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Objective: Developmental Coordination Disorder (DCD) is a common 
neurodevelopmental condition characterized by impaired motor coordination. 
However, the biological mechanisms underlying DCD remain largely unclear. 
This study aimed to investigate the potential role of DNA methylation in the 
pathogenesis of DCD.
Methods: Genome-wide DNA methylation analysis was conducted using 
peripheral blood samples from children with and without DCD. Forty-two key 
differentially methylated probes (DMPs) were selected for targeted validation 
using MethylTarget™ sequencing.
Results: A total of 416 DMPs were detected. Using the Bumphunter and 
ProbeLasso algorithms, 48 and 22 differentially methylated regions (DMRs) were 
identified, respectively. Among the key DMPs, methylation levels at cg18187326 
(FAM45A) and cg11968956 (FAM184A) were significantly associated with both 
total motor and gross motor scores. In addition, cg03597174 (SEZ6) was 
negatively associated, while cg05986449 (GPD2) was positively associated with 
gross motor function.
Conclusion: These findings provide preliminary evidence that specific DNA 
methylation alterations may influence early motor development and potentially 
contribute to the pathogenesis of DCD. DNA methylation markers may 
serve as novel biomarkers for early diagnosis and targeted intervention in 
children with DCD.
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Introduction

DCD is a neurodevelopmental disorder characterized by impaired motor coordination, 
with a current prevalence of approximately 5%–6% among children aged 5–11 years 
(Biotteau et al., 2020; Blank et al., 2019). Children with DCD often exhibit slow, clumsy, 
or inaccurate movements, which can significantly affect their daily activities such as
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TABLE 1  Characteristics of the participants.

Characteristics Study cohort for 
genome-wide 

DNA methylation 
analysis (n = 16)

P valuea

Control DCD

Participants 8 8 -

MABC-2 score percentile [mean 
(SD)]

74.38 (19.19) 6.30 (8.72) <0.0001

Age (years) [mean (SD)] 3.75 (1.39) 3.25 (0.71) 0.3795

Gender [n (%)]

 Male 5 (62.5%) 5 (62.5%) -

 Female 3 (37.5%) 3 (37.5%) -

Abbreviation: SD, standard deviation.
aThe P value is calculated from two sample t-test.

writing and riding a bicycle (Hua et al., 2020). Beyond 
motor impairments, DCD is also strongly associated with 
lower cognitive function (Wilson et al., 2013), learning 
difficulties (Harrowell et al., 2018), and mental health problems 
(Lingam et al., 2012). Importantly, DCD often persists into 
adulthood, with approximately 30%–70% of individuals continuing 
to experience motor dysfunction, potentially leading to non-
motor problems such as depression, anxiety, and low self-esteem 
(Biotteau et al., 2019; Losse et al., 1991). Given the long-term impact 
of DCD, it is essential to investigate the biological mechanisms of 
DCD to develop effective intervention strategies.

The mechanisms underlying DCD have not been clearly defined, 
but evidence suggests that they may involve the interaction of genetic 
and environmental factors. Epigenetic mechanisms, including 
DNA methylation, histone modifications, and non-coding RNA 
regulation, are key mediators of gene-environment interactions and 
central players in the intricate processes of brain development 
and function (Lossi et al., 2024). Among them, DNA methylation 
patterns play a crucial role in the proliferation and differentiation 
of neural stem cells, helping to establish and maintain neuronal 
identity while contributing to the diversity of neuronal subtypes in 
the brain (Sun et al., 2021; Lister et al., 2013). DNA methylation 
has been implicated in several neurodevelopmental disorders, 
such as autism spectrum disorder (ASD) (Jiang et al., 2022), 
attention deficit hyperactivity disorder (ADHD) (Carvalho et al., 
2023), and Tourette syndrome (TS) (Pagliaroli et al., 2016). 
However, no studies to date have investigated DNA methylation 
in DCD. Some research suggests that environmental exposures 
during fetal life and early childhood, such as air pollution, 
can induce long-lasting changes in DNA methylation patterns, 
thereby affecting neurodevelopmental trajectories (Lossi et al., 2024; 
Broséus et al., 2024). For example, prenatal exposure to PM10 has 
been associated with differential methylation of genes involved in 
neurodevelopment, which may subsequently impact cognitive and 
motor function in offspring (Feil et al., 2023). Therefore, further 
exploration of the epigenetic alterations in DCD, particularly the 

role of DNA methylation, could provide critical insights into its 
underlying molecular mechanisms and new perspectives for future 
precise intervention and therapeutic strategies.

