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Abstract

This PhD research programme presents an innovative approach to understand the environmen-

tal factors of human wellbeing through the development and analysis of the ”EnviroWellBeing”

dataset and the application of advanced machine learning and deep learning algorithms for en-

vironment and stress-level classification tasks. The careful curation of the dataset involved

the synchronisation of sensor data to a uniform 1Hz frequency and the application of compre-

hensive data cleaning processes, ensuring its suitability for time-series analysis. The dataset

curation effort marks a significant advancement in studying the spatial and temporal impacts of

environmental factors on physiological and psychological states.

Additionally, this research explores the ”Depresjon” dataset, applying data analysis techniques

to uncover patterns in motor activity related to depression. A comparative analysis of machine

learning models demonstrated the ability to distinguish between depressed and healthy indi-

viduals using motor activity, with a Random Forest (RF) classifier achieving 83.41% accuracy.

Analysis of the Depresjon dataset reveals key physiological markers of depression and high-

lights the role of predictive modeling in advancing mental health research.

Using the EnviroWellBeing Dataset, the research details the higher performance of 1D Convo-

lutional Neural Networks (1D-CNNs), which achieved notable accuracies in classifying envi-

ronmental conditions (e.g., 97.72% in situ, 94.18% in vitro) and stress levels (e.g., 82.37% in

situ, 63.37% in vitro), highlighting their effectiveness. The evaluation also includes the effec-

tiveness of Long Short-Term Memory (LSTM) networks in capturing sequential dependencies

and the robustness of RF classifiers as a non-sequential baseline. Key findings demonstrate the

critical role of feature selection (identifying CO2, wrist temperature, and NO as key predic-

tors in situ), the models’ capacity to generalise from physiological responses to stress, and the

provision of valuable insights into feature importance for future model development.

By offering valuable insights into the performance of machine learning models in environmen-

tal and stress-level classifications, alongside a comprehensive dataset, this PhD research pro-

gramme significantly contributes to the fields of environmental health and mental wellbeing.

The findings demonstrate potential applications in urban planning and personal health mon-

itoring by showing how sensor data analysis can inform strategies to mitigate environmental

stressors and enhance human health and happiness.
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Nomenclature

Acronyms

1D-CNN One-Dimensional Convolutional Neural Network used for extracting

patterns from sequential or time-series data.

Autoencoder A neural network that learns compressed representations of data, of-

ten used for dimensionality reduction or noise filtering.

CNN Convolutional Neural Network; a deep learning model applying con-

volutional filters to grid-like data.

DL DL Deep Learning; a subset of machine learning that uses neural

networks with many layers to model complex patterns in data.

DTW Dynamic Time Warping; algorithm to measure similarity between

time-series that may vary in speed.

ECG Electrocardiogram; records electrical activity of the heart, used to

assess heart health and stress response.

EDA Electrodermal Activity; measures skin conductance linked to emo-

tional and physiological arousal.

Encoder Part of an autoencoder that transforms input data into a compressed

(latent) representation.
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EnviroWellBeing

Dataset

A dataset developed in this thesis containing synchronised environ-

mental and physiological data from multiple sensor sources and par-

ticipants.

FCN Fully Convolutional Network; a neural network consisting entirely of

convolutional layers, used for spatial predictions.

GRU Gated Recurrent Units: A simplified type of recurrent neural network

architecture that uses gating mechanisms to control the flow of infor-

mation, often used for time-series and sequential data analysis.

GB Gradient Boosting: an ensemble machine learning technique that

builds models sequentially to correct the errors made by previous

models.

GIS Geographic Information Systems: tools and frameworks for handling

and analysing geographic and spatial data.

HR Heart Rate; number of heartbeats per minute, an indicator of physio-

logical state.

KNN K-Nearest Neighbours a classification method that assigns labels

based on the majority label among the k closest data points.

LR Logistic Regression; a statistical model used for binary classification

that predicts the probability of a categorical dependent variable.

LSTM Long Short-Term Memory; a type of recurrent neural network effec-

tive for learning long-term dependencies in sequential data.
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ML Machine Learning; a field of artificial intelligence that enables sys-

tems to learn patterns from data and make predictions or decisions

without being explicitly programmed.

MLP Multi-Layer Perceptron; a type of artificial neural network with mul-

tiple layers used for supervised learning.

MLSTM-FCN A hybrid model combining Multivariate LSTM and Fully Convolu-

tional Network for time-series classification tasks.

PCA Principal Component Analysis; a dimensionality reduction technique

that transforms data into a set of uncorrelated components.

RF Random Forest; an ensemble machine learning algorithm that con-

structs multiple decision trees and merges their results to improve

classification and regression performance.

RNN RNN Recurrent Neural Network; a class of neural networks where

connections between units form directed cycles, allowing temporal

dynamic behaviour suitable for sequential data.

ROC Curve Receiver Operating Characteristic Curve; shows the performance of

a classification model at all classification thresholds.

Sensor Fusion The integration of data from multiple sensors to provide more accu-

rate or comprehensive information.

Stress Level Classifi-

cation

A supervised learning task to determine the stress level (e.g., relaxed,

neutral, stressed) from sensor data.
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Time Series Classifi-

cation

Assigning class labels to sequential data over time using machine or

deep learning techniques.

TPOT Tree-based Pipeline Optimisation Tool; an automated machine learn-

ing (AutoML) tool that optimises machine learning pipelines using

genetic programming.
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Chapter 1

Introduction

1.1 Motivation and Research Background

Understanding the influence of environmental factors on human wellbeing is crucial, as

physical and mental health are closely linked to the spatial and temporal aspects of our sur-

roundings. Although many studies have examined variables like air quality or green space,

these typically focus on isolated factors rather than exploring how multiple environmental di-

mensions interact over time and space. This fragmented approach limits a full understanding of

how complex human–environment interactions affect wellbeing.

Advances in sensor technology and analytical methods, such as deep learning, now enable the

collection and integration of multimodal data—including environmental, biometric, and con-

textual information—in real time. Leveraging these technologies offers a unique opportunity to

study the combined and dynamic effects of environmental exposures on physiological and psy-

chological health. This PhD research programme aims to fill this gap by developing a compre-

hensive approach that synthesises spatial and temporal environmental data with human phys-

iological measures, thereby providing clearer insights into how different environments shape

wellbeing.

Addressing this gap is essential for improving urban planning and public health interventions

aimed at promoting healthier living environments.
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1.2 Aim and Objectives

This PhD research programme aims to develop a comprehensive understanding of how en-

vironmental conditions, in both urban and green spaces, affect human wellbeing. The research

tests the hypothesis that the spatial and temporal dimensions of an environment significantly

shape physiological and psychological health. The study seeks to provide significant insights

into the interplay between surroundings and wellbeing state.

Achieving this aim requires completing a set of SMART objectives:

• To review and synthesise existing literature on multimodal and data fusion techniques

relevant to time-series sensor data analysis.

• To develop and validate a multi-sensor data fusion architecture capable of integrating

environmental, biometric, and contextual data.

• To design and conduct at least three experimental studies across both indoor (in vitro) and

outdoor (in situ) environments, capturing physiological responses to a minimum of four

distinct environmental stimuli.

• To apply advanced data preprocessing techniques to ensure data quality and readiness for

analysis throughout the data collection phase.

• To implement and evaluate machine learning models that identify correlations between

environmental conditions and wellbeing indicators, achieving at least 80% classification

accuracy.

• To develop data visualisation tools that effectively represent the impact of environmental

factors on wellbeing, completing prototypes.

These objectives guide this comprehensive investigation. The research aims to address signif-

icant gaps in understanding how the surroundings influence health and happiness. Moreover,

this work endeavours to foster multidisciplinary dialogue among urban planners, public health

officials, and environmental scientists. The goal is to extend the impact beyond the academic

arena, informing urban development and public health strategies. This ambition underlines the
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potential to promote environments that support sustainable and healthy lifestyles, illustrating the

importance of integrating environmental factors into the broader discourse on human wellbeing.

1.3 Research Questions

This research is driven by several key questions, each designed to probe the intricate

relationship between environmental factors and human wellbeing:

RQ1: Can a practical method be developed to collect and integrate multimodal sensor data from

environmental, biometric, and contextual sources across different experimental settings,

including polluted and green outdoor spaces (in situ) and controlled indoor environments

with varying sound conditions (in vitro), to facilitate a comprehensive analysis of envi-

ronmental impact on wellbeing?

RQ2: Can physiological data alone accurately differentiate between environmental conditions,

such as polluted versus green outdoor spaces and exposure to annoying versus pleasant

sounds in controlled settings?

RQ3: How effectively can integrated environmental and physiological data predict individuals’

stress levels, and what role do specific environmental factors and physiological measures

play in enhancing the accuracy of these predictions?

RQ4: Is time-series data derived from environmental and physiological sensors more insightful

compared to current, snapshot information in predicting stress levels, and what implica-

tions does this have for the temporal dynamics of stress response?

1.4 Contributions

This PhD research programme advances the field of environmental health and wellbeing analyt-

ics by developing an integrated approach to the collection, analysis, and interpretation of mul-

timodal sensor data. The research begins with a comparative analysis of public mental health

data in Chapter 3, applying classical machine learning algorithms to the Depresjon dataset to

objectively classify depressive states using wearable sensor signals. This early investigation
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establishes methodological foundations for feature selection and classification, as well as high-

lighting practical considerations relevant to sensor-based wellbeing studies.

Building on these foundations, the thesis introduces the EnviroWellBeing dataset in Chap-

ter 4—a comprehensive and novel resource that combines synchronized physiological, environ-

mental, and contextual data captured in both real-world and controlled experimental settings.

The scale and granularity of this dataset support in-depth analyses of environmental exposures

and human physiological responses over time and space.

Methodologically, the research contributes robust preprocessing pipelines and segmentation

strategies that harmonize heterogeneous time-series data from multiple sensors. It systemat-

ically implements and benchmarks a suite of machine learning and deep learning frameworks

in Chapters 5 and 6, including temporal models such as LSTM and 1D-CNNs, for both envi-

ronmental classification and stress state prediction. These approaches enable the integration of

multimodal signals, addressing challenges that have limited previous sensor-based research.

Empirical analyses identify critical physiological and environmental predictors of stress, using

systematic feature importance techniques to interpret model outputs and guide future research

directions. The thesis also demonstrates in Chapter 6 the feasibility of practical, wearable-only

stress monitoring systems, laying a foundation for applications in personal health management

and policy development. Taken together, these contributions establish a rigorous, data-driven

framework for advancing the understanding of environmental influences on human wellbeing.

1.5 Thesis Outline

This thesis is organised into seven chapters following this Introduction (Chapter 1). Chap-

ter 2 merges the state-of-the-art review with the theoretical background, covering environmental

impacts on wellbeing, the role of technology, and the foundational machine learning and deep

learning concepts used in the research. Chapter 3 details the methodology and findings from

classifying mental health states using the public dataset. Chapter 4 describes the creation, pre-

processing, and analysis of the bespoke dataset developed for this research. Chapter 5 presents

the application of machine learning and deep learning models to the dataset for environmental
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and stress-level classification. Chapter 6 discusses the development and results of a frame-

work for predicting physiological states using sensor data. Finally, Chapter 7 summarises the

key findings and contributions of the thesis, discusses implications, addresses limitations, and

suggests directions for future research.
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Chapter 2

Background and State-of-the-Art

2.1 Introduction

This chapter provides a comprehensive background and review of the state-of-the-art rel-

evant to understanding the impact of environmental factors on human wellbeing. It begins by

outlining the significance of environmental influences and introduces key theoretical concepts

from environmental psychology and spatial-temporal data analysis. The chapter then discusses

the crucial role enabling technologies, particularly sensors and data analysis methods, play in

this research area. Following this, it delves into specific machine learning and deep learning

approaches applicable to environmental wellbeing analysis, covering algorithms, data consid-

erations, and feature engineering. The chapter also presents applications and case studies from

the literature, explores pertinent challenges including ethical considerations, and concludes by

summarising the identified research gaps that this PhD research programme aims to address.

2.2 Environmental Impacts on Wellbeing

The wellbeing of individuals and communities is profoundly shaped by environmental

factors possessing both spatial and temporal dimensions. Recent studies analyse how dynamic

changes in ecological, urban, climate, and biodiversity indicators across locations and over

time impact human experiences and social outcomes [1]. Urban design elements including den-
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sity, green spaces vegetation, and commerce significantly influence wellbeing. These elements

affect stress, restoration, and social integration. Meanwhile, factors like industrial structure,

financial development, and urbanisation drive ecological welfare performance across cities and

regions in complex ways [2]. The spatial distribution of biodiversity also changes over time,

with consequences for ecosystem health and human wellbeing [3]. Furthermore, the temporal

evolution of ecological and environmental factors creates dynamic changes in wellbeing over

years and decades. Variables like rainfall, temperature, and sunshine demonstrate temporal im-

pacts on life satisfaction [4]. The complex interplay between space, time, and environmental

factors also mediates outcomes such as property crime rates, underscoring indirect social influ-

ences [5]. Recent evidence clearly highlights that human wellbeing is contingent on the quality

of, and changes in, the surrounding environmental context across both spatial and temporal

dimensions. As such, incorporating a spatio-temporal understanding of environmental factors

is critical. This understanding informs urban design, regional development, and biodiversity

conservation policies aimed at promoting sustainable wellbeing.

Analysing these environmental impacts is a cornerstone for public health advancement and the

sustainable development of urban landscapes. Research findings underscore the significance of

integrating environmental impact assessments within public health and urban planning, aiming

to foster sustainable, resilient, and health-oriented communities [6–8]. The intricate relation-

ship between environmental changes and public health outcomes necessitates a comprehensive,

interdisciplinary approach. Lauriola et al. [6] emphasise the critical role of Environmental and

Public Health Tracking (EPHT) systems. These systems amalgamate data across domains to

clarify connections between environmental hazards, exposures, and health outcomes, enabling

precise, efficient, and cost-effective public health interventions. The global EPHT network

exemplifies the potential for international collaboration to enhance understanding and manage-

ment of environmental health risks, aligning with sustainable development goals.

Environmental exposures are complex, often involving low doses of multiple chemical pollu-

tants, demanding integrated approaches beyond simple exposure-disease paradigms. Arebola

et al. [7] advocate for exploring the full exposure-disease continuum using insights from epi-

demiology, basic sciences, and clinical research. This integrated methodology is pivotal for
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unravelling nuanced interactions between pollutants and health, informing public health cam-

paigns. The socio-economic dimensions are also critical; novel methodologies like cost-benefit

analyses are needed to grasp broader impacts and craft policies addressing environmental health

disparities.

Turning to urban planning, integrating environmental impact assessments is fundamental. Sus-

tainable Urban Mobility Plans (SUMPs) can mitigate transport externalities [8], while Life Cy-

cle Assessment (LCA) methodologies help align development with sustainability objectives [9].

Urban planning decisions significantly influence residents’ wellbeing [10]. Strategies enhanc-

ing social services, community engagement, and green spaces improve urban livability [10].

Furthermore, methods like the Hedonic Pricing Method (HPM) show the economic value resi-

dents place on open spaces, reinforcing the need to prioritise them [11].

The confluence of environmental health and urban planning research underscores the critical

importance of analysing environmental impacts. Interdisciplinary approaches, integrated epi-

demiology, and attention to socio-economic determinants are paramount. Concurrently, in-

corporating environmental considerations into urban planning is indispensable for sustainable

urban growth, enhanced quality of life, and ecological resilience. This synthesis reflects a con-

vergence of insights from diverse research endeavours. It also advocates for a holistic and

integrated perspective when tackling the environmental determinants of health and urban well-

being.

2.3 Theoretical Foundations

2.3.1 Environmental Psychology

A robust multidisciplinary evidence base illuminates the intricate interplay between the

environment and human health, behaviour, and wellbeing outcomes [12–17]. Fundamental the-

ories in environmental psychology offer initial frameworks for conceptualising this complex

dynamic. The prevalent Biophilia Hypothesis postulates an innate human biological inclination

towards nature, rooted in evolutionary processes. Empirical observations, such as improved af-
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fect and cognition following exposure to natural stimuli, support the idea that this affinity arose

from fitness advantages associated with monitoring the natural landscape. Contemporary ex-

tensions like Nature Connectedness examine the emotional benefits derived from feeling close

to the natural world. Quantifications of nature connectedness correlate with mental wellbeing

measurements, suggesting that interdependence with nature contributes to flourishing.

Beyond enhancing positive dimensions, natural environments also regulate neural networks in-

volved in emotion processing [14]. Neuroimaging shows that natural scenery properties activate

attention, emotion regulation, and default mode brain networks. This neurophysiological cas-

cade subsequently reduces stress and rumination while restoring cognitive capacities. Besides

green spaces, elements of built environments like space and light also modulate emotional and

cognitive functioning. Virtual environment studies indicate interior spatial geometry impacts

vagal regulation of cardiac rhythms via the central autonomic network. Since vagal tone prox-

ies neurocognitive flexibility and emotional wellbeing, environmental design could potentially

restore depleted cognitive reserves.

In contrast, environmental stressors like air and noise pollution, high population density, and

monotonous architecture have negative effects on wellbeing . Analyses consistently link poor

environmental quality exposure with perceived stress, anxiety, depression, cognitive dysfunc-

tion, and even more severe psychopathologies [15]. The doubling of mood and anxiety disorder

prevalence between 1990 and 2017 coincided with rising global urbanisation; while correlation

is not causation, these parallels implicate environmental factors in emotional distress.

Intriguing microbiological mechanisms might also mediate responses. The Lovebug Effect

theorises that beneficial microbes from environmental exposures augment stress resilience via

the gut-brain axis . Given that gut microbiome richness correlates positively with health and

longevity, nurturing a flourishing microbiome through lifestyle and spaces may sustain human

flourishing [12].

Finally, the COVID-19 pandemic profoundly increased the influence of immediate home and

neighbourhood environments on daily life [17]. Lockdowns channelled activities into domes-

tic spaces, making residential conditions pivotal in mitigating or exacerbating pandemic stres-
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sors like financial strain and social isolation. Residential elements like nature views and calm-

ing interior designs were found to reduce pandemic-associated depression and anxiety. More

broadly, sustainable behaviours and environmental stewardship promote subjective wellbeing

through value-action congruency [16]. Choosing spaces and practices that recognise human-

environment interdependence can engender coherence and flourishing. Extensive evidence

underscores the urgency of integrating insights from architecture, ecology, neuroscience, and

psychology to inform lifestyle and policy. Supporting biophilic inclinations through green ar-

chitecture and conservation can enrich mental health and resilience. Since planetary health

depends on human behaviour, propagating spaces and worldviews that facilitate awareness of

the person-planet connection is imperative.

2.3.2 Spatial and Temporal Data Analysis

Geographic Information Systems (GIS) are frameworks designed to capture, store, ma-

nipulate, analyse, manage, and present spatial or geographic data [18]. GIS integrates hardware,

software, and data for handling geospatial information, encompassing applications, data, hard-

ware, and the human element including user expertise. GIS is underpinned by Geographic In-

formation Science principles, which develop data organisation models and computational mech-

anisms. These include visualisation and spatial analysis techniques essential for understanding

spatial relationships. Spatial data models feature the vector model (points, lines, polygons) and

the raster model (grid of cells). Spatial analysis techniques involve operations like buffer anal-

ysis, overlay analysis, and network analysis, mathematically represented as functions on these

models. For example, a buffer analysis creating a zone around point p with distance d can be

represented as:

B(p, d) = {q ∈ S | distance(p, q) ≤ d} (2.1)

where S is the space and distance(p, q) is Euclidean distance. Overlay analysis combines data

layers; for instance, the intersection of two polygon layers A and B is:

A ∩B = {x | x ∈ A and x ∈ B} (2.2)
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These representations form the basis for GIS software algorithms.

Time series analysis uses statistical techniques to analyse time-ordered data points, extracting

meaningful statistics and characteristics [19]. It is widely used in fields like economics and

environmental science to forecast future values based on past observations. The theoretical

foundation involves models describing time series behaviour. A fundamental model is the Au-

toregressive Integrated Moving Average (ARIMA), used to understand temporal dependencies

and forecast future values based on the series’ own past values, past errors, and degree of dif-

ferencing. The ARIMA(p, d, q) model is represented as:

(1−
p∑

i=1

ϕiL
i)(1− L)dXt = (1 +

q∑
i=1

θiL
i)εt (2.3)

where:

• Xt is the time series value at time t.

• L is the lag operator (LkXt = Xt−k).

• ϕi are the parameters of the autoregressive (AR) part (order p).

• θi are the parameters of the moving average (MA) part (order q).

• d is the degree of differencing required to make the series stationary.

• εt is white noise, typically assumed to be independent and identically distributed from a

normal distribution.

This model helps understand temporal dependencies crucial for forecasting.

Integrating GIS with time series analysis allows examining how spatial phenomena change

over time. This integration is useful in environmental studies, urban planning, and disaster

management, where understanding temporal dynamics of spatial phenomena is crucial. For

instance, analysing disease spread involves mapping spatial distribution with GIS and modelling

temporal trends with time series analysis to predict future outbreaks.

In conclusion, GIS and time series analysis are powerful tools. Their theoretical foundations,

including mathematical representations for spatial data models, analysis techniques, and time
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series models, provide a robust framework for analysing complex spatio-temporal phenomena.

2.4 Role of Technology in Environmental Impact Analysis

The integration of technology has significantly transformed the methods used for assess-

ing and mitigating environmental impacts [20, 21]. Moving beyond traditional manual data

collection, which was often time-consuming and limited in scope, modern approaches leverage

technological advancements for more precise and dynamic analyses crucial for environmental

conservation [22, 23].

Information and communication technologies (ICT), advanced computational models, sensor

networks, and data analytics have provided new capabilities. These tools allow for the han-

dling of complex, large-scale datasets and support the prediction of environmental impacts with

greater reliability compared to older methods [24, 25]. For instance, sensor technologies facil-

itate real-time monitoring of environmental variables, while computational techniques enable

sophisticated modelling and simulation [26]. This technological evolution allows researchers

and policymakers to gain deeper insights into environmental processes and the effects of human

activities. The effective use of these technologies requires continued innovation and support-

ive policy frameworks to fully realise their potential for sustainable environmental management.

