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Abstract

In manufacturing settings where humans and machines collaborate, understanding and
predicting human intention is crucial for enabling the seamless execution of tasks. This
knowledge is the basis for creating an intelligent, symbiotic, and collaborative environ-
ment. However, current foundation models often fall short in directly anticipating complex
tasks and producing contextually appropriate motion. This paper proposes a modular
framework that investigates strategies for structuring task knowledge and engineering
context-rich prompts to guide Vision–Language Models in understanding and predicting
human intention in semi-structured environments. Our evaluation, conducted across three
use cases of varying complexity, reveals a critical tradeoff between prediction accuracy and
latency. We demonstrate that a Rolling Context Window strategy, which uses a history of
frames and the previously predicted state, achieves a strong balance of performance and
efficiency. This approach significantly outperforms single-image inputs and computation-
ally expensive in-context learning methods. Furthermore, incorporating egocentric video
views yields a substantial 10.7% performance increase in complex tasks. For short-term
motion forecasting, we show that the accuracy of joint position estimates is enhanced by
using historical pose, gaze data, and in-context examples.

Keywords: human digital twin; human intention prediction; human motion generation;
human–robot collaboration; artificial intelligence

1. Introduction
The paradigm of digital twins has found widespread application in optimizing per-

formance across diverse industrial sectors, including manufacturing, aerospace, and en-
ergy [1,2]. However, conventional digital twins often prioritize technical system aspects,
frequently overlooking the human element crucial for Industry 5.0. Human-Centric Digital
Twins (HCDTs) aim to address this by integrating models of human behavior, cognition,
and even emotion, enabling personalized and adaptive feedback to human operators [3]. A
truly effective HCDT allows the predicted intention and motion to be utilized in several
ways: for real-time monitoring of operator performance; for providing semantic assistance
such as prompting the operator on the next step or flagging procedural errors; and for en-
abling a robotic assistant to proactively provide physical support. Such HCDTs promise to
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elevate safety, efficiency, and productivity in human–machine systems while concurrently
enhancing user experience and satisfaction [4]. Traditional automation systems exhibit
significant rigidity in High-Mix–Low-Volume (HMLV) industrial contexts, necessitating
substantial human intervention for customization and adaptation. The advent of Machine
Learning (ML), Artificial Intelligence (AI), and advanced automation technologies offers a
pathway towards more flexible solutions, particularly for Small and Medium Enterprises
(SMEs). These innovations can facilitate partial automation of labor-intensive tasks or en-
able collaborative human–robot workflows in which humans focus on complex reasoning
and dexterous manipulation while robots manage repetitive actions [5,6]. Digital twins of
these collaborative processes can further enhance skill transfer and enable remote over-
sight via Virtual Reality/Augmented Reality (VR/AR) [7,8]. Despite these technological
strides, industrial robotics largely remains confined to preprogrammed caged systems,
with collaborative applications still in their infancy. Recent breakthroughs in behavior
cloning [9], diffusion policies [10], high-fidelity simulators [11,12], and the proliferation of
Large Language Models (LLMs) [13,14] and Vision–Language Models (VLMs) [15] have ex-
panded the horizons for semantic understanding, task planning, and perception in robotic
systems [16,17].

Achieving robust spatial intelligence, such as forecasting detailed 3D human motion
from visual inputs in partially structured settings, remains an important biomimetic chal-
lenge. This requires emulating the innate human ability to predict others’ future actions by
synthesizing a rich stream of multimodal cues. For instance, when a person glances at an
empty cup and then stands up, this indicates a likely intention to get a drink. Such social
cognition relies on diverse sensory inputs, including body language, posture, tracking gaze
direction, recalling recent actions to understand context, and applying prior knowledge
about the task and environment. In order to create machines that can seamlessly and safely
work alongside people, artificial systems must be able to emulate this predictive ability.
Additionally, translating this understanding into accurate 3D motion prediction remains an
open problem. This predictive capability is paramount for robots to transition from reactive
assistance to smart collaboration.

To address this challenge, in this paper we propose a modular and scalable framework
that utilizes Vision–Language Models (VLMs) with motion diffusion techniques to predict
human intent and generate plausible future human motion in semi-structured environ-
ments. Instead of pursuing end-to-end training, this approach emphasizes the integration
of existing pretrained perception and reasoning modules. This design philosophy not only
makes the system more practical for SMEs with limited resources but also ensures adapt-
ability, as overall performance can improve with advancements in individual modules. To
validate this framework, three use case scenarios with varying levels of complexity are
utilized, including scenarios from existing datasets such as HaVID [18] and EgoExo4D [19].
This provides a systematic evaluation of the framework’s ability to perform context-driven
and intention-aware motion prediction. The remainder of this paper is structured as follows:
Section 2 reviews related research; Section 3 details the proposed framework; Section 4
presents the validation approach and experimental results; finally, Section 6 discusses the
implications of this work and outlines future directions.

