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ARTICLE INFO ABSTRACT
Keywords: The particle swarm optimization algorithm has been successfully applied to various optimization problems. One
Continuous optimization of its key features is the combination of particle velocity and search direction towards the optimal position in
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the history and swarm. Recognizing the limitations of the particle swarm optimization algorithm, this paper
proposes a new evolutionary algorithm called the multiple direction search algorithm. The algorithm integrates
five different search directions, including a multi-point direction constructed using principal component
analysis. The integrated direction is generated by the weighted sum of the search directions. Theoretical
analysis shows that under mild conditions, the rate of convergence along the weighted direction is no worse
than the rate of convergence along the best of single search directions by a positive constant, or even
faster in certain cases. The performance of the proposed algorithm was evaluated on three benchmark test
suites by computer simulation. Experimental results demonstrate that the proposed method outperforms seven
state-of-the-art particle swarm optimization algorithms.

1. Introduction The main research hypothesis of this paper is that using multiple
search directions can outperform using a single search direction. There
Particle swarm optimization (PSO), inspired by social behavior in are two research questions in this paper.
the bird flock or fish school, is a kind of population-based evolu-
tionary algorithms (EAs) originally for continuous optimization. Cur- 1. From a theoretical perspective, can it be proven that a DSA using
rently PSO has been applied to both continuous and combinatorial multiple search directions performs better than an algorithm
optimization problems such as single-objective optimization [1], multi- using the single search direction?
modal optimization [2], many-objective optimization [3], multiobjec- 2. From a computer simulation perspective, can a DSA be designed
tive combinatorial optimization [4], large-scale optimization [5], high- and implemented that outperforms other state-of-the-art PSO
dimensional expensive problems [6], expensive constrained multimodal algorithms?
problems [7].
From the viewpoint of search, standard PSO combines the velocity To address the first question, we provide a theoretical analysis
of a particle with search directions towards the personal best position of DSA using the convergence rate of EAs. The analysis employs the
of the particle and the global best position of a group. Then the convergence in mean of the error sequence [9], which is commonly

new velocity is updated through combining them together through the
weighted sum method.

Several limitations exist in PSO, such as swarm explosion, local
convergence and transformation invariance [8]. Aware of these lim-
itations, the current paper proposes a new EA called the multiple
direction search algorithm (DSA). Similar to PSO, DSA is designed as
a population-based evolutionary algorithm without crossover. In each
generation, particles construct multiple different search directions, then
search along an integrated direction and generate offspring. But unlike
PSO, particles have no velocity and only move to a better position.

used in experimental studies, unlike the convergence in probability
favored in theoretical studies [8]. The one-step convergence rate [9] is
utilized to establish theoretical results. An encouraging finding is that
even if the convergence rate along any single search direction is slow,
DSA can still achieve fast convergence along the integrated direction in
certain cases.

To address the second question, we designed a DSA incorporating
five search directions. To validate our theory, we conducted compu-
tational simulations on three benchmark test suites. The experiments
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confirmed that even if one single-point direction appears ‘“useless”
(as they fail to generate a new child), the DSA integrating multiple
directions remains effective.

The remainder of this paper is organized as follows: Section 2 pro-
vides a review of search directions in PSO and highlights its limitations.
Section 3 discusses the benefits of employing multiple search directions,
with a focus on convergence rate improvements. Section 4 details
the design of DSA, which incorporates five distinct search directions.
Section 5 presents simulation results based on three benchmark suites.
Finally, Section 6 concludes the paper.

2. Literature survey

This section focuses on briefly reviewing the search directions used
in PSO as they are directly related to DSA and discussing the limitations
of existing PSO algorithms. The original PSO [10] applies a formula to
update its velocity. Given particle i and its current velocity v € R" and
position x! € R" at time 7, the velocity at time 7 + 1 is

Vier = Vi H OR (B) = x) + R (8 — X)) @)

where ¢;,¢; € R are cognitive and social acceleration weights, re-
spectively. The matrices R;,R, € R™" take random values uniformly
distributed in the range [0, 1]. Two search directions are introduced
in the formula: the cognitive influence p' — x’ on the individual best
position; and the social influence g — x’ on the global best position.

In the standard PSO, an inertia weight w [11] is added to control
the contribution of vi.

Vi = @V, OiR; (B = X) + R (g, — X)) @

A constriction factor y [12] is added to ensure better local conver-
gence of PSO.

Vi = xlovy + ¢ R} (9] — X)) + ¢,R), (g — X)) 3)

PSO variants were designed through modifying the formula of up-
dating velocity in standard PSO. For the Standard PSO algorithm [13],
the search direction is constructed using a spherical distribution. In
LcRiPSO [14], an operator applies perturbation on p to improve local
convergence.

Besides modifying the formula of updating velocity, search direc-
tions may be changed using some strategy or new search directions are
created. In the prey—predator PSO [15], slothful particles are deleted or
transformed with a reassigned velocity. The FES-assisted PSO [16] has
a new direction towards the global best position obtained by the RBF-
assisted. In AGLDPSO [5], a population is split into subpopulation and
search directions are different in subpopulations. These results show
using more search directions may improve the performance of PSO.

Standard PSO has several limitations, such as swarm explosion,
local convergence and transformation invariance [8]. One limitation
in standard PSO is swarm explosion [8,12]. The velocity of particles
could go towards infinity for some values of acceleration and inertia
coefficients. Solutions were proposed such as the restriction of the
position of a particle or its velocity within a fixed range [17]. The
problem leads to stability analysis of PSO [13,18]. To tackle swarm
explosion, the proposed DSA adopts a simple solution, that is to drop
the velocity of a particle, but only keep search directions. The search
is always restricted within a reasonable area covered by a population.

An inherent limitation in standard PSO is the lack of local conver-
gence [8]. Because a particle has a velocity, it always can move to
a new position. A solution is to add a constriction factor [12]. The
proposed DSA drops the velocity of particles and takes elitist selection
to update the position of a particle. Thus, local convergence is not a
problem in DSA.

Another limitation is linked to rotation invariance [8]. Although
standard PSO performs well on separable functions, it was reported
[19] that its performance on non-separable functions is worse than
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Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) and
Differential Evolution (DE). To handle this issue, a solution is a user-
definable function in the velocity update rule which increases perturba-
tion and prevent stagnation [14]. Inspired from CMA-ES, the proposed
DSA provides an alternative solution. Principal component analysis is
applied to generating principal components and first principle com-
ponent is taken as a multi-point search direction. DSA also uses a
non-optimal search direction from the current particle towards the
farthest particle in a population.

3. The advantage of using multiple search directions

This section explains the advantage of using multiple search direc-
tions from the perspective of the convergence rate.

3.1. One-step convergence rate

Consider a minimization problem: min f(x),x € R" where n is the
dimension. Given a search direction v, a child y is generated by

y=X+o0V,

where ¢ is the step size. Let e(x) = |f(X)— fu,| denote the error
between f(x) and the minimal function value f,;,. Then the one-step
convergence rate is defined as follows [9].

Definition 1. Let r(x,v) denote the one-step convergence rate starting
from x along a search direction v, defined as
e(x) —e(y) _ e(x)—e(x+ov)

V=T T “

For ease of analysis, we only consider elitist selection, i.e., the
particle only moves to a new position y where f(y) < f(x). In this case,
the convergence rate is never negative. The convergence rate depends
on the search space dimension n, therefore, it is a function of n.

Definition 2. The convergence rate r(x,v,) along the direction v, is
asymptotically no worse' than the convergence rate r(x, v,) along another
direction v, if

r(x,vy)

Q(1). )

r(X,vy) -

Furthermore, the convergence rate r(x, v;) is significantly faster than the
convergence rate r(x,v,) if

r(x,vy)

= w(1). )

r(x,v,)

Eq. (5) implies that r(x,v;) and r(x, v,) differ by a positive constant,
although it does not specify which rate is larger. In contrast, Eq. (6)
explicitly asserts that r(x,v,) is considerably larger than r(x, v,).

3.2. Weighted sum of multiple search directions
Given several search directions v, ..., v;, an integrated search direc-

tion can be constructed by taking a weighted sum of these directions
as follows:

k

Vo = Z w;v;, subject to Z w; = 1. 7)
i=1 i

The weights w; > 0 are randomly selected to control the contribution

of the search direction v;. Let W = {w = (w, ..., w,); ), w; = 1} denote

1 Let r(n) be a function of n. The asymptotic notation r(n) = £(1) means
that there exists a constant C > 0 such that r(n) > C for all sufficiently large
n. The notation r(n) = (1) means that lim,_,_ . r(n) = +oo.
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the set of all potential weights, and p(w) the joint probability density
function of w. The expected convergence rate is

Jyewle®) — e(x + ov,)p(w)ldw

e(x) ’

The following theorem compares the convergence rate obtained

by searching a weighted sum of directions with the convergence rate

obtained by using the best single direction. Although the theorem is

formulated for two directions, the principle can be extended to apply
to multiple directions.

