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Highlights

What are the main findings?

e A novel methodology is presented for detecting archaeological anomalies using only
RGB aerial imagery:.

e  Spectral indices from PNOA images (2014-2024) combined with PCA and K-Means
enabled temporal clustering and detection of persistent features.

What is the implication of the main finding?

e  Spatially stable spectral anomalies suggest the presence of buried archaeological structures.
o The approach is scalable, cost-effective, and fully compatible with open-access
geospatial datasets.

Abstract

This study investigates the use of high-resolution RGB aerial imagery from Spain’s Na-
tional Aerial Orthophotography Plan (PNOA) for archeological feature detection through
spectral index analysis and unsupervised clustering. Focusing on the Roman site of Mu-
nigua, eight orthophotographs acquired between 2014 and 2024 were analyzed to compute
five RGB-based spectral indices: VARI, GLI, ExG, CSI, and BI. These indices were used to
detect surface spectral anomalies potentially linked to buried archeological structures. A
multi-temporal approach was employed, with Principal Component Analysis (PCA) and
K-Means clustering applied independently to each image. This allowed for the identifi-
cation of temporally persistent anomalies (areas that remained within the same spectral
cluster across multiple years), suggesting the presence of underlying anthropogenic fea-
tures. Despite the lack of near-infrared data, the combination of RGB-based indices and
temporal clustering proved effective for non-invasive prospection. The methodology is scal-
able, repeatable, and relies entirely on open-access datasets, making it suitable for broader
applications in heritage monitoring and landscape archeology. The results underscore
the potential of RGB imagery and time-series clustering in detecting subtle archeological
signals within complex vegetated environments.

Keywords: temporal clustering; RGB aerial imagery; spectral indices; archeological
prospection; Munigua
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1. Introduction

The field of archeological remote sensing has undergone a substantial transformation
in recent decades, driven by advancements in sensor technology, computational tools,
and the increasing availability of high-resolution geospatial data [1]. Aerial imagery, once
limited to analog photographs and coarse-resolution satellite data, is now widely available
at sub-meter spatial resolutions through national geospatial programs and commercial
platforms [2]. This evolution has enabled researchers to detect and interpret subtle land-
scape features that may indicate the presence of archeological structures, anthropogenic
modifications, or buried remains, even mines [3]. Among these data sources, RGB aerial
imagery has gained renewed attention for its accessibility, spatial detail, and compatibility
with automated image analysis techniques.

Unlike multispectral and hyperspectral sensors, RGB systems capture only the visible
spectrum (red, green, and blue bands), limiting their sensitivity to specific material or
physiological signatures [4]. However, their widespread availability and extremely high
spatial resolution (often 25 cm or finer) make RGB imagery valuable for revealing shape
patterns [5-7], useful for heritage detection and monitoring. Traditional archeological use
of RGB images has often relied on visual interpretation and manual digitization [8]. Still,
recent methodological advances now allow for quantitative analysis using derived spectral
indices and machine learning techniques [9].

Several RGB-based spectral indices have been developed to extract meaningful infor-
mation about vegetation vigor, surface brightness, and chromatic characteristics. Indices
such as the Visible Atmospherically Resistant Index (VARI), Green Leaf Index (GLI), Excess
Green Index (ExG), Color Saturation Index (CSI), and Brightness Index (BI) have been
widely used in agriculture, forestry, and urban studies [10,11]. These indices leverage the
relationships between RGB bands to highlight differences in plant health, soil exposure,
material reflectance, or surface disturbances, all of which may be indirectly linked to anthro-
pogenic activities or buried archeological elements. When computed over high-resolution
aerial imagery, these indices enable the identification of subtle spatial patterns that may go
unnoticed through visual inspection alone [12].

A critical advancement in this domain has been the integration of machine learning
for pattern recognition [13], classification, and anomaly detection [14]. Unsupervised algo-
rithms, such as K-Means clustering, Gaussian Mixture Models, and Self-Organizing Maps,
offer robust frameworks for grouping pixels with similar spectral behavior without requir-
ing labeled training data. These methods are particularly advantageous in archeological
applications, where ground-truth information is often sparse or unavailable [15]. When
applied to spectral index stacks or image composites, clustering algorithms can reveal
recurring spatial structures, isolate anomalous zones, and support automated segmentation
of the landscape into interpretable regions.

