 
were obtained as a function of the LAI. This relationship is shown in Eqs. (11) and (12), respectively, below.

	 K LAI r R p
c
= ⋅ ⋅( ) − = = ≤( )0 2562 4 4 0 0902 0 964 0 929 0 001

2
. . . . ; . ; .ln 	 (11)

	 K LAI r R pcb = ⋅ ⋅( ) − = = ≤( )0 29 4 4 0 1 0 96 0 93 0 001
2

. . . . ; . ; .ln 	 (12)

As specified by Ramírez-Juidias et  al. (2024), the GNDVI index is better suited for crops with dense 
canopies (mainly woody crops) or for more advanced growth stages in both woody deciduous crops and 
herbaceous crops. In contrast, NDVI is more appropriate for estimating crop vigor during early stages, 
particularly in herbaceous crops. This distinction is critical, not only because NDVI is more commonly 
used, but also because many studies, e.g. Tenreiro et  al. (2021) and Bhatti et  al. (2024), have reported 
limited results when using it. Moreover, NDVI-based models often rely on secondary variables with min-
imal influence on prediction outcomes (Martínez-Casasnovas & Bordes, 2005), especially for woody crops.

This work offers an innovative contribution by establishing the relationship between LAI and GNDVI 
specifically for citrus orchards in the Vega del Guadalquivir (Andalusia, Spain), based on over five years 
of field research (see Eq. (13)).

	 LAI e r R p
GNDVI= ⋅ = = ≤( )⋅( )

0 2273 0 912 0 901 0 001
4 9721 2

. . ; . ; .
. 	 (13)

3.1.2.  Relationship between LAI and VV+VH backscattering time series
From Eq. (13), the full LAI time series for the study period was developed (Figure 6). LAI variations (2 to 
4.5) reflect the citrus trees’ phenological cycle, with growth in spring and early summer and reductions 
during dormancy or post-harvest. Seasonal irrigation, water stress in dry summers, Mediterranean climate 
factors, pruning, crop load, and microclimatic conditions also influence canopy density fluctuations.

Regarding VV and VH backscattering (Figures 7a and 7b), VV is generally higher on average than VH. 
VV ranges from –10.23 dB to –7.24 dB; VH ranges from –17.71 dB to –14.77 dB.

Figure 5.  Spatial representation of the study area’s backscattering. Full time range. Elevation view.

Figure 6.  Mean LAI time series between 1 January 2021 and 31 December 2022.
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Comparing VV and VH backscattering with the LAI (Figures 8a and 8b) reveals a stronger linear rela-
tionship for VV (r = 0.29) than VH (r = 0.15), likely due to VH’s weaker penetration. These correlation values 
suggest radar backscatter alone may not fully capture LAI complexity, so integrating other data sources 
like optical imagery or meteorological data can improve accuracy, as demonstrated in this study.

Based on the above, Eqs. (14) and (15) show the relationship between the LAI and the (VV+VH) 
backscattering.

	 LAI VV dB
VV( ) = ⋅ ( ) +0 075 3 41. .γ 	 (14)

	 LAI VH dB
VH( ) = − ⋅ ( ) −0 37 3 36. .γ 	 (15)

From these equations, variables dependent on the LAI can be inferred to estimate the study area’s 
water requirements from radar images. Despite moderate correlations, the LAI (Eqs. (14) and (15)) can be 
derived from radar backscatter to assess vegetation growth, optimize irrigation scheduling, and monitor 
ecosystem health in near real-time.

3.1.3.  Comparison of Kc and Kcb time series
Figure 9 shows the crop coefficient (Kc) and the basal crop coefficient (Kcb) time series. They show a 
similar behavior, although the former generally has a higher value than the latter.

3.1.4.  Comparison of Ks (water stress coefficient) and Ke (soil evaporation coefficient) time series
Figure 10 clearly shows that the coefficients Ks and Ke have an inverse relationship in practice. Likewise, 
the importance of the water stress coefficient (Ks) is evident.