®

r(x,v,,) =

Theorem 1. Let v, and v, be two search directions. Suppose the following
conditions are satisfied:

1. For any weights (w;,w,) € [1 — ¢, 1] X [0,¢] with ¢ > 0, the
convergence rate along the weighted direction v,, satisfies

(X, V,,)

r(X,vy)

=Q(1).

The probability of selecting weights (w,,w,) € [1 —e,1] X [0,€] is
Q).

2. For any weights (w;,w,) € [0,e] X [1 — ¢€,1] with ¢ > 0, the
convergence rate along the weighted direction v, satisfies
r(x,vy,)

r(X,v,)

= Q(1).

The probability of selecting weights (w;,w,) € [0,e] X [1 —¢,1] is
1).
Then, tf?e( cZ)nvergence rate along the weighted direction v, satisfies
r(x,vy,)

max {r(x,vl), r(x, v2)} -

Q).

Proof. From (8) and the conditions of the theorem, we have
fweW [e(x) —e(x+o0} w[VI)P(W)] dw
e(x)
. (/weu—e,l ixt0.e1 + weto et 1) [e(®) — e(x + 0 X; w,v)p(w)| dw
- e(x)
> Pr(w € [1 — e, 11X [0, €]) 2(1) r(x, ;)
+Pr(w e [0,e] X [1 — ¢, 1]) (1) KX, V,)
> Q(1) max {r(x,vl), r(x, Vz)} .

r(x,v,,) =

This proves the conclusion. []

The above theorem indicates that, under Conditions (1) and (2),
the convergence rate along the weighted sum direction is no worse
than that of the most effective single search direction by a constant
C > 0. Conditions (1) and (2) are mild and can be easily satisfied in
population-based algorithms. Consider a population of N particles, and
assign a search direction to the ith particle, defined as
v=NZiy p izl

ITN-1'"TN-
Under this scheme, the first particle always follows the direction v,,
while the Nth particle always follows the direction v,. The remain-
ing particles interpolate between these two directions to ensure the
diversity of search directions. In this case, the constant C > 1.

In addition, since the weighted sum direction v can be a new direc-
tion different from the existing directions v, ...,v,, the convergence
rate along the weighted sum direction may be significantly faster than
the convergence rate along the best of single directions in some cases.
The following theorem is proved for two directions, but the conclusion
can be extended to multiple directions.

1v2, fori=1,...,N.

Theorem 2. Let v, and v, be two search directions. Suppose the following
conditions are satisfied:

Swarm and Evolutionary Computation 99 (2025) 102138

30° o B 90
04t ; S . .
"19
0.2 " S
" )
0.0 :
.0
-0.21 >
—0.44." szg =26"
) Jo

-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00

Fig. 1. The Rastrigin function.

1. For any weight (w;,w,) € [y, A;]1 X [p, ] With 0 < y; < 4; < 1,
the convergence rate along the weighted direction v,, satisfies
r(X,v,)

max{r(x, v;), r(X,v,)} = (D).

2. The probability of selecting weights (w;,w,) € [p1, 411 X [4y, 4,1 is
Q(1).

Then, the convergence rate along the weighted direction v, satisfies

r(x,Vw) = (1)

max {r(x,vl), r(x, vz)} -

Proof. From (8), it has
Jyewle®) —e(x+ X, w;v,)p(w)ldw
e(x)
> /WG[MI v/"~|J><ll42~42J[e(X) —e(x+ Zi w;v)p(W)ldw
- e(x)
=Pr(w € [y, A1]1 X [1y, A1,]) 0(1) max{r(x,v,),r(x,v,)}

r(x,v) =

= (1) max{r(x,v,),r(x,v,)}.
This proves the conclusion. []

Condition (1) of the theorem implies that there exists a region of
weights w € [y, A;1X[1,, 4,] such that convergence along the weighted
sum direction is significantly faster than convergence along v, or v,.
This condition is strong and only holds in some cases. Condition (2) of
the theorem requires that the probability of weight selection within this
region is high enough. This theorem highlights the potential advantage
of using a weighted sum of search directions, which in some cases can
significantly speed up convergence compared to relying solely on a
single search direction.

It is worth mentioning that the optimal weight vector satisfies:

Wop = arg max{r(x,vy),w € W}. 9)

Since the weight set W is closed, it is guaranteed to have a maximum
value. In general, the optimal weight vector is unknown. Therefore, one
strategy is to adjust the weights adaptively, but this is beyond the scope
of this paper.

3.3. An illustrative example

Consider the problem of minimizing the Rastrigin function. Fig. 1
illustrates the function, where the optimal point is [0, 0] and the optimal
function value is —10.

F&) = x*+y?—10cos(2zx)—10cos2zy)+10, x € [~1,11x[-0.5,5]. (10)

Suppose we have two search directions as shown in the figure:
V=X, —X;, and v;=x;-X.

The direction v, corresponds to the uphill direction of the objective
function because f(x,) = 26 > f(x;) = 7. Therefore, the particle
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does not move from x, to the position x,, but stays at position x,. The
corresponding convergence rate along v, is 0.

In contrast, the direction v; yields a downhill descent, since f(x3) =
6 < f(x;) = 7. Therefore, the particle moves to the new position x; and
has a convergence rate of

IF ) = fop)l = 1f(3) = f(Kop)l 76 1

[f(x1) = f Xpol 7+10 17
If a particle chooses the weight w, = 1 with probability 9/10, then the
rate of convergence along v; is at least

9 1f(xp) = fXop)l = 1f(X3) = f (Kope)| 9 1
F(X[,V3) = — =70 <15
10 |f(x1)—f(xop‘)| 170 17
Theorem 1 generalizes this observation.
Now we construct a new weighted sum direction using equal
weights:

r(X;,v3) =

1 1
Vo = §(X2 —-X)+ §(x3 —X)).

Evaluating the function at the resulting point z yields f(z) =4 < f(x;) =
7, indicating a stronger descent and a faster convergence rate:

Lf &) = f@op) = /@) = f&op)l 74 3 1
r(Xy,v,) = = == s =

[£(x1) = f Kol T7+10 0 17717

Theorem 2 generalizes this observation.

4. A five-direction search algorithm

The key point in DSA is to design multiple search directions. This
section describes the construction of a five-direction search algorithm.

4.1. A simple multiple direction search algorithm

Consider a minimization problem: min f(x),x € R", where f is
called a fitness function. The smaller f value, the better fitness in
minimization. The pseudo code of the DSA algorithm is described
in Algorithm 1. For each generation, the time complexity of DSA is

Trnax X (5 + k) where k denotes the number of directions.

Algorithm 1 A Simple Multiple Direction Search Algorithm (DSA)

1: Randomly generate an initial population X|,.

2: Calculate the fitness value of each particle in the population.

3: forr=0,--,T,,, do

4: Randomly select a particle x in the population X,.

Construct k search directions v, -+, v,.

Generate an integrated search direction v.

Search along the direction v and generate a child y.

Calculate the fitness value of y.

: Generate next population X, ; by removing the worst particle
from X, U {y}.

10: end for

© ® NG

Given a particle x, a child y is generated by
y=Xx+oV an

where the vector v € R” represents a search direction. ¢ € R is a step
size. Selection is elitist because the best particle in population X, is
always preserved.

4.2. Multiple search directions and integrated direction

The general process of constructing a search direction is divided into
two steps: given a particle x,

1. select one or more particles other than x from the population;
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Fig. 2. An example of steepest-descent single-point direction: x4 — x,. The
notation x represents the minimum of f(x).

2. use the information from these particles (with or without x) to
construct the search direction.

Five different search directions are constructed in this paper, namely

. steepest-descent single-point direction v,;
. farthest-distance single-point direction v,;
. hybrid two-point direction vs;

. random two-point direction v,;

. multi-point direction vs.

g b~ wWhN =

The weighted sum is used to generate the combined direction, that
is, summing the five directions:

V=1w;V| + - + WsVs. 12)

A simple implementation of the weighted sum is to assign equal random
weights, such that their expected value E[w,] = -+ = E[ws], and the
sum of the weights is normalized to 1.