Given the critical role of epigenetic modifications in 
neurodevelopment, this study aimed to investigate the DNA 
methylation patterns associated with DCD in children to identify 
potential epigenetic biomarkers related to motor development. 
We first performed genome-wide DNA methylation analysis to 
screen for differentially methylated probes associated with DCD. 
These probes were then validated in a larger population using 
MethylTarget™ sequencing, and their associations with motor 
development scores were assessed. Our findings provide new 
insights into the epigenetic mechanisms underlying DCD and 
suggest potential biomarkers for early diagnosis.

Methods

Study population

Children who visited Shanghai First Maternity and Infant 
Hospital with suspected motor coordination disorder were assessed 
using the Movement Assessment Battery for Children-Second 
Edition (MABC-2). In combination with the DSM-5 (Diagnostic 
and statistical manual, 2013) diagnostic criteria, the participants 
were assigned to DCD group according to the diagnostic results. 
Age-matched healthy children were selected as controls. Peripheral 
blood samples were collected from all enrolled children for genome-
wide DNA methylation analysis. The other 41 participants were from 
a previous cohort study conducted at the Shanghai First Maternity 
and Infant Hospital. Motor development at 1 year of age in 41 
participants was assessed using Bayley Scales of Infant and Toddler 
Development, Third Edition (BSID-III), and peripheral blood was 
collected for MethylTarget™ sequencing. The study was approved by 
the Ethic Committee of Shanghai First Maternity and Infant Hospital 
(KS1630). All information acquired was kept confidential and was 
only accessible by the researchers. 

DCD diagnosis

In this study, the diagnosis of DCD was based on both the 
MABC-2 scores and the criteria outlined in DSM-5. According 
to the DSM-5 (Diagnostic and Statistical Manual, 2013), DCD 
should be diagnosed based on the following criteria: 1) acquisition 
and execution of coordinated motor skills are below the expected 
level for age, given the opportunity for skill learning; 2) motor 
skill difficulties significantly interfere with activities of daily 
living and impact academic/school productivity, prevocational and 
vocational activities, leisure, and play; 3) onset is in the early 
developmental period; and 4) motor skill difficulties are not better 
explained by intellectual or visual impairment or other neurological 
conditions that affect movement. Additionally, children with co-
occurring ASD, ADHD, or learning disorders (LD) were excluded 
from the study. 
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FIGURE 1
Characteristics of DMPs in DCD. (A) Proportion of hypermethylated (red) and hypomethylated (blue) DMPs. (B,C) The category of genomic locations for 
all probes and DMPs. (D,E)The category of genomic locations for hypermethylated (red) or hypomethylated (blue) DMPs. 1stExon, first exonic region on 
the gene; 3′UTR, between the stop codon and poly A signal; 5′UTR, within the 5′untranslated region and between the TSS and the ATG start site; body, 
gene region; IGR, intergenic region; TSS1500, 200–1500 bases upstream of the transcriptional start site (TSS); TSS200, 0–200 bases upstream of the 
TSS. Island, CpG island; Shore, 0–2 kb from CpG island; Shelf, 2–4 kb from CpG island; opensea, other genomic regions. Fisher’s exact test,  ∗, P < 0.05; 
 ∗∗∗, P < 0.001;  ∗∗∗∗, P < 0.0001.

Neurodevelopment measurements

The MABC-2 is a widely used diagnostic tool for 
assessing DCD (Henderson et al., 2007). The test consists of eight 
items and the recorded raw data are standardized and converted into 
a standard score of 1–19, reflecting three motor subtests (manual 
dexterity, aiming and catching, and balance), which represent fine 
motor skills, gross motor skills, and balance abilities, respectively. 
Finally, the standardized scores from each subscale are summed to 
calculate the total MABC-2 score.

The BSID-III is a widely utilized assessment tool for 
evaluating neurodevelopment in children up to 42 months of 
age. In this study, we included scores from motor (gross and 
fine motor) domain. The motor subscale may be useful for 
describing and assessing motor function, especially for general 
developmental assessment to identify early motor dysfunction. 
Frijters et al. (Frijters et al., 2010) have demonstrated that 
it had a good correlation with MABC-2 results in children 
aged 36–48 months. As described previously (Hua et al., 
2019), the BSID-III was used to assess motor development 
at 1 year of age in 41 participants. These assessments were 
conducted by trained professionals. The motor domain composite 
scores were standardized according to the standard usage of
the tool. 