To enhance the performance of clustering, dimensionality reduction techniques such
as Principal Component Analysis (PCA) are often employed [16]. PCA transforms multi-
index or multi-band data into a set of uncorrelated components, concentrating the most
relevant variance while suppressing noise and redundancy. This preprocessing step not
only improves computational efficiency but also facilitates the discovery of latent spectral
signatures that may correspond to archeological features. When combined with temporal
imagery, this approach allows for tracking spectral stability or change over time, further
increasing the reliability of anomaly detection by differentiating persistent signals from
seasonal or environmental fluctuations [17].

Recent remote sensing research has shown that, despite its spectral limitations, RGB
imagery can be effectively used in archeological applications when integrated with modern
analytical workflows [18]. These include automated index computation, multi-temporal
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analysis, and the application of unsupervised learning to detect spatially coherent and
temporally consistent anomalies. Such methods are cost-effective, scalable, and applicable
to a wide range of geographic contexts, particularly where access to multispectral or active
sensors (e.g., LIDAR and SAR) is limited [19].

Considering these developments, this study contributes to the ongoing transition
toward automated, quantitative methods in archeological remote sensing. Although arche-
ological excavations may corroborate their existence [20], this work explores the capability
of RGB imagery to support spectral index-based analysis and machine learning-driven clas-
sification for identifying potential cultural features in the landscape. By demonstrating a
fully unsupervised pipeline for anomaly detection across multiple dates of high-resolution
RGB imagery, this research highlights the growing potential of accessible technologies for
heritage documentation, monitoring, and protection in data-rich environments.

The rest of this paper is organized as follows: after presenting the case study, Section 2
addresses the research methodology to compute RGB-based indices and perform temporal
clustering; Section 3 presents the results of these proceses, discussed in Section 4, where
the strengths, limitations, and implication of this research are described; finally, Section 5
draws the conclusions and suggests future work.

Case Study: The Roman Site of Munigua

The archeological site of Munigua, also known as Mulva, is located approximately
8 km from Villanueva del Rio y Minas and 50 km northeast of Seville (Spain) (Figure 1).
The southern region of the Sierra Morena is historically significant due to its former
mining activity [21-23]. Known in antiquity as Municipium Flavium Muniguense, the town
flourished due to its proximity to mineral resources, particularly iron and copper, which
were extensively exploited in the area.
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Figure 1. Location of the Roman site of Munigua (blue point). Approximate coordinates: Latitude
37.713225 N, longitude 5.740843 W.

Munigua occupies a prominent position on a hillside that overlooks a narrow valley
and the surrounding uplands, at an elevation of approximately 130 m above sea level. This
strategic topographical setting played a critical role in the development, layout, and sym-
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bolic organization of the settlement, particularly the construction of its terraced sanctuary,
which dominates the site from the highest point of the hill.

The site offers a uniquely well-preserved example of a small Roman urban center that
experienced substantial development following its elevation to municipal status under the
Flavian dynasty, particularly during the reign of Emperor Vespasian (69-79 AD) [24]. Its
remote location, limited post-Roman occupation, and continued archeological conservation
have contributed to the exceptional preservation of its architectural remains [25].

Munigua’s origins date back to at least the 4th century BC, with evidence of an earlier
Iberian settlement and ironworking activity preceding the Roman occupation [24]. The
city’s peak occurred between the late 1st century and the end of the 3rd century AD,
coinciding with major urban transformations linked to its newly acquired ius Latii [24,26].
The construction of several monumental buildings took place during this period [27],
including the terraced sanctuary dedicated to Fortuna and Hercules, a podium temple,
the forum, aediculae, thermal baths, and city walls, many of which still retain substantial
architectural integrity [28]. The terraced sanctuary (Figure 2), in particular, is of outstanding
ideological and architectural significance, drawing comparisons with Italic sanctuaries
such as Fortuna Primigenia in Praeneste and Hercules Victor in Tibur [29,30]. Research has
shown that, from the Flavian period onwards, public buildings occupied the upper and
eastern slopes, while domestic (habitational) structures were located on the lower terraces.
Of the three houses excavated, two follow the Roman atrium-house plan [31].

Figure 2. The terraced sanctuary of Munigua. Source: [32].