3.1.5.  Comparison between the reference crop evapotranspiration (ET0) and gross irrigation needs 
(GIN) mean year
This work incorporates the concept of effective precipitation (Pe), in mm/month or mm/day (Eq. (16)), 
specified by Doorenbos and Pruitt (1977), to calculate gross irrigation needs (GIN). In the Guadalquivir 

Figure 7.  Mean backscattering VV (a) + VH (b) between 1 January 2021 and 31 December 2022.

Figure 8.  Comparison between mean backscattering values VV (a) + VH (b) and LAI from 1 January 2021 to 31 
December 2022.
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Valley, Pe is often computed daily using Eq. (16) due to the availability of daily precipitation data that 
meet its criteria. As noted in Subsection 2.5.3, the Crop Monitoring application (EOS Data Analytics, 2024) 
provided the daily precipitation (P).

	

P P if P
mm

month
or

mm

day

P P if P
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month
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e

e

= ⋅ − >

= ⋅ − <
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	 (16)

where P = rainfall in mm/month or mm/day.
Based on this criterion, Eq. (17) can be used to infer the GIN in mm/day:

	 GIN
mm

day
K ET Pc e









 = ⋅ −

0
	 (17)

Grounded on this, Figure 11 shows both the GIN and the ET0 for the average year.
Comparing CARP-flux outputs with FAO56-based irrigation needs reveals that CARP-flux estimates 

higher water demand than the traditional Hargreaves method, better reflecting field conditions in the 
Vega del Guadalquivir, where soil moisture and humidity are generally high. Despite limited field irriga-
tion records, model results were validated using available effective precipitation data and agronomic 
benchmarks, revealing consistent seasonal patterns.

Figure 9.  Comparison between Kc and Kcb during the study period.

Figure 10.  Comparison between Ks and Ke during the study period.
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3.2.  Segmentation and spatial interpretation of sentinel-1 time series data

Figures 4 and 5 show the outcomes of the automatic processes developed from satellite images for data 
segmentation (Osco et  al., 2023) and conversion into 3D point clouds. These processes allow for repre-
senting the intensity distribution of the datasets as a histogram of pixels across DN intervals. The distri-
bution of the full-time range is depicted in Figure 12.

This histogram reveals that most of the pixels (70,177) deriving from the produced 3D radiation data 
fall within the 12 DN intervals ranging from 220 to 231, which represents 4.7% of the total DN range 
(0–255) and accounts for 76.22% of the total 92,071 pixels with radiation data. Consequently, the remain-
ing 21,894 pixels (23.78% of the total) are spread among the rest of the intensity spectrum with an 
average value of 90 pixels (round up to the closest integer) per DN interval and a standard deviation of 
108.13 pixels. Also, resulting from dividing the standard deviation by the mean, the coefficient of varia-
tion (CoV), with 1.21, is a clear indicator of the variability of the data.

From the above, further statistical data can be obtained to reveal the dispersion of radiation data and 
to quantify its global behavior in the case study area: a mean value of 359.65 pixels, with a standard 
deviation of 1902.91 pixels, and a CoV of 5.29.

Once the full time range was characterized, it is worth analyzing the best considered period of the 
year in terms of fruit quality: the last two weeks of August. In this way, the methodological processes 
described in this paper were applied to those instances in 2021 and 2022.

3.2.1.  15 to 31 August 2021
The satellite data downloaded from the Copernicus Browser is presented below (Figure 13).

Figure 11.  Values correspond to the mean year of the study period for gross irrigation needs (GIN) and reference crop 
evapotranspiration (ET0).

Figure 12. I ntensity of satellite image pixels by their DN distribution. 1 January 21 to 31 December 2022.
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As seen above, the segmented radiation data was converted into a grayscale image to produce a flat 
point cloud whose third coordinate (Z) would be automatically determine using the image intensity (DN). 
Figure 14 shows the resulting 3D radiation data of the case study area for the specified time range, and 
Figure 15 presents the DN distribution. The scale of the graphs remains constant, with axes up to 25,000 
pixels to ease comprehension.