Infinium human methylation 850K 
BeadChip

Genome-wide DNA methylation analysis was conducted using 
the Infinium Human Methylation 850K BeadChip (Illumina). 
Genomic DNA was bisulfite-treated using the EZ DNA Methylation 
Kit (Zymo Research) according to the manufacturer’s protocol. 
The treated DNA samples were then hybridized to the BeadChip 
following the Illumina Infinium HD Methylation Protocol. Raw 
intensity data (IDAT files) generated from the BeadChip were 
processed using the ChAMP (Tian et al., 2017) package (version 
2.14.0) in R, with the human genome build 19 (hg19) as a 
reference genome for annotation. DNA methylation levels were 
represented as β values, ranging from 0 (completely unmethylated) 
to 1 (fully methylated) for each CpG site. Probes with a detection 
P value >0.01 and located on the X and Y chromosomes were 
excluded. Additionally, SNP-related probes and multi-hit probes 
were removed. To correct for Infinium type I and type II probe bias, 
the BMIQ (Beta MIxture Quantile dilation) algorithm was applied. 
The final data set for analysis comprised methylation data from 
723838 probes. To assess the presence of variation and potential 
batch effects in the methylation data, we performed singular value 
decomposition (SVD) analysis and generated a scree plot to visualize 
the proportion of variance explained by each principal component, 
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FIGURE 2
Chromosomal distribution and methylation patterns of DMPs in DCD. (A) Distribution of DMPs across Chromosomes. (B) Heatmap of hierarchical 
clustering analysis for samples according to DMPs. (C) Top 10 DMPs ranked by P-value.

thereby identifying potential sources of variation. Additionally, a 
quantile-quantile (QQ) plot of observed versus expected–log10(p) 
values was generated to evaluate the inflation of test statistics and 
detect any systematic bias. To control for cell type heterogeneity 
in blood samples, we applied a reference-based cell composition 
correction using the champ.refbase.fix function in the ChAMP 
package in R with default parameters, which estimates and adjusts 
for the proportions of major blood cell types (CD8+ T cells, CD4+ T 
cells, natural killer cells, B cells, monocytes, and granulocytes) 
based on the method by Houseman et al. (Houseman et al., 2012). 
The estimated proportions of these cell types for each group are 
summarized in Supplementary Table S1. 

MethylTarget™ sequencing

MethylTarget™ sequencing (Genesky Biotechnologies Inc., 
Shanghai, China) was used to assess CpG site methylation 
levels. Following quality control of genomic DNA, target 
probes primers were designed and single-site PCR conditions 
were optimized. The primer sequences for target probes 
are shown in Supplementary Table S2. Optimized primers were 
combined into a multiplex PCR panel. After bisulfite conversion, the 
multiplex PCR panel was used for amplification, ensuring balanced 
target site products. Indexed primers were then used for PCR to 
introduce Illumina-compatible tags and sequencing libraries were 
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FIGURE 3
Characteristics of DMRs identified by the Bumphunter algorithm in DCD. (A) Circos plot of DMRs. (B) Heatmap of hierarchical clustering analysis for 
samples according to DMRs.

constructed. Finally, after fragment size verification using Agilent 
2100 bioanalyzer, sequencing was performed on the Illumina Hiseq 
platform (2 × 150 bp) to generate FastQ data. 

Statistical analysis

Statistical analysis was performed using R software (version 
4.4.3) and SPSS 26.0 (IBM, Armonk, NY, United States). DMPs 
between groups were identified using the champ.DMP function 
in the ChAMP package (version 2.14.0). Given the relatively 
limited sample size, we applied selection criteria based on both 
unadjusted statistical significance and effect size. Specifically, DMPs 
were defined as CpG sites with an unadjusted P value <0.05 
and an absolute methylation difference (Δβ) > 0.1. This approach 
has been successfully applied in previous studies to identify 
DMPs in small samples (Maltby et al., 2020; Imran et al., 2021; 
Yao et al., 2021; Maltby et al., 2017). DMRs were identified using 
the champ.DMR function implemented in the ChAMP R package. 
We applied two algorithms within this function: Bumphunter and 
ProbeLasso. For Bumphunter, the minimum number of CpGs per 
DMR was set to ≥2, and the maximum DMR length was restricted 
to less than 300 bp. For ProbeLasso, default settings were used as 
provided by the ChAMP package. The DMRs detected by these 
two algorithms were compared to evaluate the consistency and 
robustness of the results across different computational methods.

To assess the genomic distribution of DMPs, we compared the 
numbers of total, hypermethylated, and hypomethylated DMPs in 
gene-related and CpG island-related regions with the background 
distribution of all probes on the Illumina 850K array using 
Fisher’s exact test. Multiple testing correction was performed using 
the Benjamini–Hochberg (BH) method and an adjusted P value 

<0.05 was considered statistically significant. For the chromosomal 
distribution analysis, a chi-squared goodness-of-fit test was used 
to compare the observed number of DMPs per chromosome with 
the expected distribution based on the total number of probes per 
chromosome on the 850K array.