4.3. Steepest-descent and farthest-distance single-point directions

The single-point direction involves selecting one particle (point)
other than the current particle x to construct a direction. The steepest-
descent single-point direction is defined from x towards the best parti-
cle x* in the current population X, as follows:

x* —x if x # x*,
Vi= {0 else, as
where the best particle x* = argmin{ f(y);y € X}. If there are multiple
best particles, x* is selected randomly. This direction aims to exploit
the area around the best particle in the population. Fig. 2 shows an
example of the steepest-descent single-point direction.

The farthest-distance single-point direction is towards the x¥ which
is the farthest particle away from x under the Euclidean distance.

xPox ifx#xf,
V2= {0 else. as

where the farthest particle x* = arg max{||y —x||,;y € X }. This direction
aims to increase the search range. Fig. 3 shows an example of the
farthest-distance single-point direction.

Using only a single search direction (either v, or v,) cannot generate
any new child. In fact, the child y is the same as either x* or x’.

Yy=X+V, =x+x" —x=x". (15)
y=x+v2=X+Xn—X=Xn. (16)
Although the above single-point search directions do not generate
a new child, it still contributes to the integrated search direction.

As proven in Section 3, the integrated direction can still perform
effectively. This is an advantage of DSA.
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4 -V,
Jx2 =24 x1)=23
5] dx3)=14
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_4 o(x5) =38
a ) 0 2 a

Fig. 3. An example of the farthest-distance single-point direction: x5 — x,.

2] - V3
gk (x1)=23
ox4) =29

21 Fx7) =19 o3)=14

o . x0) =29
-2 &(x6) =10
4] of(x5)=38

e

Fig. 4. An example of the steepest-descent two-points direction: (x,+x3)/2—x;.

4.4. Steepest-descent and random-descent two-point directions

The steepest-descent two-point direction is from the current particle
x to the center of the best two particles (other than x) in the current
population. Its procedure includes two steps:

1. find the best particle
x| = argmin{ f(y);y € X \ {x}}
and the second-best particle
X, = argmin{ f(y);y € X \ {x,x{}}.

2. Construct a search direction, given by

B i f(x) < f(X9) < F(X),
V3 =19X] —X, if f(x)) < f(x) < f(Xp),
0, else.

Fig. 4 illustrates an example of steepest-descent two-points search
direction. This direction aims at exploiting the neighborhood of the best
two particles.

The random descent two-point direction is to construct a direction
between two particles (other than x) whose fitness values are better
than f(x). Its procedure includes two steps:

1. construct the better set

Shee = {y € X5 f(y) < f(®}.
2. randomly select two particles x;,x, from Sy,.
3. construct a search direction by

Fig. 5 describes an example of random descent two-points search
direction. Note that this direction is not from the current particle x to
other existing particles. Instead, it is a direction between two better
particles. It is similar to mutation in DE, but in DSA, two selected
particles are better than the current particle and the direction is from a
worse particle to a better one. This direction aims to increase direction
diversity.
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Fig. 5. An example of random descent two-points search direction x4 — x;.

4] - Vs
o /{xl) =23
oxaf=29
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e

Fig. 6. An example of a multiple-point direction: v5 — PCA(X, ..., Xg)-

4.5. Multi-point search direction

The multi-point direction is constructed from three or more parti-
cles from the current population. To extract information of multiple
particles, PCA is used. The first principle component found in PCA is
taken as the search direction. The procedure of multi-point direction is
described as follows:

1. Select m particles x, ..., x,, from the population. Each particle x;
represented by a n-dimensional vector (x;,...x;,). The selected
m particles are written in a m X n matrix A:

X1 X2 Xin
X X e X

»r - 18)
X1 Xm2 Xiun

2. Calculate the mean value b of x,,...,x,, which is written in a
n-dimensional vector:

m
b=+ x. 19
mia
3. Calculate the covariance matrix C which is a n x n matrix:
m
1
C=— X x; —b)(x; = )" (20)
i=1
4. Calculate the eigenvectors uy, ..., u, of the covariance matrix C.

Select the first primary component u, (the eigenvector with the
largest eigenvalue) as the search direction vs.

Fig. 6 illustrates an example of a multi-point direction. Here, PCA
is employed to generate a search direction, which is analogous to
mutation. This differs from the PCA-projection in [20], where PCA is
used to project particles (points) onto new positions, working similarly
to crossover.

Finally, Fig. 7 shows an example of five search directions and one
integrated search direction. The figure shows that different directions
have different search ranges, where the single-point direction with the
farthest distance makes the search range farther, while the multi-point
direction focuses on local search.
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oix2) =24

s J(x5)=38
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Fig. 7. An example of five search directions and one integrated search
direction.

5. Experiments and results

This section reports computer experiments and results. The perfor-
mance of DSA is evaluated on different benchmark suites and compared
with eleven classical EAs, seven state-of-the-art PSO variants and also
five leading EAs in the CEC 2022 single-objective bounded constrained
numerical optimization competition.

5.1. Evaluation on classical test functions and comparison with classical
EAs

5.1.1. Experimental setting

A set of thirteen unimodal and multimodal benchmark functions
from [21] is used to evaluate the performance of DSA. The description
of the thirteen functions f|,..., f;3 can be found in Table I in [21].
The dimension of all functions is 30. Five functions fi, f¢, f7, fs. fo are
separable functions. The other eight are not separable. The performance
of DSA is compared with eleven other classical EAs. The algorithms
under this comparison are listed below. These EAs were chosen because
they were evaluated in the above-mentioned test function suite in the
references.

. Differential Evolution (DE) [22]

. Covariance matrix adaptation evolution strategy (CMA-ES) [23]
. Genetic algorithm (GA)

. Particle swarm optimization (PSO) [10]

. Group search optimizer (GSO) [24]

. Fast evolutionary programming (FEP) [21]
. Classical evolutionary programming (CEP)
. Fast evolution strategies (FES) [25]

. Classical evolution strategies(CES) [26]

. Fitness and Diversity-based DE (FFDE) [27]
11. Multi-Role-based DE (MRDE) [28]

O 00N U WNHH

—_
o

The experiments and parameter settings are summarized as follows.
The population size is 150 and the algorithm is run 25 times for
each function. The maximum number of function evaluations is listed
in Table 1. The parameter settings of other algorithms refer to the
literature. Note that for DSA, the maximum number of evaluations is
set to the same as or less than the other algorithms for comparison
purposes.

5.1.2. Comparative analysis

The performance of an algorithm is measured by the mean and
standard deviation of the best fitness value finally found in 25 runs.
Based on the mean and standard deviation, we conducted indepen-
dent t-tests to compare DSA with other algorithms pairwise for each
function. This statistical test compares the means of two independent
groups to determine whether there is a significant difference between
them. Since the fitness values or error values that are very close to
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Table 1

Maximal number of function evaluations.
F DSA/DE/CMA-ES/GA/PSO/GSO CEP/FEP/CES/FES
F1 150000 150000
F2 150000 200000
F3 250000 500000
F4 150000 500000
F5 150000 2000000
F6 150000 150000
F7 150000 300000
F8 150000 900000
F9 250000 500000
F10 150000 150000
F11 150000 200000

zero (such as 1.0e—8 and 1.0e—98) are not important in practice, but
they affect the t-test. To address this issue, we follow a rule used in
CEC competitions. If the fitness function value or error value is below
1.0e-8, it is adjusted to 1.0e—8. This adjustment is done before the
t-test.

The experimental results are reported in Table 2. The results of
other algorithms are taken from relevant literature. Table 2 gives the
comparison of DSA with each algorithm. The symbol “+” indicates
that DSA outperforms the comparison algorithm, “-~” indicates that
DSA performs worse than the comparison algorithm, and “=" indicates
that the performance between DSA and the comparison algorithm is
comparable.

Table 2 shows that DSA outperforms other EAs on most bench-
mark functions. However, an interesting phenomenon is observed from
the results, that is, DSA performs worse than other EAs on functions
fs. fgs f12. f13- The results show that DSA may perform well on most
test functions, but may not be suitable for handling certain specific test
functions.

5.1.3. Sensitivity analysis

We conduct sensitivity analysis on the number of particles in multi-
point search direction. Principal Component Analysis (PCA) is used to
determine this multi-point search direction, with the number of par-
ticles (points) being a critical parameter. In our computer simulation,
30 particles are randomly selected by default for multi-point direction
search. To investigate how the number of randomly selected particles
affects the performance of DSA, we conduct sensitivity analysis and
comparative experiments with 10, 20, 30, 50 and 100 particles.

Table 3 show the influence of different numbers of particles on the
algorithm. From the table, it is found that when the number of selected
particles equals to 100, DSA has the best overall result. However,
the data also show that increasing the number of particles does not
necessarily lead to improved experimental results. For example, when
the number of particles is 50, the experimental result is not better than
when the number of particles is less than 50. When selecting fewer
particles, it does not reflect the distribution of the entire population
well; when selecting more particles, it will increase the computational
complexity. Therefore, a trade-off value 30 is chosen in the experiment.