The city functioned as a civic-religious hub, integrating Italic urban planning models
into a rural Turdetanian context, possibly as part of a broader imperial strategy to assert con-
trol over indigenous populations through symbolic and administrative infrastructure [30].
Epigraphic evidence, including the tessera hospitalis issued under Augustus and inscriptions
honoring emperors and deities, reflects the site’s public and official character, dominated
by elite self-representation and the absence of lower-class funerary inscriptions [22,30]. The
settlement declined from the late 3rd century AD onwards, potentially triggered by a seis-



Remote Sens. 2025, 17, 3224

50f20

mic event affecting the lower terraces, as supported by recent geo-archeological studies [26].
Thus, research suggests that a combination of natural and anthropogenic processes shaped
the archeological record of Munigua. The dense Mediterranean woodland, particularly
holm oaks, helped preserve urban structures while hiding evidence of past agricultural
and mining activities [28].

Systematic excavations led by the German Archeological Institute since 1956, initially
under Wilhelm Griinhagen and later under Thomas G. Schattner and collaborators, have
provided extensive data on Munigua’s topography, architecture, and economy [20]. Recent
research has focused on generating a detailed three-dimensional reconstruction of the
city and understanding the spatial and functional relationships among its structures [25]
(Figure 3). The site also provides insights into various economic activities, such as iron
metallurgy, quarrying, olive cultivation, and animal husbandry, which sustained both
urban and rural populations within its territory [22].

Figure 3. Munigua’s urban fabric. Habitational spaces in the northeastern area. Source: [28].

Munigua is a heritage-listed site, a protected archeological zone due to its cultural
heritage significance [21]. It was declared a historic-artistic monument in 1931 as the ‘Mulva
Castle’ [33]. In addition, was designated as an asset of cultural interest (Bien de Interés
Cultural (BIC), in Spanish) in 1985 [34], and was included in the General Catalogue of the
Andalusian Heritage (Catalogo General del Patrimonio Histérico Andaluz (CGPHA), in
Spanish) in 2007 (at the regional level) and 2008 (nationally) [35]. Being managed by the
Junta de Andalucia, conservation efforts continue, particularly at the thermal complex and
key public routes, ensuring the long-term preservation of this exceptional case of Roman
urbanization in the Iberian Peninsula’s highlands.

2. Materials and Methods

This study employed a remote sensing-based approach using high-resolution RGB
orthoimagery from the National Aerial Orthophotography Plan of Spain (PNOA, from
the Spanish ‘Plan Nacional de Ortofotografia Aérea”) [36] to detect and monitor potential
archeological features. The methodology (Figure 4) integrates spectral index computation,
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unsupervised clustering, and temporal analysis to identify persistent anomalies that may
signal buried structures or anthropogenic disturbances.

2.1. Data Acquisition
(PNOA RGB Orthophotos 2014-2024)

4

2.2. RGB Spectral Indices
(VARI, GLI, ExG, BI, CSI Computation)
2.3. Spatial Index Mapping
(Index maps per image to detect anomalies)

2.4. Unsupervised Clustering
(PCA + K-Means on 4 Indices)

4

2.5. Temporal Clustering
(Persistence Analysis Across 8 Images)

y
2.6. Cluster Validation
(Elbow Method, Silhouette Score, GMM & Hierarchical Comparison)

Figure 4. Research methodology flowchart.

2.1. Data Acquisition

Eight orthoimages of the archeological site of Munigua were selected from 2014 to
2024. With a spatial resolution of 25 cm, all images were obtained from the PNOA program.
The images were acquired under varying seasonal conditions and lighting environments.
File naming conventions included the exact date of acquisition, enabling precise temporal
ordering for multi-temporal analysis.

2.2. Spectral Indices from RGB Data

Since PNOA images provide only visible bands (red, green, and blue), a set of spectral
indices adapted for RGB data was computed. These indices are sensitive to vegetation vigor,
surface brightness, and chromaticity, all of which can be influenced by buried archeological
features. The following indices (Table 1) were computed for each image on a per-pixel basis:

Table 1. Relationship of spectral indices used.

Index Equation Interpretation Typical Value Range
VARI - . .
(Visible Atmospherically CIR-B nghhghtﬁgggoertlelltlon using ~—1.0to +1.0
Resistant Index) y
GLI 2G7RfB . . .
(Green Leaf Index) CTRTB Detects green vegetation vigor —1.0 to +1.0 (typically 0.2-0.7)
ExG Enhances green tones .
(Excess Green Index) 2G-R-B (non-normalized) —255 t0 +255 (8-bit scale)
BI Detects brightness contrast
) VRZ L2+ B2 & C ~
(Brightness Index) RE+G +B (materials, soil) 0to ~441
CSsI R—B Highlights reddish or B
(Color Saturation Index) R+B chromatic materials 10to+1.0
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All indices were calculated using Python 3.11 through a fully scripted and reproducible
workflow. The NumPy library (version 1.26) was employed for array-based mathematical
operations. Each RGB orthoimage was ingested as a NumPy array using either OpenCV
(cv2) or scikit-image, depending on the input format. The spectral index formulas were
implemented as direct per-pixel operations across the red, green, and blue (RGB) bands of
each image.