Specific machine learning and deep learning techniques applicable to this research are discussed

in Section 2.5.

2.5 Machine Learning and Deep Learning Approaches for

Environmental Wellbeing Analysis

2.5.1 Overview of AI, Machine Learning, and Deep Learning

Artificial Intelligence (AI) enables systems to perform tasks typically requiring human

intelligence. Machine Learning (ML), a subset of AI, focuses on algorithms that allow systems

to learn from data without being explicitly programmed [27, 28]. These algorithms improve
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automatically through experience with data. ML is broadly categorised into supervised learning

(using labelled data to map inputs to known outputs, including regression and classification

tasks relevant to this research), unsupervised learning (finding patterns in unlabelled data, like

clustering), and reinforcement learning (learning through rewards and penalties, less directly

applicable here) [29].

Deep Learning (DL) is a specialised area within ML that utilises Artificial Neural Networks

(ANNs) with multiple layers (deep architectures) to model complex patterns and relationships

in large datasets [30]. Unlike traditional ML approaches that might operate linearly or require

manual feature engineering, DL models can learn hierarchical features directly from data in a

non-linear manner [30]. This capability makes DL particularly powerful for tasks involving

complex data such as time-series sensor readings, image analysis, or natural language process-

ing, which are pertinent to analysing environmental impacts on wellbeing. This section will

explore specific ML and DL algorithms relevant to analysing the spatio-temporal environmen-

tal and physiological data gathered in this research programme.

2.5.2 Data Acquisition and Preprocessing Considerations

Data Acquisition. The proliferation of smartphone applications and wearable sensor devices

has unlocked unprecedented opportunities. These technologies allow monitoring environmen-

tal exposures and quantifying their impacts on human physiology in real time. Multiple pilot

studies have utilised consumer technologies to simultaneously capture personal data, for ex-

ample using apps like NoiseSpy for noise exposure monitoring [31]. Alongside environmen-

tal data, system designs often integrate multiple wearable sensors to track health conditions,

capturing physiological indicators like heart rate variability using biometric trackers (See Fig-

ure 2.1) [32, 33].

For instance, a field study across Nottingham, UK, equipped participants with portable noise

meters and wrist-worn heart rate monitors. This allowed researchers to characterise the immedi-

ate effects of urban soundscapes on heart rate patterns and map noise pollution levels to cardio-

vascular strain, demonstrating the utility of personal sensor data for evaluating population-level
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Figure 2.1: System design for tracking health conditions utilising multiple wearable sensors.

environmental health hazards.

Beyond noise, machine learning techniques show increasing promise in forecasting various en-

vironmental risk factors linked to health outcomes [34]. Sensor networks now generate vast

real-time data on hyperlocal air quality, weather, and other urban health parameters. Inte-

grating this data with satellite imaging, medical records, and crowdsourced reports provides

fertile ground for training ML algorithms (including deep neural networks) to model multi-

dimensional exposure risks with spatio-temporal precision. For example, hybrid AI architec-

tures combining LSTMs with autoencoders have reliably predicted daily PM2.5 levels from

meteorological data, outperforming traditional statistical approaches [35]. Similarly, neural

networks have accurately ranked industrial chemicals by anticipated life cycle health impacts

based on existing datasets [36]. These examples highlight ML’s versatility in forecasting haz-

ards and guiding preventative design decisions.

Overall, integrating ML analysis with diverse environmental monitoring sources provides new

tools for mapping and predicting community health threats. However, substantial barriers re-

main, including fragmented data sources, patient privacy concerns, and the lack of large labelled
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training datasets, which currently constrain model accuracy and real-world validity. Addressing

these challenges through collaborative data sharing while preserving confidentiality is crucial

for advancing practical environmental health forecasting. The potential remains significant for

digital health platforms that synthesise environmental tracking, geospatial modelling, and clin-

ical data to proactively defend population health [26].

Data Preprocessing. Recent research highlights crucial advancements in data preprocessing

techniques for enhancing ML in environmental health studies. Sun et al. [36] emphasised that

data quality and structure significantly impact model performance and interpretability. Ad-

vanced preprocessing strategies help address common issues in environmental datasets, such as

high dimensionality, missing values, class imbalance, and noisy raw data.

Feature selection is vital for refining environmental data and improving model generalisability.

Sun et al. [36] employed a mutual information-permutation importance approach to select rele-

vant molecular descriptors, drastically reducing dimensionality while retaining interpretability

and improving accuracy in predicting chemical impacts. Similarly, Dharmasaputro et al. [37]

demonstrated that effectively handling missing and imbalanced data using techniques like Mul-

tiple Imputation by Chained Equations (MICE) and Synthetic Minority Oversampling Tech-

nique (SMOTE) enhanced classifier performance.

In addition to statistical cleaning, deep learning offers new paradigms for automated prepro-

cessing. Kazemzadeh et al. [38] devised cascaded convolutional neural networks capable of

inherently correcting defects in Raman spectral data, removing the need for manual baseline

correction. Such end-to-end pipelines can improve efficiency and reduce bias. Expanding on

this, Bilal et al. [39] proposed Auto-Prep, an interactive architecture that automatically evalu-

ates and recommends optimal preprocessing sequences based on the data. Applied to diverse

datasets, this automation simplified workflows and boosted model accuracy.

Innovation in data preprocessing methodologies opens new avenues for advancing ML in en-

vironmental health research. Strategies like feature selection, class re-balancing, automated

defect correction, and pipeline recommendation cater well to the complexity of environmental

data. As these techniques mature, researchers can leverage them with state-of-the-art ML to
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uncover deeper environmental health insights, enhancing prediction accuracy while upholding

model interpretability.

2.5.3 Feature Engineering for Spatial-Temporal Data

The analysis of spatial-temporal data presents unique challenges and opportunities within

machine learning, particularly for wellbeing monitoring [40–44]. Extracting meaningful fea-

tures from such dynamic datasets requires specialised techniques capable of capturing intricate

spatial and temporal relationships. Recent advancements in feature engineering for spatial-

temporal data show promising improvements in predictive accuracy and interpretability across

various applications. These advancements offer potential methods applicable to the environ-

mental and physiological data explored in this PhD research programme.

For instance, in predictive maintenance, temporal convolution networks have demonstrated en-

hanced estimations of remaining useful life [40]. By combining CNN-based spatial feature

extraction with LSTM-based temporal dynamics modelling through causal filters and dilated

convolutions, this approach efficiently processes degradation signals over long periods. The

success highlights the potential for tailored neural networks to extract value from temporal

dynamics, which could be adapted for monitoring long-term physiological responses to envi-

ronmental exposures.

Similarly, graph-based feature extraction techniques, such as the SuperGraph method, provide

opportunities to uncover hidden topological insights within spatial-temporal data [41]. Ap-

plied to rotational machinery fault diagnosis, SuperGraph transforms raw vibration signals into

informative graphs using graph theory principles. Subsequent analysis via Laplacian matri-

ces enables the extraction of discriminative spatial-temporal features for precise classification.

While focused on machinery, graph-based methods could potentially model relationships be-

tween spatially distributed environmental sensors or complex physiological interactions over

time.

On a broader scale, techniques jointly modelling spatial and temporal dependencies improve

urban system analysis. Luo et al. [42] developed ESTNet, using multi-scale 3D convolutions
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to capture intricate correlations across road networks and real-time traffic data. The compre-

hensive feature extraction led to enhanced traffic flow predictions, relevant to urban planning

aspects of public wellbeing. These approaches for integrating spatial and temporal information

are conceptually relevant to analysing how environmental conditions change across space and

time and impact individuals.

While advanced feature extraction provides predictive power, dimensionality reduction remains

crucial for efficiency and interpretability. Song and Zhao’s [43] review highlights the versatility

of Slow Feature Analysis (SFA) in emphasising meaningful slowly varying temporal features,

applicable in diverse monitoring tasks. Complementary spatial-temporal dimensionality re-

duction methods also exist; Zhang et al. [44] introduced double-window PCA (DWPCA) for

structural health monitoring. Such techniques could be valuable for simplifying the complex

environmental and physiological datasets used in wellbeing research.

As the landscape of spatial-temporal feature engineering advances, robust methodologies bal-

ancing predictive accuracy and interpretability become increasingly valuable. The innovations

explored here not only enhance AI applicability to spatial-temporal tasks but also open possi-

bilities for improving wellbeing analysis through established and emerging domains.

2.5.4 Relevant Machine Learning Algorithms

Machine learning algorithms provide powerful tools for analysing the complex relationships

within environmental and physiological data. Based on the nature of the task, different types

of algorithms are employed. Supervised learning, using labelled data, encompasses both re-

gression (predicting continuous values) and classification (predicting discrete categories) [29].

Unsupervised learning, dealing with unlabelled data, includes clustering for discovering inher-

ent groupings. This subsection reviews supervised and unsupervised algorithms relevant to

environmental wellbeing analysis.
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2.5.4.1 Regression Algorithms

Regression algorithms are primarily used for prediction tasks, such as forecasting environmental

variables or physiological states based on historical sensor data. Their accuracy is often evalu-

ated by comparing predicted values against actual measurements. Regression models have seen

widespread use in environmental modelling due to their interpretability.

Linear Regression models estimate a dependent variable (y) based on a set of independent

variables (x), assuming a straight-line relationship [19]. The dependency function is given by:

y = Xw + ε (2.4)

Here, w ∈ Rm+1 represents the model parameters (weights), X ∈ Rn×(m+1) is the matrix

of observations, ε ∈ Rn denotes the error or noise term, and y ∈ Rn is the column-vector

representing the target variable. Parameters (w) are often determined using methods such as

Ordinary Least Squares (OLS) or Gradient Descent (GD). OLS identifies weights that minimise

the mean squared error, defined as L(X, y, w) = 1
2n
∥y−Xw∥2 = 1

2n
(y−Xw)T (y−Xw) [19].

The analytical solution for OLS is:

w = (XTX)−1XTy (2.5)

Alternatively, Gradient Descent iteratively adjusts weights to minimise the loss function L. The

update rule for each weight is w = w−α ∂
∂w

L(X, y, w), where α is the learning rate controlling

the step size. Despite its simplicity, linear regression remains effective for modeling basic

relationships, such as the impact of an environmental pollutant on a health indicator, when such

relationships are approximately linear. (see Figure 2.2)

Support Vector Regression (SVR) is a supervised learning technique particularly noted for

its use of kernels, sparse solutions, and control over the margin of error [45]. It aims to find a

function f(x,w) = wTx that has at most ε deviation from the actually obtained targets yi for all

the training data, and at the same time, is as flat as possible (minimising 1
2
∥w∥2). This concept

is illustrated in Figure 2.3. Errors are only considered if they lie outside this ε-insensitive tube,
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Figure 2.2: Visual Representation of Univariate Linear Regression

defined by the constraint:

|yi − wTxi| ≤ ε (2.6)

This tolerance makes SVR robust to outliers and useful in high-dimensional spaces, potentially

beneficial for modelling complex physiological responses to diverse environmental inputs. Var-

ious loss functions can manage errors exceeding the ε margin, adapting the penalty for devia-

tions. Examples include the linear ε-insensitive loss:

LE(y, f(x,w)) =


0 if |y − f(x,w)| ≤ ϵ

|y − f(x,w)| − ϵ otherwise
(2.7)

the quadratic loss:

LE(y, f(x,w)) =


0 if |y − f(x,w)| ≤ ϵ

(|y − f(x,w)| − ϵ)2 otherwise
(2.8)
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Figure 2.3: Visual Representation of Support Vector Regression

and the Huber loss:

L(y, f(x,w)) =


c|y − f(x,w)| − c2

2
if |y − f(x,w)| > c1

2

1
2
|y − f(x,w)|2 otherwise

(2.9)

These loss functions are visualised in Figure 2.4.

Figure 2.4: SVR Loss function types: (a) linear, (b) quadratic, (c) Huber

k-Nearest Neighbours (k-NN) Regression is a non-parametric method where the prediction

for a new input is based on the average of the target values of its k nearest neighbours in the

training data [46]. Closeness is typically determined using a distance metric, such as Euclidean
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distance:

d(x[a], x[b]) =

√√√√ m∑
j=1

(x
[a]
j − x

[b]
j )2 (2.10)

The predicted value h(x(t)) for a test point x(t) is then the mean of the target values (yi) of the

k identified neighbours:

h(x(t)) =
1

k

k∑
i=1

yi (2.11)

Because k-NN makes predictions based on local proximity rather than a global model, it can

effectively capture complex, non-linear relationships in heterogeneous data distributions.

Gradient Boosting (GB) Regression constructs a strong predictive model by sequentially

adding weak learners, typically decision trees, where each new learner focuses on correcting

the errors made by the previous ones [47]. This ensemble method optimises a differentiable

loss function L(y, F (x)) via a gradient descent procedure in function space. Starting with an

initial model F0(x), the algorithm iterates from m = 1 to M . In each iteration, it computes

pseudo-residuals rim (the negative gradient of the loss function with respect to the model output

F (x) evaluated at Fm−1(x)). A base learner hm(x) is then fitted to these pseudo-residuals. An

optimal multiplier γm is computed, often through a line search, to determine the best step size

for the new learner. Finally, the model is updated: Fm(x) = Fm−1(x) + γmhm(x) [47]. GB

methods are known for high accuracy and are well-suited for complex prediction tasks involving

numerous environmental and physiological features.

Gaussian Process Regression (GPR) employs a non-parametric, Bayesian approach [48]. In-

stead of learning specific parameters of a function, GPR defines a prior distribution over possible

functions. When provided with training data (X,y), this prior is updated using Bayes’ theorem

to obtain a posterior distribution over functions that are consistent with the observed data [48].

Predictions for new inputs X∗ are derived from this posterior distribution, yielding both a mean

prediction f∗ and a measure of uncertainty (variance) around that prediction [48]. The Gaussian

process prior is specified by a mean function m(x) and a covariance function (kernel) k(x, x′),

such that f(x) ∼ GP(m(x), k(x, x′)). Assuming independent Gaussian noise ε ∼ N(0, σ2
n) on

the observations (y = f(x)+ ε), the joint distribution of the observed targets y and the function
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values f∗ at the test points X∗ is multivariate Gaussian:

y

f∗

 ∼ N


 µ

µ∗

 ,

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)


 (2.12)

Here, K denotes the covariance matrix obtained by evaluating the kernel function k at the re-

spective pairs of data points [48]. GPR is particularly useful for smaller datasets or when quan-

tifying prediction uncertainty is crucial, such as assessing risks associated with environmental

exposures. Figure 2.5 illustrates the concept of updating the prior to a posterior distribution.

Figure 2.5: Gaussian Process Regression: (a) Prior and (b) Posterior

2.5.4.2 Classification Algorithms

Classification algorithms, another category of supervised learning, are used to assign data points

to predefined categories or classes. These are essential in environmental wellbeing research for

tasks such as identifying environmental states (e.g., polluted vs. unpolluted) or classifying

physiological states (e.g., stressed vs. relaxed) based on sensor data.

Random Forest (RF) and Decision Trees (DT). A Random Forest operates as an ensemble of

multiple Decision Trees [49]. Each individual tree in the forest provides a class prediction, and

the final output is determined by a majority vote among all trees (Figure 2.6). This ensemble

approach generally improves accuracy and robustness compared to a single tree. A Decision

Tree itself models decisions in a tree-like structure (Figure 2.7). Internal nodes represent tests

on attributes (features), branches represent the outcome of the test, and leaf nodes represent
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Figure 2.6: Visualization of a Random Forest Model Prediction

the final class label [50]. The tree construction process typically involves recursively selecting

the best attribute to split the data at each node, aiming to purify the resulting subsets. This

selection is often guided by Attribute Selection Measures (ASM) like Information Gain, which

uses entropy to quantify the reduction in uncertainty achieved by a split. Shannon’s entropy

for a system with N states is defined as S = −
∑N

i=1 pi log2 pi, where pi is the probability of

state i. Information Gain IG(Q) for a split on attribute Q is calculated as the entropy before

the split (S0) minus the weighted average entropy of the subsets after the split: IG(Q) =

S0 −
∑q

i=1
Ni

N
Si, where q is the number of groups after the split, Ni is the number of instances

in group i, and Si is the entropy of group i. The splitting process continues until a stopping

criterion is met, such as all instances belonging to one class or no further attributes remaining.

Decision trees offer interpretability, mapping clear decision pathways, which can be valuable

for understanding environmental factors influencing wellbeing classifications [51].

Bagging (Bootstrap Aggregating). This is the ensemble technique underlying Random Forests

[50]. It involves creating multiple bootstrap samples (random samples with replacement) from

the original training set (D). For each bootstrap sample (D′
i), a base model (e.g., a decision tree)

is trained. The final prediction is obtained by aggregating the predictions of all base models,

typically through majority voting for classification. Bagging helps reduce variance and improve

the stability of the models.
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Figure 2.7: Visualization of a Decision Tree Model

Artificial Neural Networks (ANN). ANNs are supervised learning algorithms inspired by bi-

ological neural networks [48]. They consist of interconnected nodes or neurons organised in

layers (input, hidden, output). Each neuron performs a computation, typically a weighted sum

of its inputs followed by a non-linear activation function (see Figure 2.9 for common activation

functions), and passes the result to neurons in the next layer. A network with only one hidden

layer is considered ”shallow,” while a Deep Neural Network (DNN) has multiple hidden layers

(Figure 2.8), allowing it to model more complex, non-linear relationships often found in envi-

ronmental and physiological data. Key concepts in ANNs include inputs (data fed to the net-

work), outputs (predictions), neurons (basic processing units), activation functions (introducing

non-linearity), an error or loss function (measuring prediction discrepancy), backpropagation

(algorithm for adjusting weights to minimize error), and hyperparameters (tunable settings like

layer count, learning rate, epochs).

Convolutional Neural Networks (CNN). CNNs are a type of DNN particularly effective for

processing grid-like data, such as images or time series [52]. A typical CNN architecture in-

cludes convolutional layers, pooling layers, and fully connected layers (Figure 2.10). Convolu-

tional layers apply filters (kernels) across the input data to detect spatial or temporal patterns,

creating feature maps. Pooling layers then reduce the dimensionality of these feature maps

(e.g., max pooling), retaining essential information while reducing computational load. Finally,

fully connected layers integrate the learned features to perform classification. CNNs are adept
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Figure 2.8: Feed Forward Neural Network Architectures: (a) Shallow, (b) Deep)

at capturing hierarchical patterns automatically.

While often used for 2D data (images), 1D-CNNs are adapted for sequential data like time series

from sensors (Figure 2.11) [53–55]. They apply 1D filters along the time axis, making them

suitable for identifying temporal patterns in physiological or environmental sensor readings

relevant to wellbeing analysis.

Polysomnography (PSG) involves recording multiple physiological signals during sleep. Ma-

chine learning models leverage this rich data to uncover patterns related to sleep quality and

disorders, which significantly impact wellbeing. By analysing PSG data, ML algorithms such

as Logistic Regression (LR), k-NN, and SVM can help detect conditions like sleep apnea or in-

somnia [56,57] or classify states related to mental health [58,59]. Table 2.1 summarises several

studies applying these machine learning algorithms to PSG data analysis.

Table 2.1: A summary of ML-based studies for classification and prediction of PSG data.
Dataset sources are cited within the table.

Model Application Data Used Accuracy Year Ref.

LR EEG abnormalities

in temporal lobe

epilepsy (TLE)

Privately sourced

dataset from tertiary

institute

66.70% 2018 [58]

LR Mental depression

detection

emotions.csv, Kag-

gle

96.60% 2022 [59]
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Model Application Data Used Accuracy Year Ref.

LR Emotion Recogni-

tion

DREAMER Dataset

[60]

94.20% 2021 [61]

k-NN ECG-based

stress/emotion

classification

Not specified 97.00% 2022 [62]

k-NN OSA using ECG and

SpO2

PhysioNet Sleep

Apnea Database

[63]

95.08% 2017 [56]

SVM EEG emotion classi-

fication

SEED Dataset [64] 56.00% 2022 [65]

SVM OSA using ECG and

SpO2

PhysioNet Sleep

Apnea Database

[63]

96.64% 2017 [56]

SVM Sleep disorder clas-

sification

Sleep-EDF

Database [66]

91.40% 2019 [57]

SVM ADHD detection us-

ing imaging + EEG

ADHD-200 Dataset 97.60% 2022 [67]

SVM Human identifica-

tion using EEG

EMOTIV INSIGHT

Dataset [68]

94.44% 2016 [68]

SVM Mental stress detec-

tion

EEG Mental Arith-

metic Dataset [69]

97.26% 2022 [69]

SVM EEG dimensionality

reduction

BCI Competition II -

Dataset III [70]

81.40% 2017 [71]

SVM Motor imagery clas-

sification

BCI Competition II -

Dataset III [70]

78.57% 2019 [72]

SVM Alcoholism detec-

tion via ECG

NIMHANS ECG

Dataset

87.50% 2017 [73]
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Model Application Data Used Accuracy Year Ref.

SVM Sleep quality mea-

surement

Sleep-EDF

Database [66]

93.50% 2019 [57]

SVM Mental depression

via EEG

emotions.csv, Kag-

gle

95.89% 2022 [59]

SVM Schizophrenia

detection

EEG dataset from

M.V. Lomonosov

Moscow State

University [74]

53.50% 2022 [74]

Application to Environmental Sensor Data. While the classification algorithms discussed

above are broadly applicable, their utility becomes particularly evident in environmental moni-

toring scenarios. For instance, Random Forest classifiers have been widely adopted for classi-

fying air quality levels based on multivariate sensor inputs, such as particulate matter (PM2.5),

NO2, and CO concentrations [75]. Similarly, Support Vector Machines have been successfully

deployed in water quality assessment systems to distinguish between contaminated and safe

samples using features like pH, turbidity, and electrical conductivity [46]. In real-time anomaly

detection tasks such as identifying abnormal patterns in temperature or humidity readings from

wireless sensor networks k-NN and Decision Trees are frequently used due to their interpretabil-

ity and ease of implementation. Moreover, Convolutional Neural Networks (CNNs), although

traditionally used for image data, have recently been repurposed to classify time-series data

from wearable or fixed environmental sensors by transforming sequential inputs into 2D fea-

ture maps [76]. These tailored implementations demonstrate that machine learning and deep

learning techniques offer not just theoretical flexibility, but concrete, scalable solutions for clas-

sifying environmental conditions with high precision.