5.2. Evaluation on ISDA 2009 test functions and comparison with classical
EAs

5.2.1. Experiment setting

We also evaluates the performance of DSA on high-dimensional
benchmark functions with dimensions D = 50, 100, and 200, respec-
tively. A set of thirteen benchmark functions is used in computer
simulation. These functions comes from ISDA 2009 Workshop on Evolu-
tionary Algorithms and other Meta heuristics for Continuous Optimiza-
tion Problems - A Scalability Test.? Functions f; — f, are also the first

2 https://sci2s.ugr.es/EAMHCO. Accessed on 1 June 2022.
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Table 2
Results on the classical test functions and comparison with the classic evolutionary algorithms.

Functions  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 +/=/-
DE Mean 2.66e—07 1.18e-03 1.34e+03 2.52e-01 2.11e+01 1.00e-08 1.38e—02 1.00e—-08 1.73e+02 1.83e-04 2.87e-06 5.42e-07 1.00e—-08

Std. 0.00e+00 3.87e-04 4.37e+02 2.45e-02 3.76e—01 0.00e+00 4.96e-03 1.15e+02 3.98e+00 3.00e—-05 3.00e—06 0.00e+00 0.00e+00

Contest + + + + - = + = + + + - - 8/2/3
CMA-ES Mean 1.00e—-08 1.00e—08 1.00e—-08 1.00e—-08 1.00e—08 1.00e—08 3.68e—03 1.00e—-08 9.50e+00 1.00e—-08 1.00e—08 1.00e—08 1.00e—08

Std. 7.59e-60 4.42e-29 7.90e-101 1.87e-22 5.32e-12 0.00e+00 9.22e—-04 7.62e+02 5.67e+00 0.00e+00 0.00e+00 6.04e—-32 7.30e-31

Contest = = = = - = + = + = = - - 2/8/3
GA Mean 3.17e+00 5.77e-01 9.75e+03 7.96e+00 3.39e+02 3.70e+00 1.05e-01 1.26e+04 6.51e-01 8.68e—01 1.00e+00 4.36e—02 1.68e—01

Std. 1.66e+00 1.31e-01 2.59e+03 1.51e+00 3.6le+02 1.95e+00 3.62e—-02 2.11e+00 3.60e-01 2.8le-01 6.75e-02 5.06e—02 7.07e—02

Contest + + + + + + + + + + + - + 12/0/1
PSO Mean 1.00e-08 1.00e-08 1.20e-03 4.12e-01 3.74e+01 1.46e—-01 9.90e—03 1.00e—-08 2.08e+01 1.34e—-03 2.32e-01 3.95e-02 5.05e—02

Std. 2.46e-36 1.14e-23 2.11e-03 2.50e-01 3.21e+01 4.18e-01 3.54e—02 4.64e+02 5.94e+00 4.24e-02 4.43e-01 9.14e-02 5.69e-01

Contest = = + + = = = = + = + - = 4/8/1
GSO Mean 1.95e-08 3.70e—-05 5.78e+00 1.08e—01 4.98e+01 1.60e—-02 7.38e—02 1.00e—08 1.02e+00 2.65e—05 3.08e—02 1.00e—08 4.69e—05

Std. 1.16e—-08 8.62e—05 3.68e+00 4.00e—-02 3.02e+01 1.33e-01 9.26e-02 2.21e-02 9.51e-01 3.08e-05 3.09e-02 9.17e-11 7.00e—04

Contest + + + + + = + = + + + - = 9/3/1
FEP Mean 5.70e-04 8.10e-03 1.60e-02 3.00e-01 5.06e+00 1.00e-08 7.60e—03 1.00e—-08 4.60e—02 1.80e-02 1.60e-02 9.20e-06 1.60e—04

Std. 1.30e-04 7.70e-04 1.40e-02 5.00e-01 5.87e+00 0.00e+00 2.60e-03 5.26e+01 1.20e—02 1.20e-02 2.20e-02 6.14e-05 7.30e—05

Contest + + + + - = + = + + + - = 8/3/2
CEP Mean 2.20e-04 2.60e—03 5.00e—02 2.00e+00 6.17e+00 5.77e+02 1.80e—02 1.00e—-08 8.90e+01 9.20e+00 8.60e—02 1.76e+00 1.40e+00

Std. 5.90e-04 1.70e-04 6.60e—02 1.20e+00 1.36e+01 1.13e+03 6.40e-03 6.34e+02 2.31e+01 2.80e+00 1.20e-01 2.40e+00 3.70e+00

Contest = + + + - + + = + + + = = 8/4/1
FES Mean 2.50e-04 6.00e—02 1.40e—03 5.50e-03 3.33e+01 1.00e-08 1.20e—02 1.00e—-08 1.60e—01 1.20e—-02 3.70e-02 2.80e-02 4.70e—05

Std. 6.80e—04 9.60e—03 5.30e—04 6.50e—-04 4.31e+01 0.00e+00 5.80e—03 3.25e+01 3.30e—01 1.80e—-03 5.00e-02 8.10e—-11 1.50e—05

Contest = + + + = = + = + + + - - 7/4/2
CES Mean 3.40e-05 2.10e-02 1.30e-04 3.50e-01 6.69e+00 4.11e+02 3.00e—02 1.00e-08 7.08e+01 9.07e+00 3.80e-01 1.18e+00 1.39e+00

Std. 8.60e—06 2.20e-03 8.50e-05 4.20e-01 1.45e+01 6.59e+02 1.50e-02 6.31e+02 2.15e+01 2.84e+00 7.70e-01 1.87e+00 3.33e+00

Contest + + + + - + + = + + + = + 10/2/1
FDDE Mean 1.00e—-08 4.70e—05 1.04e+03 2.10e-05 1.10e+01 1.00e—-08 8.60e—03 1.00e—08 1.83e+02 1.00e—08 1.00e—08 1.00e—08 1.00e—08

Std. 0.00e+00 0.00e+00 3.06e+02 7.00e-06 5.97e—01 0.00e+00 2.51e-03 4.14e+01 5.69e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Contest = + + + - = + = + = = - - 5/5/3
MRDE Mean 1.71e-07 3.02e-03  3.02e+04 4.49e-02 4.07e+01 1.00e-08 2.62e—02 1.00e-08 4.68e+01 4.30e-05 1.03e-07 2.29e-07 1.00e—08

Std. 0.00e+00 5.95e—04 7.83e+02 4.21e-03 1.27e+01 0.00e+00 7.44e—03 3.68e+00 3.82e+00 7.00e—-06 0.00e+00 0.00e+00 0.00e+00

Contest + + + + + = + = + + + - - 9/2/2
DSA Mean 1.00e—08 1.00e-08 1.00e-08  1.00e-08 2.90e+01 1.00e—08 3.71e-05 1.00e-08 1.00e—08 1.00e—08 1.00e-08 8.08e—-01 1.22e—04

Std 0.00e+00 0.00e+00  0.00e+00 0.00e+00 9.40e—03 0.00e+00 2.00e—05 1.24e+02 0.00e+00 0.00e+00 0.00e+00 7.66e—02 1.18e—04