For the dimensionality reduction and clustering phases, the scikit-learn library (version
1.4) was utilized. Each computed index layer was stacked to form a four-dimensional fea-
ture space (VARI, GLI, ExG, CSI), which was first standardized using z-score normalization.
This was followed by Principal Component Analysis (PCA) to reduce dimensionality while
retaining the most relevant spectral variance. K-Means clustering (with k = 4) was then ap-
plied to the PCA-transformed data, assigning each pixel to a spectral class. For robustness
and comparative analysis, Gaussian Mixture Models (GMM) with full covariance matrices
and Agglomerative Hierarchical Clustering with average linkage were also implemented.

Multi-temporal consistency was ensured by processing all eight orthoimages inde-
pendently using the same pipeline. Custom Python scripts iterated through each image
file, performing normalization, PCA, and clustering under identical parameter settings.
The resulting cluster maps were compared over time by tracking label consistency across
acquisition dates and identifying pixels presenting temporal cluster persistence, which is
key to distinguishing stable archaeological anomalies from transient environmental effects.

Visualization of results was conducted using a combination of Matplotlib (version
3.8) for spatial plots and index maps, Seaborn (version 0.13) for generating time-series
charts, and OpenCV for image blending and color mapping. All cluster maps and in-
dex images were exported in raster formats (e.g., PNG, JPG) using custom colormaps
tailored to highlight contrast and spectral differences across the site. Every figure pre-
sented in the manuscript was generated using these open-source Python tools, ensuring
full reproducibility.

2.3. Spatial Index Mapping

For each image and indeXx, spatial maps were generated and analyzed to detect surface
anomalies indicative of archeological relevance. These maps enabled the identification
of subtle patterns, such as alignments or textural differences, that correlate with buried
architectural remains. Particular attention was paid to differences in vegetation vigor and
brightness over time.

2.4. Unsupervised Clustering for Anomaly Detection

To classify spectral anomalies and isolate patterns with potential archeological mean-
ing, an unsupervised machine learning method using K-Means clustering (k = 4) was
applied. The RGB-based indices (VARI, GLI, ExG, and CSI) were stacked into a four-band
composite for each image. The resulting pixel vectors were normalized via z-score stan-
dardization and reduced to two dimensions using Principal Component Analysis (PCA).
This dimensionality reduction minimized noise while retaining the most discriminative
spectral variance [37].

The K-Means algorithm was then applied to the reduced feature space, assigning each
pixel to one of four spectral classes. The output cluster maps were color-coded and overlaid
onto the original orthoimages to assist in geographic and archeological interpretation [38].

2.5. Temporal Clustering for Anomaly Persistence Detection

To assess the persistence of spectral anomalies over time, the clustering process was
repeated independently for each PNOA image. By applying the same methodology to each
acquisition date, considering index calculation, dimensionality reduction via PCA, and
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unsupervised classification using K-Means (k = 4), consistent analytical conditions across
the multi-temporal dataset were sought.

Each image was processed to extract the four RGB-based spectral indices (VARI,
GLI, ExG, and CSI) on a per-pixel basis. These index layers were stacked and flattened
into feature vectors, filtered for valid numerical values, and normalized using z-score
standardization. A PCA transformation was then applied to reduce the four-dimensional
space to two principal components, retaining the most relevant spectral variance while
minimizing noise [37].

Following dimensionality reduction, K-Means clustering was performed on each im-
age independently. The output was a spatial cluster map assigning each pixel to one of four
spectral classes. These cluster maps were then overlaid on the corresponding orthoimages
to facilitate interpretation in a geographic context.

By comparing the cluster maps across all acquisition dates, spatially persistent anoma-
lies were identified, i.e., regions that consistently belong to the same or similar spectral
clusters throughout time. These persistent zones are of high archeological interest, as
they likely correspond to buried architectural elements, infrastructure remains, or anthro-
pogenic soil modifications that subtly influence surface spectral properties despite seasonal
or environmental variability. After all, the Roman archeological site being examined is a
well-maintained and curated location, a cultural heritage area open to the public. Thus, veg-
etation is fairly consistent, controlled to a low level throughout the year, which effectively
reduces spectral variability caused by natural phenological cycles. Therefore, seasonal
changes have a minimal effect on spectral signals, making additional modeling based on
weather or phenological data unnecessary. In this context, the approach of identifying
temporally persistent anomalies over several years remains a valid and reliable technique
for locating potential subsurface archeological features.