2. Background and Related Work
The endeavor to create proactive robotic assistants capable of anticipating human

needs and actions draws upon several interconnected research areas. This section re-
views pertinent work in human intent prediction for Human–Robot Collaboration (HRC),
AI-driven human motion generation, the role of LLMs in robotics, and the critical aspect of
which datasets are available for these tasks.
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2.1. Human Intent Prediction for Collaborative Environments

Anticipating human intent is pivotal to enhancing safety, security, ergonomics, and
effective collaboration in Industry 5.0. Early work often focused on trajectory prediction
in constrained scenarios [20]. More recent approaches have sought to infer higher-level
goals. For instance, Huang et al. [21] proposed a hierarchical intention-tracking framework
for assembly tasks, utilizing OpenPose and Kalman filtering to track wrist positions and
infer both high-level task goals and low-level current actions. Similarly, Mangin et al. [22]
developed hierarchical planners that infer human goals using partially observable Markov
decision processes for procedural tasks. These methods underscore the importance of
structured task understanding.

The integration of richer sensory data and more sophisticated AI models is an on-
going trend. Zhong et al. [23] introduced a framework for human–robot task handover
that fuses a hierarchical human digital twin with deep domain adaptation while leverag-
ing spatiotemporal graph convolutional networks. Ding et al. [24] proposed a dynamic
scenario-enhanced network for predicting stochastic motions in customized assembly tasks,
highlighting the need to handle variability. The use of egocentric data has also gained
traction, with works like that of Mascaro et al. [25] developing intention-conditioned hi-
erarchical architectures for long-term action anticipation based on the Ego4D dataset [26].
However, many existing methods focus on recognizing intent from past actions rather than
on proactively forecasting future motion linked to that intent. They also often lack robust
integration with real-time simulation for physical plausibility.

2.2. AI-Driven Virtual Human Motion Generation

Generating realistic and controllable human motion is a long-standing challenge in
computer graphics and AI. The field has historically relied on motion capture (MoCap)
datasets, which provide high-fidelity kinematic data for a wide range of human activities.
A significant advancement was the creation of large-scale datasets such as HumanML3D
that pair MoCap data with natural-language descriptions [27]. Pioneering works such as
Adversarial Motion Priors (AMP) [28,29] trained Reinforcement Learning (RL) policies to
perform tasks while using a discriminator to ensure that the resulting motions were realistic
and stylistically similar to MoCap examples. This has been extended by models such
as Adversarial Skill Embeddings (ASE) [30] and Conditional Adversarial Latent Models
(CALM) [31], which focus on learning a low-dimensional latent space that can be sampled
to direct a character’s behavior.

With the advent of kinematic diffusion models, the Human Motion Diffusion Model
(MDM) [32] has demonstrated a remarkable ability to generate complex motions from text
prompts alone. However, because they lack physical grounding, these purely kinematic
approaches often produce physically implausible motions with artifacts such as foot-
sliding, floating, and ground penetration. PhysDiff [33] introduced a novel physics-guided
approach that incorporates a physics simulator directly into the diffusion process, thereby
correcting the motion to adhere to physical constraints.

Recent work has focused on creating unified controllers that combine the strengths of
generative models with the realism of physics-based simulation for more interactive and
multimodal control. MaskedMimic [34] presented a unified framework that formulates
physics-based character control as a versatile motion inpainting problem. It trains a single
controller to synthesize physically plausible full-body motions from partial or “masked”
inputs, which can include any combination of target joint positions, text commands, or
object interactions. Another state-of-the-art approach is CLoSD [35], which closes the
loop between motion planning and execution. It uses a real-time autoregressive Diffusion
Planner (DiP) to generate kinematic motion plans on-the-fly, which are then executed by a
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robust RL-based tracking controller in a physics simulator. However, these MoCap-based
methods often lack the rich scene-interaction context necessary for robustly forecasting
actions in unstructured real-world environments.

2.3. The Role of LLMs in Intelligent Robots

The advent of LLMs has opened up new avenues for enhancing the semantic under-
standing and planning capabilities of robotic systems. LLMs can parse natural language
instructions, reason about task goals, and even generate plans or code snippets for robotic
execution [14,16]. For instance, SayCan [17] demonstrated how LLMs can propose high-
level actions grounded by pretrained robotic skills. Singh et al. [16] developed ProgPrompt
using programmatic LLM prompts to generate executable plans. Ha et al. [36] explored
using LLMs to guide high-level planning for data collection, then distilling this into visuo-
motor policies. Further, efforts such as “Asking Before Action” by Chen et al. [37] empower
LLM agents to proactively seek information. These works highlight LLMs’ potential in
interpreting complex instructions and decomposing them into actionable steps. However,
they are primarily designed to interpret high-level commands and map them to a robot’s
own action space. They are not inherently structured to analyze a continuous stream of hu-
man motion and environmental context to proactively predict a human’s future intent and
generate a corresponding physically plausible motion trajectory, which is the central focus
of our work. The Magentic-One framework [38] showcases the potential of multi-agent
systems driven by LLMs for complex task solving. However, grounding LLM outputs
in the physical world, ensuring feasibility, and integrating them with continuous motion
generation remain active research areas.