Table 3
A comparison of DSA with different number of particles in PCA.
10 20 30 50 100
F1 Mean 1.52E-297 5.27E-292 5.80E—294 4.45E-292 1.19E-292
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 Mean 7.34E-159 5.63E-167 1.83E-169 8.99E-169 1.32E-173
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 Mean 4.17E-89 5.76E-279 1.82E-108 8.11E-203 1.30E-34
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F4 Mean 1.67E-148 1.68E-153 4.12E-160 4.68E—168 2.03E-174
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 Mean 2.90E+01 2.90E+01 2.90E+01 2.89E+01 2.89E+01
Std. 2.84E-03 5.36E-02 9.37E-03 4.40E-02 3.32E-02
F6 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 Mean 6.77E-05 5.04E-05 3.71E-05 6.76E—-05 1.20E-04
Std. 7.00E-05 4.20E-05 2.00E-05 1.80E-05 8.70E-05
F8 Mean —4.87E+03 —5.11E+03 —4.45E+03 —5.04E+03 —5.08E+03
Std. 5.96E+02 3.97E+03 1.24E+02 9.01E+03 7.03E+03
F9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 Mean 4.44E+16 4.44E+16 4.44E+16 4.44E+16 4.44E+16
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F11 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 Mean 9.23E+01 8.95E+01 8.08E+01 9.18E+01 7.63E+01
Std. 8.50E+02 7.71E+02 7.66E+02 8.62E+02 3.57E+022
F13 Mean 6.90E-05 4.94E-05 1.22E-04 5.04E-05 2.97E-05
Std. 3.30E-05 2.80E-05 1.18E-04 3.90E-05 3.40E-05
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Table 4
Results on the 50D test functions and comparison with the classic evolutionary algorithms.
Functions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 +/=/-
DE Mean 1.00e—08 1.78e+01 3.61e+01 3.22e+02 1.00e—08 1.00e—08 1.00e—08 9.12e+01 2.69e—01 1.00e-08 3.14e—01
Std. 0.00e+00 5.72e+00 9.21e-01 2.03e+01 0.00e+00 5.20e-10 3.06e—09 3.70e+01 1.18e—02 0.00e+00 9.94e—-02
Test = + - + = = = + + = + 5/5/1
ODE  Mean 1.00e—08 1.00e—08 3.68e+01 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 2.70e—01
Std. 0.00e+00 0.00e+00 2.53e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 3.36e—02
Test = = - = = = = = = = + 1/9/1
JADE Mean 1.00e—08 1.00e—08 2.39e+00 3.92e+01 1.00e—08 1.00e—08 1.00e—08 1.00e—08 3.01e—03 6.30e—01 1.19e—-02
Std. 0.00e+00 1.61e-13 2.18e4+00 3.85e+01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 3.33e—03 9.39e-01 1.51e-02
Test = = - = = = = = = = = 0/10/1
SADE Mean 1.00e—-08 2.71e+00 2.99e+01 3.19e—06 1.00e—-08 1.00e—08 1.00e—-08 8.37e+02 2.26e—05 1.00e-08 3.62e—-05
Std. 0.00e+00 8.30e—01 8.32e+00 7.08e—06 0.00e+00 0.00e+00 0.00e+00 1.57e+02 8.52e—06 0.00e+00 3.54e—-05
Test = + - = = = = + + = = 3/7/1
CME Mean 8.86e—06 1.83e+01 4.39e+01 9.31e+01 8.42e—06 1.32e+01 1.01e-01 1.92e+01 2.99e+02 1.11e+01 3.20e+02
Std. 7.90e—07 5.64e+00 8.31e—01 1.32e+01 1.74e—07 8.72e—01 1.32e—01 8.56e+00 3.06e+01 2.95e+00 2.59e+01
Test + + - + + + = + + + + 9/1/1
ME Mean 7.68e-06 3.25e+01 6.99e+01 5.03e+01 2.96e—03 1.49e+01 2.86e-03 5.57e-02 3.11e+02 1.27e+00 2.82e+02
Std. 8.63e—07 5.33e+00 5.38e+01 6.43e+00 5.91e—03 6.64e—01 3.53e-03 3.24e—02 3.38e+01 1.03e+00 2.24e+01
Test + + = + = + = + + + + 8/3/0
FDDE Mean 1.00e—08 1.62e—01 5.95e+06 3.30e+02 1.48e—-03 1.00e—08 1.00e—08 4.41e+01 2.65e+01 1.00e—08 2.80e—01
Std. 0.00e+00 1.04e—01 7.80e+05 1.98e+01 2.96e—03 0.00e+00 0.00e+00 8.24e+00 1.63e—01 0.00e+00 5.99e-02
Test = + + + = = = + + = + 6/5/0
MRDE Mean 3.51e-07 2.37e+00 4.60e+01 1.21e+02 1.60e—06 9.68e—05 1.05e—-04 1.16e+04 1.09e+01 5.51e-07 1.07e+01
Std. 0.00e+00 1.89e-01 1.08e+00 9.16e+00 2.00e—06 1.10e-05 7.00e—-06 1.42e+03 1.00e+00 0.00e+00 6.25e-01
Test + + - + = + + + + + + 9/1/1
DSA Mean 1.00e—08 1.00e—08 4.90e+01 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08
Std. 0.00e+00 0.00e+00 2.89e—02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
Table 5
Results on the 100D test functions and comparison with the classic evolutionary algorithms.
Functions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 +/=/-
DE Mean 1.00e-08 5.21e+01 2.17e+02 6.38e+02 1.00e—08 1.00e—08 1.00e—-08 3.94e+03 1.14e+00 5.25e+00 5.17e+00
Std. 0.00e+00 4.12e+00 1.15e+02 1.0le+02 0.00e+00 1.33e—10 1.23e—-11 7.69e+02 9.30e—01 1.29e+00 3.32e+00
Test = + = + = = = + + + + 6/5/0
ODE Mean 1.00e—08 1.00e—08 1.43e+02 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 3.46e+00
Std. 0.00e+00 0.00e+00 8.22e4+01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.73e+00
Test = = = = = = = = = = + 1/10/0
JADE Mean 1.00e-08 6.52e-01 3.23e+00 4.25e+02 3.45e—-03 9.65e—01 1.00e-08 5.17e-05 2.43e+00 1.78e+01 3.36e+00
Std. 0.00e+00 2.69e—01 1.80e+00 1.14e+02 4.80e—03 9.43e—01 0.00e+00 7.81e-05 2.42e+00 2.20e+00 3.75e+00
Test = + - + = = = = = + = 3/7/1
SADE Mean 1.00e—08 9.75e+00 1.29e+02 2.34e+01 1.00e—08 1.00e—08 1.00e—08 8.51e+03 2.15e—03 2.52e+00 1.00e—08
Std. 0.00e+00 6.75e—01 4.76e+01 5.33e+00 0.00e+00 0.00e+00 0.00e+00 9.34e+02 4.80e—03 5.75e-01 1.28e—-09
Test = + = + = = = + = + = 4/7/0
CME Mean 1.22e-05 4.50e+01 1.10e+02 3.94e+02 9.60e—-06 1.78e+01 9.74e-01 3.79e+02 7.90e+02 3.41e+01 7.72e+02
Std. 8.30e-06 3.49e+00 3.53e+01 2.47e+01 2.43e—07 2.95e-01 3.43e-01 1.12e+02 2.28e+01 1.40e+00 3.07e+01
Test + + = + + + + + + + + 10/1/0
ME Mean 5.48e—05 5.65e+01 1.22e+02 1.55e+02 9.74e—06 1.74e+01 2.96e+02 2.06e+01 6.87e+02 1.08e+01 7.25e+02
Std. 5.75e-05 3.21e+00 3.36e+01 1.92e+01 1.63e—07 3.55e—01 2.54e+01 5.05e+00 4.24e+01 2.50e+00 3.69e+01
Test = + = + + + + + + + + 9/2/0
FDDE Mean 1.00e—08 8.96e+00 1.15e+07 7.29e+02 1.97e—03 1.00e—08 1.00e—08 4.38e+03 1.89e+00 3.99e+00 3.92e+01
Std. 0.00e+00 1.61e+00 2.07e+05 5.33e+01 3.94e—03 0.00e+00 0.00e+00 1.41e+03 1.12e+00 2.60e+00 2.46e+00
Test = + + + = = = + + + + 7/4/0
MRDE Mean 4.21e-07 8.63e+00 1.21e+02 4.0le+02 2.73e—07 9.59e—05 2.49e-04 5.22e+04 3.31e+01 1.28e-06 3.53e+01
Std. 0.00e+00 8.22e—01 2.94e+01 1.34e+01 0.00e+00 4.00e—06 2.90e-05 3.50e+03 1.65e+00 0.00e+00 2.31e+00
Test + + = + + + + + + + + 10/1/0
DSA Mean 1.00e—08 1.00e—08 9.90e+01 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08
Std. 0.00e+00 0.00e+00 1.43e—02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
six of seven benchmark functions used in the CEC 2008 Special Session evolution were chosen because of their better performance on high-
and Competition on Large Scale Global Optimization.®> Four functions dimensional functions. The EAs included in this comparison are listed
are separable f, f4, f¢, f5, while the other seven are non-separable. below.

The performance of DSA is compared with eight other EAs in

. Differential Evolution (DE) [22
the case of high-dimensional benchmark functions. DE and memetic ifferential Evolution (DE) [22]

. Opposition-based Differential Evolution (ODE) [29]
. JADE [30]

. Self-adaptive Differential Evolution (SADE) [31]

. Cellular Memetic Evolution (CME) [32]

ga b wN =

3 https://github.com/P-N-Suganthan/CEC2008. Accessed on 1 June 2022.
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Table 6
Results on the 200D test functions and comparison with the classic evolutionary algorithms.