Considering the above, the temporal clustering approach enhances the robustness
of potential archeological feature detection by distinguishing true, stable anomalies from
ephemeral changes due to vegetation growth, lighting conditions, or moisture variability.

2.6. Cluster Validation and Algorithm Comparison

To support the methodological framework of the unsupervised classification process
and validate the choice of k = 4 in the K-Means algorithm, a two-step validation was
executed: (1) identifying the optimal number of clusters through conventional statistical
techniques, including the elbow method and silhouette score analysis, and (2) juxtaposing
K-Means clustering outcomes with those from alternative unsupervised algorithms, such as
Gaussian Mixture Models (GMM) employing full covariance estimation and Agglomerative
Hierarchical Clustering utilizing average linkage.

3. Results

This section presents the main findings derived from the RGB-based spectral indices
and clustering analyses applied to the high-resolution orthophotographs from the Spanish
PNOA program. Eight images, from 2014 to 2024, were analyzed individually and as a
multi-temporal dataset in order to detect and characterize archeological anomalies in the
Roman site of Munigua, Spain.

3.1. Spectral Index Behavior PER Acquisition Date

Five RGB-based indices were calculated for each PNOA image: the Visible Atmospher-
ically Resistant Index (VARI), Green Leaf Index (GLI), Excess Green (ExG), Color Saturation
Index (CSI), and Brightness Index (BI). Each index revealed different patterns of surface
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reflectance and vegetation vigor, potentially associated with anthropogenic structures or
buried remains.

e 30 December 2014: High values of Bl and moderate ExG were detected in open and
clear areas, suggesting minimal vegetative cover and high surface reflectance, possibly
due to exposed architectural elements;

e 17 February 2016 and 18 January 2018: Moderate to high VARI and ExG values indicate
increased vegetation in the surrounding areas, with slight enhancement of GLI in
vegetated sectors;

e 2 September 2020 and 9 June 2021: CSI and ExG increased noticeably, highlighting
contrasts in color tones due to changing soil moisture or vegetation senescence, which
may influence subsurface remains;

e 13 October 2021 and 13 June 2023: Lower GLI and VARI values coincide with increased
heterogeneity in CSI, suggesting seasonal senescence and localized anomalies that
might correspond to buried architectural features;

e 28 March 2024: The VARI index showed its highest peak, reflecting lush vegetation
growth in early spring, with corresponding low CSI and BI values in vegetated sectors.
However, certain zones retained high Bl and CSI values, potentially due to the presence
of stone surfaces or compacted soils.

3.2. Temporal Evolution of Spectral Indices

To understand how surface features evolve over time, the mean pixel values for each
spectral index were plotted per acquisition date.

Figure 5 shows the temporal evolution of BI (Brightness Index), revealing a general
decline from 2014 to 2020, possibly due to increased vegetation cover or image exposure
variability, followed by a sharp rise in 2024. Notably, the Bl minimum in 2020 aligns with
the highest vegetation activity observed in visual inspection.

Evolution of Brightness Index (BI) from PNOA RGB Images

Bl

Figure 5. Temporal evolution of the Brightness Index (BI) from PNOA RGB images (2014-2024).

Figure 6 presents the temporal trends of VARI, GLI, ExG, and CSI. The ExG index
showed significant fluctuations, peaking during mid-summer (2021) and late spring (2023),
correlating with phases of vegetation decline. CSI remained relatively stable across dates
but showed peaks in images with increased surface exposure, such as in 2021 and 2023.
Both VARI and GLI showed seasonal sensitivity, increasing in spring (2024) and dropping
in summer (2023), reflecting phenological cycles.
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Evolution of VARI, GLI, ExG, and CSI Indices from PNOA RGB Images
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Figure 6. Temporal evolution of VARI, GLI, ExG, and CSI indices from PNOA RGB images (2014-2024).