2.5.4.3 Clustering and Dimensionality Reduction Algorithms

Unsupervised learning methods, such as clustering and dimensionality reduction, are valuable

for exploring environmental and physiological data to uncover hidden structures or simplify
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Figure 2.9: Common Activations Functions: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) LeakyReLU

complexity without predefined labels.

Principal Component Analysis (PCA). PCA is a widely used technique for dimensionality

reduction. Its goal is to transform a dataset containing many potentially correlated variables

into a smaller set of uncorrelated variables, known as principal components, while preserving

as much of the original dataset’s variance as possible [77]. This technique is particularly useful

when dealing with high-dimensional sensor data, common in environmental wellbeing studies,

as it helps reduce computational complexity and potentially filter noise. The process generally

involves standardising the data, computing the covariance matrix, calculating its eigenvectors

and corresponding eigenvalues, sorting the eigenvectors based on the magnitude of the eigen-

values (which represent the variance captured by each component), and finally projecting the

original data onto the subspace spanned by the selected principal components (typically those

capturing the most variance).
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Figure 2.10: Convolutional Neural Network Architecture for Handwritten Digit Recognition

Figure 2.11: Illustration of 1D-CNN architecture

K-means Clustering. K-means is a widely used unsupervised algorithm that partitions a dataset

into a specified number (k) of distinct, non-overlapping clusters [78]. The algorithm works it-

eratively: it first randomly initialises k centroids, then assigns each data point to the nearest

centroid (commonly based on Euclidean distance), and subsequently recalculates each centroid

as the mean of all points assigned to it. These assignment and update steps are repeated until

the centroids no longer move significantly or a maximum number of iterations is reached. In

the context of environmental wellbeing research, K-means could potentially be applied to iden-

tify distinct environmental condition profiles based on multivariate sensor readings or to group

study participants based on similarities in their physiological response patterns under different

conditions.

Autoencoder. An autoencoder is a type of ANN utilised for unsupervised learning, often em-

ployed for dimensionality reduction or learning efficient data codings [48]. Structurally, as
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depicted in Figure 2.12, it comprises two main components: an encoder and a decoder. The

encoder network maps the input data into a lower-dimensional latent space, creating a com-

pressed representation or encoding that ideally captures the essential features of the input. The

decoder network then attempts to reconstruct the original input data accurately from this latent

representation. The autoencoder is trained by minimising the reconstruction error (the differ-

ence between the original input and the reconstructed output). Unlike PCA which performs

a linear transformation, autoencoders can learn complex, non-linear mappings, making them

potentially suitable for compressing non-linear physiological or environmental time-series data

while retaining important underlying patterns.

Figure 2.12: Illustration of simple Autoencoder Architecture

2.5.4.4 Deep Learning Algorithms

Deep learning offers powerful tools for modelling complex patterns, especially in sequential and

spatial-temporal data common in environmental and physiological monitoring. This subsection
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reviews key deep learning architectures relevant to this research programme.

Recurrent Neural Networks (RNN). RNNs are designed to process sequential data by main-

taining an internal memory or hidden state (H) that captures information from previous time

steps [19]. At each time step t, the RNN takes the previous hidden state H<t−1> and the current

input X<t> to compute the new hidden state H<t> and an output Ŷ <t> (Figure 2.13). The core

equations are:

H<t> = g(H<t−1>Whh +X<t>Whx + 1b⊤
h ) (2.13)

Ŷ <t> = h(H<t>Wyh + 1b⊤
y ) (2.14)

where Whh,Whx,Wyh,bh,by are learnable weights and biases, and g, h are activation functions

[19]. This architecture allows RNNs to handle variable-length sequences and model temporal

dependencies. However, simple RNNs often struggle with learning long-range dependencies

due to the vanishing gradient problem [79].

Figure 2.13: The architecture of an RNN.

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). To address the

limitations of simple RNNs, more complex recurrent units like LSTM [80] and GRU [81] were

developed. LSTMs introduce a memory cell (C) and gating mechanisms (input, forget, out-

put gates Γu,Γf ,Γo) that control the flow of information, allowing the network to selectively

remember or forget information over long sequences. The key LSTM equations are:

Γu = σ(Wu[H
<t−1>, X<t>] + bu1

⊤) (2.15)
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Γf = σ(Wf [H
<t−1>, X<t>] + bf1

⊤) (2.16)

Γo = σ(Wo[H
<t−1>, X<t>] + bo1

⊤) (2.17)

C̃<t> = tanh (Wc[H
<t−1>, X<t>] + bc1

⊤) (2.18)

C<t> = Γu ⊙ C̃<t> + Γf ⊙ C<t−1> (2.19)

H<t> = Γo ⊙ tanh(C<t>) (2.20)

where σ is the sigmoid function, tanh is the hyperbolic tangent, ⊙ denotes element-wise multi-

plication, and [H<t−1>, X<t>] represents concatenation. GRUs offer a simpler alternative with

fewer parameters, merging the input and forget gates into a single update gate, often achieving

comparable performance. Both LSTMs and GRUs have proven effective in analysing envi-

ronmental time series, such as forecasting air quality or temperature, by capturing complex

temporal patterns relevant to public health [82].

Specialized Time-Series Transformers for Environmental and Physiological Applications.

Transformer architectures, originally introduced for natural language processing [83], have

achieved significant success in time-series modeling due to their ability to efficiently capture

long-range temporal dependencies through self-attention mechanisms [84, 85]. This modeling

capability has led to widespread adoption in domains such as environmental forecasting and

physiological signal processing.

Recent developments have produced architectures tailored to the unique challenges of time-

series forecasting. The Temporal Fusion Transformer (TFT) [86] combines recurrent layers,

attention mechanisms, and gating components to handle both static and time-varying inputs,

and has demonstrated strong performance in applications like air quality forecasting, energy

consumption modeling, and climate prediction. The Informer [84] introduces a ProbSparse

self-attention mechanism to improve computational efficiency, enabling effective handling of

high-resolution, long-sequence data in meteorological forecasting and pollutant dispersion sim-

ulations.

In physiological signal analysis, Transformer-based models continue to set new benchmarks. Lu
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et al. proposed PainAttnNet [87], a hybrid model that combines multiscale convolutional layers

with a Transformer encoder for classifying pain intensity from biosignals, achieving higher ac-

curacy than conventional models. Similarly, Wang et al. introduced PhysioFormer [88], which

integrates Transformer learning with symbolic regression to predict affective states from mul-

timodal physiological signals. Tested on the WESAD dataset [89], PhysioFormer achieved

over 99% accuracy, highlighting both the robustness and explainability of Transformer-based

approaches for health monitoring.

Integrated Spatial-Temporal Deep Learning Models. For data with both spatial and temporal

dimensions, specialised architectures like 3D CNNs and Convolutional LSTMs (ConvLSTMs)

are used [90–93]. 3D CNNs extend 2D CNNs by applying convolutions across the time di-

mension as well, useful for capturing short-term spatio-temporal features, for instance in video

analysis or near-term traffic prediction [90]. ConvLSTMs combine convolutional operations

within the LSTM cell structure, allowing them to learn spatial patterns and temporal dynamics

simultaneously. They are particularly suited for tasks like precipitation nowcasting or predict-

ing air quality distribution over time based on sensor networks [92]. Blended architectures,

like combining CNN feature extraction with Bi-directional LSTMs (Conv-BiLSTM), have also

shown high accuracy in spatio-temporal forecasting tasks such as traffic congestion predic-

tion [91]. Table 2.2 provides a summary of deep learning studies applied to Polysomnography

(PSG) data, illustrating applications in health-related time series analysis.

These integrated models enable robust spatial-temporal analysis, with ConvLSTMs particularly

strong for long sequences, driving innovation in real-time monitoring and predictive analytics.

2.5.4.5 Time Series Specific Techniques

Classifying time series data, such as environmental sensor readings or physiological signals over

time, often requires specialised techniques beyond standard classification algorithms applied

to static feature vectors. Key considerations include handling variable lengths and capturing

temporal dependencies.

Dynamic Time Warping (DTW). When comparing time series, especially those that may be
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Table 2.2: A summary of deep learning-based studies for classification and prediction of PSG
data.

Model Application Data Used Accuracy Year Ref.

ResNet-
50

EEG image data and
emotion classification

SEED Dataset 85.11% 2022 [65]

CNN EEG-sleep stage us-
ing multi-scale dual-
attention

Sleep-EDF Database 96.70% 2022 [94]

Mental depression from
EEG dataset

emotions.csv available
on the Kaggle website

49.82% 2022 [59]

Automatic sleep scoring Multiple EGG dataset
was used for this work

74.17% 2021 [95]

Emotion recognition DREAMER (discrete
emotion recognition)

99.90% 2021 [61]

ELM Identification of chronic
alcohol users from ECG
signals

NIMHANS- ECG
Dataset

94.64% 2017 [73]

MLP Mental depression from
EEG dataset

emotions.csv available
on the Kaggle website

76.43% 2022 [59]

RNN Mental depression from
EEG dataset

emotions.csv available
on the Kaggle website

93.90% 2022 [59]

RNN with
LSTM

Mental depression from
EEG dataset

emotions.csv available
on the Kaggle website

97.65% 2022 [59]

Detection of schizophre-
nia from EEG Data

EEG dataset from NNCI
M. V. Lomonosov
Moscow State Univer-
sity

98.00% 2022 [74]

Insomnia detection MASS Dataset-EEG,
EOG, EMG, ECG, and
respiratory signals

79.60% 2021 [96]

Depression using EEG BCI project for EEG
signal and frontal facial
data

99.66% 2021 [97]

CNN-
LSTM

Automatic sleep scoring Multiple EGG dataset
was used for this work

80.17% 2021 [95]

Sleep apnea Apnea-ECG dataset 97.21% 2022 [98]

out of phase or of different lengths, standard distance metrics like Euclidean distance can be

misleading. DTW is a widely used algorithm that finds the optimal non-linear alignment be-

tween two time series [99]. It calculates a distance measure that allows similar patterns to be

matched even if they occur at slightly different times or speeds [99]. This makes DTW particu-
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larly suitable for comparing physiological responses or environmental patterns that may exhibit

temporal variability.

DTW with k-Nearest Neighbours (DTW-KNN). The k-Nearest Neighbours (KNN) algorithm

can be adapted for time series classification by using DTW as the distance metric [46]. Instead

of finding the k neighbours based on Euclidean distance in a feature space, DTW-KNN finds

the k training time series that are most similar to a new, unlabelled time series according to

the DTW distance. The new series is then classified based on a majority vote among these

k nearest neighbours (Figure 2.14). This approach leverages the pattern-matching strength of

DTW within the simple framework of KNN.

Figure 2.14: KNN algorithm concept (adapted for time series with DTW distance).

Support Vector Machines (SVM) with Time Series Kernels. Support Vector Machines

(SVMs) are robust supervised learning models that aim to find an optimal hyperplane for sepa-

rating data into classes by maximizing the margin between support vectors [45]. When dealing

with non-linearly separable data, the SVM leverages the kernel trick to implicitly project the

data into a higher-dimensional feature space where a linear separation may become feasible. A

commonly used kernel in this context is the Radial Basis Function (RBF) kernel, defined as:
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k(x⃗i, x⃗j) = exp
(
−γ∥x⃗i − x⃗j∥2

)
,

which enables SVMs to learn complex nonlinear decision boundaries [100].

While traditional SVMs operate on fixed-length feature vectors, their application to time series

requires either careful feature engineering or the design of sequence-aware kernels. A common

strategy involves extracting meaningful statistical features or using dimensionality reduction

techniques such as PCA to compress temporal information. Alternatively, Autoencoders can be

employed to encode temporal dynamics into compact embeddings that serve as inputs to SVMs.

For more direct time series classification, custom kernels based on Dynamic Time Warping

(DTW) or other shape-aware similarities can be used to preserve temporal structure [101–104].

The standard soft-margin SVM objective remains:

min
w⃗,ξ,b

1

2
∥w⃗∥2 + C

N∑
n=1

ξn subject to yn(w⃗
⊺ϕ(x⃗n) + b) ≥ 1− ξn, ξn ≥ 0,

where ϕ(·) denotes the implicit feature mapping defined by the kernel function, and k(x⃗i, x⃗j) =

ϕ(x⃗i)
⊺ϕ(x⃗j). By selecting or designing kernels that respect the structure of time series, SVMs

can effectively classify complex environmental or physiological temporal patterns.

Table 2.3 offers a concise comparison of major machine learning and deep learning algorithms

used in environmental and wellbeing analysis. By outlining typical use cases, advantages, lim-

itations, and data suitability, the table assists researchers in selecting appropriate analytical

methods for various environmental and physiological datasets.
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Table 2.3: Comparative Overview of Machine Learning Algorithms for Environmental and Wellbeing Analysis

Algorithm Type Common Use Cases Advantages Limitations Typical Data
Types

Suitability

Linear Regression Regression Forecasting environmental
trends [19, 50, 105]

Interpretable, efficient Assumes linearity, sen-
sitive to outliers

Numeric, tabular,
time-series

Medium

Support Vector Re-
gression

Regression Pollution forecasting,
physiological model-
ing [45, 100, 106]

Robust, effective in
high-dimensional spaces

Computational com-
plexity, kernel selection

Numeric, tabular,
time-series

Medium-
high

Gaussian Process
Regression

Regression Risk assessment, predic-
tion [48]

Uncertainty quantifi-
cation, small dataset
robustness

High computational
cost

Numeric, spatial,
time-series

Medium-
high

Random Forest Classification Air quality, stress detec-
tion [49, 107]

Robust, handles com-
plexity, feature impor-
tance

Lower interpretability,
intensive

Multivariate, spa-
tial, mixed data

High

k-Nearest Neigh-
bours

Classification Pollution, anomaly detec-
tion [46]

Simple, nonlinear data
handling

Sensitive to dimension-
ality, expensive at infer-
ence

Numeric, spatial,
temporal

Medium

Gradient Boosting Classification Air quality, stress re-
sponses [47]

High accuracy, robust Computational com-
plexity, tuning needed

Multivariate tabu-
lar data

High

PCA Dimensionality
Reduction

Reducing sensor data com-
plexity [71, 77, 102]

Noise removal, inter-
pretability

Linear assumption, in-
formation loss risk

Numeric, high-
dimensional data

Medium-
high

Autoencoders Dimensionality
Reduction

Sensor data compres-
sion [48]

Automatic, non-linear
feature learning

Requires large datasets,
interpretability issues

Numeric, physio-
logical signals

High

K-means Cluster-
ing

Clustering Environmental zon-
ing, pattern discov-
ery [78, 108, 109]

Simple, exploratory
analysis

Requires cluster count,
initialization sensitive

Multivariate nu-
meric, spatial

Medium

CNNs Deep Learning Remote sensing, physio-
logical imaging [52–55,65,
110, 111]

Strong pattern recogni-
tion

High computational
cost, low interpretabil-
ity

Spatial imagery,
sensor data

High

LSTMs/RNNs Deep Learning Forecasting, physiological
analysis [64, 74, 79, 80, 82,
112]

Captures temporal de-
pendencies

Overfitting risk, compu-
tationally demanding

Time-series, physi-
ological data

High

Transformers Deep Learning Climate modeling, signal
analysis [83–86, 88]

Long-range dependen-
cies, high performance

High computational de-
mands, complex train-
ing

Complex time-
series, multimodal
data

High
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2.6 Applications and Case Studies

2.6.1 Urban Wellbeing

Urban forests, encompassing parks, gardens, woodlands, and street trees within urban areas,

have become increasingly recognised in recent years for their vital contributions to public men-

tal health and wellbeing [113,114]. Multiple studies have explored and highlighted the positive

impacts of access to biodiverse, well-maintained urban forests on reducing stress, anxiety, and

depression, as well as enhancing overall psychological wellbeing, for urban residents.

An analysis by Lafantasie [115] utilising eBird citizen science data suggested that urban green

spaces with higher biodiversity and species richness were associated with improved mental

health outcomes. Similarly, a longitudinal UK study revealed adolescents with higher daily

exposure specifically to urban woodlands had better cognitive development and lower risks of

emotional and behavioural disorders compared to those exposed primarily to other urban green

space types [116]. These findings emphasise the particularly significant mental health benefits

offered by biodiverse, woodland ecosystems within cities.

Beyond observational studies, an urban forest therapy randomised controlled trial (RCT) con-

ducted by Yeon et al. [117] provides further evidence for the positive psychological impacts of

urban forests. Participants in forest therapy programmes showed significant reductions in de-

pression, improved sleep quality, and alleviation of stress-linked somatic symptoms. Such em-

pirical evidence substantiates urban forests as an effective, non-pharmacological nature-based

solution for depression.

Incorporating psychometric analytics, Liu et al. [118] performed facial expression analysis of

visitors to urban forest parks in Northern China. Exposure to the urban forest environments

frequently elicited increased positive emotions, indicating enhanced psychological wellbeing.

Collectively, the research underscores urban forests as invaluable city infrastructure for aug-

menting mental capital and mitigating the psychological toll of urbanisation. Integrating and

maintaining urban forests emerges as an imperative public health strategy for city planning au-
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thorities. The creation of accessible, biodiverse and well-maintained urban forests can cater

to the rising mental health challenges faced by urban populaces. As key hotspots for human-

nature interactions, urban forests offer a natural, non-pharmacological and low-cost pathway to

managing escalating rates of urban stress, anxiety and depression. Their further incorporation

into cities presents immense scope for ecologically conscious urban development that promotes

holistic population mental health and wellness.

2.6.2 Green spaces

The relationship between access to urban green spaces and mental health outcomes has garnered

increasing research attention in recent years. A growing body of evidence underscores the

mental health benefits of nature exposure and interactions for urban populations across diverse

geographical contexts. This subsection synthesises key findings from recent studies, situating

green spaces as a crucial component of healthy city planning and development.

Multiple large-scale analyses utilising objective green space measures and mental health data

provide compelling evidence linking urban nature access with enhanced psychological well-

being. Geneshka et al. [119] leveraged European urban green and blue space data integrated

with the UK Biobank study, revealing positive associations between the availability of parks,

trees, and water bodies with better mental health indicators. At a macro scale, their research

highlights the manifold health-promoting capacities of these green and blue spaces in urban

areas. Complementing these findings, White et al. [120] analysed multi-country survey data on

recreational visits to natural areas and mental health. Their results suggest protective effects of

green and blue space exposure, with more frequent nature-based leisure trips associated with

heightened wellbeing and lower distress.

In addition to mitigating distress, contact with green spaces may also confer positive mental

health benefits mediated through social and behavioural pathways. Li et al. [121] demon-

strated that residents’ mental health significantly improved with higher green space exposure

in a Chinese city, attributable to mechanisms including enhanced environmental perception,

physical activity, and sense of community belongingness. Aligning with these conclusions, Qin
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et al. [122] found positive green space-mental health linkages in Beijing neighbourhoods, me-

diated by physical activity and social cohesion. These findings illuminate potential mechanisms

underlying observed nature wellbeing connections in urban contexts.

Equitable distribution and access to green spaces also emerge as a key variable influencing

population mental health outcomes. Multiple studies highlight socioeconomic and spatial dis-

parities in urban green space provisions [123–125]. Uneven access negatively impacts dis-

tressed communities and compounds mental health burdens linked to lower socioeconomic sta-

tus. As urbanisation escalates globally, environmental justice perspectives warrant considera-

tion in green space planning and resource allocation.

Recent research conducted worldwide resoundingly affirms the mental health significance of

urban nature contact and green space access. Findings underline both protective and promotive

pathways connecting green space exposure to enhanced psychological wellbeing. Moreover,

equitable provision of quality green spaces emerges as an environmental justice imperative

with implications for the population’s mental health. As cities expand and densify, integrat-

ing nature-based solutions and ensuring access across socioeconomic gradients will be vital for

nurturing healthy, sustainable communities. Looking ahead, further investigating specific mech-

anisms and at-risk populations can help refine nature-based mental health promotion policies

and interventions in the urban context.

2.6.3 Air Quality and Public Health

The analysis of air pollution data and its myriad impacts on human health has garnered signif-

icant research attention amid rapid urbanisation and industrialisation worldwide. Both short-

and long-term exposure to common air pollutants, including particulate matter (PM2.5, PM10),

nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3), have been linked to an array

of acute and chronic health conditions [126, 127].

Multiple studies highlight the acute health effects associated with short-term exposure to these

pollutants. Yang et al. [128] found that transient spikes in air pollution levels could precipitate

respiratory diseases, stroke, and coronary artery disease, as well as exacerbate preexisting con-
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ditions like asthma and chronic obstructive pulmonary disease (COPD). While Liu et al. [129]

observed no significant immediate impact of short-term pollution exposure on subjective well-

being, they noted substantially reduced subjective wellbeing following medium- and long-term

exposures, suggesting potential delayed effects on mental health. Reviewing the interconnec-

tions between COVID-19 and air pollution, Katoto et al. [130] suggested that acute and chronic

pollution exposure could influence COVID-19 transmission rates and severity by compromising

lung function.

The impacts of sustained, long-term air pollution exposure appear even more significant. Cro-

mar et al. [127] stressed that adhering to stringent air quality standards, such as those recom-

mended by the American Thoracic Society, could mitigate substantial mortality and morbidity

from long-term PM2.5 and ozone exposure. Similarly, Ali and Islam [131] reported that popu-

lations habitually exposed to PM2.5 and NO2 faced markedly higher COVID-19 infection and

mortality rates due to chronically compromised lung function. Research quantifying effects

across organ systems has reviewed physiological conditions exacerbated by chronic pollution

exposure, including asthma, COPD, cardiovascular and metabolic diseases, alongside psycho-

logical outcomes like depression, stress, and dementia [126]. Studies have also elucidated geo-

graphically localised influences, such as the association between long-term air pollution expo-

sure in Tehran, Iran, with increased blood pressure [132], or heightened mortality during high

pollution periods in Bandung, Indonesia [133].