Functions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 +/=/—-
DE Mean 1.00e—08 8.26e+01 4.14e+02 3.20e+02 3.91e—02 1.76e+00 1.00e—08 2.29e+04 8.44e+01 3.42e+01 9.03e+01

Std. 0.00e+00 4.68e+00 8.36e+01 1.98e+01 7.95e—-02 5.02e—01 1.38e—09 2.84e+03 2.95e+01 3.91e+00 1.87e+01

Test = + + + = + = + + + + 8/3/0
ODE  Mean 1.00e-08 5.23e+01 4.64e+02 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—-08 1.00e—08 1.00e—08 1.21e+02

Std. 0.00e+00 5.25e+00 7.55e+01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 3.08e+01

Test = + + = = = = = = = + 3/8/0
JADE Mean 1.00e—08 1.65e+01 1.65e+01 1.31e+03 1.00e—08 2.48e+00 1.00e—08 3.75e+01 1.0le+01 7.56e+01 8.18e+00

Std. 0.00e+00 1.09e+00 3.23e+01 7.70e+01 0.00e+00 3.09e—01 0.00e+00 4.72e+01 8.32e+00 2.70e+00 1.12e+01

Test = + - + = + = = + + = 5/5/1
SADE Mean 1.00e—08 1.56e+01 3.85e+02 1.24e+02 1.48e—03 1.70e+00 1.00e—08 3.54e+02 3.16e+00 4.36e+01 2.12e+00

Std. 0.00e+00 9.53e—01 4.84e+01 3.51e+00 3.31e—03 1.72e—01 0.00e+00 3.21e+03 4.01e+00 4.27e+00 2.62e+00

Test = + + + = + = = = + = 5/6/0
CME Mean 4.41e-03 6.96e+01 1.97e+02 1.06e+03 1.32e—03 1.91e+01 4.55e+00 7.81e+03 1.64e+03 7.10e+01 1.63e+03

Std. 5.47e—03 1.81e+00 4.39e+00 5.55e+01 4.73e—04 6.14e—02 1.64e+00 1.36e+03 1.94e+01 4.35e+00 1.96e+01

Test = + = + + + + + + + + 9/2/0
ME Mean 5.35e-03 7.27e+01 2.51e+02 5.59e+02 6.60e—05 1.83e+01 1.03e+00 2.12e+03 1.54e+03 5.27e+01 1.53e+03

Std. 1.99e—-03 1.88e+00 4.53e+01 5.49e+01 1.45e—05 1.84e-01 1.60e+00 3.72e+02 4.39e+01 6.40e+00 2.54e+01

Test + + + + + + = + + + + 10/1/0
FDDE Mean 1.00e—08 2.72e+01 2.63e+07 1.52e+02 1.00e—08 1.43e+03 1.00e—08 2.93e+04 6.43e+01 3.54e+01 6.99e+01

Std. 0.00e+00 8.26e—01 1.94e+05 1.71e+01 0.00e+00 2.28e—01 0.00e+00 4.71e+04 1.02e+01 3.64e+00 1.34e+01

Test = + + + = + = = + + + 7/4/0
MRDE Mean 1.30e—06 2.92e+01 2.06e+02 1.11e+03 2.67e—07 9.77e-05 6.66e—04 2.01e+05 7.81le+01 2.79e—06 7.82e+01

Std. 0.00e+00 2.04e+00 2.28e+01 2.48e+01 0.00e+00 8.00e—06 4.10e—05 8.20e+03 1.73e+00 1.00e-06 1.87e+00

Test + + = + + + + + + + + 10/1/0
DSA Mean 1.00e—08 1.00e—08 1.99e+02 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e—08 1.00e-08

Std. 0.00e+00 0.00e+00 2.06e—01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

6. Memetic Evolution (ME) [33,34]
7. Fitness and Diversity-based DE (FFDE) [27]
8. Multi-Role-based DE (MRDE) [27,28]

Five independent runs were completed on each test function. The
population is set to 150. The maximum number of fitness evaluations
is 5000D, where D is the dimension of a function. Each run stops when
the maximum number of evaluations has been achieved.

5.2.2. Comparative analysis

The performance of EAs is evaluated in terms of mean and standard
deviation of errors. This is different from Section 5.1 which is compares
fitness values. Tables 4, 5, and 6, report experimental results for D =
50,0 = 100, and D = 200. Any result with its value below 1E-14
has been treated as 0.0. Using the mean and standard deviation, we
performed independent t-tests to compare DSA with other algorithms in
pairs. The symbols “+”, “~”, and “=" indicate that the performance of
DSA is better than, worse than, or similar to the comparison algorithm,
respectively.

Tables 4, 5, and 6 present the comparison of DSA with each al-
gorithm. The comparisons show that DSA has achieved better perfor-
mance than other EAs on the majority of benchmark functions across all
dimensions. An exception is function f;, where JADE achieved better
mean results than DSA, but its variance results were worse. Experi-
mental results confirm that DSA outperforms the other algorithms in
high-dimensional benchmark functions.

5.3. Evaluation on CEC 2022 competition test functions and comparison
with state of the art PSO algorithms

5.3.1. Experimental setting

To evaluate the performance of the proposed algorithm, we com-
pared DSA with several recent PSO variants on the CEC 2022 compe-
tition benchmark. The following algorithms were used in the compari-
son.

1. Adaptive multistrategy ensemble particle swarm optimization
(AMSEPSO) [35]

2. Modified particle swarm optimization using adaptive
(MPSO) [36]

3. Fitness-distance balance phasor particle swarm optimization
(FDBPSO) [37]

. Pyramid particle swarm optimization (PPSO) [38]

. PSO on single-objective numerical optimization (PSOsono) [39]

. Velocity pausing particle swarm optimization (VPPSO) [40]

. Multi-strategy Particle Swarm Optimization with Adaptive For-
getting (AFMPSO) [41]

strategy

N O U~

The parameters required for each algorithm are as shown in Table
1 in [41]. The dimension was set to 10, and the maximum num-
ber of evaluations was 200,000. Each algorithm was run 30 times
independently, resulting in 30 samples.

5.3.2. Comparative analysis

Table 7 gives the experimental results and comparisons of each
algorithm in 10 dimensions. It includes five key metrics: best, worst,
median, mean, and standard deviation. Based on the mean, and stan-
dard deviation, we conducted an independent t-test to compare DSA
with other algorithms pairwise for each function. The symbols “+”,
“—”_ and “=" indicate that the performance of DSA is better than, worse
than, or similar to the comparison algorithm, respectively.

As shown in Table 7, DSA outperforms the 7 PSO variants overall in
the 10-dimensional problem. Specifically, DSA outperforms or is equal
to the FDBPSO, MPSO, and VPPSO algorithms, and is not inferior in any
case. DSA outperforms or is equal to the PPSO, PSOsono, AFMPSO, and
AMSEPSO algorithms in most problems, and performs worse in only
one or two problems.