3.3. Spatial Patterns and Archeological Implications

Spatial index maps revealed discrete areas with consistently high or low index values,
which align with known archeological structures, paths, or buried architectural traces (see
Figures 7-14):

e ExG and VARI maps highlighted vegetated patches and anomalous greening over
rectilinear forms;

e  (CSI and BI were especially sensitive to lithological and soil composition variations,
accentuating linear anomalies consistent with walls or road alignments;

e Low GLI and ExG zones with high BI values coincided with open, compacted, or
stone-paved areas.
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Figure 7. Spatial indexes maps on 30 December 2014.
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Figure 9. Spatial index maps on 18 January 2018.
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Figure 13. Spatial index maps on 13 June 2023.
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Figure 14. Spatial index maps on 28 March 2024.

3.4. Multi-Temporal Clustering Results

Temporal anomaly detection through unsupervised clustering (K-Means, k = 4) en-
abled the classification of each pixel based on its PCA-reduced spectral signature. Cluster
maps showed persistent spatial features across multiple years, particularly:

e  Clusters consistently present in at least five of the eight acquisitions were mainly
concentrated in the northeast and western sectors of the site, where known structures
exist (e.g., forum, baths). On the other hand, the first two principal components
retained for clustering consistently captured the majority of the variance (typically
above 85%) across all processed image dates. Additionally, the component loadings
reflect balanced contributions from the four RGB-based indices (VARI, GLI, ExG, CSI),
confirming the relevance of each index in the dimensionality reduction step.

e  These zones also showed recurrent stability in Bl and CSI values, suggesting minimal
vegetation variability and persistent material exposure.

e  Contrarily, the southern and eastern vegetated zones presented more temporal vari-
ability in cluster affiliation, likely due to phenological or environmental factors rather
than archeological ones.

This persistent spatial clustering, corroborated by both spectral index values and visual
inspection, enhances confidence in identifying zones of archeological interest with minimal
false positives from ephemeral vegetation changes. In this way, it should be noted that
the assessment of minimal false positives is based on qualitative consistency, algorithmic
redundancy, and spatial-temporal alignment with known archeological features, rather
than on quantitative ground-truth validation.

4. Discussion

This study aimed to assess the potential of high-resolution RGB aerial imagery from
the PNOA program to support archeological prospection through the calculation of spectral
indices and unsupervised clustering. The findings demonstrate that even in the absence of
near-infrared (NIR) data, RGB-based indices can reveal meaningful spatial and temporal
spectral anomalies that are compatible with subsurface archeological features.



Remote Sens. 2025, 17, 3224

15 of 20

4.1. Temporal Patterns and Vegetation Dynamics

Figures 5 and 6 illustrate the temporal evolution of the five RGB-based indices across
eight acquisition dates from 2014 to 2024. The Brightness Index (BI) exhibited a downward
trend from 2014 through 2020, followed by a partial recovery in 2021 and a strong increase
in 2024 (Figure 5). This trend may reflect seasonal cycles, changing lighting conditions, or al-
terations in vegetation cover. The lowest Bl value observed in 2020 coincided with a period
of high vegetation growth, which typically reduces surface reflectance and consequently
Bl values.

The indices VARI and GLI (Figure 6), designed to highlight vegetation vigor using
green channel dominance, presented strong seasonal variability. Peaks were recorded
during the spring acquisition (28 March 2024), while lower values appeared in mid-to-
late summer images (e.g., 13 June 2023). These indices effectively captured phenological
changes and were useful in isolating non-vegetated surfaces where archeological anomalies
are more likely to manifest. Notably, areas with persistently low VARI and GLI and high BI
and CSI values tended to correspond with known excavation zones or structures partially
exposed on the surface.

The Excess Green Index (ExG), although not normalized, provided a strong vegetation
signal and was particularly useful in highlighting subtle differences in plant stress or
density across years. A significant drop in ExG occurred in the 2021 summer image, which
may reflect senescent or dried vegetation, potentially revealing spectral patterns associated
with buried remains.

4.2. Spatial Anomalies and Archeological Inference

The spatial distribution of indices per date, shown in Figures 7-14, revealed high-
resolution patterns that suggest the presence of subsurface features. Across nearly all
dates, rectilinear and geometric anomalies aligned with the known archeological layout of
Munigua, including the forum, baths, and surrounding infrastructure.

For instance, the spatial maps from 30 December 2014 (Figure 6) and 28 March 2024
(Figure 14) revealed consistently low ExG and VARI values along the same elongated
structures, suggestive of buried foundations or stone pavements. High CSI values along
these same paths (Figures 11 and 12) further supported the interpretation of dry, mineral-
rich soils typically found above buried architecture.