Functional enrichment analysis, including Gene Ontology (GO) 
(Ashburner et al., 2000) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa et al., 2008) pathway 
analysis, was performed using the Over-Representation Analysis 
(ORA) method implemented in the R package clusterProfiler 
(version 3.12.0) (Yu et al., 2012) and the results were visualized using 
the SRplot platform (www.bioinformatics.com.cn).

In the replication phase, the associations between methylation 
levels at candidate DMPs and motor outcomes (total motor, gross 
motor, and fine motor scores) were evaluated using univariate 
and multiple linear regression models. For the multiple regression 
models, covariates included maternal age at delivery, child’s 
gender, and birth weight. Maternal age was grouped into two 
categories: “<35” and “≥35” years. Effect estimates were presented 
as standardized β coefficients with 95% confidence intervals (CI). 
A two-tailed P value <0.05 was considered statistically significant. 
Sensitivity analysis was conducted by adjusting for the covariates to 
assess the robustness of the findings.

Results

Characteristics of the participants

The diagnosis of DCD was performed according to DSM-5 
criteria, and 9 of the tested children had confirmed DCD. One 
child over 7 years of age was excluded based on age (3–7 years) 
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FIGURE 4
KEGG pathway enrichment analysis. (A) KEGG pathway classification of DMPs-associated genes. (B) KEGG pathways related to the nervous system and 
neurodegenerative diseases enriched in DMPs-associated genes. (C) KEGG pathways related to the nervous system and neurodegenerative diseases 
enriched in DMRs-associated genes.

and the remaining participants were then matched in groups based 
on age and gender. Of the 16 participants, 8 children with DCD 
and 8 children without DCD had mean ages of 3.25 ± 0.71 
and 3.75 ± 1.39 years, respectively, with no statistically significant 
difference between the groups (t = 0.907, P = 0.3795). The sex 
distribution was identical between the DCD and control groups, 
with each group including 5 boys and 3 girls. The MABC-2 score 
percentiles were significantly lower in the DCD group (6.30 ± 
8.72) compared to the control group (74.38 ± 19.19), with a 
statistically significant difference (t = 9.134, P < 0.0001). Peripheral 
blood was collected from enrolled children for methylation data
analysis (Table 1). 

DMPs in children with DCD

Genome-wide DNA methylation profiling of 16 children was 
detected using 850K BeadChip. To assess potential technical 
batch effects, SVD analysis was conducted using variables 

including slide, array, plate, well, start_date, and sample_group. 
As shown in Supplementary Figure S1A, only the sample_group 
variable was significantly associated with the first principal 
component (PC1, P < 0.05), whereas all technical variables 
were not significantly associated (P > 0.05). A scree plot 
(Supplementary Figure S1B) further demonstrated that the first 
three principal components explained 41.82% of the total variance. 
These findings suggested that the primary source of variation was 
biological rather than technical. Additionally, the QQ plot has been 
presented in Supplementary Figure S1C. The observed genomic 
inflation factor (λ = 1.168) falls within acceptable limits, indicating 
no substantial inflation or systematic technical bias in the test 
statistics.

Based on these results, we subsequently performed differential 
methylation analysis between groups. As shown in Figure 1A, a total 
of 416 DMPs, including 151 hypermethylated DMPs (36.30%) and 
265 hypomethylated DMPs (63.70%), were identified in the DCD 
group compared with the control group. 277 of these DMPs had 
UCSC RefGene Name, mapping to 238 unique genes, while other 
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TABLE 2  Genomic characteristics of 42 Key DMPs in DCD.