As with the 2021–2022 data, most pixels (37,704) fall within 11 DN intervals from 213 to 223, which 
represents 4.29% of the total DN (0–255) and 66.91% of the 56,349 pixels with radiation data. For 15–31 
August 2021, pixel intensities are generally lower compared to the full 2021–2022 period. The remaining 
18,645 pixels (33.09%) are spread across the rest of the intensity range, averaging 76 pixels per DN inter-
val (15.55% fewer than the full period) with a standard deviation of 70.23 pixels (35.05% lower). The CoV 
of 0.92 indicates reduced variability in this time frame.

Figure 13.  Sentinel-1 IW (VV+VH) Enhanced visualization image. Case study area with scale. 15 to 31 August 2021. 
Coordinates of the study area centroid are 37.59458° N 5.84059°W, and those for the southwesternmost point (bottom-left 
corner) are 37.585497° N, 5.861256° W.

Figure 14.  3D radiation data of the case study area. 15 to 31 August 2021. Elevation view.

Figure 15. I ntensity of satellite image pixels by their DN distribution. Mid-to-end of August 2021.
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The global DN distribution for the last two weeks of August 2021 shows a mean of 220.11 pixels, a 
standard deviation of 1133.35 pixels, and a CoV of 5.15, indicating less radiation data dispersion than the 
full 2021–2022 period.

To assess fruit quality, the difference between 3D radiation data from 15–31 August 2021 and the full 
2021–2022 period was analyzed using CloudCompare, with the latter as the reference. The mean distance 
was 23.61 m, with a standard deviation of 18.33 m. Since the data were not normally distributed, a 
Weibull distribution provided a better fit (Figure 16). Distances in the Z coordinate represent radiation 
intensity, with meters serving as a spatial interpretation of this data.

The Weibull curve shows an asymmetric distribution, with its mode being 193.60 and a negative 
skewness near zero, in this case −0.23. The curve fitting was determined by the two Weibull parameters: 
a = 4.84 and b = 203.07. Its Χ2 distance was 741,593, with a scalar field RMS error of 194.27 m. The dis-
tance of most points between clouds is below 40 meters.

The following period was also analyzed in terms of point cloud deviation to characterize a different 
instance of fruit production.

3.2.2.  15 to 31 August 2022
The satellite data downloaded from the Copernicus Browser is presented below (Figure 17).

Following this paper’s methodology (from 2D enhanced visualization satellite imagery to 3D backscat-
ter data), Figure 18 shows the 3D radiation data from 15 to 31 August 2022, and Figure 19 presents the 
DN distribution. The scale of the graph also remains constant.

The graph shows that most pixels (37,137) fall within 9 DN intervals from 194 to 203, representing 
3.52% of the total DN range (0–255) and 59.01% of the 62,930 radiation data points. For 15 to 31 August 
2022, pixel intensities are generally lower compared to the full 2021–2022 period and the same period 
in 2021. The remaining 25,793 pixels (40.99%) are spread across other intensity intervals, averaging 104 
pixels per DN interval (15.55% higher than the full period and 36.84% higher than the previous year), 
with a standard deviation of 91.09 pixels, 15.76% lower than the full period but 29.70% higher than late 
August 2021. The coefficient of variation (0.88) indicates lower variability in this timeframe.

The global DN distribution of pixels in the last two weeks of August 2022 is characterized by 245.82 
pixels in average, with a standard deviation of 1143.56 pixels and a CoV of 4.65. This selected time frame 
presents a lower dispersion of radiation data in comparison with the full 2021–2022 period. It is similar 
to August 2021 but with a higher average radiation, slightly higher standard deviation, and a lower 
coefficient of variation (a more constant behavior).

Figure 16. R adiation intensity comparison between 15 to 31 August 2021 and the full time range (2021–2022 period). 
Weibull distribution fitting curve.