Importantly, changes in spectral index contrast across years, such as the shift observed
between 9 June 2021 (Figure 11) and 13 June 2023 (Figure 13), highlighted how seasonal and
environmental variability can obscure or enhance archeological visibility. In this regard, the
multi-temporal approach proved essential in separating persistent anomalies from seasonal
vegetation artifacts.

4.3. Cluster-Based Anomaly Detection

The implementation of unsupervised K-Means clustering on PCA-reduced index
data enabled a robust classification of spectral behavior across the study site. Clustering
results (as discussed in Section 3.4) aligned well with index-based anomaly locations,
confirming the capability of this method to generalize multi-index signatures into distinct
spatial classes.

A key outcome of the clustering procedure was the identification of spatially persistent
anomalies, clusters that appeared in the same locations across multiple years. These zones
likely indicate the presence of buried architectural remains that subtly influence vegetation
patterns or soil reflectance across time. The consistency of these features across dates adds
confidence to their archeological relevance.
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Additionally, comparing clustering outcomes across all eight images was useful to
highlight areas of temporal inconsistency, likely caused by external factors such as seasonal
vegetation change, atmospheric differences, or soil moisture variations. By isolating and
disregarding these transient anomalies, the method enhances the reliability of detecting
potential archaeological features in RGB-only datasets.

In addition, the elbow method and silhouette score analysis were applied to a sample
image set (an orthophoto taken on 9 June 2021), using the stacked spectral indices (VARI,
GLI, ExG, and CSI). The elbow method plots the within-cluster sum of squares (WCSS)
against different values of k (from 2 to 10). It shows a clear change at k = 4, indicating that
cluster compactness stops improving after that point. Similarly, silhouette scores peaked
around k = 4, indicating that this value strikes the optimal balance between cohesion within
clusters and separation between clusters. These results confirm that k = 4 is a reasonable
and statistically sound choice. Figure 15 shows the corresponding plot.
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Figure 15. Cluster validation using the elbow method and silhouette score analysis applied to spectral
index data (9 June 2021). Both methods indicate K = 4 as the optimal number of clusters.

Conversely, to evaluate the robustness of the K-Means results, a comparative analysis
utilizing two alternative clustering algorithms was conducted: Gaussian Mixture Models
(GMM) with full covariance estimation and Agglomerative Hierarchical Clustering with
average linkage.

The index stack was used to make a PCA-transformed feature space that all
three algorithms used. GMM and hierarchical clustering generated spatial patterns that
were mostly the same; however, K-Means consistently produced cluster boundaries that
were more compact and coherent, especially around known structural anomalies. Also,
K-Means required significantly less computational time, making it a suitable choice for the
multi-temporal application across the entire dataset (2014-2024). Figure 16 illustrates how
the three algorithms grouped the same orthophoto, demonstrating that K-Means outputs
are more intuitive and have better spatial clarity.
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Figure 16. Comparison of clustering algorithms applied to the PCA-reduced index space composed
of four RGB-based spectral indices (VARI, GLI, ExG, and CSI): (left) K-Means, (center) Gaussian
Mixture Model, and (right) Hierarchical Clustering.
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From the image, each color represents a distinct spectral cluster derived from un-
supervised classification: Cluster 0—Blue: Likely corresponds to low-reflectance areas
such as bare soil or shaded ground; Cluster 1—Cyan: Typically associated with moder-
ate vegetation cover or transitional zones; Cluster 2—Red: Highlights spectrally distinct
regions that may reflect compacted surfaces, buried structures, or archeological remains;
Cluster 3—Magenta: May indicate disturbed soils, anthropogenic modifications, or land
cover anomalies.

According to Figure 16, the spatial separation of clusters and consistency across meth-
ods reinforces the spectral differentiation of the landscape and supports the identification
of potential archaeological features.

4.4. Methodological Advantages and Limitations

The use of RGB imagery, despite the absence of NIR or SWIR bands typically used
in remote sensing for vegetation and soil discrimination, was shown to be effective for
archeological interpretation when combined with spectral indices and temporal clustering.
The selected indices (VARI, GLL, ExG, CSI, BI) proved complementary: while VARI and GLI
tracked vegetation vigor, CSI and BI captured soil color, texture, and material variations
relevant to archeological contexts.

One limitation is that some indices, particularly ExG, are not normalized and may be
influenced by lighting, image calibration, or seasonal effects. However, the use of PCA and
z-score normalization during clustering helped mitigate this issue, standardizing spectral
input across dates. Furthermore, although RGB data restricts access to deeper spectral
properties (e.g., moisture or material composition), its availability at ultra-high spatial
resolution (25 cm) compensates for this by enabling the detection of small-scale features
such as walls, foundations, and roads.