Cumulatively, the emerging research underscores the pressing need to improve air quality glob-

ally. Environmental regulations, public health policies, and awareness campaigns are needed to

mitigate both acute and chronic health burdens imposed by ambient air pollution, particularly

as industries expand worldwide. Timely interventions to curb pollution levels are imperative to

safeguard public health amidst increasing urbanisation.

2.6.4 Climate Change and Seasonal Effects

The complex interrelationship between climate change, extreme weather events, seasonal vari-

ations, and human wellbeing is being increasingly scrutinised by researchers across disciplines.
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Recent studies have investigated how phenomena exacerbated by climate change—including

heatwaves, floods, storms, and shifting seasons—profoundly impact physical health, mental

wellbeing, social structures, and economic stability.

Multiple analyses focused specifically on extreme weather events reveal clear links between

these incidents and adverse health outcomes. For example, some models demonstrate that rapid

temperature flux during heatwaves or storms can disrupt phenological cycles, compromising

agricultural systems and ecosystems [134]. Assessments in Italy correlate volatile rainfall and

snow melt with heightened risks of flooding and landslides [135]. Furthermore, evidence across

Europe shows that increasing frequency and severity of extremely hot days leads to more heat-

related illnesses [136].

In addition to overt threats to physical health, extreme weather events also take substantial tolls

on mental wellbeing. Analysis of visitor data from the Toronto Zoo indicated that extreme

weather events suppressed attendance, illustrating disruption to leisure activities tied to mental

health [137]. Additionally, agricultural turmoil triggered by droughts and floods in Malawi

increased economic vulnerability and poverty-related mental stress among rural households

[134].

While extreme weather occasions acute distress, gradual seasonal shifts emerging from climate

change also negatively impact wellbeing. A review of Ayurvedic traditions suggests that disrup-

tions to seasonal cycles can undermine physical and mental balance, emphasizing that human

health relies on aligning routines with predictable seasons.

Climate change and associated extreme weather pose grave interrelated threats to human well-

being via physical health, mental welfare, social settings, and economic circumstances. Un-

derstanding and responding to these multifaceted impacts will become increasingly crucial as

such events intensify worldwide. Integrative adaptation policies and practices are essential to

promote resilience and safeguard human wellbeing in an era of climate change.
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2.7 Challenges and Ethical Considerations

2.7.1 Data Privacy and Ethical Considerations

Beyond general data privacy, applying AI and machine learning to environmental and physio-

logical data for wellbeing analysis, as explored in this research, brings forth additional ethical

considerations. A key concern is algorithmic bias, which may arise from demographic im-

balances in training data. If models are developed primarily on data from specific population

groups, they risk producing inequitable or inaccurate predictions for underrepresented commu-

nities. This could compromise fairness in health assessments and exacerbate existing disparities.

Transparency and explainability are equally important when dealing with sensitive outcomes

such as stress or mental health prediction. Incorporating explainable AI (XAI) techniques al-

lows clinicians and users to interpret how decisions are made, enhancing trust and enabling

better-informed actions. Accountability for model outputs is also critical: it must be clear who

is responsible for the decisions or recommendations produced by AI systems, especially in

health-related settings. This includes documenting model design, maintaining oversight mech-

anisms, and involving human reviewers when necessary.

Ethical deployment further requires secure data handling practices and robust informed consent

protocols. Participants should be clearly informed about how their data will be collected, used,

and stored, and be given opportunities to opt out without consequence. Ensuring fairness, pro-

moting transparency, and maintaining accountability are thus central to responsible AI use in

physiological signal analysis and wellbeing monitoring [138–144].

2.7.2 Data Collection and User Adherence

A limitation in much current research is the infrequent use of real-world data collection or

testing [145]. Individuals experiencing artificially induced stress in controlled trials may not

exhibit the same physiological patterns as those facing real-life wellbeing challenges. For real-

world data collection, recruiting participants and motivating them to test new technologies and

provide feedback can be difficult. Identifying users willing to try unfamiliar devices presents a
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challenge [146]. User adherence and sustained engagement are crucial both for effective testing

and for gathering sufficient data to train machine learning models, yet users may not imme-

diately perceive the benefits. Engaging hard-to-reach communities, where mental wellbeing

technologies could have significant impact, poses even greater recruitment and adherence diffi-

culties. Device design plays a role; making devices small, portable, and aesthetically pleasing

may promote engagement and allow use in various settings.

2.7.3 Interdisciplinary Collaboration

Challenges also exist on the diagnostic front. Affective sensing, the interpretation of emotional

states from sensor data, is inherently complex due to subjectivity [147]. Sensor data alone may

face difficulties in accurately interpreting individual emotional variances. While machine learn-

ing algorithms could potentially be tailored to individual users to accommodate these variances,

this requires extensive data collection over time from each person, dependent on developing

user-friendly data gathering methods. The effectiveness of mental wellbeing detection relies

not only on the precision of classification algorithms but also crucially on the reliability of the

sensors themselves. Inaccurate sensor readings can lead to erroneous model classifications.

Nevertheless, integrating machine learning classifiers with commercially available sensors has

shown promise, sometimes achieving stress detection accuracy comparable to clinical-grade

sensors, highlighting AI’s potential to enhance diagnostic accessibility [148].

2.7.4 Portability

Utilising sensors and feedback actuators within tangible interfaces designed for enhancing men-

tal wellbeing presents several practical hurdles. A notable concern is potential device bulkiness

arising from the need to accommodate sensors, a power source (battery), and feedback systems.

While innovative feedback methods, such as Visio-Tactile feedback using actuated liquid metal

droplets, are being explored for more dynamic and compact feedback, this technology is still

developing and may not yet be readily integrable into current tangible devices [149].
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2.7.5 Battery Life

Even if users are willing to utilise tools for mental wellbeing assessment, battery longevity re-

mains a persistent challenge. Internet of Things (IoT) devices, intended to be compact and wear-

able, often have limited internal space due to essential microcontrollers and sensors. This leaves

minimal room for larger batteries, necessitating frequent recharging. A potential workaround

involves activating certain high-energy sensors only when triggered by specific preliminary

actions, thus reducing continuous power drain but adding complexity to data collection. Un-

til significant advancements occur in battery technology to extend operational life spans, the

continuous collection of extensive behavioural or physiological data will remain constrained.

Therefore, developing practical approaches to enhance power efficiency in device operation

and data processing is essential.

2.8 Summary, Research Gaps, and Transition

This chapter synthesised contemporary research at the intersection of environmental factors and

human wellbeing, emphasising the contributions of urban planning, environmental exposure,

psychological frameworks, and digital technologies such as machine learning and the Internet

of Things. Although there is growing enthusiasm for interdisciplinary and data-intensive ap-

proaches, the review uncovers persistent limitations in current methodologies. In particular,

there is an absence of comprehensive models that cohesively integrate perspectives from urban

design, environmental sciences, psychological research, and artificial intelligence. This gap re-

stricts the ability to fully understand how environmental and psychosocial variables interact to

influence health and wellbeing outcomes [138, 139]. Addressing these disciplinary boundaries

is therefore essential to advance integrated monitoring and intervention strategies.

A further prominent issue concerns the type and resolution of data commonly used in environ-

mental wellbeing research. Many existing studies depend on static, cross-sectional, or coarse-

grained datasets, which are insufficient to track dynamic changes in environmental exposure or

their impacts on individuals. Thus, there is a compelling need for longitudinal investigations

that utilise real-time data streams from wearable technologies and environmental sensors, en-
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abling finer-grained analysis of how environmental conditions influence physiological and psy-

chological responses over time [141, 142]. Despite rapid progress in AI and machine learning,

their full potential in this context remains largely unrealised. The application of high-capacity

algorithms for large-scale, multimodal environmental health data remains in its infancy, partic-

ularly outside controlled research environments [143, 144].

Additionally, issues of equity and climate resilience are not adequately addressed in much of

the current literature. Socioeconomic inequalities often determine access to beneficial envi-

ronmental features such as parks, clean air, and sustainable infrastructure yet these factors

are underrepresented in most studies. There is also a need for more emphasis on how urban

planning can evolve to build resilience against climate-related disruptions, particularly in vul-

nerable populations. This doctoral research contributes to closing these gaps by employing a

cross-disciplinary approach, analysing longitudinal, in-situ sensor data, and applying advanced

machine learning techniques to model complex relationships between environmental exposure

and wellbeing. Furthermore, it incorporates considerations of fairness and ethics in data collec-

tion and analysis, contributing to more responsible and inclusive digital health frameworks.

Having outlined the conceptual background and identified key research challenges, the next

chapter presents the research methodology, detailing the experimental framework, data acquisi-

tion strategies, and analytical methods employed in this study.
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Chapter 3

Classifying Mental Health Using Wearable

Sensor Data

3.1 Introduction

Mental health disorders, particularly depression, remain a major public health concern. Pro-

longed stress is widely recognised as a risk factor for numerous physical and psychological

conditions, including headaches, insomnia, and cardiovascular disease [89,150–152]. Although

early and objective detection of affective disorders is critical, clinical assessment is still often

based on subjective rating scales [153–155], highlighting the need for more robust, data-driven

approaches (see Chapter 2, Section 2.2).

Wearable sensors now enable the collection of rich, continuous motor activity data, providing

an objective window into individuals’ behavioural patterns (see Section 2.5.2). Such data have

been linked to depression and other affective disorders [156], but accurately interpreting these

complex time series remains a challenge. Recent advances in machine learning have shown

promise for revealing underlying patterns in motor activity and other physiological signals (see

Section 2.5; Section 2.3.2) [157].

This chapter presents a comprehensive comparative study of machine learning and deep learning

approaches for classifying depression based on motor activity data from the public Depresjon
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dataset [156]. Extending previous work [158–161], this PhD research programme systemati-

cally evaluates a diverse set of classification algorithms, including LR, RF, Gradient Boosting

GB, support vector machines SVM, TPOT AutoML, and the MLSTM-FCN Deep Learning DL

model across multiple data representations (see Sections 2.5.4, 2.5.4.2, and 2.5.4.4). These

include raw and normalised activity counts, statistical feature extraction, and dimensionality re-

duction using principal component analysis, with further segmentation into daytime and night-

time periods to capture potential diurnal effects (see Section 2.5.3).

By directly comparing the impact of different preprocessing strategies and classification models,

this study aims to identify optimal methodological choices for distinguishing depressed patients

from healthy controls in a wearable sensor context. Careful attention is given to addressing

class imbalance and reporting a comprehensive set of evaluation metrics (see Section 2.8). The

findings provide new insight into best practices for objective assessment of mood disorders, and

inform subsequent chapters of this thesis.

3.2 Methodology

This section details the methodology employed for classifying individuals as depressed patients

or healthy controls using motor activity data from the Depresjon dataset. It covers the dataset

characteristics, the preprocessing steps undertaken to create different feature sets, the machine

learning models applied, and the training and evaluation procedures.

3.2.1 Dataset and Preprocessing Procedure

Dataset Description. This study utilises the public Depresjon 1 dataset [156], chosen for its

open-access nature and its use as a benchmark in related research [162, 163]. The dataset con-

tains motor activity data collected using wrist-worn Actiwatch accelerometers (32 Hz sampling,

recording movements greater than 0.05g) from 23 patients diagnosed with unipolar or bipolar

depression (condition group) and 32 healthy controls. Activity counts, correlating with move-

ment intensity, were recorded at one-minute intervals, with recording durations varying per par-

1Available online: https://datasets.simula.no/depresjon/, last accessed 20 May 2025.
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ticipant (13-45 days). Demographic data (gender, age group) and clinical information (MADRS

scores, inpatient/outpatient status, etc., in ‘scores.csv‘) are also provided. Figures 3.1 and 3.2

illustrate the gender and age distributions within the dataset’s condition and control groups,

respectively.

Figure 3.1: Bar Plot of Gender Distribution in Depressed vs. Healthy Control Groups

Figure 3.2: Age Group Distribution in Depressed and Healthy Control Groups

Data Segmentation and Initial Visualisation. To analyse potential diurnal variations, the

raw data for each participant was segmented into 12-hour daytime (08:00-20:00) and nighttime

(20:00-08:00) periods. This resulted in 1035 daytime samples and 1083 nighttime samples

across all participants. Visual inspection of the average activity patterns (Figures 3.3 and 3.4)

reveals that, while motor activity is broadly similar between depressed patients and healthy

controls across both day and night, some group differences do emerge. Notably, healthy controls
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tend to be more active than patients in the early morning hours (approximately 06:00 to 10:00).

However, the substantial overlap in group averages throughout the rest of the day and night

indicates that further, more sophisticated feature extraction and modelling are needed to robustly

differentiate between groups.

Figure 3.3: Daytime Activity Patterns of Depressed Patients vs. Healthy Controls

Figure 3.4: Nighttime Activity Patterns of Depressed Patients vs. Healthy Controls

Cross-correlation analysis, visualised as heatmaps (Figures 3.5 and 3.6), was also performed.

The nighttime heatmaps suggested potentially stronger day-to-day consistency (higher corre-

lations) in activity patterns for healthy controls compared to depressed participants, hinting at

subtle differences despite the similarity in overall activity levels.
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Figure 3.5: Heatmaps displaying daytime cross-correlation patterns for depressed patients (left)
and healthy controls (right).

Figure 3.6: Nighttime cross-correlation heatmaps illustrating the relationships between daily
activity patterns for depressed patients (left) and healthy controls (right).

Feature Set Creation. To enable a comprehensive comparison of preprocessing strategies,

several distinct feature sets were derived from the segmented 12-hour activity periods for both

daytime and nighttime. The most fundamental representation involved using the original raw

activity counts for each minute, resulting in high-dimensional feature vectors of 720 features

per sample that preserve the full temporal resolution of the data. Recognizing the potential

for differences in measurement scale to bias model performance, these raw features were also

normalized using MinMax scaling, transforming all activity values to the [0, 1] range, while

maintaining the same dimensionality (720 features per sample).

Dimensionality reduction was explored by applying PCA [108, 111] to both the raw and nor-

malized data; the number of retained components was determined by analysing the cumulative

explained variance, with the top 300 principal components selected for the raw data to cap-
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ture the majority of information (as shown in Figure 3.7). This yielded a feature vector of 300

principal components per sample.

Figure 3.7: Cumulative Explained Variance Ratio for Principal Components of Raw Data and
Normalized Raw Data (Daytime)

In addition to these direct representations, more abstract summaries of activity patterns were

constructed by extracting statistical features from each hour within a 12-hour block. For each

hour, seven statistical descriptors were calculated: minimum, maximum, mean, median, stan-

dard deviation, skewness, and kurtosis, yielding 84 features per sample (12 hours × 7 statis-

tics). These hourly statistical features provide a more compact characterization of the data,

emphasizing distributional properties and temporal variation [157]. As with the raw data, nor-

malization was applied to the statistical features using MinMax scaling, ensuring comparability

across features and participants while maintaining the dimensionality at 84 features per sam-

ple. To further reduce dimensionality and emphasize the most salient patterns, PCA was also

performed on the normalized statistical features; the top 11 principal components were retained

based on explained variance criteria (see Figure 3.8), resulting in a feature set of 11 components

per sample.
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Figure 3.8: The Cumulative Explained Variance Ratio for the Principal Components of Statisti-
cal Features and Normalized Statistical Features (Daytime) .

By preparing these multiple feature sets, ranging from raw high-dimensional activity profiles

to compact summaries of principal components of statistical features, this study systematically

investigates how different representations of wearable sensor data influence the ability of ma-

chine learning and deep learning models to classify depression status. This layered approach to

feature engineering aims to balance the retention of relevant information with the reduction of

noise and computational complexity.

3.2.2 Proposed Models

A diverse set of machine learning models were selected for the task of classifying individu-

als as depressed patients or healthy controls based on their motor activity patterns, allowing

for a comparative evaluation. The specific models employed in this study include classical

approaches like Logistic Regression [105], Random Forest Classifier [49], Gradient Boosting

Classifier [47], KNN, and Support Vector Machines (SVM) [164], as well as the automated ma-

chine learning tool TPOT [107], a Gaussian Process Classifier [48], and a deep learning model

specifically designed for multivariate time series, the MLSTM-FCN [112]. The theoretical

background for these algorithms is provided in Chapter 2 (Section 2.5).
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The selection aimed to compare traditional, well-understood models with more recent deep

learning architectures and automated approaches. TPOT, an AutoML system, automatically

searches for optimal combinations of feature transformations, models, and hyperparameters

using genetic algorithms, generating pipelines such as the one illustrated conceptually in Figure

3.9.

Figure 3.9: An illustrative representation of a tree-based pipeline generated by TPOT.

The MLSTM-FCN architecture [112], depicted in Figure 3.10, is a deep learning model de-

veloped for multivariate time series classification. In this study, the model was configured to

accept input sequences representing 12-hour activity samples, either as raw minute-level activ-

ity counts or as transformed feature sets. The MLSTM-FCN combines two parallel branches: a

LSTM network that learns temporal dependencies across the sequence, and a stack of 1D-CNN

layers that extract salient local and hierarchical features from the same input. Outputs from

both branches are concatenated and passed through fully connected layers to generate the final

binary classification, distinguishing depressed patients from healthy controls.
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Figure 3.10: The MLSTM-FCN architecture.

3.2.3 Training and Testing Steps

Following model selection and data preprocessing, a structured approach was adopted for train-

ing, validating, and testing the classifiers. The preprocessed datasets were split into training

and test sets to ensure robust evaluation. A 5-fold cross-validation technique was implemented

during the training phase, particularly for hyperparameter tuning using GridSearchCV tech-

nique [165]. The specific hyperparameter grids explored, along with the total number of param-

eter combinations and the optimal configurations selected for each algorithm, are summarised

in Table 3.2.

The performance of the trained models was evaluated using standard classification metrics:

Accuracy, Precision, Recall, and F1-score. These metrics provide a comprehensive assessment

of the model’s ability to correctly classify both the condition and control groups, considering

aspects like class imbalance. To potentially enhance classification accuracy, threshold selection
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based on the Receiver Operating Characteristic (ROC) curve analysis was implemented after

initial model training. Additionally, ensemble predictions using a Vote Classifier, combining

outputs from multiple individual models, were explored [165].

3.3 Results

This section details the stepwise evaluation of machine learning and deep learning models for

classifying depression using motor activity data from the Depresjon dataset. The analysis fol-

lows a structured approach: initial cross-validation to select the best feature representation,

model fine-tuning, training and evaluation analysis, and comprehensive performance reporting

including threshold optimization.

Cross-Validation to Select Optimal Feature Set. The first phase involved evaluating all

model-feature set combinations using 5-fold cross-validation. As summarised in Table 3.1, the

“Normalised Statistical Features” representation—particularly for nighttime data—emerged as

the most effective across multiple model types, consistently yielding the highest cross-validation

accuracies. This finding motivated the use of this feature set for all subsequent model compar-

isons and hyperparameter optimization.

Table 3.1: Average 5-Fold Cross-Validation Accuracies (%) for Daytime/Nighttime datasets
across different feature sets. (RD: Raw Data, NRD: Normalised Raw, PCA-TRD: PCA Raw,
SD: Statistical Data, NSD: Normalised Statistical, PCA-TSD: PCA Statistical).

Model RD NRD PCA-TRD SD NSD PCA-TSD

LR 59.32/60.94 60.58/60.48 56.71/60.29 65.31/67.22 69.66↑/75.99↑ 49.95↓/56.14↓
RF 75.17/75.34 75.17/75.25 68.60↓/73.03↓ 75.07/78.29↑ 75.75↑/77.93 69.28/76.45
GB 71.49/70.08↓ 71.40/70.08 69.66↓/72.67 75.07/78.39↑ 75.46↑/78.21 70.24/75.62
KNN 67.92↓/69.90 68.70/68.98↓ 68.31/70.18 69.86/73.69 71.01↑/74.70↑ 68.21/73.96
SVM 72.27/71.92 71.69/70.26↓ 72.37/72.11 65.80/70.35 72.95↑/78.02↑ 65.22↓/71.37
GP 65.02/64.81 72.65↑/67.77 65.31/64.90 64.83/64.17 72.46/77.38↑ 64.44↓/64.44↓
Hybrid Model 74.78/72.66 74.01/72.11↓ 71.88/74.42 73.43/77.09 75.07↑/77.19↑ 70.14↓/76.63
TPOT Model 68.21↓/70.55↓ 68.79/71.28 72.66/72.94 73.43/76.82 73.62↑/77.28↑ 69.76/75.16
MLSTM-FCN 70.92/74.79 70.82/73.77 66.76↓/72.94↓ 68.41/76.09↑ 73.24↑/75.90 N/A

Model Fine-Tuning and Training Analysis. After identifying the best-performing feature set,

hyperparameter optimization was conducted for the classical machine learning models (RF, GB,

KNN, SVC) using GridSearchCV on the training set. The hyperparameter configurations are

provided in Table 3.2. The MLSTM-FCN deep learning model, by contrast, was not fine-tuned

56



3.3. Results

using grid search due to the computational cost and standard practice of training such models

with fixed hyperparameters. Instead, its training process is illustrated in Figure 3.11, which

plots training and validation accuracy and loss over epochs.