2.4. Datasets for Human Motion and Intent

The development of robust models for intention-based motion generation is intrin-
sically linked to the availability of suitable datasets. Motion capture (MoCap) datasets
such as AMASS [39] and HumanML3D [27] offer precise 3D human kinematics. These
datasets are invaluable for learning the fundamental dynamics and stylistic nuances of
human movement. However, they are typically recorded in controlled laboratory settings,
and often lack the rich object interactions and complex environmental context necessary for
inferring high-level human intent. While some datasets, such as KIT Motion-Language [40],
pair motion with textual descriptions, these descriptions usually label the overt action
rather than the underlying intent or the broader task goal. Consequently, their utility for
training models that predict intent from a wider range of cues is limited. Conversely, video-
based datasets such as Ego4D [26], EgoExo4D [19], Assembly101 [41], and HaVID [18]
provide a wealth of visual context, capturing humans performing tasks in more natural
and often cluttered environments. Ego4D, with its extensive collection of egocentric video,
offers a first-person perspective on daily activities. EgoExo4D complements this with
synchronized exocentric views, providing a more holistic understanding of human actions
and interactions within a scene. Assembly101 focuses specifically on procedural assembly
tasks, offering structured sequences of actions. HaVID [18] contributes a dataset focused
on human assembly with an emphasis on comprehensive knowledge understanding, in-
cluding granular action annotations. These datasets are more conducive to understanding
human–object interactions and inferring short-term goals or intentions from visual cues
and task progression. However, extracting precise full-body 3D human motion comparable
to MoCap quality from these “in-the-wild” videos remains a significant challenge, often
relying on human pose estimation via methods such as Multi-HMR [42].
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This reveals a critical gap in the lack of a unified framework capable of utilizing rich
multimodal human observations such as visual data, pose dynamics, and gaze together
with formal task knowledge. A bridge to connect the semantic long-term understanding
derived from these inputs with a physically plausible forecast of future movements is
currently lacking.

The present work directly addresses this gap by proposing a novel modular framework
that creates a pipeline using the necessary context from these specific multimodal inputs
for semantic intent prediction, ultimately providing context-aware motion synthesis. This
approach provides a solution for proactive forecasting, a necessary capability for enabling
symbiotic human–machine systems in complex environments.

3. Proposed Framework
A modular framework is proposed to enable intelligent HRC by predicting human

intention and future pose. This methodology is designed to bridge the gap between short-
term motion forecasting and long-term action planning, ensuring that predictions are both
physically plausible and contextually appropriate.

Let the input at any given time t consist of a history of video frames V = {Ik}t
k=1,

extracted human poses P = {Pk}t
k=1, and static high-level task knowledge Ctask. The

framework, represented by a function F , processes this context to provide three outputs:
the predicted task state St, a forecast of future hand positions Ĥt+∆t = ((xl , yl), (xr, yr)) for
a time horizon ∆t, and a full-body 3D motion trajectory M̂ti = {x̂ti+1, . . . , x̂ti+Npred}.

As shown in Figure 1, the proposed framework has three primary modules: a Per-
ception and Scene Representation Module that processes raw visual data; an AI-driven
Reasoning and Prediction Module that infers task state and forecasts future actions; and a
downstream Motion Generation Module that synthesizes full-body 3D motion. The specific
functions of each of these modules are detailed in Sections 3.1–3.3. This modularity allows
for the individual modules to be upgraded as technology advances. While the framework
provides the necessary predictive outputs for a complete Human-Centric Digital Twin
(HCDT), the implementation of feedback and physical assistance mechanisms is designated
as future work.

3.1. Perception and Scene Representation

The framework adopts the Skinned Multi-Person Linear Model with Extensions
(SMPL-X) [43], which provides a parametric model for body shape β, pose θ, and expressive
hand and face parameters ψ. To obtain the pose parameters from monocular RGB video,
we employ World-Grounded Human Motion Recovery via Gravity-View Coordinates
(GVHMR) [42,44]. GVHMR reconstructs human pose in a global gravity-aligned coordinate
system. For kinematic motion generation, the SMPL-X poses are subsequently converted
into the representation utilized by HumanML3D [27]. This format captures frame-relative
information such as root angular and linear velocities (ṙa, ṙx, ṙz), root height (ry), and local
joint positions, rotations, and velocities (jp, jr, jv), along with foot contact features ( f ). This
relative encoding facilitates the generation of smooth and continuous motions.
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Figure 1. Conceptual overview of the proposed modular framework for Human Intention Prediction-
based Motion Generation. Information flows from the physical system through the perception and
reasoning modules to generate a final motion prediction.

Additionally, this module is required to convert the VLM’s 2D predictions into 3D
world coordinates. To convert 2D predictions into 3D locations, we combine dense camera-
frame 3D from UniK3D [45] with the rigid transforms produced by GVHMR. Figure 2
summarizes the process. UniK3D returns per-pixel 3D points Xc(u, v) ∈ R3 for the input
image. Additionally, GVHMR is used to find the transformation that maps the camera-
frame to a gravity-aligned human-centric frame: Xh = Rc→h Xc + Tc→h. We render the
camera frame SMPL mesh (from GVHMR) together with the scene point cloud (from
UniK3D). An offset is estimated to co-locate the human in both modalities. We obtain the
pelvis pixel (up, vp) from ViTPose (used by GVHMR) and sample UniK3D at (up, vp) to
obtain the 3D coordinates of the pelvis position pc. We compare pc with the pelvis position
of the SMPL mesh in the camera frame and apply the resulting transformation to align
the mesh with the point cloud. In our experiments, minor manual refinements of this
alignment were applied as needed. Given a 2D point of interest (u, v), we compute

Xh = Rc→h Xc(u, v) + Tc→h. (1)

The resulting 3D target is passed to the motion module as the goal position for a
selected joint (e.g., wrist or pelvis), as further described in Section 3.3.

For specialized applications requiring different or higher-precision grounding, this
module can be extended to incorporate other engineered approaches, such as processing
fiducial markers.