5.4. Evaluation on CEC 2022 competition benchmark and comparison with
leading algorithms

5.4.1. Experimental setting

To evaluate the performance of the proposed algorithm, we fur-
ther compare DSA with several leading algorithms in the CEC 2022
competition. The compared algorithms are as follows.
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Table 7
Experimental comparison with seven state-of-art PSO variants.
F Index AMSEPSO FDBPSO MPSO PPSO PSOsono VPPSO AFMPSO DSA
Best 1.00e-08 1.86e+03 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08
Worst 1.00e—-08 1.47e+04 1.91e-05 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08
F1 Median 1.00e—-08 6.81e+03 8.35e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08
Mean 1.00e—-08 7.07e+03 1.63e-06 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08
Std 0.00E+00 3.16E+03 4.07E-06 0.00E+00 0.00E+00 8.65E-10 0.00E+00 0.00E+00
Test = + + = = = =
Best 1.99e-02 6.10e+00 5.72e-06 9.98e—-04 1.00e—-08 5.07e-04 1.00e—-08 9.60e—-05
Worst 7.71e+00 8.78e+01 8.92e+00 8.92e+00 9.84e+00 7.08e+01 1.00e-08 8.92e+00
F2 Median 5.41e+00 3.42e+01 5.59e+00 4.92e+00 3.99e+00 4.10e+00 1.00e—-08 2.64e—-04
Mean 4.42e+00 3.73e+01 4.43e+00 4.70e+00 5.22e+00 6.64e+00 1.00e-08 6.96e—-01
Std 2.47E4+00 2.19E401 4.04E+00 3.93E+00 3.19E4+00 1.27E+01 0.00E+00 1.94E+00
Test + + + + + + =
Best 1.00e—-08 6.15e+00 2.01e-07 1.00e—-08 1.00e—-08 8.41e-05 3.18e—-02 1.00e—-08
Worst 1.00e—-08 3.16e+01 2.30e—-04 1.13e-05 5.21e-02 8.48e+00 7.70e—-01 1.00e—-08
F3 Median 1.00e-08 1.47e+01 3.48e—-06 1.00e-08 1.10e-05 6.87e—-01 3.21e-01 1.00e-08
Mean 1.00e—-08 1.55e+01 1.61e-05 5.86e—-07 5.86e—-03 1.09e+00 3.41e-01 1.00e—-08
Std 0.00E+00 6.37E+00 4.22E-05 2.15E-06 1.26E-02 1.75E+00 2.29E-01 2.42E-11
Test = + + = + + +
Best 1.00e—08 8.82e+00 2.98e+00 1.00e—-08 1.99e+00 9.95e+00 3.98e+00 9.95e-01
Worst 9.09e+00 4.06e+01 1.89e+01 5.97e+00 1.69e+01 3.48e+01 3.18e+01 2.39e+01
F4 Median 2.33e+00 2.10e+01 8.46e+00 2.98e+00 7.96e+00 1.89e+01 1.24e+01 8.95e+00
Mean 3.09e+00 2.07e+01 9.15e+00 2.82e+00 7.99e+00 1.86e+01 1.33e+01 9.65e+00
Std 2.52E+00 6.96E+00 4.13E+00 1.43E+00 3.58E+00 6.26E+00 6.86E+00 5.01E+00
Test - + = - = + +
Best 1.00e—-08 8.56e+00 1.00e-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e-08 1.00e—-08
Worst 1.00e—08 8.08e+02 4.54e-01 4.54e-01 8.95e—-02 3.31e+00 1.00e—-08 1.00e—-08
F5 Median 1.00e—-08 2.09e+02 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08
Mean 1.00e—-08 2.65e+02 5.44e-02 1.81e-02 5.97e-03 2.32e-01 1.00e-08 1.00e-08
Std 0.00E+00 1.83E+02 1.38E-01 8.40E-02 2.27E-02 6.38E-01 0.00E+00 3.81E-13
Test = + + = = = =
Best 5.83e+00 2.61e+04 4.29e+00 7.84e+00 2.35e+00 1.55e+02 1.03e+01 1.53e+00
Worst 3.38e+02 4.31e+05 3.51e+03 3.07e+03 1.21e+03 6.22e+03 2.20e+02 2.44e+03
F6 Median 6.43e+01 8.83e+04 2.45e402 2.83e+02 3.73e+01 1.80e+03 4.54e401 4.38e+02
Mean 8.28e+01 1.32e+05 6.04e+02 6.21e+02 1.25e+02 2.37e+03 5.23e+01 6.50e+02
Std 7.40E+01 1.09E+05 8.30E+02 7.55E+02 2.46E+02 2.10E+03 4.10E+01 6.44E+02
Test - + = = - + —
Best 1.70e—-06 2.61e+01 3.48e—-04 4.68e—03 8.10e-08 1.06e+00 8.33e+00 1.00e-08
Worst 7.57e+00 7.65e+01 2.40e+01 2.54e+01 2.49e+01 4.49e+01 3.91e+01 2.00e+01
F7 Median 8.50e-01 5.60e+01 1.43e+01 7.29e+00 1.28e+01 2.49e+401 2.45e+01 1.60e—06
Mean 2.27e+00 5.61e+01 1.26e+01 1.21e+01 1.23e+01 2.60e+01 2.35e+01 1.96e+00
Std 2.41E+00 1.28E+01 9.59E+00 1.00E+01 1.02E+01 9.92E+00 6.76E+00 5.07E+00
Test = + + + + + +
Best 1.13e+00 2.11e+01 2.41e-01 4.10e-01 2.39e-01 1.63e+00 2.96e+00 1.65e—-04
Worst 2.37e+01 4.58e+01 2.61e+01 2.27e+01 2.26e+01 2.64e+01 2.64e+01 2.02e+01
F8 Median 7.56e+00 3.18e+01 2.19e+01 2.08e+01 2.02e+01 2.22e401 2.24e+01 6.33e—-01
Mean 9.48e+00 3.22e401 1.84e+01 1.99e+01 1.32e+01 1.97e+01 2.07e+401 4.26e+00
Std 6.94E+00 5.09E+00 8.67E+00 4.00E+00 9.39E+00 7.45E+00 5.98E+00 7.92E+00
Test + + + + + + +
Best 2.29e+02 2.36e+02 2.29e+02 2.29e+02 2.30e+02 2.29e+02 2.29e+02 2.29e+02
Worst 2.31e+02 4.19e+02 2.29e+02 2.29e+02 2.33e+02 2.29e+02 2.34e+02 2.29e+02
F9 Median 2.30e+02 3.57e+02 2.29e+02 2.29e+02 2.31e+02 2.29e+02 2.30e+02 2.29e+02
Mean 2.30e+02 3.45e+02 2.29e+02 2.29e+02 2.31e4+02 2.29e+02 2.31e4+02 2.29e+02
Std 2.61E-01 5.11E+01 0.00E+00 0.00E+00 6.02E-01 2.77E-09 1.26E+00 6.27E-14
Test + + = = + = +
Best 1.00e+02 1.01e+02 1.00e+02 1.00e+02 1.00e+02 1.00e+02 1.00e+02 1.00e+02
Worst 1.00e+02 2.67e+02 2.15e+02 2.12e+02 2.17e+02 2.19e+02 1.01e+02 1.00e+02
(continued on next page)
1. Evolutionary Algorithm with Eigen crossover (EA4eig) [42]. The 4. An adaptive variant of differential evolution combining binomial

1st-ranked algorithm. and exponential crossover with feature transformation (jSObeE)

2. Non-Linear population size reduction Success-History Adaptive [45]. The Sth-ranked algorithm.
5. SHADE with tolerance-based multiple topology selection frame-

Differential Evolution with Linear Bias Change (NL-SHADE- work (MTT SHADE) [46]. The 6th-ranked algorithm.

LBC) [43]. The 2nd-ranked algorithm.

3. An  enhanced version of NLSHADE-RSP with Midpoint The dimension was set to 10, and the maximum number of evalua-

(NLSHADE-RSP-MID) [44]. The 3rd-ranked algorithm. tions was 200,000. The results includes five key metrics: best, worst,

10
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Table 7 (continued).
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F Index AMSEPSO FDBPSO MPSO PPSO PSOsono VPPSO AFMPSO DSA
F10 Median 1.00e+02 1.02e+02 1.00e+02 1.01e+02 1.00e+02 1.00e+02 1.00e+02 1.00e+02
Mean 1.00e+02 1.30e+02 1.33e+02 1.42e+02 1.19e+02 1.04e+02 1.00e+02 1.00e+02
Std 2.93E-02 5.82E+01 5.03E+01 5.23E+01 4.17E+01 2.17E+01 8.81E-02 2.69E-03
Test = + + + + = =
Best 1.00e—-08 1.30e+02 2.71e-05 1.00e—-08 1.00e—-08 3.19e—-04 1.00e—-08 1.00e—-08
Worst 1.54e+02 3.19e+02 3.00e+02 3.00e+02 4.00e+02 3.00e+02 1.00e—-08 1.00e—-08
F11 Median 1.00e—-08 1.75e+02 6.79e—03 1.50e+02 1.00e—-08 5.03e—-04 1.00e—-08 1.00e—-08
Mean 1.52e+01 1.94e+02 6.04e+01 1.30e+02 8.68e+01 4.31e+01 1.00e—08 1.00e-08
Std 4.23E+01 4.43E+01 1.08E+02 1.10E+02 1.19E+02 1.03E+02 0.00E+00 0.00E+00
Test = + + + + + =
Best 1.62e+02 1.65e+02 1.60e+02 1.63e+02 1.65e+02 1.59e+02 1.63e+02 1.59e+02
Worst 1.65e+02 2.40e+02 1.81e+02 1.70e+02 1.67e+02 1.65e+02 1.69e+02 1.67e+02
F12 Median 1.65e+02 1.72e+02 1.64e+02 1.65e+02 1.65e+02 1.61e+02 1.66e+02 1.63e+02
Mean 1.65e+02 1.79e+02 1.65e+02 1.66e+02 1.65e+02 1.61e+02 1.66e+02 1.62e+02
Std 4.83E-01 1.77E+01 3.80E+00 1.49E+00 4.97E-01 1.66E+00 1.63E+00 2.74E+00
Test + + + + + = +
+/=/- 4/6/2 12/0/0 9/3/0 6/5/1 8/3/1 7/5/0 6/5/1
Table 8
Experimental comparison with leading EAs in the CEC 2022 competition.
F Index EA4eig NL-SHADE-LBC NLSHADE-RSP-MID jSObeE MTT_SHADE DSA
Best 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08
Worst 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08
F1 Median 1.00e—-08 1.00e—08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08
Mean 1.00e—-08 1.00e—08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08
Std 0.00E+00 0.00e+00 0.00e+00 1.77e-09 0.00e+00 0.00E+00
Test = = = = =
Best 1.00e—08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e-08 9.60e—05
Worst 3.99e+00 1.00e-08 1.00e-08 8.92e+00 8.92e+00 8.92e+00
F2 Median 1.00e-08 1.00e-08 1.00e—08 3.99e+00 3.99e+00 2.64e—04
Mean 1.46e+00 1.33e-01 1.00e—-08 5.17e+00 5.00e+00 6.96e—01
Std 1.95E+00 7.16e-01 0.00e+00 2.41e+00 2.31e+00 1.94E+00
Test = = = + +
Best 1.00e—-08 1.00e—08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08
Worst 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e-08 1.00e—-08
F3 Median 1.00e—08 1.00e-08 1.00e—08 1.00e-08 1.00e-08 1.00e-08
Mean 1.00e—-08 1.00e—08 1.00e-08 1.00e-08 1.00e—08 1.00e—08
Std 0.00E+00 0.00e+00 0.00e+00 1.04e-09 0.00e+00 2.42E-11
Test = = = = =
Best 1.00e—-08 2.16e—-05 2.98e+00 1.99e+00 1.99e+00 9.95e—01
Worst 3.98e+00 2.99e+00 2.09e+01 4.97e+00 8.95e+00 2.39e+01
F4 Median 9.95e-01 9.95e—-01 9.45e+00 2.98e+00 3.98e+00 8.95e+00