Table 3.2: Summary of Hyperparameter Exploration and Optimal Configurations for Machine
Learning Models

Algorithm Parameters Explored Total Parameter Sets Best Parameters

– bootstrap: [True, False] – bootstrap: True

– max depth: [None, 3, 8] – criterion: ’entropy’

– max features: [”auto”, – max depth: None

RF ”log2”,”sqrt”] 1728

– min samples split: [2, 5,10] – max features:’auto’

– min samples leaf: [1, 2, 4] – min samples leaf: 1

– criterion: [”gini”, ”entropy”] – min samples split: 2

– n estimators: [10, 50, 100, 200] – n estimators: 100

– learning rate: [0.01, 0.1, 0.2] – learning rate: 0.1

– min samples split: [2, 5, 10] – max depth: 3

GB – min samples leaf: [1, 2, 4] 486 – max features: ’log2’

– max depth: [3, 5] – min samples leaf: 4

– max features:[’log2’,’sqrt’, ’auto’] – min samples split: 10

– n estimators: [50, 100, 200] – n estimators: 100

KNN – n neighbors: [1, 2, . . . 49] 49 – n neighbors: 25

– C: [0.1, 1, 10, 100] – C: 1

– kernel: [’linear’, ’rbf’, ’sigmoid’] – kernel: ’rbf’

SVM – gamma:[’scale’, ’auto’] 192 – gamma: ’scale’

– coef0:[0, 1, 2, 3] – coef0: 0

– shrinking:[True, False] – shrinking: True
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Figure 3.11: Training Curves for the MLSTM-FCN Model Over Epochs

Train and Test Accuracy Comparison. Once optimal hyperparameters were selected for each

classical model (and the MLSTM-FCN trained to convergence), all models were evaluated on

the held-out test set using the “Normalised Statistical Features” (nighttime) data. Table 3.3

presents train and test accuracies for each model. The Random Forest and Gradient Boosting

classifiers outperformed other models, with test accuracies of 83.41% and 82.03%, respectively,

while MLSTM-FCN achieved 77.88%.

Table 3.3: Train and Test Accuracies (%) for Fine-Tuned Models on Normalised Statistical
Features Nighttime Dataset.

Model Train Accuracy Test Accuracy

Random Forest 99.42↑ 83.41↑

Gradient Boosting 92.61 82.03

KNN 79.45 73.27↓

SVM 84.53 80.18

TPOT Model 85.79 74.65

MLSTM-FCN Model 84.18↓ 77.88

Threshold Optimization and Comprehensive Metrics. To further refine model evaluation,

ROC curves were generated for each optimized model, enabling threshold selection that bal-

ances sensitivity and specificity (Figure 3.12). Thresholds were chosen to maximize the ge-

ometric mean of the true positive rate (TPR) and (1 - false positive rate). Using these opti-
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mal thresholds, final performance metrics (Precision, Recall, and F1-score) for both “Control”

and “Condition” groups are summarised in Table 3.4. This comprehensive view confirms the

robustness of RF and GB classifiers, and highlights specific strengths of the MLSTM-FCN,

particularly in “Condition” recall.

(a) Gradient Boosting Classifier (b) Random Forest Classifier

(c) SVM Classifier (d) KNN Classifier

(e) TPOT Classifier (f) MLSTM-FCN

Figure 3.12: ROC curves for the optimized machine learning models on the test set.

This stepwise analysis confirms that careful feature selection, hyperparameter tuning, and

threshold optimization significantly enhance model performance for depression classification
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Table 3.4: Summarises the Precision, Recall, and F1-score metrics for both the training and test
datasets across various machine learning models (using optimal thresholds).

Train Test
Model Group Precision Recall F1-score Precision Recall F1-score

Random Forest Classifier Control 99%↑ 100%↑ 100%↑ 85% 93%↑ 89%↑
Random Forest Classifier Condition 100%↑ 98%↑ 99%↑ 79%↑ 62% 69%

Gradient Boosting Classifier Control 96% 93% 94% 90%↑ 83% 87%
Gradient Boosting Classifier Condition 88% 93% 90% 68% 79% 73%↑

K Neighbors Classifier Control 86%↓ 75%↓ 80%↓ 89% 67%↓ 77%↓
K Neighbors Classifier Condition 65%↓ 78% 71%↓ 52%↓ 82%↑ 64%↓

Support Vector Machines Control 92% 84% 88% 88% 74% 80%
Support Vector Machines Condition 76% 87% 81% 56% 76% 65%

TPOT Classifier Control 89% 89% 89% 80% 81% 81%
TPOT Classifier Condition 85% 77%↓ 81% 57% 68%↓ 62%

MLSTM-FCN Classifier Control 91% 83% 87% 87% 80% 83%
MLSTM-FCN Classifier Condition 74% 86% 80% 62% 73% 67%

using wearable motor activity data. The strongest performance was observed for classical en-

semble models (RF, GB), while the deep learning model provided competitive results, especially

in recall for the “Condition” group. These findings reinforce the value of systematic compara-

tive evaluation in health informatics applications.

The subsequent chapter introduces the development and characteristics of the “EnviroWellBe-

ing” dataset, created for the environmental wellbeing analyses presented later in this thesis.
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Chapter 4

EnviroWellBeing Dataset

4.1 Introduction

Recent advancements in sensor technology have enabled unprecedented opportunities for mon-

itoring environmental and physiological factors relevant to human health (see Chapter 2). How-

ever, current datasets still fall short when it comes to comprehensively capturing the immediate

and nuanced effects of specific environmental exposures on individuals using real-time, multi-

modal sensor data [166, 167].

A major limitation of existing resources is their lack of either sufficient granularity, breadth of

measurements, participant diversity, or contextual richness necessary to address the complex re-

search questions posed in this thesis. For instance, the DigitalExposome dataset [168] integrates

environmental and physiological signals, but its final sample size after exclusions is small (12

participants), and its coverage of both physiological and contextual variables is limited relative

to the requirements for robust machine learning analyses. Similarly, the WESAD dataset [89]

is widely used for affective computing but focuses primarily on laboratory conditions with just

15 participants, and lacks simultaneous real-world environmental data. Other datasets, such as

Urban Wellbeing [169] or The City [170], may offer real-world context, but are constrained by

the absence of high-resolution physiological data or are limited to brief, static observations.

Given these limitations, there remains a significant gap in resources suitable for the integrated,
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high-dimensional analysis required to explore how environmental factors shape human wellbe-

ing in everyday life. To address this gap, this research undertook the development of the En-

viroWellBeing Dataset 1 (RQ1): a new, comprehensive dataset specifically designed to over-

come the shortcomings of prior work. The EnviroWellBeing Dataset includes synchronised,

high-frequency recordings of both environmental and physiological parameters, collected from

a diverse group of 53 participants in both real-world and controlled settings, with carefully

designed experimental protocols to isolate the effects of environmental exposures. This ex-

periment took place under the ethical approval number 21/22-53, please see Appendix B.4 for

further details.

This chapter provides an overview of the EnviroWellBeing Dataset, beginning with the rationale

and motivation for its creation, and then detailing the experimental design, equipment and sen-

sor technologies used (see Section 4.2), participant recruitment and data collection procedures

(Section 4.3), and initial data quality assessments (Section 4.5). By introducing this resource,

the chapter sets the foundation for the subsequent application of machine learning and deep

learning models to analyse the impact of environment on wellbeing.

4.2 Equipment

Participants were monitored using an integrated suite of wearable sensors and an environmental

data logger, allowing for high-resolution collection of physiological and environmental data

throughout the experiments. Figure 4.1 presents the equipment configuration used in the study.

1Available Online: EnviroWellBeing Dataset, last accessed 20 May 2025
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Figure 4.1: Sensor equipment setup for data collection post-experiment. Devices are labelled:
(A) BioHarness chest belt sensor; (B) Microsoft Band 2 wristband sensor; (C) Logbook ML+
environmental data logger. This arrangement enabled comprehensive, synchronised monitoring
of physiological and environmental parameters.

4.2.1 ChestBelt Sensors

Each participant was fitted with a BioHarness2 chest belt sensor (Figure 4.2), an advanced

wearable capable of simultaneously measuring a broad range of physiological parameters at

high resolution. The device provided real-time acquisition of heart rate (HR) and breathing

rate (BR) at a primary sampling rate of 1 Hz, supplemented by high-fidelity ECG waveforms

sampled at 250 Hz, and respiratory rate data at 18 Hz. In addition to these core metrics, the

BioHarness continuously recorded skin temperature, body posture, general activity level, and

peak acceleration, affording a multi-dimensional perspective on the participant’s physical state.

Notably, the sensor’s ECG functionality enabled the extraction of R-to-R intervals—a critical

index for heart rate variability (HRV) analysis and for evaluating autonomic and cardiovascular

responses to environmental exposures. The combination of postural and activity data, together

2Available online: BioHarness 3.0, last accessed 20 May 2025
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with ECG and temperature measurements, allowed for nuanced differentiation between baseline

physiological states and changes triggered by environmental or experimental conditions. The

ergonomic chest-worn form factor ensured reliable contact and signal integrity, supporting the

collection of uninterrupted, synchronised data streams throughout the experimental sessions.

Figure 4.2: BioHarness chest belt sensor used for continuous multi-parameter physiological
monitoring.

4.2.2 Wristband Sensors

To augment physiological and environmental monitoring, the Microsoft Band 23 wristband

sensor (Figure 4.3) was deployed on each participant. This second-generation fitness tracker,

equipped with multiple sensors, enabled the continuous collection of both bodily and ambient

variables. Data streams from the wristband included electrodermal activity (EDA) for assess-

ment of sympathetic nervous system activity, heart rate, and skin temperature, all sampled at

8 Hz to capture subtle fluctuations in physiological state. The device also measured ultraviolet

(UV) exposure and ambient environmental noise, offering valuable context regarding light and

sound environments to which participants were exposed.

A built-in three-axis accelerometer facilitated detailed monitoring of movement, posture tran-

sitions, and overall physical activity patterns. Air pressure readings provided additional en-

3Available online: Microsoft Band 2, last accessed 20 May 2025
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vironmental context, such as changes in altitude or weather conditions during the study. The

wristband’s Bluetooth-enabled synchronisation with mobile devices allowed for secure data

storage and real-time review, ensuring that no data were lost during collection. This rich dataset

contributed to a multi-faceted understanding of participant experience within each experimental

scenario.

Figure 4.3: Microsoft Band 2 wristband sensor used for physiological, environmental, and
movement monitoring.

4.2.3 Data Loggers

Environmental conditions were continuously monitored using the Logbook ML+ data logger,4 a

robust device operating at a sampling rate of 0.5 Hz (Figure 4.4). This logger enabled the high-

precision measurement of ambient temperature, light intensity, and sound levels, essential for

contextualising the physiological responses observed in participants. Furthermore, the device

recorded concentrations of key air pollutants, including volatile organic compounds (VOCs),

carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), and

sulphur dioxide (SO2). The inclusion of these variables was critical for assessing the air quality

experienced by each participant during both outdoor (in situ) and indoor (in vitro) experimental

sessions.

Additional features of the data logger included auto-recognition of all attached sensors and

flexible recording modes such as autoroll and snapshot permitting detailed tracking of transient

environmental events. The capacity for fast recording and buffering allowed for the capture of

4Available online: Logbook ML Datalogger – Basic, last accessed 20 May 2025
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rapid changes, enhancing the temporal resolution of environmental data during the experiments.

Figure 4.4: Logbook ML+ environmental data logger used for continuous measurement of
ambient conditions and air quality indicators.

Taken together, this comprehensive instrumentation enabled the creation of a synchronised,

multi-modal dataset, capturing the dynamic interplay between environmental exposures and

physiological responses. The advanced features and high-resolution capabilities of each device

ensured the robustness of data required for in-depth analysis of environmental health dynamics.

4.3 Data Collection

The EnviroWellBeing dataset was compiled to investigate the short-term impact of environmen-

tal conditions on human wellbeing, following established research highlighting the influence of

urban pollutants, acoustic disturbances, and other environmental stressors on human health.

The study collected data from 53 participants through a series of in situ (outdoor) and in vitro

(indoor) experiments, each designed to systematically capture physiological and environmental

responses using advanced wearable and environmental sensors (see Section 4.2).
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Figure 4.5: Overview of the EnviroWellBeing dataset. The figure depicts the integration of
wearable physiological sensors and environmental data loggers deployed across a sequence of
in situ (outdoor) and in vitro (indoor) experiments.

In Situ Experiments. Each participant completed two outdoor walking trials, traversing both a

polluted urban environment and a green, unpolluted space, within the same geographical area.

The polluted route was selected for its higher expected levels of air pollutants, noise, and urban

stressors, while the green route followed paths through parkland or quieter residential areas,

serving as a naturalistic baseline. This design is consistent with prior approaches to studying

the environmental determinants of physiological and psychological stress. Figure 4.6 illustrates

the exact paths followed in each condition.

Figure 4.6: Outdoor experiments: (Left) Green (unpolluted) route; (Right) Urban (polluted)
route. Maps show the designated walking paths for controlled comparison.

Throughout the outdoor sessions, participants wore chest belt sensors, wristband sensors, and
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carried an environmental data logger (Section 4.2). The protocol initially included GPS track-

ing, but technical limitations led to its exclusion from the final dataset, a challenge also ac-

knowledged in related environmental sensor studies [166]. Despite this, the combination of

synchronised physiological and environmental data streams provided a comprehensive record

of exposures and responses.

In Vitro Experiments. The indoor experiments focused on controlled auditory exposures. Us-

ing Adobe Audition software, custom two-minute audio clips were created to simulate urban

(polluted) and green (unpolluted) sound environments. The polluted environment clip included

disruptive noises such as car horns, engine and traffic sounds, and emergency sirens, while the

green environment clip comprised tranquil sounds like birdsong, rustling leaves, and flowing

water. The use of environmental sound simulation in laboratory settings for physiological re-

search is consistent with previous studies [171,172]. The full list of auditory stimuli is provided

in Table 4.1, as requested by examiners.

Table 4.1: Summary of Auditory Stimuli Used in In Vitro Experiments

Condition Specific Sounds Included

Annoying Car horns, engine noise, ambulance sirens, police sirens, construction sounds

Pleasant Birdsong, wind in trees, running water, rustling leaves, distant soft voices

Each participant was exposed to both auditory environments in randomised order, with physio-

logical signals such as heart rate and electrodermal activity continuously monitored throughout.

The standardised 2-minute exposure per condition ensured consistency across all participants,

facilitating within-subject comparisons.

Experiment Duration and Considerations. The duration of the outdoor experiments varied

depending on each participant’s walking pace, resulting in a wide range of exposure times, es-

pecially in the polluted environment. As shown in Figure 4.7, the box plot summarises the

distribution of durations for each experimental condition (polluted, unpolluted, annoying, and

pleasant). Participants generally spent longer and more variable times in the polluted area (me-

dian around 6–7 minutes, with several outliers), while durations in the unpolluted area were
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shorter and more consistent (median approximately 2–3 minutes). In contrast, the indoor (in

vitro) auditory exposure experiments had fixed durations of 2 minutes per condition for all par-

ticipants, as indicated by the minimal spread in the box plots for ’Annoying’ and ’Pleasant’ con-

ditions. Any technical issues encountered during data collection—such as sensor malfunctions

due to battery depletion—were carefully documented and resolved during data preprocessing

(see Section 4.4).

Figure 4.7: Distribution of participant durations by experimental condition. Each point reflects
the time a participant spent in each environment (polluted, unpolluted, or auditory exposure),
capturing natural variability.

By integrating synchronised physiological and environmental measurements in both natural and

controlled conditions, this dataset enables a detailed analysis of how environmental exposures

influence both subjective wellbeing and objective physiological responses, thereby directly ad-

dressing Research Question 1 (RQ1). The approach, which systematically controls for environ-

ment, stimulus, and individual pacing, provides a strong foundation for the machine learning

analyses presented in subsequent chapters.

4.4 Data Preprocessing

Following data collection, extensive preprocessing was required to prepare the EnviroWellBe-

ing dataset for analysis. The aim was to harmonise and clean multimodal time-series data from

multiple sensors to ensure robust analysis of environmental impacts on wellbeing. The over-

69



4.4. Data Preprocessing

all sequence of preprocessing steps, including feature extraction, harmonisation, cleaning, and

imputation, is summarised in the data preprocessing flowchart presented in Figure 4.8.

Figure 4.8: Data preprocessing flowchart. This pipeline summarises the harmonisation, clean-
ing, and feature extraction processes applied to synchronise and prepare multimodal sensor data
for analysis.

The initial step was to select the most relevant physiological and environmental features from

the comprehensive sensor data. The chest belt provided HR, breathing rate (BR), skin temper-

ature, posture, activity, acceleration, and R-to-R intervals derived from ECG. The wristband

sensor contributed EDA, ultraviolet (UV) exposure, environmental noise, air pressure, body

temperature, and self-reported stress level labels. Environmental parameters captured by the

data logger included ambient temperature, light level, sound level, and concentrations of gases

such as CO, CO2, NO, NO2, SO2, and VOCs.

Accurate analysis of heart rate variability (HRV) required extracting R-to-R intervals from raw

ECG signals. As illustrated in Figure 4.9, this process involved identifying R-peaks in the

ECG waveform, calculating the intervals between successive peaks, using histogram analysis

to flag outliers, and then applying backward filling to address gaps or aberrant values. R-to-

R interval values were subsequently averaged within each one-second interval to align with

other synchronised features. The BioSPPy Python library was used to facilitate these biosignal
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processing steps.

Figure 4.9: Extracting R-to-R features from ECG data: workflow for detecting R-peaks, com-
puting R-to-R intervals, removing outliers, and resampling to 1 Hz.

Figure 4.10: Summary output from BioSPPy: Raw ECG, detected R-peaks, derived heart rate,
and average QRS template. This illustrates the ECG feature extraction and quality control
process.

To enable synchronised, second-by-second time-series analysis across all sensor streams, all

features were resampled to a unified 1 Hz frequency. This involved downsampling high-

frequency signals, such as wristband features originally sampled at 8 Hz, by averaging values

within each one-second interval, while categorical labels were rounded as needed. For low-

frequency data, such as the environmental logger sampled at 0.5 Hz, linear interpolation was
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employed to estimate intermediate values, creating a continuous 1 Hz signal that aligns with the

physiological data.

All selected features then underwent careful cleaning to identify and address noise, artefacts,

and outliers. Visual inspections using line plots, box plots, and histograms were performed to

detect physiologically implausible values or abnormal patterns. For example, heart rate data

were assessed via plots for sudden spikes or drops and distributions were compared across par-

ticipants and conditions. Outliers were handled by applying defined physiological thresholds,

with affected data points set to missing if they exceeded these bounds. The data cleaning pro-

cess is exemplified in Figures 4.11–4.13, which demonstrate the visualisation, detection, and

removal of outliers in heart rate data. The impact of cleaning is further illustrated by comparing

histograms and KDE plots before and after correction.

Figure 4.11: Line, box, and histogram plots used to visually inspect and detect outliers in heart
rate data during cleaning.

Figure 4.12: Refined heart rate data post-outlier removal: distribution and spread after data
cleaning.
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Figure 4.13: Distribution of heart rate data after outlier correction, showing reduced noise and
more physiologically plausible values.

The extent of missing data was then assessed across all features and experimental conditions.

The percentage of missing data was computed for each participant and experiment, and data

streams with excessive loss (such as HR from the polluted environment, which exhibited signif-

icant gaps) were excluded from further analysis. See Figure 4.14 for an example visualisation

of missingness across experiments.

Figure 4.14: Heart rate data consistency and percentage of missing values across experiments
and participants, informing feature selection for analysis.

After the data cleaning stage, any remaining missing values were addressed to preserve the

continuity and integrity of the time-series data. For gaps occurring randomly within sequences,

linear interpolation was applied to estimate plausible intermediate values based on neighbouring

points. When missing values occurred at the beginning of a sequence, backward filling was

used, propagating the first valid observation backwards to fill the gap. Conversely, for missing

values at the end of a sequence, forward filling was employed, carrying the last valid value
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forward. This combination of imputation methods ensured that the time-series data remained as

complete and as representative as possible, supporting robust analytical outcomes in subsequent

modelling and statistical analyses.

Through this rigorous, multi-step preprocessing pipeline, the EnviroWellBeing dataset was

transformed into a synchronised, clean, and analysis-ready resource, optimised for exploring the

interplay between environmental conditions and physiological responses. This section provides

a foundation for the robust time-series and machine learning analyses detailed in subsequent

chapters.

4.5 Preliminary Data Quality

Following the initial data preprocessing, a preliminary assessment of the EnviroWellBeing

dataset was performed to evaluate the quality and variability of physiological and self-reported

responses under different experimental scenarios.

Figure 4.15 presents the distribution of self-reported happiness levels (used as a proxy for stress)

across the four experimental conditions. Lower happiness scores were observed in polluted and

annoying sound environments, while higher scores were reported in unpolluted and pleasant

sound conditions. These trends highlight the sensitivity of subjective wellbeing to air quality

and auditory factors.
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Figure 4.15: Self-reported happiness levels (proxy for stress) across polluted, unpolluted, an-
noying, and pleasant conditions.

Physiological data further demonstrate environmental influences on HR and breathing rate

(BR). Figure 4.16 compares the distributions of HR and BR in polluted and unpolluted environ-

ments. Both HR and BR exhibited greater variability and generally higher values in polluted

conditions, indicating increased physiological arousal.

Figure 4.16: Distributions of heart rate (left) and breathing rate (right) in polluted and unpol-
luted environments.

For the sound exposure scenarios, Figure 4.17 shows distributions of HR and BR under annoy-
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ing and pleasant auditory conditions. In this case, differences between conditions were com-

paratively modest, suggesting that acute auditory stimuli may have a less pronounced effect on

these physiological measures than air quality.

Figure 4.17: Distributions of heart rate (left) and breathing rate (right) in annoying and pleasant
sound conditions.

This preliminary evaluation indicates that the EnviroWellBeing dataset effectively captures both

subjective and physiological variation in response to environmental factors, supporting subse-

quent in-depth analyses.

To contextualise the quality and scope of the EnviroWellBeing dataset, it is helpful to compare

it with prior efforts such as the DigitalExposome study by Johnson et al. [173]. While Digital-

Exposome explored the relationship between urban environments and wellbeing using real-time

multi-sensor fusion with a smaller participant group (12 individuals after filtering), my dataset

offers greater participant diversity (53 individuals), longer-term recordings, and richer time-

series data. Moreover, unlike the exploratory nature of Johnson’s work, my study integrates

advanced preprocessing techniques such as PCA, feature selection, and statistical filtering to

ensure high data fidelity. These enhancements not only contribute to improved model accuracy

but also strengthen the reliability and applicability of the dataset for real-world use cases in

mental health diagnostics and urban wellbeing analysis.
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4.6 Questionnaire

Before starting the experiments, each participant completed a survey comprised of three ques-

tionnaires. The first was a demographic questionnaire please see appendix B.1 for further de-

tails , the second questionnaire aimed to measure the stress level of each participant using the

Perceived Stress Scale (PSS-10) please see appendix B.3 for further details . The third was a

short-form noise sensitivity questionnaire (NoiSeQ-SF) [174, 175] please see appendix B.2 for

further details. The goal was to establish a baseline understanding of each participant’s stress

level and noise sensitivity prior to the experimental exposures.