Another strength of this approach lies in its scalability: the methodology can be
adapted to larger sites or continuous monitoring using annually acquired orthoimages. It
also supports integration with other geospatial datasets, such as LIDAR [39] or multispectral
satellite imagery, enhancing hybrid archeological workflows.

4.5. Implications for Archeological Monitoring

Findings presented here highlight the utility of RGB imagery and spectral analysis for
non-invasive archeological monitoring. By tracking the temporal persistence of spectral
anomalies through multi-date clustering, this method provides a practical tool for detecting
and validating potential archeological features. It can also serve as a prioritization mecha-
nism for field campaigns, directing excavations toward zones with stable spectral patterns
suggesting anthropogenic modification.

Moreover, the ability to reveal features masked by vegetation or seasonal effects, espe-
cially when supported by consistent temporal clustering, demonstrates the value of multi-
temporal analysis in reducing false positives and identifying true archeological targets.

5. Conclusions

This study demonstrates the viability and effectiveness of using high-resolution RGB
imagery from the Spanish PNOA (Plan Nacional de Ortofotografia Aérea) program for
archeological feature detection through spectral indices and unsupervised temporal clus-
tering. Although RGB imagery lacks the near-infrared (NIR) and shortwave infrared
(SWIR) bands that are commonly used in remote sensing of vegetation and soil proper-
ties, the results indicate that carefully selected visible-spectrum indices, combined with
multi-temporal analysis, can yield significant archeological insights.
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Five spectral indices (VARI, GLI, ExG, CSI, and BI) were computed from RGB imagery
across eight acquisition dates between 2014 and 2024. These indices were selected to capture
subtle variations in vegetation vigor, soil brightness, and color contrast, all of which are
influenced by the presence of buried archeological remains. The spatial distribution of
these indices provided recurring visual signals aligned with known archeological features
at the Roman site of Munigua. In particular, features such as building outlines, roads,
and infrastructure appeared as spectral anomalies that persisted across multiple years and
vegetation cycles.

Temporal analysis of the indices revealed consistent patterns that correspond to both
seasonal changes and long-term surface characteristics. Notably, the Brightness Index
(BI) captured broader changes in reflectance potentially associated with soil moisture and
land cover. Meanwhile, the vegetation-sensitive indices (VARI, GLI, ExG) highlighted
shifts in surface vegetation density that may reflect anthropogenic soil disturbances. The
Color Saturation Index (CSI) proved particularly useful for identifying mineral-rich or
construction-influenced soils.

The application of unsupervised clustering via Principal Component Analysis (PCA)
and K-Means enabled the classification of per-pixel spectral behavior into stable spatial
groups. By repeating this classification independently for each image and comparing the
results over time, zones of temporal anomaly persistence were identified. These areas
consistently belonged to the same spectral class across different dates. These persistent
clusters are interpreted as highly likely indicators of buried archeological elements, based
on their spectral stability and spatial coherence.

The methodological framework presented here offers several advantages:

e  Scalable and repeatable: It can be applied to any geographic area covered by high-
resolution aerial imagery; it can be extended to longer temporal series;

e Robust to noise: The inclusion of temporal clustering and index normalization
helps mitigate the effects of seasonal vegetation changes, lighting differences, and
imaging artifacts;

e Integration-ready: The results can be fused with other geospatial datasets, such as
LiDAR or multispectral satellite imagery, to support archeological interpretation.

While this study focuses on RGB bands, which do not capture certain spectral phenom-
ena as effectively as NIR or SWIR domains such as those related to soil chemistry, moisture
content, or plant physiology, it demonstrates that valuable archaeological insights can
still be extracted using modern analytical techniques. Also, although clustering improves
interpretability, the archaeological significance of detected anomalies ultimately requires
expert validation or field verification.

RGB-based multi-temporal spectral analysis and clustering represent a powerful and
accessible toolset for archeological prospection and monitoring. The results from this study
of Munigua’s site underscore the method’s potential for detecting stable, high-confidence
anomalies that may indicate the presence of buried architectural remains. This research
contributes to the broader field of archeological remote sensing by offering a replicable,
low-cost, and data-driven methodology that leverages existing aerial imagery. Future work
may focus on integrating this method with thermal or radar datasets to further enhance
detection sensitivity, or on automating anomaly ranking systems to support large-scale
heritage assessments.
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