Cogent Food & Agriculture 17

Finally, the difference in 3D radiation data between the selected period (15 to 31 August 2022) and 
the full-time range (reference) was also studied through point deviation analysis with Weibull distribution 
fitting (Figure 20). Units: points and meters.

The Weibull curve shows a smoother distribution against the comparison between August 2021 and 
the full time range (from 2021 to 2022), with its mode being 0 and a positive skewness of 2.02. The 
curve fitting was determined by the two Weibull parameters: a = 0.99 and b = 24.95. Its Χ2 distance was 
5702.42, with a scalar field RMS error of 33.45 m, significantly lower than that when comparing the pre-
vious year with the full time range. The distances of most points between clouds are below 30–40 
meters, which should imply a greater similarity to the whole period in relation to the August 2021–full 
time range analysis.

Figure 17.  Sentinel-1 IW (VV+VH) Enhanced visualization image. Case study area with scale. 15 to 31 August 2022. 
Coordinates of the study area centroid are 37.59458° N 5.84059°W, and those for the southwesternmost point (bottom-left 
corner) are 37.585497° N, 5.861256° W.

Figure 18.  3D radiation data of the case study area. 15 to 31 August 2022. Elevation view.

Figure 19. I ntensity of satellite image pixels by their DN distribution. Mid-to-end of August 2022.
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3.2.3.  15 to 31 August 2021 against 15 to 31 August 2022
Finally, the last two weeks of August 2021 and those of the same month in 2022 were also analyzed to 
show how the study area radiation evolved in one year. This was carried out through C2C (Cloud-to-
Cloud) point deviation analysis in CloudCompare software, with the first period as the reference in the 
comparison (Figure 21). This yielded a mean distance of 29.14 m and a standard deviation of 20.82 m.

The Weibull curve exhibits an asymmetrical distribution, with a mode of 11.45 and a positive skew-
ness of 1.28. The curve fitting was determined by the two Weibull parameters: a = 1.34 and b = 24.95. Its 
Χ2 distance was 3362.64, with a scalar field RMS error of 35.81 m. The distances of most points between 
clouds are below 40–60 meters, which, in turn, implies a greater similarity to the whole period in relation 
to the August 2021–full time range analysis.

To display these findings together, Figures 22 and 23 present the DN distributions and point cloud 
distances, respectively, with Weibull curve fitting of the different periods analyzed.

Figure 20. R adiation intensity comparison between 15 to 31 August 2022 and the full time range (2021–2022 period). 
Weibull distribution fitting curve.

Figure 21. R adiation intensity comparison between 15 to 31 August 2021 and 15 to 31 August 2022. Weibull distribu-
tion fitting curve.
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The Weibull distributions of points in the comparison between the different periods are statistically 
characterized in Table 2.

Both the histogram and data show many points clustered near zero distance, indicating that most 
areas experienced minimal (but measurable) changes in dryness between the analyzed dates. However, 

Figure 22. I ntensities of satellite image pixels by their DN distribution: blue) 1 January 2021 to 31 December 2022; red) 
Mid-to-end of August 2021; and green) Mid-to-end of August 2022.

Figure 23.  Weibull distribution: red) Last fortnight of August 2021 vs full time range; green) Last fortnight of August 
2022 vs full time range; and blue) Last fortnight of August 2021 vs that of 2022.

Table 2.  Statistical data of radiation data Weibull distribution across different periods, where Sd is the standard devia-
tion, and CoV represents the coefficient of variation.

a) 15 to 31 August 2021 b) 15 to 31 August 2022 Comparing a) and b)

Statistical descriptor Value Statistical descriptor Value Statistical descriptor Value

Mean (points) 236.76 Mean (points) 250.72 Mean (points) 250.72
Sd (points) 267.07 Sd (points) 316.45 Sd (points) 269.20
CoV 1.13 CoV 1.26 CoV 1.07
Mean up to 40 m 