Probe Chr MAPINFO UCSC RefGene Name UCSC RefGene 
Group

UCSC RefGene Name 
Annovar

Type

cg03597174 17 27359875 IGR SEZ6, PIPOX Hypermethylated

cg03603331 8 134104425 TG Body SLA,TG Hypomethylated

cg22282916 22 43357102 PACSIN2 TSS1500 PACSIN2 Hypomethylated

cg06449058 6 158991790 TMEM181 Body TMEM181 Hypomethylated

cg22275446 3 63883664 ATXN7 TSS1500 ATXN7 Hypomethylated

cg04216475 6 159520036 IGR TAGAP, LOC101929122 Hypermethylated

cg14186948 9 137723167 COL5A1 Body LOC101448202 Hypomethylated

cg03146219 11 71189514 NADSYN1 Body NADSYN1 Hypomethylated

cg18634211 1 26737262 LIN28 TSS200 LIN28A Hypomethylated

cg23875752 11 71189385 NADSYN1 Body NADSYN1 Hypomethylated

cg22110428 19 51980908 CEACAM18 TSS1500 CEACAM18 Hypomethylated

cg11883129 2 48569029 FOXN2 5′UTR FOXN2 Hypomethylated

cg12126686 19 35821634 CD22 5′UTR CD22 Hypermethylated

cg11024728 7 1425807 IGR UNCX, MICALL2 Hypomethylated

cg25937052 4 41649731 LIMCH1 Body LIMCH1 Hypomethylated

cg04959182 2 86770055 CHMP3 Body CHMP3, RNF103-CHMP3 Hypomethylated

cg08314849 2 25192865 DNAJC27 Body DNAJC27 Hypomethylated

cg24419094 2 10266986 RRM2 Body RRM2 Hypomethylated

cg10193422 14 65537522 MAX Body MAX Hypermethylated

cg09238666 16 66584358 TK2 TSS200 TK2 Hypomethylated

cg18187326 10 120873428 FAM45A Body FAM45BP Hypomethylated

cg11543899 9 20607066 MLLT3 Body MLLT3 Hypomethylated

cg10283362 21 37501846 IGR LOC100133286, CBR3-AS1 Hypomethylated

cg14933993 21 45341553 AGPAT3 5′UTR AGPAT3 Hypermethylated

cg17073989 1 90321453 LRRC8D 5′UTR LRRC8D Hypermethylated

cg11053414 1 85135713 SSX2IP Body SSX2IP Hypomethylated

cg20049730 2 147075656 IGR TEX41, PABPC1P2 Hypomethylated

cg02152351 6 8436296 SLC35B3 TSS1500 LOC100506207 Hypermethylated

cg16113883 6 138190021 TNFAIP3 5′UTR TNFAIP3 Hypermethylated

cg11112615 6 2970624 SERPINB6 5′UTR SERPINB6 Hypomethylated

cg13388253 19 51505507 KLK8 TSS1500 KLK8, KLK9 Hypermethylated

cg06571226 1 230439016 IGR GALNT2, PGBD5 Hypomethylated

(Continued on the following page)
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TABLE 2  (Continued) Genomic characteristics of 42 Key DMPs in DCD.

Probe Chr MAPINFO UCSC RefGene Name UCSC RefGene Group UCSC RefGene Name 
Annovar

Type

cg12709880 18 21163172 NPC1 Body NPC1 Hypomethylated

cg12437013 13 114161939 TMCO3 Body TMCO3 Hypomethylated

cg13860573 3 136649005 NCK1 TSS1500 NCK1 Hypomethylated

cg16092154 1 55414179 IGR DHCR24, TMEM61 Hypomethylated

cg01684255 3 194142667 ATP13A3 Body ATP13A3 Hypomethylated

cg11968956 6 119441387 FAM184A 5′UTR FAM184A Hypomethylated

cg16667827 17 57803298 VMP1 5′UTR VMP1 Hypomethylated

cg08920032 15 99,332,004 IGF1R Body IGF1R Hypomethylated

cg05986449 2 157320849 GPD2 5′UTR GPD2 Hypomethylated

cg22082780 1 68452167 IGR GNG12-AS1 Hypomethylated

TABLE 3  Basic characteristics of the population in replication phase.

Characteristics n Mean ± SD or (%)

Participants 41

Birth weight (g)a 41 3405.37 ± 453.93

Genderb

 Boys 19 46.34

 Girls 22 53.66

Mode of deliveryb

 Cesarean delivery 41 100.00

Maternal age at delivery (years)b

 ≥ 35 18 43.90

 < 35 23 56.10

Abbreviations: SD, standard deviation.
aData were presented as mean ± SD, for continuous variables.
bNumber and percentage/proportion for categorical variables.
Bold values in “Maternal age at delivery” were unintentional. Maternal age was categorized 
as <35 and ≥35 years, as described in the Methods.

DMPs were not annotated to specific genes. The RefGene name and 
the location of each DMP in a gene or chromosome are provided 
in Supplementary Table S3 and Supplementary Figure S2. We next 
examined the genomic distribution of these DMPs. As shown in 
Figure 1B, DMPs were most frequently located in gene bodies 
(Body, 38.22%) and intergenic regions (IGR, 33.41%). However, 
Fisher’s exact test indicated that DMPs were significantly enriched 
in IGR (adjusted P = 0.047) but not in Body regions. In contrast, 
DMPs were significantly depleted in TSS200 regions (adjusted P = 
0.047) (Figure 1B; Supplementary Table S4). Similarly, within CpG 