This module also incorporates human gaze target analysis, which provides a cue for
immediate intent. A change in the operator’s gaze target is often a useful indicator of a
change in intention, and the location of the gaze target frequently correlates with the area
or object that the operator intends to interact with next. Techniques such as Gaze-LLE [46]
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can be employed for gaze target tracking to further enrich the context provided to the
reasoning and intent prediction module.

Figure 2. The 3D grounding process combines dense 3D from UniK3D [45] with the camera-to-world
transform from GVHMR [44] to convert 2D pixel coordinates into 3D world coordinates.

3.2. AI-Driven Reasoning and Intent Prediction

This module serves as the cognitive core of the framework. The integration of VLMs
for high-level reasoning about tasks and intent requires appropriate data structures. Task
dependencies are modeled using formalisms such as Directed Acyclic Graphs (DAGs),
which define the valid sequence of actions and states. Alternative formalisms, such as
Planning Domain Definition Language (PDDL) [16], Knowledge Graphs (KGs), or Behavior
Trees (BTs) [17,47], can also be integrated. For any use case, a common operational flow
is followed. Initially, task-specific knowledge such as assembly instructions, procedural
steps, or an example video is provided to the system. This involves a collaborative effort in
which an AI model generates an initial draft of a task representation (i.e., an action graph
and state schema), which is then refined by human experts. This task representation forms
a critical part of the context, encompassing the overall goal, a mechanism for state tracking,
decomposition into smaller actions, and their respective dependencies.

The prediction process follows a two-phase approach. The VLM analyzes video
frames and appropriate context from the perception module along with the task graph
in order to first output an updated Task State in a structured JSON format. Here, the
system identifies the completed steps, in-progress steps, available steps, and immediate
next step. In the second phase, the VLM uses this updated task context and multimodal
data from the perception module to forecast the exact pixel coordinates (x, y) for both hands
of the operator at a future time horizon. This two-phase pipeline is illustrated in Figure 3.
This two-phase approach is crucial because it decouples long-horizon semantic reasoning
about the overall task from short-horizon spatiotemporal forecasting of immediate motion,
allowing each phase to be optimized with the most relevant context. In this module, various
prompting strategies are investigated to optimize the VLM’s predictive accuracy, which are
discussed in Section 5.
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(a) (b)

Figure 3. The two-phase pipeline of the Reasoning and Intent Prediction Module. (a) In the first
phase, the VLM uses the task graph and visual information to update the overall task state; (b) in
the second phase, it uses this state along with a sequence of recent frames and additional context to
predict the operator’s future hand positions.

3.3. Human Motion Generation

As a final, downstream step, the high-level predictions from the Reasoning and In-
tent Prediction Module are used to drive the Motion Generation Module. This module
is crucial for visualizing the predicted intent as a full-body 3D motion. The core of this
module adapts the CLoSD framework [35], which builds upon the Human Motion Dif-
fusion Model (MDM) [32]. The CLoSD framework utilizes a forward diffusion process
q(xt|xt−1) = N (xt;

√
αtxt−1, (1 − αt)I) that gradually adds noise to a motion sequence,

while the reverse process pθ(xt−1|xt) = N (xt−1; µθ(xt, t), σ2
t I) learns to denoise it by mini-

mizing an L2 loss Lsimple = Ex0,t[∥x0 − x̂0∥2
2]. The model receives the previous 40 frames

of motion data in HumanML3D format and synthesizes the future motion sequences for
the next two seconds (60 frames). This is additionally conditioned on a textual prompt and
a target joint (e.g., right_wrist, pelvis) and its target 3D location. Hence, the Human
Motion Model synthesizes a physically plausible and semantically guided future motion
sequence. This motion sequence is subsequently visualized in a virtual representation of
the real environment provided by a 3D point cloud created by the perception module’s
depth estimation model.

4. Framework Validation and Use Cases
This section validates the proposed framework by applying it to three diverse use

cases. Each scenario is designed to test the framework’s predictive capabilities in a different
context of varying difficulty.

4.1. Use Case 1: Chair Stacking Scenario

This use case introduces a predictable task to demonstrate the framework’s core
capabilities: a person moving a toolbox from a chair and then stacking several chairs in a
domestic environment, as shown in Figure 4.
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Figure 4. Use Case 1: Stacking task in a domestic setting.

The initial phase involves human–AI collaboration to define the task context. An AI
model analyzes a sample video of the task or textual instructions to propose an initial
“Task Context Description”. This description includes the overall goal (e.g., “stack all
chairs in the designated area”), a state representation (e.g., operator holding status, ordered
list of stacked chairs), a decomposition of actions (e.g., “walk to turquoise chair”, “pick
up red chair”, “transport turquoise chair”), and their dependencies. This draft is then
reviewed and refined by a human. The LLM’s output is a JSON object representing the up-
dated state variables based on the task graph, including gaze_target, operator_holding,
num_chairs_stacked, steps_completed, and steps_available.