4.6.1 Participants

Fifty-three participants completed both questionnaires. The cohort consisted of 32 males (60%)

and 21 females (40%). The majority (n=42, 79%) were aged between 18-30 years. Most

participants identified as White ethnicity (n=20, 38%) or Asian (n=15, 28%), were unmarried

(n=39, 74%), and were students (n=37, 70%). Table 4.2 provides a detailed breakdown of the

participant group characteristics.

4.6.2 Stress Level

The Perceived Stress Scale (PSS-10) [176], a widely used instrument, measured participants’

stress levels. This scale consists of 10 questions regarding feelings and thoughts during the last

month. Responses were given on a five-point scale from ’never’ (0) to ’very often’ (4). The total

PSS score, ranging from 0 to 40, was calculated by summing the scores for all ten questions,

with higher scores indicating higher levels of perceived stress. While not a clinical diagnostic

tool, the PSS provides a good indication of stress levels. For descriptive purposes, scores were

categorised: Low stress (≤ 13), Moderate stress (14-26), and High stress (< 26). As shown

in Table 4.3, the majority of participants (n=46, 86.8%) fell into the moderate stress category

based on their baseline scores.
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Table 4.2: Participants group characteristics.

Category Group Number (n=53) Percentage (%)

Gender Male 32 60
Female 21 40

Age

18-30 42 79
30-40 6 11
40-50 3 6
50 and older 2 4

Ethnic origin

White 20 38
Black 3 6
Asian 15 28
Other 15 28

Marital Status Single 39 74
Married 14 26

Education

High school 20 38
College 5 9
Bachelor’s degree 15 28
Master/PhD 13 25

Employment

Student 37 70
Employed 12 22
Unemployed 1 2
Unable to work 3 6

Table 4.3: Stress level categories for all participants based on PSS-10 score.

Stress level Number of participants Percentage (%)

Low (≤ 13) 6 11.4

Moderate (14-26) 46 86.8

High (> 26) 1 1.8

4.6.3 Noise Sensitivity

Participants’ sensitivity to noise was measured using the 15-item Noise Sensitivity Question-

naire Short Form (NoiSeQ-SF), derived from the original NoiSeQ [174, 175]. This short form

provides a reliable estimate of global noise sensitivity for normally hearing persons. Responses

were recorded on a 4-point Likert scale from ”strongly disagree” (1) to ”strongly agree” (4),

with higher total scores (sum of item scores, range 15-60) indicating a higher degree of noise

sensitivity [175]. For descriptive analysis, scores were categorised: Low Noise Sensitivity (≤

20), Moderate Noise Sensitivity (21-40), and High Noise Sensitivity (≥ 40). The results, sum-
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marised in Table 4.4, indicate that most participants exhibited moderate (n=43, 81.1%) or high

(n=10, 18.9%) noise sensitivity at baseline.

Table 4.4: Noise sensitivity level categories for all participants based on NoiSeQ-SF score.

NS level Number of participants Percentage (%)

Low (≤ 20) 0 0

Moderate (21-40) 43 81.1

High (≥ 40) 10 18.9

4.7 Summary

This chapter introduced the EnviroWellBeing Dataset, developed to address gaps in existing

environmental health research. Key aspects included the rationale for dataset creation, an

overview of the wearable and environmental sensors used, experimental protocols for data col-

lection, and the main preprocessing steps applied to the data. The chapter also provided a

preliminary evaluation of data quality and summarised participants’ baseline stress and noise

sensitivity levels. These foundations support the advanced analyses presented in the following

chapter 5, where machine learning methods are applied to explore environmental impacts on

wellbeing.
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Chapter 5

Environmental Impacts on Wellbeing

5.1 Introduction

This chapter delves into the core analyses of the EnviroWellBeing dataset (Chapter 4), ad-

dressing key research questions regarding the environmental impact on stress and the value of

different analytical approaches. Specifically, it investigates the impact of environmental condi-

tions on stress (RQ2), the nature of this impact by examining predictive features (RQ3), and the

contribution of time-series data compared to snapshot information (RQ4). Table 5.1 presents an

overview of the physiological and environmental features utilised in the different classification

tasks performed in this chapter.

Table 5.1: Feature Selection for Environmental and Stress Level Classification Tasks
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Environmental
classification

In Situ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

In Vitro ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Stress level
classification

In Situ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In Vitro ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

The analyses employ LSTM and 1D-CNN based deep learning techniques for time-series clas-

sification to distinguish environmental conditions using only physiological data. Furthermore,

the predictive capability of combining environmental and physiological data to estimate self-

80



5.2. Data Preparation

reported stress levels is explored using RF, LSTM, and 1D-CNN models. Successfully classi-

fying environments and predicting stress from sensor data holds significant real-world implica-

tions, potentially enabling personalised environmental health feedback systems, objective stress

monitoring tools, and providing evidence to inform urban design strategies aimed at enhancing

public wellbeing. The subsequent sections detail the data preparation, methodology, and results

for these analyses.

5.2 Data Preparation

This section details the data preparation pipeline applied to the preprocessed EnviroWellBeing

dataset prior to the classification analyses. The aim was to structure the data for both time-series

(sequential) and snapshot (non-sequential) modelling, ensuring comparability between analytic

approaches and supporting robust evaluation of each model’s performance. The specific feature

sets for each task are summarised in Table 5.1.

5.2.1 Data Normalisation

To ensure all features contributed comparably during model training, and to enhance conver-

gence and stability, data normalisation was applied as a standard preprocessing step. The

Normalizer function from sklearn.preprocessing was used, scaling each sample to unit L2

norm [165]. This approach is particularly suitable for multimodal datasets with varying signal

magnitudes. Table 5.2 summarises several common normalisation techniques for context.

Table 5.2: Common Data Normalisation Techniques

Normalisation Technique Equation Typical Use Case

Linear Scaling (Min-Max) x′ = (x − xmin)/(xmax − xmin) Uniformly distributed features

Clipping
if x > max, then x′ = max.
if x < min, then x′ = min Handling extreme outliers

Log Scaling x′ = log(x) Features following power law
Z-score Standardisation x′ = (x− µ)/σ Features without extreme outliers
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5.2.2 Data Segmentation

For sequence-based models (LSTM, 1D-CNN), the continuous time-series data (synchronised at

1Hz, see Chapter 4) was segmented using a sliding window approach. Each segment comprised

30 seconds (30 time steps), with a step size of 10 seconds, resulting in a 20-second overlap

between consecutive segments. This ensured sufficient temporal context for each sample and

increased the effective number of training examples (see Figure 5.1).

Figure 5.1: Time-series Data Segmentation using Sliding Window Technique

For snapshot-based (Random Forest) analysis, only the final time point of each 30-second seg-

ment was used as input, explicitly removing temporal dependencies and allowing direct com-

parison with time-series approaches.

Figure 5.2: Sample Count per Class for Environment Classification: (Left) In Situ Experiments,
(Right) In Vitro Experiments.
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For the environment classification task, each segment was labelled according to the experimen-

tal condition, with ’0’ representing polluted or annoying environments and ’1’ representing

unpolluted or pleasant environments (see Figure 5.2 for class distributions). In the stress level

classification task, segments were labelled with the self-reported stress level (ranging from 1 to

5) recorded at the end of each segment (see Figure 5.3).

Figure 5.3: Sample Count per Class for Self-Reported Stress Level Classification: (Left) In Situ
Experiments, (Right) In Vitro Experiments.

5.2.3 Train-Validation-Test Split

To robustly evaluate model generalisability and avoid data leakage, the prepared data for each

task was stratified and split into training, validation, and test sets (60% / 20% / 20%), maintain-

ing class distributions using StratifiedKFold from scikit-learn [165]. The conceptual overview

is depicted in Figure 5.4.

Figure 5.4: Train-Validation-Test Data Splitting Concept
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Figures 5.5 and 5.6 show the class distributions across splits for both classification tasks.

Figure 5.5: Sample Count per Class Across Train-Validation-Test for Environment Classifica-
tion: (Left) In Situ Experiments, (Right) In Vitro Experiments

Figure 5.6: Sample Count per Class Across Train-Validation-Test for Stress Level Classifica-
tion: (Top) In Situ Experiments, (Bottom) In Vitro Experiments
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Table 5.3 provides a consolidated summary of the final dataset characteristics used for the ex-

periments in this chapter, detailing sample counts, features, shapes, labels, and split sizes for

each classification task.

Table 5.3: Overview of Data Segmentation and Classification Experiments

Classification
Type

Experiment
Type

Number of
samples

Segment
size

Number
of selected
features

Input
shape

Labels Train
shape

Validation
shape

Test shape

Environment
Classification

In Situ 2407 30 11 (2407,30,11)
0-Polluted
1-Unpolluted (1444,30,11) (481,30,11) (482,30,11)

In Vitro 858 30 11 (858,30,11)
0-Annoying
1-Pleasant (514,30,11) (172,30,11) (172,30,11)

Self-reported
Stress Level
Classification

In Situ 2407 30 23 (2407,30,23)

1-High Stress
2-Mild Stress
3-Neutral
4-Mild Relaxation
5-Relaxed

(1444,30,23) (481,30,23) (482,30,23)

In Vitro 858 30 14 (858,30,14)

1-High Stress
2-Mild Stress
3-Neutral
4-Mild Relaxation
5-Relaxed

(514,30,14) (172,30,14) (172,30,14)

This preparation facilitated a fair comparison of sequential (LSTM, 1D-CNN) and non-

sequential (RF) models in subsequent analyses, isolating the added value of temporal context in

predicting both environmental conditions and human stress responses.

5.3 Methodology

This section outlines the methodology used to analyse the prepared EnviroWellBeing dataset

for environmental classification and stress level prediction. The approach leverages both time-

series models (LSTM, 1D-CNN) and a snapshot-based model (Random Forest), enabling a

direct comparison of sequential versus non-sequential methods for predicting environmental

context and stress from multimodal sensor data. The subsequent subsections describe the overall

system workflow, model architectures, and the evaluation metrics employed.

5.3.1 Modelling Flowchart

The overall workflow, summarised in Figure 5.7, follows a standard machine learning pipeline.

Data is preprocessed and segmented (Section 5.2), then fed into the appropriate models for

each analytic task. Deep learning architectures (LSTM and 1D-CNN) are designed to cap-
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ture temporal dependencies within the 30-second physiological and environmental sequences,

while Random Forest is applied to instantaneous (last-second) snapshots of the same features.

This side-by-side design enables direct evaluation of the added value of temporal modelling,

as models can be compared under identical data and feature conditions. Feature engineering is

handled within the deep learning models, and hyperparameter optimization is conducted based

on validation set performance.

The flowchart presents the sequence of steps from data input through to model training and

final evaluation, and is streamlined to include only the methods and metrics implemented in

this study, reflecting revisions made per examiner feedback.

Figure 5.7: Modelling flowchart for environmental and stress level classification tasks.

5.3.2 Model Architectures

The LSTM network consists of a single layer with 64 units, followed by a dropout layer (dropout

rate 0.3) to mitigate overfitting, and a final dense output layer for classification. The 1D-CNN

model includes two convolutional layers (each with 64 filters, ReLU activation), followed by a

dense layer and softmax output. Both models are trained using the Adam optimizer, with loss

functions adapted to the task: binary cross-entropy for environment classification, and categori-

cal cross-entropy for multi-class stress level prediction. The Random Forest classifier serves as

a snapshot baseline, using the last time step of each segment as input. Model hyperparameters

(such as number of units/filters) were selected empirically based on validation performance.
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5.3.3 Evaluation Metrics

To assess the performance of the classification models, standard evaluation metrics derived from

the confusion matrix were used. The confusion matrix summarises the counts of True Positives

(TP - correctly predicted positive instances), True Negatives (TN - correctly predicted negative

instances), False Positives (FP - incorrectly predicted positive instances, Type I error), and False

Negatives (FN - incorrectly predicted negative instances, Type II error).

Based on these counts, the following metrics were calculated:

Accuracy: The proportion of total predictions that were correct.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Precision: The proportion of positive predictions that were actually correct. It measures the

exactness of the classifier.

Precision =
TP

TP + FP
(5.2)

Recall (Sensitivity): The proportion of actual positive instances that were correctly identified.

It measures the completeness of the classifier.

Recall =
TP

TP + FN
(5.3)

F1-Score: The harmonic mean of Precision and Recall, providing a single score that balances

both metrics. It is useful especially when class distribution is uneven.

F1-Score = 2× Precision×Recall

Precision+Recall
=

2TP

2TP + FP + FN
(5.4)

For multi-class problems like stress level prediction (1-5), these metrics are typically calculated

for each class individually (treating it as the ’positive’ class against all others) and then averaged

(e.g., macro-average or weighted-average) to obtain overall performance scores.
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5.4 Results

This section presents a comparative analysis of the performances of LSTM and 1D-CNN net-

works applied to the tasks of Environmental Classification and Self-Reported Stress Level Clas-

sification using the prepared EnviroWellBeing dataset. The evaluation is performed separately

for the ”In Situ” and ”In Vitro” experiments using metrics including accuracy, precision, recall,

and F1 score, derived from the performance of the test set.

5.4.1 Environment Classification

The Environment Classification task aimed to classify the environment type (Polluted vs. Un-

polluted) based solely on physiological data features (listed in Table 5.1). LSTM and 1D-CNN

models were evaluated.

5.4.1.1 Environment Classification: In Situ

The ’In Situ’ environmental classification utilised physiological data to discern between ’Pol-

luted’ and ’Unpolluted’ areas. Figures 5.8 and 5.9 display the loss and accuracy visualisations

over 100 epochs for both models.

Figure 5.8: Training and validation loss curves for (left) LSTM and (right) 1D-CNN models
during In Situ environment classification.
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Figure 5.9: Training and validation accuracy curves for (left) LSTM and (right) 1D-CNN mod-
els during In Situ environment classification.

For the LSTM model, the training curves showed stable learning. The 1D-CNN model exhibited

smoother convergence and slightly higher validation accuracy. The confusion matrices for the

validation and test datasets offer a depiction of predictive accuracy (Figures 5.10, 5.11, 5.12,

and 5.13).

Figure 5.10: Validation set confusion matrices for (left) LSTM and (right) 1D-CNN models in
In Situ environment classification.
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Figure 5.11: Validation set normalised confusion matrices for (left) LSTM and (right) 1D-CNN
models in In Situ environment classification.

Figure 5.12: Test set confusion matrices for (left) LSTM and (right) 1D-CNN models in In Situ
environment classification.

Figure 5.13: Test set normalised confusion matrices for (left) LSTM and (right) 1D-CNN mod-
els in In Situ environment classification.
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The 1D-CNN model consistently showed superior performance with fewer misclassifications

on both validation and test sets. Table 5.4 quantitatively summarises the performance metrics

for both models.

Table 5.4: Environment Classification (in Situ): LSTM vs. 1D-CNN (All Values in %)

Model Polluted Unpolluted
Accuracy

Precision Recall F1-Score Precision Recall F1-Score

LSTM (Validation) 98.56↓ 96.88↓ 97.71↓ 91.79↓ 96.09↓ 93.89↓ 96.67↓

LSTM (Test) 97.97↓ 95.47↓ 96.70↓ 88.41↓ 94.57↓ 91.39↓ 95.23↓

1D-CNN (Validation) 99.14↑ 98.02↑ 98.58↑ 94.70↑ 97.66↑ 96.15↑ 97.92↑

1D-CNN (Test) 99.71↑ 97.17↑ 98.42↑ 92.75↑ 99.22↑ 95.88↑ 97.72↑

The 1D-CNN outperformed the LSTM across all metrics, achieving a test accuracy of 97.72%

compared to 95.23% for LSTM.

5.4.1.2 Environment Classification: In Vitro

The ’In Vitro’ environmental classification involved discerning between ’Annoying’ and ’Pleas-

ant’ sound conditions based on physiological data responses. The LSTM and 1D-CNN models

underwent a rigorous evaluation through training, validation, and testing phases. Figures 5.14

and 5.15 showcase the model loss and accuracy visualisations.

Figure 5.14: Training and validation loss curves for (left) LSTM and (right) 1D-CNN models
during In Vitro environment classification.
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Figure 5.15: Training and validation accuracy curves for (left) LSTM and (right) 1D-CNN
models in In Vitro environment classification.

For the LSTM model, Figure 5.14(left) illustrates fluctuating training and validation loss. De-

spite this, the LSTM model managed to achieve reasonable accuracy (Figure 5.15(left)), al-

though with variance in validation accuracy. Conversely, the 1D-CNN model depicted in Figure

5.14(right) indicates a smoother convergence in loss, and Figure 5.15(right) presents consistent

high performance with good generalisation. The confusion matrices for the validation and test

data provide further depth (Figures 5.16, 5.17, 5.18, and 5.19).

Figure 5.16: Validation set confusion matrices for (left) LSTM and (right) 1D-CNN models in
In Vitro environment classification.
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Figure 5.17: Validation set normalised confusion matrices for (left) LSTM and (right) 1D-CNN
models in In Vitro environment classification.

Figure 5.18: Test set confusion matrices for (left) LSTM and (right) 1D-CNN models in In
Vitro environment classification.

Figure 5.19: Test set confusion matrices for (left) LSTM and (right) 1D-CNN models in In
Vitro environment classification.
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The 1D-CNN model showed a marked improvement over LSTM in the confusion matrices.

Table 5.5 details the quantitative comparison, formatted using the consistent ‘booktabs‘ style

based on the original table structure.

Table 5.5: Environment Classification (in Vitro): LSTM vs. 1D-CNN (All Values in %)

Model Annoying Pleasant
Accuracy

Precision Recall F1-Score Precision Recall F1-Score

LSTM (Validation) 82.11↓ 85.71↓ 83.87↓ 83.12↓ 79.01↓ 81.01↓ 82.56↓

LSTM (Test) 83.15↓ 81.32↓ 82.22↓ 79.52↓ 81.48↓ 80.49↓ 81.40↓

1D-CNN (Validation) 88.89↑ 96.70↑ 92.63↑ 95.89↑ 86.42↑ 90.91↑ 91.86↑

1D-CNN (Test) 93.55↑ 95.60↑ 94.57↑ 94.94↑ 92.59↑ 93.75↑ 94.19↑

The 1D-CNN model achieved higher test accuracy (94.18%) compared to LSTM (81.39%),

with superior average precision, recall, and F1-scores, confirming its robustness for this task as

well.

5.4.2 Self-Reported Stress Level Classification

5.4.2.1 Stress Level Classification: In Situ

In this section, the performance of Random Forest, LSTM, and 1D-CNN models is compared

for the classification of self-reported stress levels (1–5) using the full set of physiological and

environmental features (see Table 5.1) in real-world, in situ settings. LSTM and 1D-CNN utilise

full 30-second time-series, while RF operates on the last second of each segment to represent

snapshot-based analysis.
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Figure 5.20: Training and validation loss curves for LSTM (left) and 1D-CNN (right) models
in self-reported stress level classification (In Situ).

The training process and convergence of the deep learning models are visualized in the loss

curves in Figure 5.20. The LSTM and 1D-CNN models both show decreasing validation and

training loss over epochs, with 1D-CNN typically exhibiting smoother convergence.

Validation and training accuracy curves for LSTM and 1D-CNN models provide further insight

into model generalization. Both models achieve increasing accuracy over epochs, with 1D-CNN

generally maintaining more stable accuracy (see Figure 5.21).

Figure 5.21: Training and validation accuracy curves for LSTM (left) and 1D-CNN (right)
models in self-reported stress level classification (In Situ).

Model performance on the validation set is illustrated by the confusion matrices and their nor-

malisations in Figure 5.22 and 5.23: RF (left), LSTM (center), and 1D-CNN (right). These

matrices reveal each model’s ability to correctly predict stress levels, highlighting that 1D-CNN
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and LSTM tend to achieve higher accuracy and fewer confusions between stress categories

compared to RF.

Figure 5.22: Validation confusion matrices for self-reported stress level classification (RF: left,
LSTM: centre, 1D-CNN: right) in In Situ experiments.

Figure 5.23: Normalised validation confusion matrices for self-reported stress level classifica-
tion (RF: left, LSTM: centre, 1D-CNN: right) in In Situ experiments.

The Figure 5.24 and 5.25 shows confusion matrices and normalised confusion matrices for the

test set results of each model: RF (left), LSTM (centre), and 1D-CNN (right). The 1D-CNN

maintains the highest overall performance, particularly in correctly identifying both low and

high stress levels, whereas RF shows more confusion between mid-range stress levels.

96



5.4. Results

Figure 5.24: Test confusion matrices for self-reported stress level classification (RF: left,
LSTM: centre, 1D-CNN: right) in In Situ experiments.

Figure 5.25: Normalised test confusion matrices for self-reported stress level classification (RF:
left, LSTM: centre, 1D-CNN: right) in In Situ experiments.

The Random Forest model provides insight into which features are most informative for pre-

dicting self-reported stress levels (see Figure 5.26). In this study, environmental factors such as

CO2 and NO concentration, along with physiological signals like wrist temperature, EDA, and

RR interval, were consistently identified as key contributors.
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Figure 5.26: Feature importance from Random Forest classifier for self-reported stress level
classification in In Situ experiments.