island-related regions, DMPs were significantly enriched in opensea 
regions (adjusted P = 4.36 × 10−6) and depleted in CpG islands 
(adjusted P = 1.04 × 10−6) (Figure 1C; Supplementary Table S4). 
Further stratified analysis showed that hypomethylated DMPs 
were also enriched in opensea regions (adjusted P = 1.56 
× 10−4) and depleted in CpG islands (adjusted P = 4.12 × 
10−6), while no significant enrichment or depletion was observed 
for hypermethylated DMPs in any genomic or CpG island-
related region (Figures 1D,E; Supplementary Tables S5, S6). The 
distribution of DMPs varied among chromosomes, with the 
highest number observed on chromosome 1, chromosome 6, 
and chromosome 2 (Figure 2A; Supplementary Table S7). However, 
a chi-squared goodness-of-fit test showed that this distribution 
did not significantly differ from that of all detected probes 
(χ2 = 26.13, df = 21, P = 0.2016), indicating no significant 
chromosomal enrichment. Additionally, a heatmap showing the 
methylation levels of all DMPs is presented in Figure 2B. The 
top 10 DMPs ranked by P value are shown in Figure 2C, 
and those ranked by absolute methylation difference are shown
in Supplementary Figure S3. 

DMRs in children with DCD

A total of 48 DMRs were identified between the DCD and 
control groups using the Bumphunter algorithm, mapping to 
48 unique genes (Supplementary Table S8). The distribution and 
methylation level of these DMRs were visualized by a circos plot 
and heatmap (Figures 3A,B).Among these, 12 genes overlapped 
with those annotated by DMPs. A hypergeometric test showed 
that the overlap is significantly more than expected by chance 
(P = 2.91 × 10−13). To assess the robustness of DMR detection, 
we further applied the ProbeLasso algorithm implemented in the 
ChAMP package with default parameters. This analysis identified 
22 DMRs mapping to 24 genes (Supplementary Figure S4A; 
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FIGURE 5
Associations between DNA methylation and motor performance in replication phase. (A) Univariate linear regression. (B) Multiple linear regression.

Supplementary Table S9). Among these, three genes (ABAT, NXN, 
and MIR365A) were consistently identified by both ProbeLasso 
and Bumphunter (Supplementary Figure S4B), suggesting that 
these genes represent robust DMR signals across different 
computational strategies. This cross-validation supports the 
reliability of the observed regional methylation changes. For 
subsequent analyses, we used the DMRs identified by the
Bumphunter algorithm. 

GO and KEGG pathway enrichment analysis

To explore the functional annotation of DMPs and DMRs, we 
performed GO term and KEGG pathway enrichment analyses on 
genes associated with DMPs and DMRs using the ORA method 
implemented in the R package clusterProfiler. The DMPs-associated 
genes were enriched in 3385 GO terms and 204 KEGG pathways, 
while the DMRs-associated genes were enriched in 1356 GO terms 

and 71 KEGG pathways. To further classify the enriched pathways, 
we performed KEGG pathway classification analysis (Figure 4A; 
Supplementary Figure S5C). We found that DMPs-associated 
genes were enriched in 15 KEGG pathways associated with 
the nervous system and neurodegenerative diseases (Figure 4B), 
whereas DMRs-associated genes were enriched in 12 such pathways 
(Figure 4C). Additionally, the top five enriched GO terms in each 
category (biological process, cellular component, and molecular 
function) for DMPs- and DMRs-associated genes are presented in
Supplementary Figures S5A, S5B. 

Screening of key DMPs in DCD

To investigate the association between DNA methylation and 
motor performance in children, we analyzed the correlation between 
the methylation levels of DMPs and MABC-2 scores. A total of 
251 DMPs were significantly associated with motor performance. 
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d For further validation, we prioritized DMPs based on their 
statistical significance, functional relevance, and involvement in 
biological pathways. We identified 42 key DMPs mapped to genes 
involved in neurodevelopment and motor function (Table 2). For 
example, LIN28 and ATXN7 have been implicated in neurogenesis 
and brain development (Wang and Li, 2024; Niewiadomska-
Cimicka and Trottier, 2019). IGF1R plays a crucial role in 
synaptic plasticity and complex cognitive functions (Cardoso et al., 
2021). NCK1 is essential for neuronal connectivity and signaling 
(Fawcett et al., 2007) and TNFAIP3 is involved in regulating 
microglia activation and neuroinflammation (Voet et al., 2018). 
Additionally, the COL5A1 gene encodes the α1 chain of type 
V collagen, which is crucial for musculoskeletal development
(Chandrasekaran et al., 2024). 