In the first phase, the overall task state is predicted by the framework. When the
overall task state is understood, the framework can proceed to a more granular short-term
motion prediction task, as illustrated in Figure 5. For this, the VLM is provided with a
rich multimodal context. This includes a sequence of the ten most recent image frames,
captured at intervals of 0.2 s. Each frame is augmented with vital information: a heatmap
indicating the operator’s gaze target, an overlay of the estimated human pose, and the
precise normalized pixel coordinates and velocities of the operator’s hands. The model is
also provided with the current sub-task description in text form (e.g., “transport turquoise
chair”). The VLM’s objective is to analyze this temporal sequence, then, informed by the
task context, to predict the exact pixel locations of the left and right hands two seconds
after the final frame in the sequence. This approach moves beyond simple kinematic
extrapolation, compelling the model to make a physically and semantically plausible
forecast based on an understanding of the human’s immediate goal.

Depending on the approach, the x, y pixel coordinates or the target object can be
processed to find the world-frame coordinates of the target joint, as described in Section 3.1.
This is further employed in the motion generation module. Figure 6 illustrates the motion
generation results for the chair-stacking use case while performing Task 4: “place toolbox
on chair”.

The modularity of the framework also allows for flexible integration of alternative
motion visualization methods. One such alternative is the use of AI driven image-to-video
generation tools. In this approach, the reasoning and intent prediction module of the
framework generates a text prompt describing the predicted intent. The prompt and the
starting frame of the sequence are passed to a video generation model. This method is
not suitable for real-time prediction due to significant computational latency. Additionally,
it can sometimes lead to physically implausible hallucinations. However, it serves as a
powerful tool for visualization. Figure 7 illustrates a comparison between actual motion
frames and those synthesized by the Wan2.1 framework [48] using this technique.
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Figure 5. Hand position prediction for Stacking scenario.

(a) (b)

Figure 6. Visualizations for Task 4 within the Stacking use case. (a) Starting position (in red) and
ground truth of the human’s motion (in green) as they place the toolbox on the table; (b) generated
motion (in blue), with the yellow line representing the target vector for the position of the left wrist.
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(a)

(b)

Figure 7. Comparison of actual and AI-generated motion frames for placing a toolbox: (a) actual
motion frames and (b) AI-generated motion frames.

4.2. Use Case 2: Assembly Task

The second use case leverages the Human Assembly Video Dataset (HaVID) [18] to
evaluate the framework’s performance on fine-grained industrial assembly tasks. HaVID’s
detailed annotations of actions provide a rich ground truth for assessing intent prediction.
This use case demonstrates the framework’s applicability to tasks with clear SOPs, common
in manufacturing environments [49]. PDF assembly instructions and exploded assembly
drawings for a task such as HaVID’s “Cylinder Assembly” are first used with AI assis-
tance to generate a comprehensive action graph (DAG) and a suitable state representation
(Figure 8). Given the potential for variations in assembly sequences, multiple valid paths
through the DAG are considered.

Figure 8. Directed Action Graph (DAG) for Assembly Task based on the HAViD dataset.
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Ground truth states for selected HaVID video segments are then generated by trans-
lating HaVID’s temporal annotations into the state representation format in a process
facilitated by AI with human oversight. These ground truth states serve for in-context
learning examples as well as for evaluation. As detailed in the previous use case, the
system first predicts the system state. This is followed by a fine-grained prediction of hand
positions to forecast the operator’s immediate movements, applying the same multimodal
analysis approach (Figure 9).

Figure 9. Hand position prediction for Assembly scenario.

The results of this intent-aware forecasting are then used to generate plausible future
motion, as visualized in Figure 10.

(a) (b)

Figure 10. Visualizations within the HAVID Assembly use case. (a) Ground truth of the human’s
motion over the previous 1 s (in green) and (b) generated motion (in blue), indicating the expected
motion of the human’s hand.

4.3. Use Case 3: Cooking Scenario

To test the framework against long-horizon and complex tasks, the third use case
utilizes the EgoExo4D dataset [19]. This dataset is particularly suitable for this research
because it includes synchronized egocentric and exocentric video streams along with
rich temporal annotations, including task and keystep-level labels. A challenging noodle
cooking scenario was selected for which multiple recordings from the same kitchen location
were available, providing ideal in-context learning examples.

The cooking task (Figure 11) introduces distinct challenges that are not as prevalent
in the other scenarios. It involves a much larger time horizon, and the state of the task
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is often ambiguous and not easily discernible from visual cues alone. For instance, by
observing a single frame or even a short sequence of an idle cook, it is difficult to determine
if the vegetables are fully chopped or if the noodles have finished boiling; furthermore, the
scenario includes significant periods of inactivity or “waiting” during which the operator’s
next action is not imminent. While the overall task has a clear structure, the cook does not
need to move from completing one sub-task to immediately carrying out the next, making
the precise timing of future actions inherently unpredictable.

Figure 11. Sample action graph for Cooking scenario.

Despite these complexities, the framework follows the established two-phase predic-
tion process, with the AI agent first predicting the current action or task state, then using
this to inform a fine-grained hand position prediction. A key distinction in this use case
is the augmentation of the VLM’s context with first-person egocentric frames, which are
provided to the model along with the primary exocentric view and gaze data, as shown
in Figure 12. For brevity, only half the context frames are shown in the figure. The RGB
frames provided as context are also omitted.

Figure 12. Hand position prediction for Cooking scenario.
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5. Framework Performance Evaluation
Evaluating the performance of the proposed framework requires a multi-faceted

approach, as no single established benchmark currently exists for the end-to-end task
of context-aware human intention and motion prediction. Our work aims to lay the
groundwork for such a benchmark; therefore, we define a set of specialized metrics to assess
both the high-level semantic understanding (Phase 1) and low-level motion prediction
accuracy (Phase 2), and report results across diverse use cases.