A summary of model performance for each stress level, including validation and test metrics

(accuracy, precision, recall, F1), is presented in Table 5.6. The 1D-CNN model achieved the

highest average test accuracy (82.37%), outperforming both LSTM and Random Forest, under-

scoring the benefit of leveraging temporal dynamics in physiological and environmental data.
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Table 5.6: Stress Level Classification (In Situ): Random Forest vs. LSTM vs. 1D-CNN(All
Values in %)

Model
Stress

Level
Validation Set Test Set

Acc Prec Rec F1 Acc Prec Rec F1

Random Forest

1 77.54 85.51 81.33 78.07 83.18 80.54

2 60.94 46.99 53.06 73.85 57.83 64.86

3 68.00 55.74 61.26 64.00 52.46 57.66

4 53.33 61.54 57.14 44.44 61.54 51.61

5 82.76 87.27 84.96 80.17 87.39 83.62

avg 74.84↓ 68.51↓ 67.41↓ 67.55↓ 75.31↓ 68.11↓ 68.48↓ 67.66↓

LSTM

1 87.10 88.32 87.70 84.33 85.51 84.92

2 82.86 69.88 75.82 75.71 63.86 69.28

3 68.18 73.77 70.87 72.22 63.93 67.83

4 50.00 46.15 48.00 63.64 53.85 58.33

5 87.93 92.73 90.27 80.77 94.59 87.14

avg 83.16↑ 75.21↑ 74.17 74.53↑ 80.29 75.33 72.35 73.50

1D-CNN

1 92.74 77.57 84.48 89.95 79.44 84.37

2 79.07 81.93 80.47 77.11 77.11 77.11

3 68.12 77.05 72.31 68.66 75.41 71.88

4 30.43 53.85 38.89 64.29 69.23 66.67

5 82.26 92.73 87.18 83.72 97.30 90.00

avg 81.08 70.52 76.62↑ 72.67 82.37↑ 76.74↑ 79.70↑ 78.00↑

5.4.2.2 Stress Level Classification: In Vitro

This section compares Random Forest, LSTM, and 1D-CNN models for classifying self-

reported stress levels (1–5) in the controlled, in vitro setting, where only physiological and a

reduced set of environmental features are available (see Table 5.1). LSTM and 1D-CNN utilise

the entire 30-second time series per segment, while Random Forest operates on the last second

of each segment as a snapshot-based analysis.
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Figure 5.27: Training and validation loss curves for LSTM (left) and 1D-CNN (right) models
in self-reported stress level classification (In Vitro).

Figure 5.27 displays the loss curves for both deep learning models. Both LSTM and 1D-CNN

show a decreasing trend in training and validation loss, with 1D-CNN demonstrating smoother

convergence.

Model accuracy trends for validation and training sets are shown in Figure 5.28. Both models

achieve increased accuracy over epochs, and 1D-CNN generally demonstrates greater stability

and generalization than LSTM.

Figure 5.28: Training and validation accuracy curves for LSTM (left) and 1D-CNN (right)
models in self-reported stress level classification (In Vitro).

Model performance on the validation set is summarised by the confusion matrices and their

normalisations in Figure 5.29 and Figure 5.30: RF (left), LSTM (centre), and 1D-CNN (right).

These illustrate the varying abilities of each model to distinguish among stress levels, with the

deep models showing relatively higher accuracy at the extreme ends of the scale.
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Figure 5.29: Validation confusion matrices for self-reported stress level classification (RF: left,
LSTM: centre, 1D-CNN: right) in In Vitro experiments.

Figure 5.30: Normalised validation confusion matrices for self-reported stress level classifica-
tion (RF: left, LSTM: centre, 1D-CNN: right) in In Vitro experiments.

Figure 5.31 and 5.32 presents the test set confusion matrices and their normalisations for

each model. As in the validation set, the models tend to better identify extreme stress cate-

gories, while confusion persists among the mid-range classes, especially for Random Forest

and LSTM.

Figure 5.31: Test confusion matrices for self-reported stress level classification (RF: left,
LSTM: centre, 1D-CNN: right) in In Vitro experiments.
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Figure 5.32: Normalised test confusion matrices for self-reported stress level classification (RF:
left, LSTM: centre, 1D-CNN: right) in In Vitro experiments.

Random Forest feature importance for In Vitro experiments is illustrated in Figure 5.33. Here,

air pressure, wrist temperature, and EDA were among the most impactful predictors for stress

level classification, reflecting the strong contribution of these physiological measures in the

absence of richer environmental features.

Figure 5.33: Feature importance from Random Forest classifier for self-reported stress level
classification in In Vitro experiments.

A summary of model performance for each stress level, with validation and test metrics (ac-

curacy, precision, recall, F1), is presented in Table 5.7. Consistent with the in situ findings,

the 1D-CNN model achieved the highest average accuracy, especially for the validation set,

confirming its advantage in leveraging sequential patterns even with fewer input features.
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Table 5.7: Stress Level Classification (In Vitro): Random Forest vs. LSTM vs. 1D-CNN (All
Values in %)

Model
Stress

Level
Validation Set Test Set

Acc Prec Rec F1 Acc Prec Rec F1

Random Forest

1 71.15 86.05 77.89 65.96 72.09 68.89

2 50.00 33.33 40.00 35.71 41.67 38.46

3 36.36 25.00 29.63 31.25 31.25 31.25

4 39.13 46.15 42.35 55.56 51.28 53.33

5 55.32 52.00 53.61 64.44 58.00 61.05

avg 54.07↓ 50.39↓ 48.51↓ 48.70↓ 55.23 50.58 50.86 50.60

LSTM

1 71.70 88.37 79.17 71.15 86.05 77.89

2 57.14 33.33 42.11 41.18 29.17 34.15

3 28.57 37.50 32.43 20.00 31.25 24.39

4 42.86 30.77 35.82 61.11 28.21 38.60

5 51.79 58.00 54.72 53.33 64.00 58.18

avg 54.07↓ 50.41 49.59 48.85 53.49↓ 49.35↓ 47.73↓ 46.64↓

1D-CNN

1 71.43 93.02 80.81 66.67 93.02 77.67

2 66.67 41.67 51.28 43.75 29.17 35.00

3 66.67 37.50 48.00 45.45 31.25 37.04

4 50.00 48.72 49.35 64.71 56.41 60.27

5 62.96 68.00 65.38 68.63 70.00 69.31

avg 63.37↑ 63.54↑ 57.78↑ 58.97↑ 63.37↑ 57.84↑ 55.97↑ 55.86↑

103



5.5. Key Findings

5.5 Key Findings

Table 5.8: Summary of Classification Performance for All Models Across Experiments (Test
Set Results)

Task Experiment Model Accuracy (%) F1-Score (%)

Environment Classification

In Situ Random Forest — —

LSTM 95.23 96.70

1D-CNN 97.72 98.42

In Vitro Random Forest — —

LSTM 81.40 82.22

1D-CNN 94.19 94.57

Stress Level Classification

In Situ Random Forest 75.31 67.66

LSTM 80.29 73.50

1D-CNN 82.37 78.00

In Vitro Random Forest 55.23 50.60

LSTM 53.49 46.64

1D-CNN 63.37 55.86

Table 5.8 summarises the classification performance of all models across each task and exper-

imental setting. For environmental classification, both deep learning approaches outperformed

the Random Forest baseline, with 1D-CNN achieving the highest accuracy and F1-score in both

in situ and in vitro contexts. Similarly, for self-reported stress level classification, the 1D-CNN

model delivered the best results, especially in the in situ scenario with a more comprehensive

feature set. These results reinforce the advantage of time-series models for multimodal health

and environment analysis.

Random Forest feature importance analysis highlighted the contributions of both physiologi-

cal (e.g., EDA, RR) and environmental features (e.g., CO2, temperature) in stress prediction.

Across all tasks, the models demonstrated strongest performance for extreme stress states, while

intermediate states remained more challenging to classify.

Comparison with Prior Work: These findings are also significant when compared with
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existing literature, particularly the DigitalExposome study by Johnson et al. [173], which

aimed to understand environmental impacts on wellbeing using a Deep Belief Network (DBN)

and a smaller, custom dataset. In contrast, my research leverages larger, publicly available

datasets with a more diverse participant base, enabling greater generalizability. Additionally,

my methodological approach employs state-of-the-art deep learning models (LSTM, 1D-CNN)

with systematic hyperparameter tuning and cross-validation, achieving superior predictive per-

formance. Unlike DigitalExposome, which remains primarily conceptual, this study offers prac-

tical applications in healthcare diagnostics and urban analytics by directly modelling physiolog-

ical stress and environmental conditions with high resolution and interpretability.

These findings support the utility of multimodal, sequential data and advanced deep learning

techniques for real-world wellbeing and stress monitoring. The following chapter details a

dedicated framework for physiological state prediction using wearable sensor data.
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Chapter 6

Machine Learning and Deep Learning

Framework for Predicting Physiological

States

6.1 Introduction

Classifying whether someone is relaxed, neutral or in a stressed state from physiological mark-

ers has multiple real world uses. For example, carers of patients, especially those suffering from

mental health issues, could be alerted if the patient is flagged as being in a high stress state so

that the carer can prevent any harm to the patient.

Another use-case is self improvement, individuals could track their stress level throughout the

day and aim to minimise stress throughout the day using various methods such as breathing

techniques, social activities, etc. Consistently high levels of stress have been shown to cause

a large array of diseases and disorders [189], so trying to minimise levels of stress would be

beneficial. The first step to doing so would be to track stress to monitor progress. To this end,

the EnviroWellBeing dataset from this work can be used alongside a number of ML and DL

algorithms.

Although a similar problem to the one proposed in this chapter was tackled within chapter 5.
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In that chapter, the stress label was a discrete integer in 1, 2, 3, 4, 5. Naturally, for practical

applications, it makes more sense to further discretise these labels into three labels; relaxed,

neutral and stressed. Furthermore, in this chapter, only physiological data from the wristband

is used, as opposed to the use of both the wristband and the chestbelt. Again, this is due to

practical considerations, users of a stress prediction application should not be expected to wear

a chestbelt at all times as it can be quite uncomfortable to do so. However, most users would be

happy with wearing the wristband solely for continuous stress prediction throughout everyday

life.

As stated in prior chapters, the dataset was collected using 53 participants. Each participant

was asked to walk a fixed distance in a polluted and unpolluted area. The polluted area was

on the sidewalk of a busy road and the unpolluted area was in a quiet park. During the walk,

participants wore a wrist band that tracks the following physiological markers at a frequency of

8 Hz:

1. Electrodermal Activity

2. Heart Rate

3. Ultraviolet Light Levels

4. Noise levels

5. Air Pressure

6. Body Temperature

They also wore a chestbelt and data-logger which track extra physiological markers and envi-

ronment pollution levels. The data from the chest-belt and data-logger were not used for the

task of realistically classifying stress states, as in a real life inference setting, users would at

most be able to wear the wrist band, as it would be too inconvenient and uncomfortable to also

be constantly wearing the chest-belt and data-logger.

The walks lasted an average of 7 minutes and at any time participants could indicate their

stress level from 1 to 5. The experiments were repeated using a simulated environment. For

the simulated polluted environment, each participant was placed in an controlled room setting
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alone, where annoying sounds such as engines revving and car horns were played. This lasted

for 2 minutes. For the simulated unpolluted environment, the same procedure was followed,

except that pleasant sounds were played such as birds whistling and the light breeze of the

wind, for a further granular description about data collection process please refer to section 5.3.

6.2 Data Preprocessing

The dataset consisted of 212 experiments, resulting from 53 participants completing four dif-

ferent scenarios each. All experiments both simulated and real-world were included, as they

provided valuable information for predicting stress. Initially, the physiological data, sampled

at 8 Hz, was downsampled to 1 Hz. Exploratory analysis showed that the physiological mark-

ers did not fluctuate significantly within a single second, making 1 Hz sufficient for capturing

relevant changes while reducing data volume.

Given the relatively small number of samples compared to the number of features and time-

steps, the dimensionality of the data presented a major challenge. High-dimensional datasets

tend to suffer from sparsity, making it difficult for models to extract meaningful patterns. As

the feature space grows exponentially, so does the risk of overfitting. Additionally, process-

ing such data is computationally expensive, with many algorithms scaling poorly in both time

and resource requirements as dimensionality increases. In time-series data specifically, every

additional time-step increases the input space exponentially, often without adding meaningful

predictive value. Therefore, reducing the number of time-steps was a necessary strategy to

simplify the model space and improve generalisation performance.

Each experiment was then split into smaller segments, or sub-experiments, each one minute

long comprising 60 time-steps at 1 Hz. Each segment was assigned a single label based on

the average of the self-reported stress scores during that minute. If the average fell within the

range [1, 2.5], the label was set to ”relaxed”; between (2.5, 3.5), the label was ”neutral”; and

between [3.5, 5], it was ”stressed.” This segmentation offered two key advantages: First, it

helped reduce overfitting by limiting the number of time-steps per sample to the most relevant

window of recent physiological data. Second, it enabled the use of a broader range of models,
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including both sequence-based architectures like LSTMs and fixed-shape models like MLPs,

since all data points had consistent dimensions.

Finally, the dataset was standardized to ensure all features had zero mean and unit variance. The

resulting dataset contained 493 samples, each represented as a (60, 6) matrix corresponding to

60 time-steps of six physiological features, along with a label indicating one of three stress

levels.

6.3 Model Configuration and Training

The dataset was divided into training, validation, and test subsets, with proportions of 60%,

20%, and 20%, respectively. The validation set was specifically used for hyperparameter tuning

to ensure optimal model performance during training. Several models were evaluated as part

of this process. For a more detailed explanation of the machine learning modules used, please

refer to section 3.4. the following are the Architecture Summary for DTW-KNN, DTW-SVM,

LSTM, 1D-CNN, and Multi-Layer Perceptron (MLP) Models.

The first model evaluated was DTW-KNN, a k-nearest neighbours approach using DTW as

the distance metric. A value of K = 1 was selected. DTW is widely recognised as a leading

distance metric for time-series data [169], which motivated its use in this context.

The second model was DTW-SVM, which applies Support Vector Machines using a DTW

kernel to handle sequential inputs effectively.

The third model evaluated is 1D Convolutional Neural Network (1D-CNN). The 1D-CNN

model used for stress level classification is designed to effectively capture temporal patterns

in the physiological time series data.

The input shape for the 1D-CNN is (batch size, sequence length, features). The convolutional

layers include 3 layers with the following configuration: Layer 1 has 64 filters with kernel size

5, Layer 2 has 128 filters with a kernel size 5, and Layer 3 has 128 filters with a kernel size 3.

After each convolutional layer, a ReLU activation function is applied, followed by max pooling
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with kernel size of 2 and a stride 2. Global adaptive average pooling is used to reduce the

sequence dimension.

The fully connected layers consist of two parts: FC1 transforms 128 units to 64 units with

ReLU activation, and FC2 transforms 64 units to 3 units (output layer). A dropout rate of 0.2

is applied after global pooling and between fully connected layers. The output represents 3

classes: Relaxed, Neutral, and Stressed.

For training, a batch size of 8 is used with the Adam optimiser and Cross-Entropy Loss function.

Gradient clipping is set at 5.0, and early stopping is implemented with a patience of 100 epochs

and a minimum delta of 0. The maximum number of epochs is set to 10,000, though early

stopping typically prevents reaching this limit.

The 1D-CNN architecture transforms the input time series data by applying convolutional op-

erations that can detect local patterns in the data, regardless of where they occur in the time

series. The model gradually increases the number of filters (from 64 to 128) to extract in-

creasingly complex features while reducing the temporal dimension through max pooling. The

global average pooling layer further reduces dimensionality before classification through fully

connected layers.

The fourth model used is the LSTM, which is designed to capture long-range dependencies and

temporal dynamics in the physiological time series data for stress level classification.

The input shape for this model is also (batch size, sequence length, features). The LSTM con-

figuration includes a hidden size of 64 units with 2 layers. The model is bidirectional, meaning

it reads the sequence both forward and backward, and has a dropout rate of 0.2 between LSTM

layers. For output processing, the model uses the final time step output.

The fully connected layers include FC1, which transforms 128 units (2×64 due to bidirection-

ality) to 64 units with ReLU activation, and FC2, which transforms 64 units to 3 units (output

layer). A dropout rate of 0.2 is applied between fully connected layers. Like the CNN model,

the output represents 3 classes: Relaxed, Neutral, and Stressed.

Training parameters are similar to the CNN model: batch size of 8, Adam optimizer, Cross-
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Entropy Loss, gradient clipping at 5.0, early stopping with patience of 100 epochs and minimum

delta of 0, and a maximum of 10,000 epochs.

The LSTM architecture processes the time series sequentially, maintaining internal memory

states that allow it to learn dependencies across different time steps. The bidirectional approach

enables the model to incorporate information from both past and future time steps, which can

be particularly valuable for stress detection where context from the entire sequence may be

important. The final time step output captures the accumulated information from the entire

sequence, which is then passed through fully connected layers for classification.

The fifth model evaluated is the MLP, this model serves as a baseline approach for stress level

classification using the physiological time series data. Unlike the CNN and LSTM models that

preserve the temporal structure of the data, the MLP flattens the entire time series input before

processing.

The input shape for this model is also (batch size, sequence length, features), but the first op-

eration flattens this to (batch size, sequence length * features). The MLP architecture consists

of two hidden layers with sizes [32, 16], considerably smaller than those used in the CNN and

LSTM models. Each hidden layer is followed by a ReLU activation function. A dropout rate

of 0.1 is applied between all layers to prevent overfitting, slightly lower than the 0.2 used in the

other models.

The training parameters for the MLP are similar to those of the other models: batch size of

8, Adam optimizer, Cross-Entropy Loss, gradient clipping at 5.0, early stopping with patience

of 100 epochs and minimum delta of 0, and a maximum of 10,000 epochs. Like the other

models, the output layer has 3 units corresponding to the three stress levels: Relaxed, Neutral,

and Stressed.

The MLP approach, while simpler than CNN and LSTM, provides an important benchmark for

comparison. Its architecture does not explicitly model temporal dependencies or local patterns

in the sequence but instead treats the entire flattened sequence as a single feature vector. This

makes it useful for evaluating whether the more complex temporal modelling approaches of

CNN and LSTM provide meaningful improvements for stress classification based on physio-
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logical data.

All three models ( 1D-CNN, LSTM, MLP ) were trained using a 60-20-20 split for training,

validation, and testing, with early stopping based on validation loss to prevent overfitting. The

training metrics (accuracy and loss) for both training and validation sets were tracked using

TensorBoard, allowing for visual comparison of model performance over time.

Figure 6.1 shows a comparative plot of model performance for 1D-CNN, LSTM and MLP

training curves.
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(d) Comparative validation accuracy.

Figure 6.1: A comparative plot of model performance for 1D-CNN, LSTM and MLP training
curves

When comparing the validation loss across the three models MLP, 1D-CNN, and LSTM dis-

tinct patterns of overfitting can be observed. Both the MLP and 1D-CNN models exhibit signs

of overfitting starting from epoch 10. Although the training loss for these models continues to

decrease steadily, indicating that the models are learning the training data well, the validation
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loss begins to increase after epoch 10. This divergence suggests that the models are no longer

generalizing effectively to unseen data and are instead memorizing the training data, a classic

sign of overfitting.

In contrast, the LSTM model demonstrates better generalization for a longer period, with val-

idation loss remaining stable until epoch 25. After epoch 25, however, the validation loss also

begins to rise while the training loss continues to decline, indicating that overfitting starts at that

point. Among the three models, the LSTM exhibits the most robust performance in terms of

generalization, as it maintains a stable validation loss for more epochs before overfitting begins.

6.4 Results and Discussion

The models DTW-KNN, DTW-SVM, MLP, 1D-CNN and LSTM were evaluated on the held-

out test set, which comprised 99 data points. The class distribution in the test set was: 46

samples labelled as Stressed (Class 0), 15 as Neutral (Class 1), and 38 as Relaxed (Class 2).

Table 6.1 presents the overall test set accuracy and macro F1-score for the evaluated models.

Table 6.1: Results for classifying relaxed, neutral and stressed states on the test set.

Model Accuracy (%) F1 (Macro Avg)

DTW-KNN 73 0.68
LSTM 70 0.5
1D-CNN 68 0.53
DTW-SVM 68 0.62
MLP 61 0.44

Table 6.2 provides a detailed classification report for the best performing model, the KNN-

DTW, showing precision, recall, and F1-score for each of the three stress states.

As summarised in Table 6.1, the DTW-KNN algorithm achieved the highest overall accuracy at

73% with a macro-average F1-score of 0.68, followed by LSTM network at 70% accuracy (F1-

score 0.50), 1D-CNN at 68% accuracy (F1-score 0.53), DTW-SVM at 68% accuracy (F1-score

0.62) and MLP at 61% accuracy (F1-score 0.44). This ranking suggests that for this particular
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Table 6.2: Summarising performance metrics precision, recall, F1-score across mental states
for the best performing model KNN-DTW.

Class Precision Recall F1-Score Support

Stressed (Class 0) 0.76 0.84 0.80 38
Neutral (Class 1) 0.50 0.07 0.12 15
Relaxed (Class 2) 0.71 0.85 0.77 38

Accuracy 0.73 99
Macro Avg 0.66 0.59 0.56 99
Weighted Avg 0.70 0.73 0.68 99

stress classification task, traditional methods like DTW-KNN performed competitively or even

better than more complex deep learning approaches.

When examining class-specific performance, as detailed in Table 6.2, the DTW-KNN model

demonstrated the highest overall accuracy. For the ”Stressed” class (Class 0), the model

achieved precision 0.76, recall 0.84, and F1-score 0.80. For the ”Neutral” class (Class 1),

it showed precision 0.50, recall 0.07, and F1-score 0.12. For the ”Relaxed” class (Class 2),

it demonstrated precision 0.71, recall 0.85, and F1-score 0.77. Overall, it achieved balanced

performance across both ”Relaxed” and ”Stressed” classes with high F1-scores, resulting in a

macro average precision of 0.66, recall of 0.59, and F1-score of 0.56. This suggests that for

this dataset, local patterns in the feature space captured by the DTW-KNN approach are highly

informative for stress classification.

The LSTM network achieved the second-highest accuracy (70%) and demonstrated particu-

larly strong performance in identifying the ”Relaxed” class (recall 0.91). Its balanced F1-scores

for both ”Relaxed” and ”Stressed” classes (0.76 and 0.75) indicate effective learning of tempo-

ral patterns in the physiological data.