Population-based replication

Next, we validated the associations between the methylation 
levels of key DMPs and motor performance in a larger population 
using MethylTarget™ sequencing. Table 3 shows the characteristics 
of the participants in the replication phase. As shown in Figure 5 
and Supplementary Material 2, after adjusting for potential 
confounders, methylation levels at cg18187326 (FAM45A, 
chr10:120873428) and cg11968956 (FAM184A, chr6:119441387) 
remained significantly associated with total motor performance 
(cg18187326, adjusted β = 0.382, P = 0.018; cg11968956, adjusted 
β = 0.334, P = 0.041). For gross motor, higher methylation levels 
at cg18187326 and cg11968956 were also positively correlated 
with better gross motor performance (cg18187326, adjusted 
β = 0.444, P = 0.005; cg11968956, adjusted β = 0.405, P = 
0.011). In addition, cg05986449 (GPD2, chr2:157320849) was 
significantly associated with improved gross motor performance 
(adjusted β = 0.330, P = 0.042). Notably, cg03597174 (SEZ6
(dist = 26417), PIPOX (dist = 10043), chr17:27359875) showed 
a negative association with gross motor performance, suggesting 
that increased methylation level at cg03597174 may be linked 
to poorer gross motor performance (adjusted β = −0.351, P = 
0.038). However, no significant associations were observed between 
methylation levels at these DMPs and fine motor performance. The 
genomic locations and other annotations of these four DMPs are
summarized in Table 4. 

Sensitivity analysis

We conducted sensitivity analysis to examine the robustness 
of the associations between methylation levels at cg18187326, 
cg11968956, cg03597174, and cg05986449 and motor performance. 
Different combinations of covariates, including maternal age at 
delivery, gender, and birth weight, were tested. The results remained 
consistent with the main analysis, supporting the stability of the 
observed associations (Table 5).

Discussion

DCD is a common but under-recognized neurodevelopmental 
disorder characterized by impaired motor coordination, which 
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TABLE 5  Association between DNA methylation and motor performance in different adjusted models using multiple linear regression.

Probe Adjusteda Adjustedb Adjustedc

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

Motor

cg18187326 0.384 (0.087, 0.682) 0.016 0.381 (0.084, 0.677) 0.016 0.382 (0.085, 0.680) 0.016

cg11968956 0.327 (0.022, 0.632) 0.042 0.334 (0.029, 0.638) 0.038 0.334 (0.030, 0.639) 0.038

Gross motor

cg18187326 0.450 (0.162, 0.738) 0.004 0.444 (0.159, 0.729) 0.004 0.444 (0.159, 0.730) 0.004

cg11968956 0.392 (0.095, 0.689) 0.014 0.405 (0.113, 0.698) 0.010 0.405 (0.112, 0.698) 0.010

cg03597174 −0.282 (−0.593, 0.029) 0.084 −0.329 (−0.638, −0.021) 0.043 −0.348 (−0.662, −0.034) 0.036

cg05986449 0.338 (0.033, 0.643) 0.036 0.331 (0.028, 0.634) 0.039 0.329 (0.028, 0.630) 0.039

aAdjustment: maternal age at delivery and gender.
bAdjustment: maternal age at delivery and birth weight.
cAdjustment: gender and birth weight.

often persists into adolescence and adulthood, leading to a range of 
adverse psychosocial consequences (Biotteau et al., 2020; Blank et al., 
2019). However, the underlying biological mechanisms of DCD 
remain largely unclear. Growing evidence suggests that epigenetic 
regulation, particularly DNA methylation, plays an important role 
in brain development and neurobehavioral regulation (Levy et al., 
2022; Godler and Amor, 2019; Ehlinger et al., 2023). Therefore, 
exploring the DNA methylation profile of individuals with DCD 
may provide novel insights into its molecular etiology and identify 
potential biomarkers for early diagnosis and intervention. In the 
present study, we conducted genome-wide DNA methylation 
analysis using peripheral blood samples from children with 
and without DCD. A total of 416 DMPs and 48 DMRs were 
identified, of which 42 key DMPs were selected for further 
replication in a larger population. Notably, methylation levels at 
cg18187326 and cg11968956 were significantly associated with 
both total and gross motor scores. Additionally, cg03597174 was 
negatively associated with gross motor performance, whereas 
cg05986449 showed a positive correlation. This study is the 
first to investigate DNA methylation patterns in children with 
DCD, providing novel epigenetic insights into its potential
molecular mechanisms.