To evaluate the frame-wise prediction of the task state, we use a weighted F1-score,
which is well-suited for this multi-label classification problem [50]:

F1 = 2 · P · R
P + R

=
2TP

2TP + FP + FN
(2)

where TP, FP, and FN are the counts of true positives, false positives, and false negatives,
respectively, and P and R are the precision and recall, respectively. The overall Task State
Accuracy (TSA) is calculated as a weighted sum of the F1-scores for the classification of
completed steps, in-progress steps, available steps, and the immediate next step, as follows:

TSA Score = (wcF1c + wpF1p + waF1a + wnF1n) (3)

where F1c, F1p, F1a, and F1n are the F1-scores for the completed, in-progress, available, and
immediate next steps, respectively, with weights wc, wp, wa, and wn.

Table 1 presents performance figures for the Task State Accuracy. A central observation
is the tradeoff between accuracy, latency, and cost. A baseline strategy of providing only
a single image to the Vision–Language Model (VLM) consistently underperforms due to
the lack of historical context or “memory”. For a balance of performance and latency,
a Rolling Context Window (RCW) strategy was employed using ten frames spaced one
second apart, augmented with the predicted state from the initial frame. However, this
approach is prone to consistency bias; if the model erroneously determines that a step has
been completed, it often fails to revise this belief, causing subsequent predictions to suffer.
When this strategy is tested with the ground-truth state provided as context, performance
is significantly higher and becomes less dependent on model size, with smaller models also
performing well. This approach can achieve near real-time predictions (within 2–3 s) when
using the low-latency Gemini 2.5 Flash-Lite model, whereas Gemma and the standard
Gemini 2.5 Flash models average closer to 10 s. The best accuracy is achieved using in-
context learning, where a similar full example video and corresponding evolution of its
ground-truth state are provided in the prompt. While effective, the associated latency
makes this approach impractical for real-time applications with current technology.

The inclusion of additional visual cues yielded mixed results. A significant improve-
ment was observed by incorporating egocentric first-person views in the EgoExo4D-based
Cooking scenario, where performance increased from 0.568 to 0.629, a 10.7% improvement.
In contrast, adding gaze target heatmaps, when averaged over all experiments, led to only
an inconsistent and marginal 3% performance increase, from 0.667 to 0.688. We theorize
that the egocentric perspective provides a more reliable signal of operator attention than
gaze target heatmaps. In addition, this suggests that while gaze data are valuable, their
primary utility may be in predicting short-term hand motion, as discussed later, rather than
long-horizon task state analysis.
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Table 1. Aggregated performance scores and rankings for Task State Accuracy.

Task-Specific Score Performance

Exp. Group Model Stack Assembly Cooking Overall Rank

Single Image Gemini 2.5 Flash Lite 0.557 0.367 0.285 0.403

RCW with Ground Truth

Gemini 2.5 Pro 0.784 0.794 0.726 0.768 1
Gemini 2.5 Flash 0.763 0.781 0.721 0.755 2
Gemini 2.5 Flash Lite 0.703 0.724 0.813 0.747 3
Gemma-27B 0.674 0.776 0.689 0.713 4

In-Context Learning
Gemini 2.5 Flash 0.793 0.634 0.703 0.710 1
Gemini 2.5 Pro 0.850 0.689 0.578 0.706 2
Gemini 2.5 Flash Lite 0.703 0.637 0.571 0.637 3

RCW with Predicted State

Gemini 2.5 Pro 0.780 0.753 0.520 0.684 1
Gemini 2.5 Flash 0.735 0.679 0.535 0.650 2
Gemini 2.5 Flash Lite 0.695 0.642 0.567 0.635 3
Gemma-27B 0.634 0.659 0.478 0.590 4

An effective strategy for LLMs should achieve high performance with minimal com-
putational cost. Figure 13 illustrates the tradeoff between performance and the average
number of tokens generated, which is a proxy for computational expense.

While providing more context can enrich a model’s understanding, this approach is
not without drawbacks. In addition to the obvious increases in latency and cost, simply
allocating more test-time compute by expanding the context can be actively detrimental to
performance. Recent work has highlighted the phenomenon of inverse scaling in test-time
compute, where model performance paradoxically decreases as they are provided with
more computational resources to generate a response [51]. This suggests that models can
“overthink” or become lost in an unnecessarily large context, leading to performance degra-
dation. The ICL strategy, with its massive token count, runs a higher risk of encountering
this issue. By being more selective with the provided context, RCW methods not only
reduce latency and costs but also mitigate the risk of inverse scaling, demonstrating a more
robust and efficient approach.

The temporal aspect of the predictions is critical. We plotted the timeliness of the
model’s determination that a step was completed for each use case. The results show
good agreement for the Stacking and HaVID scenarios; however, the prediction of subtask
completion times for the Cooking scenario is less accurate, which is attributed to the
ambiguous nature and prolonged waiting periods inherent to that task. The visualization
for the best-performing models for each use case is shown in Figure 14.