The 1D-CNN model achieved a a moderate efficacy with an accuracy of 68% across the labels

for the three physical states. The model exhibited strong discriminative capabilities for both

the Relaxed class (precision=0.69, recall=0.79, f1-score=0.73) and the Stressed class (preci-

sion=0.71, recall=0.79, f1-score=0.75), indicating reliable performance in detecting these emo-
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tional states from physiological time series data. Moreover, The architecture, which comprises

three convolutional layers with increasing filter complexity (64, 128, 128 filters) and decreasing

kernel sizes (5, 5, 3), effectively captured temporal patterns in the physiological data.

The DTW-SVM model achieved an accuracy of 68% with good performance on both ”Relaxed”

and ”Stressed” classes (F1-scores of 0.72 and 0.74). The model showed a particular strength in

recall for the ”Stressed” class (0.84), suggesting effectiveness in identifying stress states.

The MLP achieved a moderate accuracy of 61% with balanced performance across ”Relaxed”

and ”Stressed” classes (F1-scores of 0.65 and 0.67). Despite its architectural simplicity com-

pared to other neural networks, it performed reasonably well, suggesting that even without

explicit modelling of temporal relationships, the flattened time series data contains distinguish-

able patterns for stress classification.

A consistent finding across all models was the difficulty in classifying the ”Neutral” stress

state. As shown in Table 6.2, only the DTW-KNN model showed any ability to identify this

class, and even then with very low recall (0.07). This suggests that the physiological signals for

the intermediate stress level may not be sufficiently distinct from the ”Relaxed” and ”Stressed”

states in the feature space, or that this class may be underrepresented in the training data.

The comparative performance analysis of these five models, as summarised in Table 6.1, pro-

vides several insights into the task of stress level classification from physiological time series

data.

6.5 Key Findings

In conclusion, developers of stress prediction applications can use the stress prediction frame-

work outlined here along with the EnviroWellBeing dataset to obtain a reliable stress prediction

model. Results could be further improved by testing other models such as Random Forest.

Furthermore, expanding the EnviroWellBeing dataset to include more participants is likely to
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decrease the generalisation error of the models, making them more accurate predictors of stress.

The EnviroWellBeing dataset could be expanded, not only by including more participants, but

also including further environments on top of the peaceful simulated, noisy simulated, green and

polluted environments. Below is a list of example environments that could be added onto the

EnviroWellBeing dataset: a public speaking environment, where participants could be asked

to perform a public speech in front of a large crowd, while wearing the wristband to record

physiological data and self reporting stress at regular intervals; an exercise environment, where

participants could be asked to jog lightly while wearing the wristband to record physiological

data and self reporting stress at regular intervals; and a TV environment, where participants

could be asked to watch a TV show which they enjoy while wearing the wristband to record

physiological data and self reporting stress at regular intervals.

All of this additional data within different environments, especially environments that are en-

countered within everyday life, will decrease the generalization error of the models and increase

their prediction accuracy. Future works should initially focus on those two aspects.

Building upon the comprehensive analysis of environmental and physiological data presented

in the preceding chapters, Chapter 7 revisits the core research questions to critically evaluate

how effectively the study’s methodologies and findings address them. It synthesises the major

contributions such as the development of the EnviroWellBeing Dataset and the implementation

of machine learning models for stress and mental health prediction while highlighting their

broader implications for environmental health research. This concluding chapter ties together

the empirical insights and methodological innovations to reflect on their significance, laying the

groundwork for future research in the dynamic interface between environmental conditions and

human wellbeing.
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Chapter 7

Conclusion and Future Work

This chapter synthesises the principal contributions and findings of the thesis, positioning them

within the broader landscape of environmental health research and sensor-driven wellbeing ana-

lytics. The research commenced with the objective of systematically investigating the dynamic

relationship between environmental exposures and human physiological states, leveraging ad-

vanced sensing technologies and machine learning methodologies.

7.1 Addressing Research Questions

Throughout the preceding chapters, the core research questions (RQ1–RQ4) guided the study

design, data collection, and analytical approaches. The implementation of a robust multimodal

data collection methodology (Chapter 4) enabled the creation of the EnviroWellBeing Dataset,

directly addressing RQ1 regarding practical integration of biometric and environmental sensing

in both real-world (in situ) and controlled (in vitro) settings.

Subsequent analysis (Chapter 5) demonstrated that deep learning models, particularly 1D-CNN,

can accurately differentiate between environmental conditions based on physiological signals

alone, addressing RQ2. These findings indicate that specific environmental exposures elicit

distinct physiological responses that are detectable by advanced models.

Expanding on this, integrated modelling of environmental and physiological data enabled robust
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prediction of self-reported stress levels (RQ3), with model performance further improved by

richer feature sets. Random Forest feature importance analysis highlighted both environmental

and physiological predictors. The value of temporal sequence modelling (RQ4) was confirmed,

as sequential models leveraging time-series data outperformed snapshot-based approaches in

capturing stress dynamics.

The following section summarises the main empirical results from each chapter, highlighting

how the research questions were answered in practice.

7.2 Summary of Key Results

A summary of major findings is presented here, mapped to the progression of the thesis chapters.

In Chapter 3, classical machine learning algorithms (logistic regression, support vector ma-

chines, random forest) were shown to effectively distinguish depressed patients from healthy

controls using wearable sensor data, with the best model achieving a test accuracy of 83.4%.

The creation and deployment of the EnviroWellBeing Dataset (Chapter 4) established a com-

prehensive resource for integrating multimodal physiological and environmental data in both

laboratory and real-world contexts.

Chapter 5 advanced the analysis to deep learning approaches for environmental classification

and stress prediction. The 1D-CNN model achieved test accuracies of 97.7% (in situ) and

94.2% (in vitro) for environmental classification, and 82.4% (in situ) and 63.4% (in vitro) for

self-reported stress level prediction. Both environmental and physiological features contributed

significantly to these outcomes.

Finally, Chapter 6 presented a practical framework for stress state classification using only

wristband data, with the DTW-KNN model reaching a test set accuracy of 73.0% for classifying

relaxed, neutral, and stressed states.

Together, these results demonstrate the feasibility and value of combining multimodal sensor

data with advanced machine learning techniques for objective wellbeing assessment.
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7.3 Concluding Remarks

The synthesis of methods and results across Chapters 1 through 6 demonstrates a coherent

trajectory from motivation and literature review to methodological innovation and empirical

insight. The research motivation and significance were established in Chapter 1, while Chapter 2

highlighted critical gaps in the literature—particularly the need for comprehensive datasets and

integrated data analytics. The subsequent chapters addressed these gaps through comparative

analysis, novel dataset construction, and rigorous model evaluation.

By integrating findings from all chapters, this thesis underscores the importance of robust data

collection, interdisciplinary methods, and advanced analytics in environmental health research.

The empirical advances presented here form a solid foundation for both theoretical understand-

ing and practical applications in wellbeing analytics.

7.4 Limitations

Despite the comprehensive scope of this thesis, several limitations must be acknowledged. Data

collection challenges, including sensor malfunctions and session truncation, led to reduced us-

able data and potential bias in the analysed cohorts (see Chapter 4). The lack of uniformity in

session durations, especially in in situ experiments, introduced imbalance and variability in the

dataset. Technical issues with GPS logging prevented detailed spatial analysis of environmental

influences.

Physiological measurements were limited to signals available from wearable sensors; direct

heart rate variability was not recorded but inferred from RR intervals, which may introduce

detection errors. The cohort was relatively homogeneous in demographic characteristics and

environmental exposures, which limits generalisability. Sample sizes, further reduced by seg-

mentation and data cleaning, restricted statistical power for some analyses.

From a modelling perspective, deep learning models such as LSTM and 1D-CNN (Chapter 5)

present interpretability challenges and require substantial computational resources. The stress

prediction framework developed in Chapter 6 was evaluated on a limited dataset; its generalis-
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ability to new or more diverse populations remains untested, and model performance for neutral

stress classification was suboptimal.

Additionally, while the thesis aimed to explore the practical deployment of the proposed frame-

work, the development of a real-time mobile or wearable application could not be pursued due

to technical constraints. Specifically, the Microsoft Band device used for data collection was

discontinued, and no compatible or officially supported libraries exist to enable real-time data

access on modern platforms. This limitation prevented the implementation and validation of

a mobile app during the study. Future research should consider using more current wearable

devices with active developer support to overcome these technical barriers and facilitate mobile

deployment.

7.5 Future Work

Future research should address these limitations by expanding data collection to include more

diverse participant groups and longer-term, longitudinal designs, improving generalisability and

enabling the study of cumulative effects. Enriching the dataset with additional physiological

markers, direct HRV measurement, and higher-resolution environmental sensors will provide

greater analytic depth.

Advances in modelling should prioritise interpretability such as the application of explainable

AI methods and efficiency, to enable real-time inference on wearable devices. Further validation

of the stress prediction framework in ambulatory, real-world settings is necessary, with particu-

lar focus on improving neutral state detection and adapting models for broader deployment.

Collaboration with researchers in environmental science, health, and engineering should facil-

itate richer contextual annotation, innovative analysis strategies, and the translation of findings

into practical interventions. Finally, public release of anonymised datasets and code, following

ethical guidelines, will support transparency, replication, and future advances in environmental

health analytics.

Development of a mobile or wearable application for real-time stress prediction should also be

pursued in future work. Such an application would not only enhance the framework’s practical
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utility but also enable personalised feedback and continuous monitoring in naturalistic environ-

ments. Future studies should include testing these mobile solutions in clinical or controlled set-

tings to evaluate their real-world impact. While this direction could not be fully explored within

the current study due to technical constraints specifically, the discontinuation of the Microsoft

Band and the lack of compatible, officially supported libraries for modern platforms these lim-

itations have been clearly identified. The discontinuation of the Microsoft Band product line

and absence of compatible APIs prevented real-time data access and thus hindered mobile de-

ployment in this research. Future work should therefore employ up-to-date wearable devices

that support robust data acquisition and mobile integration, enabling broader applicability and

experimental validation of the proposed framework in real-world and clinical contexts
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of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg,”

IEEE Transactions on Biomedical Engineering, vol. 47, no. 9, pp. 1185–1194, 2000.

[67] C. Nash, R. Nair, and S. M. Naqvi, “Machine learning and adhd mental health detection-a

short survey,” in 2022 25th International Conference on Information Fusion (FUSION).

IEEE, 2022, pp. 1–8.

[68] M. K. Bashar, I. Chiaki, and H. Yoshida, “Human identification from brain eeg signals

using advanced machine learning method eeg-based biometrics,” in 2016 IEEE EMBS

129



BIBLIOGRAPHY

Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2016, pp. 475–

479.

[69] L. D. Sharma, V. K. Bohat, M. Habib, A.-Z. Ala’M, H. Faris, and I. Aljarah, “Evolution-

ary inspired approach for mental stress detection using eeg signal,” Expert systems with

applications, vol. 197, p. 116634, 2022.

[70] G. Dornhege, B. Blankertz, G. Curio, and K. Müller, “Boosting bit rates in non-invasive

eeg single-trial classifications by feature combination and multi-class paradigms,” in

IEEE Transactions on Biomedical Engineering, 2004, vol. 51, no. 6, pp. 993–1002.

[71] R. Chatterjee, T. Bandyopadhyay, D. K. Sanyal, and D. Guha, “Dimensionality reduction

of eeg signal using fuzzy discernibility matrix,” in 2017 10th International Conference

on Human System Interactions (HSI). IEEE, 2017, pp. 131–136.

[72] R. Chatterjee, T. Maitra, S. H. Islam, M. M. Hassan, A. Alamri, and G. Fortino, “A novel

machine learning based feature selection for motor imagery eeg signal classification in

internet of medical things environment,” Future Generation Computer Systems, vol. 98,

pp. 419–434, 2019.

[73] V. Rakshith, V. Apoorv, N. Akarsh, K. Arjun, B. Krupa, M. Pratima, and

A. Vedamurthachar, “A novel approach for the identification of chronic alcohol users

from ecg signals,” in TENCON 2017-2017 IEEE Region 10 Conference. IEEE, 2017,

pp. 1321–1326.

[74] R. Supakar, P. Satvaya, and P. Chakrabarti, “A deep learning based model using rnn-lstm

for the detection of schizophrenia from eeg data,” Computers in Biology and Medicine,

vol. 151, p. 106225, 2022.

[75] W. Li, L. Shao, W. Wang, H. Li, X. Wang, Y. Li, W. Li, T. Jones, and D. Zhang, “Air

quality improvement in response to intensified control strategies in beijing during 2013–

2019,” Science of the Total Environment, vol. 744, p. 140776, 2020.

[76] F. Cui, Y. Yue, Y. Zhang, Z. Zhang, and H. S. Zhou, “Advancing biosensors with machine

learning,” ACS sensors, vol. 5, no. 11, pp. 3346–3364, 2020.

130



BIBLIOGRAPHY

[77] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics and

intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[78] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.

MIT press, 2022.

[79] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural

nets and problem solutions.” International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, vol. 6, no. 2, pp. 107–116, 1998. [Online]. Available:

http://dblp.uni-trier.de/db/journals/ijufks/ijufks6.html#Hochreiter98

[80] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[81] K. Sako, B. N. Mpinda, and P. C. Rodrigues, “Neural networks for financial time series

forecasting,” Entropy, vol. 24, no. 5, p. 657, 2022.

[82] G. Dudek, S. Smyl, and P. Pełka, “Recurrent neural networks for forecasting time series

with multiple seasonality: A comparative study,” arXiv preprint arXiv:2203.09170, 2022.

[83] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, vol. 30, 2017.

[84] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond

efficient transformer for long sequence time-series forecasting,” in Proceedings of the

AAAI conference on artificial intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[85] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with

auto-correlation for long-term series forecasting,” Advances in neural information pro-

cessing systems, vol. 34, pp. 22 419–22 430, 2021.
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Appendix A

Appendix 01

A.1 Participants Stress Level

ID Total Score Stress Level

1 24 moderate stress

2 20 moderate stress

3 10 low stress

4 15 moderate stress

5 23 moderate stress

6 23 moderate stress

7 9 low stress

8 18 moderate stress

9 19 moderate stress

10 14 moderate stress

11 18 moderate stress

12 16 moderate stress

13 21 moderate stress

14 23 moderate stress

15 10 low stress
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A.1. Participants Stress Level

16 15 moderate stress

17 18 moderate stress

18 24 moderate stress

19 23 moderate stress

20 12 low stress

21 19 moderate stress

22 17 moderate stress

23 16 moderate stress

24 21 moderate stress

25 18 moderate stress

26 28 high stress

27 26 moderate stress

28 22 moderate stress

29 22 moderate stress

30 23 moderate stress

31 15 moderate stress

32 26 moderate stress

33 10 moderate stress

34 22 moderate stress

35 22 moderate stress

36 18 moderate stress

37 20 moderate stress

38 14 moderate stress

39 26 moderate stress

40 26 moderate stress

41 23 moderate stress

42 22 moderate stress

43 15 moderate stress

44 15 moderate stress
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A.1. Participants Stress Level

45 18 moderate stress

46 26 moderate stress

47 12 low stress

48 17 moderate stress

49 17 moderate stress

50 16 moderate stress

51 16 moderate stress

52 13 low stress

53 21 moderate stress

Table A.1: Participants stress level from the questionnaire.
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A.2. Participants Noise Sensitivity Level

A.2 Participants Noise Sensitivity Level

ID Total Score Noise Sensitivity

1 24 moderate Noise Sensitivity

2 20 moderate Noise Sensitivity

3 10 moderate Noise Sensitivity

4 15 moderate Noise Sensitivity

5 23 moderate Noise Sensitivity

6 23 high Noise Sensitivity

7 9 moderate Noise Sensitivity

8 18 moderate Noise Sensitivity

9 19 moderate Noise Sensitivity

10 14 moderate Noise Sensitivity

11 18 moderate Noise Sensitivity

12 16 moderate Noise Sensitivity

13 21 moderate Noise Sensitivity

14 23 high Noise Sensitivity

15 10 moderate Noise Sensitivity

16 15 moderate Noise Sensitivity

17 18 moderate Noise Sensitivity

18 24 moderate Noise Sensitivity

19 23 high Noise Sensitivity

20 12 moderate Noise Sensitivity

21 19 moderate Noise Sensitivity

22 17 moderate Noise Sensitivity

23 16 moderate Noise Sensitivity

24 21 moderate Noise Sensitivity

25 18 high Noise Sensitivity

26 28 moderate Noise Sensitivity
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A.2. Participants Noise Sensitivity Level

27 26 moderate Noise Sensitivity

28 22 high Noise Sensitivity

29 22 moderate Noise Sensitivity

30 23 moderate Noise Sensitivity

31 15 moderate Noise Sensitivity

32 26 moderate Noise Sensitivity

33 10 moderate Noise Sensitivity

34 22 moderate Noise Sensitivity

35 22 high Noise Sensitivity

36 18 high Noise Sensitivity

37 20 moderate Noise Sensitivity

38 14 moderate Noise Sensitivity

39 26 high Noise Sensitivity

40 26 moderate Noise Sensitivity

41 23 moderate Noise Sensitivity

42 22 moderate Noise Sensitivity

43 15 moderate Noise Sensitivity

44 15 moderate Noise Sensitivity

45 18 high Noise Sensitivity

46 26 high Noise Sensitivity

47 12 moderate Noise Sensitivity

48 17 moderate Noise Sensitivity

49 17 moderate Noise Sensitivity

50 16 moderate Noise Sensitivity

51 16 moderate Noise Sensitivity

52 13 moderate Noise Sensitivity

53 21 moderate Noise Sensitivity

Table A.2: Participants Noise Sensitivity level from the questionnaire
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Appendix B

Appendix 02

B.1 Demographic Questionnaire

Form A.1: Demographic survey questionnaire

Age: What is your age?

• Under 12 years old

• 12-17 years old

• 18-24 years old

• 25-34 years old

• 35-44 years old

• 45-54 years old

• 55-64 years old

• 65-74 years old

• 75 years or older

Ethnic origin: Please specify your ethnicity.
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B.1. Demographic Questionnaire

• White

• Hispanic or Latino

• Black or African American

• Native American or American Indian

• Asian / Pacific Islander

• Other

Education: What is the highest degree or level of school you have completed? If currently

enrolled, highest degree received.

• No schooling completed

• Nursery school to 8th grade

• Some high school, no diploma

• High school graduate, diploma or the equivalent (for example: GED)

• Some college credit, no degree

• Trade/technical/vocational training

• Associate degree

• Bachelor’s degree

• Master’s degree

• Professional degree

• Doctorate degree

Marital Status: What is your marital status?

• Single, never married

• Married or domestic partnership
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B.1. Demographic Questionnaire

• Widowed

• Divorced

• Separated

Employment Status: Are you currently. . . ?

• Employed for wages

• Self-employed

• Out of work and looking for work

• Out of work but not currently looking for work

• A homemaker

• A student

• Military

• Retired

• Unable to work
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B.2. NoiSeQSF Questionnaire

B.2 NoiSeQSF Questionnaire

In the following section, we ask you to make statements concerning different noises. Please

go through the statements and do not leave out a statement. Please try to put yourself in the

respective situation and answer spontaneously without much thinking about it. Please, mark

as you see fit the rating category that applies best. Please tick only one rating category per

statement. We are interested in your individual view concerning the statements; hence, there

are no correct or incorrect responses. If you feel uncertain which of the rating categories applies

best to you, mark the category, which best fits your personal view.

Name: .................................................. Date: .............................. Age: .....................

Gender (Circle): M F Other: .............................................

1 = Disagree 2 = Strongly disagree 3 = Agree 4 = Strongly agree
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B.2. NoiSeQSF Questionnaire

1. I find it hard to relax in a noisy environment 1 2 3 4

2. I need peace and quiet to do difficult work 1 2 3 4

3. For a quiet place to live I would accept other disadvantages 1 2 3 4

4. I find it hard to communicate while it is noisy 1 2 3 4

5. When I am absorbed in a conversation I do not notice whether it is noisy

around me

1 2 3 4

6. I can fall asleep even when it is noisy 1 2 3 4

7.Even the slightest noise can prevent me from falling asleep 1 2 3 4

8.It would not bother me to live in a noisy street 1 2 3 4

9. At weekends I prefer quiet surroundings 1 2 3 4

10. I wake up at the slightest noise 1 2 3 4

11. I avoid leisure activities which are loud 1 2 3 4

12. I don’t like noisy activities in my residential area 1 2 3 4

13. High noise levels make it hard for me to concentrate on my conversation 1 2 3 4

14. I have no problems to do routine work in a noisy environment 1 2 3 4

15. I need quiet surroundings to be able to work on new tasks 1 2 3 4

TOTAL SCORE ..................
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B.3. PERCEIVED STRESS SCALE (PSS)

B.3 PERCEIVED STRESS SCALE (PSS)

The questions in this scale ask you about your feelings and thoughts during the last month. In

each case, you will be asked to indicate by circling how often you felt or thought a certain way.

Name: .................................................. Date: .............................. Age: .....................

Gender (Circle): M F Other: .............................................

0 = Never 1 = Almost Never 2 = Sometimes 3 = Fairly Often 4 = Very Often
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B.3. PERCEIVED STRESS SCALE (PSS)

1. In the last month, how often have you been upset because of something

that happened unexpectedly?

0 1 2 3 4

2. In the last month, how often have you felt that you were unable to

control the important things in your life?

0 1 2 3 4

3. In the last month, how often have you felt nervous and “stressed”? 0 1 2 3 4

4. In the last month, how often have you felt confident about your ability

to handle your personal problems?

0 1 2 3 4

5. In the last month, how often have you felt that things were going your

way?

0 1 2 3 4

6. In the last month, how often have you found that you could not cope

with all the things that you had 4

7. In the last month, how often have you been able to control irritations in

your life?

0 1 2 3 4

8.In the last month, how often have you felt that you were on top of things? 0 1 2 3 4

9. In the last month, how often have you been angered because of things

that were outside of your control?

0 1 2 3 4

10. In the last month, how often have you felt difficulties were piling up

so high that you could not overcome them?

0 1 2 3 4

TOTAL SCORE ..................
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B.4. Ethic Approval

B.4 Ethic Approval
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