The CpG site cg18187326 is annotated as FAM45A (Family 
with sequence similarity 45 member A) gene. According to UCSC 
RefGene Group annotation, it lies within the gene body, while 
Annovar annotates it as located in a ncRNA intronic region. 
FAM45A, also known as DENND10, encodes a protein belonging 
to the DENND protein family of guanine nucleotide exchange 
factors targeting Rabs. It is involved in late endosome homeostasis 
and exosome biogenesis (Zhang et al., 2019). As a part of the 
Commander complex, FAM45A dysfunction may indirectly affect 
endocellular trafficking processes associated with Ritscher-Schinzel, 
a multisystem developmental disorder characterized by abnormal 
craniofacial features as well as cerebellar hypoplasia, thus playing 
a role in the development of the disease (Laulumaa et al., 2024; 

Healy et al., 2023). The CpG site cg11968956 is located within 
the 5′UTR of the FAM184A (Family with sequence similarity 
184 member A) gene based on UCSC RefGene Group annotation 
and within an intronic region according to Annovar. FAM184A
is highly expressed in the human cerebral cortex and cerebellum 
(Uhlén et al., 2015). Previous research had shown that FAM184A
expression was significantly upregulated following umbilical cord 
occlusion in a preterm brain injury model, with expression levels 
positively correlated with the severity of brain injury (Ek et al., 
2024), suggesting a potential role in the pathophysiological 
processes of neural damage. DNA hypomethylation in regulatory 
regions such as the 5′UTR and introns is often associated with 
increased gene expression (Anastasiadi et al., 2018). In this study, 
cg11968956 was hypomethylated in children with DCD. Therefore, 
this finding suggests that FAM184A expression may be elevated in 
children with DCD, further supporting its potential involvement 
in the molecular mechanisms underlying neurodevelopmental
abnormalities.

In addition, the CpG site cg03597174 is located in an 
intergenic region near the SEZ6 (Seizure related 6 homolog) 
gene and was found to be hypermethylated in children with 
DCD, showing a negative correlation with gross motor function. 
The SEZ6 gene encodes a transmembrane protein specifically 
localized to neuronal dendrites and plays a critical role in 
dendritic arborization and synaptogenesis (Osaki et al., 2011). 
Previous studies have shown that SEZ6 knockout mice exhibit 
deficits in motor learning, impaired motor coordination, and 
spatial memory impairments (Nash et al., 2020; Gunnersen et al., 
2007), highlighting its essential role in central nervous system 
function. Therefore, hypermethylation of cg03597174 may lead 
to reduced SEZ6 expression, thereby disrupting the development 
and integration of neural networks, and consequently contributing 
to motor function impairments observed in children with DCD. 
In contrast, cg05986449 was positively associated with gross 
motor performance and found to be hypomethylated in children 
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with DCD. Cg05986449 is located within the GPD2 (glycerol-
3-phosphate dehydrogenase 2) gene, which is actively expressed 
in brain tissue and plays a vital role in mitochondrial energy 
metabolism (Oh et al., 2023) and the regulation of oxidative 
stress (Ansell et al., 1997). One study reported that regions of 
the mouse brain with higher synaptic density exhibited elevated 
GPD2 activity (Nguyen et al., 2003), suggesting a potential role 
for GPD2 in neurotransmission. Moreover, functional impairment 
of GPD2 has been associated with neurodevelopmental delay
(Daoud et al., 2009).

This study has several limitations. First, the DNA methylation 
pattern of peripheral blood cannot fully reflect epigenetic changes 
in brain tissue, although studies have suggested that peripheral 
methylation markers can serve as surrogate markers of neurological 
diseases to some extent (Mendonça et al., 2024; Davies et al., 
2012). Second, the relatively small sample size of this study may 
have reduced the statistical power and limited the ability to 
detect probes reaching significance after multiple testing correction 
(FDR). Third, although motor development was assessed at 1 
year of age using the BSID-III, the replication cohort was 
not followed up to the age at which DCD can be formally 
diagnosed. Future studies with larger sample sizes and longer 
follow-up visits are necessary to verify the predictive value 
of the identified CpG sites in DCD. In addition, functional 
experimental studies are needed to elucidate the biological relevance 
of these epigenetic modifications and their potential causal roles in
neurodevelopmental disorders.

Conclusion

In conclusion, this study identified several key CpG 
sites associated with DCD, including cg18187326 (FAM45A), 
cg11968956 (FAM184A), cg03597174 (SEZ6), and cg05986449 
(GPD2). These epigenetic alterations may influence the expression 
of genes involved in neurodevelopment, synaptogenesis, and motor 
function regulation. Our findings provide new insights into the 
epigenetic mechanisms underlying DCD, suggesting that DNA 
methylation dysregulation may contribute to its pathogenesis. These 
findings suggest the potential of DNA methylation markers as 
biomarkers for early diagnosis and targeted intervention in DCD. 
Nevertheless, larger cohorts and functional studies are needed to 
elucidate causal relationships and further elucidate the underlying 
biological mechanisms.
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