(points)
536.22 Mean up to 40 m 

(points)
611.04 Mean up to 40 m 

(points)
487.50

Sd (points) 208.99 Sd (points) 322.82 Sd (points) 212.14
CoV 0.39 CoV 0.53 CoV 0.44
Mean from 40 m 

(points)
61.08 Mean from 40 m 

(points)
75.89 Mean from 40 m 

(points)
37.25

Sd (points) 62.57 Sd (points) 68.23 Sd (points) 30.32
CoV 1.02 CoV 0.90 CoV 0.81
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several sectors (pixels) showed notable changes in radiation intensity. Variability for distances beyond 40 
meters is about three times higher than for shorter distances, though these points are fewer and less 
dispersed.

Results show a clear left-skewed distribution of point deviations between 15–31 August 2022 and the 
full time range, indicating fewer changes overall. Still, a significant number of drier areas at greater dis-
tances exhibit higher variability, though closer areas are more numerous. Overall, mid-to-late August 
2022 displays greater dispersion and a higher average point count per distance interval compared to the 
same period in 2021.

Both qualitatively and quantitatively, the histograms and statistics show greater variability and longer 
tails in point distances between August 2021 and August 2022 than in the full 2021–2022 period, indi-
cating significant changes in the study area over one year.

4.  Discussion

Radar remote sensing offers numerous uses, including sustainable forest management, crop condition 
monitoring, soil property analysis, and accurate mapping of tillage activities, among others (ESA, European 
Space Agency (ESA),), 2024a). Interferometric SAR detects surface movements with millimeter-level preci-
sion annually, making it a reliable tool for monitoring land subsidence, structural damage, and under-
ground construction, thus improving safety and reducing economic loss.

According to the ESA (2024b), Sentinel-1 images monitor changes in agricultural production and pas-
ture productivity due to drought, as well as land degradation from over-cultivation, grazing, and poor 
irrigation. Agricultural maps provide unbiased assessments of cultivation levels by country or season, 
aiding food security efforts in vulnerable regions.

Sentinel-1 was chosen for this study due to its free, unrestricted access, all-weather, day-night C-band 
SAR imaging, and frequent 6-day revisit interval, ideal for monitoring dynamic environments. Compared 
to TerraSAR-X, Sentinel-1 offers a wider swath (250 km vs. 30 km), shorter revisit time (6 vs. 11 days), and 
free data, making it better suited for large-scale, time-sensitive applications. It also outperforms ALOS 
with a faster revisit (6 vs. 14–46 days), wider coverage, and better global reach. While ALOS’s L-band 
excels in forest and biomass monitoring, Sentinel-1’s C-band delivers higher spatial resolution for most 
land-use and environmental uses, making it more versatile for diverse Earth observation needs.

Meanwhile, and building upon prior research (Dela Torre et  al., 2021; Zhao et  al., 2024), the present 
study has verified that the temporal fluctuations of backscattering coefficients may accurately represent 
the changes in the development of citrus orchards.

Figure 6 shows that sharp drops in LAI correspond to harvesting periods (days 30, 243, 350, 575, 608, 
650, and 700). This pattern is also seen in the crop coefficient (Kc) and basal crop coefficient (Kcb) in 
Figure 9, confirming the link between LAI, Kc, and Kcb.

Although the (VV+VH) backscatter time series (Figure 7) follows a similar trend, it cannot distinguish 
between harvesting periods and phenological development in citrus orchards. This suggests the tempo-
ral baseline used maintains strong coherence despite changes from climate, farming practices, or crop 
growth. Also, this study found a strong correlation between coherence fluctuations and backscatter 
changes linked to orchard development, highlighting the importance of combining Sentinel-1 imagery 
with field studies for accurate differentiation.

The correlation between LAI and backscatter (VV+VH) is stronger with gamma VV backscatter (r = 0.29), 
consistent throughout the entire study period and at its start and end (see Figure 8). As Navarro et  al. 
(2016) specified, this may clarifies why the correlation between gamma VH backscatter and LAI (r = 0.15) 
is notably lower over the entire period.