For the second phase, consisting of predicting future hand positions, the Normalized
Mean Position Error (NMPE) is used. This metric calculates the average L2 norm (Euclidean
distance) of the pixel error between the predicted and ground-truth hand coordinates,
normalized from 0 to 1000:

NMPE =
1
N

N

∑
i=1


√
(xp,l − xg,l)2 + (yp,l − yg,l)2

i
+

√
(xp,r − xg,r)2 + (yp,r − yg,r)2

i
2

 (4)

where the subscripts p, g, l, and r respectively denote predicted, ground-truth, left hand,
and right hand for each prediction instance i out of N.
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Figure 13. Performance score versus the average number of tokens per generation.

(a)

(b)

Figure 14. Cont.
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(c)

Figure 14. Visualization of model performance across different use cases: (a) Stacking, (b) Assembly,
and (c) Cooking.

While NMPE measures accuracy, it does not capture the exploratory nature of a
model’s predictions. A model that simply predicts minimal movement from the last known
position might achieve a low NMPE but fail to anticipate significant goal-directed actions.
To quantify this, a Prediction Diversity metric is introduced. This metric measures how far
a prediction deviates from the recent trajectory, rewarding predictions that are not mere
extrapolations. It is calculated as the average of the Euclidean distances from the predicted
point to both the average position and the final position of the hand in the input sequence,
normalized by the standard deviation of the input positions:

Diversity =
D(ppred, p̄in) + D(ppred, plast)

2
√

σ(pin,x)2 + σ(pin,y)2
(5)

where ppred is the predicted position, p̄in is the average position of the input trajectory, and
plast is the last position in the input trajectory. Figure 15 shows the detailed error analysis
for a sample experiment using the Assembly scenario.

Figure 15. Sample Error Analysis for hand position prediction in Assembly scenario.
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The performance of our two-phase pipeline is detailed in Table 2, which presents
a breakdown of the Normalized Mean Position Error (NMPE) and Prediction Diversity
across various use cases. The NMPE serves as our primary metric for motion prediction
accuracy, while the Prediction Diversity quantifies the variability of the generated motion
forecasts. A higher diversity score indicates the model’s capacity to predict significant goal-
directed actions rather than simple extrapolations. Our findings show a consistent tradeoff
between these two metrics, with higher prediction diversity often coming at the cost of
increased position error. Additionally, we include the results of an ablation experiment
using the Assembly scenario. In this “No Context” experiment, we performed hand position
prediction without the task context from Phase 1. This resulted in a substantial degradation
in performance, with the NMPE increasing to 202.35. This outcome underscores the
necessity of our two-phase approach, which decouples long-horizon semantic reasoning
from short-horizon spatiotemporal forecasting. Furthermore, our results consistently
showed that few-shot predictions with one or two in-context examples provided significant
accuracy improvements over a zero-shot approach.

Table 2. Normalized Mean Position Error (NMPE) and Prediction Diversity by use case.

Use Case Model Gaze Data Examples NMPE Diversity

Stack

Gemini 2.5 Flash Lite Yes 2-shot 109.46 2.02
Gemini 2.5 Flash Yes 2-shot 111.71 3.48
Gemma 3 27B Yes 0-shot 114.97 2.33
Gemini 2.5 Flash Lite No 2-shot 120.58 2.08
Gemini 2.5 Flash Lite Yes 0-shot 121.74 1.42
Gemini 2.5 Pro Yes 2-shot 152.68 5.68
Gemini 2.5 Pro Yes 1-shot 181.76 6.14

Assembly

Gemma 3 27B N/A 1-shot 72.19 0.81
Gemini 2.5 Flash Lite N/A 2-shot 74.70 1.20
Gemini 2.5 Flash Lite N/A 0-shot 76.04 1.27
Gemini 2.5 Flash N/A 2-shot 81.85 3.67
Gemini 2.5 Pro N/A 1-shot 139.40 12.49
Gemini 2.5 Pro (No Context) N/A 0-shot 202.35 23.05

Cooking

Gemini 2.5 Flash Lite Yes 0-shot 70.16 1.04
Gemini 2.5 Flash Lite Yes 1-shot 70.88 1.19
Gemini 2.5 Flash Lite No 1-shot 74.49 1.31
Gemini 2.5 Flash Yes 2-shot 78.36 2.69
Gemini 2.5 Pro Yes 1-shot 89.34 3.37

6. Discussion and Future Work
The proposed modular framework advances the development of proactive robotic

assistants by integrating state-of-the-art Vision–Language Models (VLMs) for high-level
intent prediction with advanced models for perception and motion synthesis. This approach
addresses key limitations in prior work. Unlike action recognition models, which are
confined to limited classes [52,53] or context-agnostic pose forecasting methods [54,55],
our framework leverages the generalized reasoning capabilities of VLMs to interpret
multimodal context. By engineering this context through structured task graphs and rich
perceptual data, the system can infer human intent in a way that is more aligned with the
complexities of real-world tasks.

Prior work in social and assistive robotics often incorporates human intention within
a narrow scope, such as to assess a user’s engagement level [56] or emotional state [57]
and respond appropriately. Such unstructured interactions do not involve completing a
specific industrial task or adhering to formal Standard Operating Procedures (SOPs). In
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contrast, our framework is designed to predict task-based intentions within structured
goal-oriented workflows.