median, mean, and standard deviation. Each algorithm was run 30
times independently, resulting in 30 samples.

5.4.2. Comparative analysis

Table 8 presents the experimental and comparative results of each
algorithm across 10 dimensions, including five key indicators: best,
worst, median, mean, and standard deviation. Using the mean and stan-
dard deviation, we conducted independent t-tests to compare DSA with
other algorithms on a pairwise basis for each function. The symbols
“47 “~” and “=" indicate that the performance of DSA is better than,
worse than, or similar to the comparison algorithm, respectively.

Table 8 shows that DSA performs worse than EA4eig, the winning
algorithm of the CEC 2022 competition. Nevertheless, its performance
is comparable to other participating algorithms in most benchmark
functions. It is worth noting that EA4eig is an ensemble of four adaptive
evolutionary algorithms (CMA-ES, CoBiDE, an adaptive variant of jSO,
and IDE). This significantly improves its performance and consolidates
its leading position. It is worth noting that all top ten algorithms are
variants of DE. One advantage of DE over PSO is the use of crossover.
While DSA does not show an advantage over these leading DE variants,
it remains competitive and shows consistently strong performance.

11
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Similar observations were reported in [41] where PSO was compared
with the best performing EA algorithm in the CEC 2022 competition.

6. Conclusion

This paper proposes a new evolutionary algorithm, called the mul-
tiple direction search algorithm (DSA). DSA combines different search
directions in a weighted sum manner. Theoretical analysis shows that
under mild conditions, the rate of convergence along the weighted
direction is no worse than the rate of convergence along the best search
direction by a positive constant, and may exceed it in some cases.

To verify the above theoretical results, we designed and imple-
mented a simple DSA algorithm and tested it through computer sim-
ulation. DSA integrates five search directions, including a multi-point
search direction designed by principal component analysis. Experi-
mental results on the selected benchmark test sets show that DSA
outperforms classical eight evolutionary algorithms and seven state-of-
the-art particle swarm optimization algorithms in most benchmarks.
Furthermore, the experimental results also show that DSA, like other
PSO algorithms, does not outperform the leading algorithms participat-
ing in the CEC 2022 competition, because these DE-based algorithms
utilize crossover, while PSO does not.
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Table 8 (continued).
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F Index EA4eig NL-SHADE-LBC NLSHADE-RSP-MID jSObeE MTT_SHADE DSA
Mean 1.29e+00 1.30e+00 1.00e+01 3.22e+00 4.01e+00 9.65e+00
Std 1.05E+00 7.78e—-01 4.55e+00 8.13e-01 1.56e+00 5.01E+00
Test - — = - -
Best 1.00e—-08 1.00e-08 1.00e-08 1.00e-08 1.00e—-08 1.00e-08
Worst 1.00e—-08 1.00e—-08 1.66e+01 1.00e-08 1.00e—-08 1.00e-08
F5 Median 1.00e—-08 1.00e—-08 3.17e-01 1.00e—-08 1.00e—-08 1.00e—-08
Mean 1.00e—-08 1.00e—08 1.69e+00 1.00e—-08 1.00e—-08 1.00e—-08
Std 0.00E+00 0.00e+00 3.88e+00 1.47e-09 0.00e+00 3.81E-13
Test = = + = =
Best 2.71e-04 4.31e-03 1.78e—02 1.60e—03 2.56e—-02 1.53e+00
Worst 2.51e-01 4.40e-01 1.04e+00 3.58e-01 5.00e-01 2.44e+03
F6 Median 5.66e—03 7.21e-02 9.65e—-02 1.45e—-02 3.22e-01 4.38e+02
Mean 2.42e-02 1.24e-01 1.67e-01 4.36e—02 3.10e-01 6.50e+02
Std 5.58E-02 1.25e-01 2.45e-01 7.30e-02 1.42e-01 6.44E+02
Test - - - - -
Best 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—08
Worst 1.00e—-08 1.00e—-08 1.00e-08 6.38e—-06 3.91e-01 2.00e+01
F7 Median 1.00e—-08 1.00e-08 1.00e-08 1.12e-08 7.11e-02 1.60e—-06
Mean 1.00e—-08 1.00e—-08 1.00e—-08 3.50e—-07 8.47e-02 1.96e+00
Std 0.00E+00 0.00e+00 0.00e+00 1.19e—-06 8.56e—02 5.07E+00
Test - - - - -
Best 5.49e-04 1.00e-08 9.39%e-05 3.54e-02 2.48e-02 1.65e-04
Worst 3.05e-01 1.79e-01 6.58e-01 3.51e-01 2.03e+01 2.02e+01
F8 Median 1.21e-01 3.29e-02 8.09e-02 1.12e-01 2.91e+00 6.33e-01
Mean 1.15e-01 4.60e—02 2.38e-01 1.31e-01 6.43e+00 4.26e+00
Std 9.88E-02 3.80e—-02 2.78e-01 7.94e-02 7.02e+00 7.92E+00
Test - — - - B
Best 1.86e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02
Worst 1.86e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02
F9 Median 1.86e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02
Mean 1.86e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02 2.29e+02
Std 0.00E+00 5.68e—-14 0.00e+00 8.67e-14 0.00e+00 6.27E-14
Test - = = = =
Best 1.00e+02 1.00e+02 1.00e-08 1.00e+02 1.00e+02 1.00e+02
Worst 1.00e+02 1.00e+02 1.00e+02 1.00e+02 2.05e+02 1.00e+02
F10 Median 1.00e+02 1.00e+02 1.00e—-08 1.00e+02 1.00e+02 1.00e+02
Mean 1.00e+02 1.00e+02 4.53e+00 1.00e+02 1.04e+02 1.00e+02
Std 3.57E-02 2.95e-02 1.83e+01 2.39e-02 1.91e+01 2.69E-03
Test = = - = =
Best 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08 1.00e—-08
Worst 1.00e—-08 1.00e—-08 1.36e—-08 1.00e—-08 1.00e—-08 1.00e—-08
F11 Median 1.00e—-08 1.00e—-08 1.00e-08 1.00e—-08 1.00e—-08 1.00e-08
Mean 1.00e-08 1.00e-08 1.01e-08 1.00e-08 1.00e-08 1.00e-08
Std 0.00E+00 0.00e+00 6.50e-10 7.83e-10 0.00e+00 0.00E+00
Test = = = = =
Best 1.45e+02 1.63e+02 1.63e+02 1.62e+02 1.59e+02 1.59e+02
Worst 1.59e+02 1.65e+02 1.66e+02 1.65e+02 1.65e+02 1.67e+02
F12 Median 1.46e+02 1.65e+02 1.65e+02 1.63e+02 1.62e+02 1.63e+02
Mean 1.48e+02 1.65e+02 1.65e+02 1.63e+02 1.62e+02 1.62e+02
Std 4.83E+00 4.04e-01 9.72e-01 9.18e-01 1.66e+00 2.74E+00
Test - + + = =
+/=/- 0/6/6 1/7/4 2/6/4 1/7/4 1/8/3

The current implementation of DSA is based on a simple weighted
sum of search directions. One improvement for future research is to
adjust the weights. In addition, DSA will also design and use other
search directions.
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