When examining Ks (water stress coefficient) and Ke (soil evaporation coefficient) values (see Figure 
10), all variables (LAI, Kc, and Kcb) show a noticeable decrease at the start and end of each year, except 
for Ke, which rises. This increase in soil evaporation is significant, as the soil is largely free of weeds 
during these periods, leading to greater water loss and increased dryness. Clearly, as pointed out by the 
IPCC Grupo Intergubernamental de Expertos sobre Cambio Climático (IPCC) - Junta de Andalucía - 
Consejería de Sostenibilidad’ Medio Ambiente y Economía Azul․ (2022), climate change is a key driver of 
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rising air temperatures. As climate change progresses into global warming, it logically leads to higher 
temperatures and, consequently, an increase in the soil evaporation coefficient.

This work offers detailed insights by linking temporal behavior and soil dryness during a critical phe-
nological stage for citrus orchards, using a large number of images over an extended period. To investi-
gate soil dryness, especially in the last fortnight of August 2021 and 2022, when the highest-quality 
orange harvest occurs, Weibull curves, a suitable fit for backscatter data distribution, were automatically 
computed (Figures 16, 20, and 21) to analyze drought events of these specific periods. In this case, 
greater distances between matching points in different point clouds correspond to higher Weibull values, 
indicating increased soil dryness. This matches 30–40% of citrus plots harvested in August within the El 
Hundido irrigators’ community, which aligns with the percentage of distance on the Weibull distribution’s 
abscissa. The analysis concludes that August 2022 was 12% drier than August 2021, August 2021 was 4% 
drier than the full 2021–2022 period, making August 2022 overall 16% drier than the full-time range.

Similarly, analyses of satellite image pixel intensity by DN distribution (Figures 12, 15, and 19) reveal 
a notable finding: the peak percentage of points corresponds to 4% of citrus plots in the study area 
irrigated by drip (10.8 ha out of 270 ha).

Integrating Sentinel-1 data with quantitative models to identify dryness and estimate water needs in 
citrus orchards presents significant improvement opportunities. Citrus orchard modeling has evolved from 
theory to a key part of decision support systems at multiple spatial scales, enabling further progress (Dela 
Torre et  al., 2021). This evolution parallels rapid advances in remote sensing and SAR technology, driven by 
more frequent satellite data and the anticipated growth of drone-based SAR for precision agriculture.

5.  Conclusions

This study evaluated the new CARP-Flux model, which uses Sentinel-1 images, backscatter data segmen-
tation, and radar point cloud analysis. It was applied to an irrigator community in the Vega del 
Guadalquivir, a major citrus-growing region. Notably, the model improves water need estimates where 
the Hargreaves method underestimates by about 15%, particularly in irrigated or moist soils. This under-
estimation occurs because Hargreaves does not account for additional water availability or soil moisture, 
leading to lower ET0 estimates when evapotranspiration is high.

Developing the model required using evolutionary algorithms, a tool of enormous interest not only 
in remote sensing but also, among other examples, in areas related to pollutants’ diffusion in the envi-
ronment (Ramírez-Juidías et  al., 2015).

Apart from the new model for calculating water requirements in citrus orchards, the use of advanced 
statistical techniques, such as the Weibull distribution, has been particularly relevant in this work. This is 
due to their enormous potential for identifying study area use changes. For this reason, they are of partic-
ular interest along with the use of radar images, especially because of their practical complementarity.

It should be noted that the methodology used in this research can be applied to greater areas, 
such as large cities or entire countries. In this respect, future lines of work will consist of the compi-
lation and analysis of 3D radar data in agricultural macro-areas with the aim of inferring their effect 
on the climatic comfort of large urban agglomerations. It should not be forgotten that in this type of 
study, it is essential to carry out supervised classification through the confusion matrix of fieldwork 
data in order to avoid false positives or negatives. For this reason, fieldwork plays an important role.
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