Despite its promise, the proposed framework has several limitations that can guide
future research. The framework’s current reliance on predefined task graphs, even when AI-
assisted, restricts its applicability in completely unstructured or novel scenarios where a task
plan is not available beforehand. Furthermore, the motion generation pipeline is not object-
aware; while it utilizes the CLoSD model [35] for physically plausible motion synthesis,
the generated motions do not explicitly account for geometric interactions with specific
objects in the environment. We address this limitation pragmatically by decoupling scene
understanding from motion synthesis. The VLM, which is object-aware through its analysis
of visual input, predicts a target 3D coordinate for a joint (e.g., placing a hand on a specific
object). This 3D point then serves as a goal for the object-agnostic motion generation module.
While this approach functions as an effective workaround, a fully integrated object-aware
motion model would be superior. Future work will explore integrating emerging models for
physics-based human–object interaction within our modular framework. However, these
methods often rely on datasets with a limited variety of objects and interactions [58–60].
Finally, the use cases are centered on a single human operator, whereas many industrial
environments involve complex multi-human collaborations, which introduces additional
challenges such as occlusion and the need to interpret social dynamics.

To address these limitations and expand the framework’s capabilities, several avenues
for future work are identified. A limitation of the current implementation is its reliance on
a fixed-interval prediction cycle where motion is forecast at regular time steps regardless of
the task’s dynamic context. Instead, an event-driven prediction framework can be explored
where inference is triggered by salient cues, such as a sudden shift in gaze or the completion
of a task step.

To improve generalization, methods for dynamically generating and adapting task
graphs from observation may be explored, enabling the system to reason about unfamiliar
workflows. Techniques inspired by multi-agent systems research [38] could offer novel
ways to coordinate the flow of information and aid decision-making. However, this
approach is expected to add more latency to the system. Prompting strategies might be
explored to encourage the VLM to recognize uncertainty and proactively seek clarification
when its confidence is low or when critical information is missing, drawing inspiration from
approaches such as [37]. Incorporating mechanisms for learning from human feedback
or corrections during interaction [61] could allow the system to adapt and respond to
task requirements and individual preferences. Further research could also explore the
integration of additional context modalities such as audio, physiological signals, or data
from IoT sensors to create a more holistic understanding of the operational environment.

Another promising future direction is to use our framework’s proactive capabilities
to enhance reactive impedance controllers for human-guided robots. By generating an
anticipatory signal of where the user intends to move, an impedance controller can optimize
its response in advance rather than reacting solely to force. This would lead to a more sym-
biotic physical interaction with reduced human effort and improved task performance [62].
In addition to predicting human intent for proactive assistance, the accurate forecasting
of hand positions would also provide a critical safety layer for HRC. Anticipating human
movement could enable robots to adjust their trajectories or speeds to avoid collisions,
contributing to enhanced safety during human–robot collaboration. This capability is
crucial for the adoption of heavy-payload robots in collaborative manufacturing, where
safety concerns have historically been a major hurdle [63].

HCDTs powered by such human-centric situational awareness can serve as a virtual
mentor for training. In addition, they can predict and flag ergonomically hazardous move-
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ments to prevent workplace injuries, and provide proactive robotic support by anticipating
the need for assistance or carrying out tasks in parallel. By predicting human intent within
a task context, our model provides a necessary prerequisite for systems in which a robot
can intelligently assist a human worker without being explicit commanded. This capability
is a key component of Industry 5.0, enabling resilient and adaptable manufacturing; fur-
thermore, this paradigm moves us closer to prompt-based manufacturing, where high-level
human intent expressed through natural language or gesture can be seamlessly translated
into a machine’s adaptable physical actions. This approach is essential for enabling High-
Mix–Low-Volume (HMLV) production and a more human-centric industrial automation.
Critically, the transition from research prototype to a practical industrial tool depends
on rigorous real-world validation. Future work must involve deployment in real-time
lab-based HRC scenarios, where performance is assessed not only by prediction accuracy
but also by HRC-centric metrics such as task efficiency, human idle time, and operator
trust. Ultimately, this could enable a transition of robots from passive collaborative robots
to intelligent coworkers.

7. Conclusions
This paper presents a modular framework for context-aware human intent prediction

and subsequent 3D motion generation, with the aim of enabling proactive robotic assistance.
By integrating pretrained Vision Language Models with state-of-the-art perception and
generation modules, the proposed approach provides a scalable solution that bridges
high-level semantic reasoning with physically grounded motion synthesis.

Our evaluation across three use cases of varying complexity revealed critical tradeoffs
between predictive accuracy, latency, and diversity. In-Context Learning (ICL) demonstrates
notable limitations that counteract its potential benefits. The requirement for a large
context token count results in significant computational latency, in some cases leading to a
paradoxical degradation of predictive accuracy that renders the approach unsuitable for
real-time applications. We identified the Rolling Context Window (RCW) strategy as a
more viable approach, offering a strong balance of performance and efficiency; however,
this method is susceptible to consistency bias, as an initial error in state prediction can
propagate and degrade subsequent performance. A key finding was that augmenting
context with egocentric video views yielded a substantial 10.7% performance increase in
complex tasks.

Furthermore, we observed a tradeoff between accuracy and prediction diversity when
forecasting short-term motion. More powerful models tended to generate predictions with
higher diversity, attempting to forecast significant goal-directed actions rather than simple
extrapolations. However, this increased diversity often came at the cost of higher position
error. Additionally, predictive accuracy showed consistent improvement when providing
one or two in-context examples (few-shot) compared to a zero-shot approach.

Through continued development and integration, the framework presented in this
work can significantly advance the ability of robots to understand, anticipate, and effectively
collaborate with humans in complex dynamic settings.
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