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ABSTRACT

This paper investigates the stability and co-movement of cryptocurrency assets in Decentralized Finance (DeFi), with a focus on

the Speed of Adjustment (SA), the rate at which shocks dissipate, and prices revert to long-run equilibrium. SA provides a
critical measure of market efficiency and portfolio allocation in a highly volatile DeFi environment. We extend conventional
cointegration analysis by applying a Fractionally Cointegrated Vector Autoregressive framework, which captures slow error

corrections. Rolling estimations generate a time-varying series of SA, allowing examination of its evolution and cross-asset

spillovers. The results reveal multiple cointegrating relationships, heterogeneous adjustment speeds, and strong contagion

effects among DeFi assets. For instance, RPL exhibits rapid yet volatile adjustment, while LDO, BAL, and SNX revert more
slowly, reflecting distinct risk-return trade-offs. Spillover analysis highlights high systemic interconnectedness, underscoring
challenges for diversification and contagion management. Overall, dynamic SA emerges as a valuable forward-looking indicator

of stability in digital asset markets.
JEL Classification: C32, G12, G15

1 | Introduction

Lately, cryptocurrencies and blockchain technology have
become one of the most disruptive innovations in the financial
industry, with applications ranging from payments and trading
to non-fungible tokens (NFTs) and decentralized financial ser-
vices. A rapidly expanding segment of this ecosystem is De-
centralized Finance (DeFi), which relies almost exclusively on
crypto assets to fuel smart contracts, liquidity pools, and de-
centralized exchanges. Unlike major cryptocurrencies such as
Bitcoin and Ethereum, which have been extensively studied in
terms of return behavior, volatility, and market efficiency (Al-
Amri et al. 2019; Alzahrani and Daim 2019; Grossman and
Stiglitz 1980), DeFi assets remain underexplored despite their
exponential growth—from less than USD 1 billion in 2019 to

nearly USD 250 billion in 2022 (Chaudhuri and Wu 2003).
Similarly, compared to emerging literature on NFTs and other
crypto market segments (Spierdijk et al. 2012; Makarov and
Schoar 2020), DeFi poses unique challenges because of its
higher volatility, greater contagion risks, and structural reliance
on token interdependence. This paper responds to this study
gap by focusing specifically on DeFi assets.

We argue that the stability' of these assets is central to the
sustainable development of DeFi networks. Excessive volatility
discourages participation, undermines smart contract func-
tionality, and deters institutional adoption. To evaluate stability,
we employ the concept of the Speed of Adjustment (SA) — the
rate at which shocks to asset prices dissipate and converge to a
long-run equilibrium. Unlike most prior studies that examine
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volatility or return spillovers (Hillebrand 2003; Supra
et al. 2016; Huang and Ritter 2009), we highlight SA as a more
structural measure of market efficiency, investment horizon,
and systemic resilience. Our contribution is twofold. First, we
extend traditional cointegration analysis by applying a Frac-
tionally Cointegrated Vector Autoregressive (FCVAR) frame-
work, which better accounts for slow and persistent dissipation
of shocks in crypto markets. Second, we examine spillover in
SA, offering insights distinct from return and volatility spil-
lovers documented in earlier research.

By focusing on DeFi, this study not only sheds light on an
under-researched but economically significant market segment,
but it also contributes to portfolio management and risk
assessment by uncovering heterogeneous adjustment speeds
and strong contagion effects across assets. These findings are of
direct relevance to investors, asset managers, and policymakers
seeking to navigate the evolving DeFi landscape.

Regarding stability, an important way to assess it is to provide a
quantitative assessment of the way shocks in DeFi assets dis-
sipate: the faster shocks disappear (or more technically, con-
verge to zero, enabling the crypto assets to settle to a long-run
stable mean value), the more profitable it becomes for asset
managers and crypto investors. Econometricians exploit the
mechanics of cointegration to assess how various components
in a growing system form a long-term stable relationship.
Accordingly, we employ a cointegration technique to under-
stand the evolving pattern of co-movement of various crypto
assets, but we expand the conventional cointegration mecha-
nism to allow for ‘slow’ dissipation of shocks—one that is closer
to reality. Indeed, shocks of any magnitude do not work in
isolation in any growing system. Due to the intricacies of in-
teractions, it becomes extremely difficult for stakeholders, such
as managers, to dissociate the true effect of a shock from
another, leading to either an under- or overestimation of the
persistence of shocks and their predictive effects on a system.
Adding to this problem, the markets under which crypto assets
operate are not perfectly efficient (Grossman and Stiglitz 1980)
because there is asymmetric and incomplete information and
monopolistic control of crypto prices, thanks to the sentiment-
driven demand-supply dynamics of crypto assets. Since markets
cannot be perfectly efficient (Grossman and Stiglitz 1980),
deviations from this relationship, which one can normally term
in this context, mispricing, are to be expected. However, market
participants taking advantage of temporary inefficiencies will
help revert deviating assets to the long-run equilibrium.

A typical way to understand the efficiency of DeFi assets is to
assess how fast shocks in these assets dissipate (or converge to
zero). No asset manager would like to have an asset that dis-
plays non-converging shocks (i.e., ones that do not even react to
policy interventions or are extremely slow to respond to policy).
This is because only when assets are manageable by “trans-
formative actions by policy intervention” (i.e., shocks can taper
off to zero), they can predict a stable pattern of returns from an
investment in these assets. We term this speed of convergence
of shocks as the Speed of adjustment (SA). Statistically, it
measures the speed of error correction in a growing system,
such as a crypto asset. Only when errors disappear faster can
the growth of crypto assets be mean-reverting; in other words,

the fluctuation of prices (high and low) on the trajectory of
growth of these assets, on average, the prices revert to their
long-run mean value (a theoretical value that aligns with the
expectation of the broad financial system). What we do not
know yet is how this adjustment speed (asymptotic stability)
can indicate overall productivity gains of the system.

Mean reversion has been documented for developed and
emerging markets alike (Chaudhuri and Wu 2003). A study on
mean reversion in various countries for more than a century has
found that SA may vary considerably over time (Spierdijk
et al. 2012), which makes it important to analyze the temporal
evolution of this speed. We develop a dynamic version of SA
since its characteristics over time can capture market volatility
in a way that return volatility cannot, especially in the presence
of large and recurring deviations in cryptocurrency prices
(Makarov and Schoar 2020). SA is very useful for market par-
ticipants since they will react to price movements based on their
expectation of SA (Hillebrand 2003), and it is also a strong
indicator of potential trade duration.

The concept of SA is not unique to cointegration. For example,
it has been studied extensively in the capital structure literature
(Supra et al. 2016). SA of firms to their target leverage tends to
be moderate (Huang and Ritter 2009). However, not all firms
consider leverage targeting highly important, and SA does vary
across firms (Zhou et al. 2016). SA is quite high for nonfinancial
firms in developed countries (Oino and Ukaegbu 2015). Over-
levered and under-levered firms show very different SA, but
only for short-term leverage. More importantly, transaction
costs have a great impact on SA (Dufour et al. 2018) because
higher transaction costs induce slower convergence of shocks:
over time, as transaction costs become smaller, leaving a greater
share of profit to investors, the system becomes stable, enabling
asset managers and investors to make a stable prediction of
their growth in the future. That way, the investors can control
the negative externalities from the mispricing of crypto assets,
restraining the proliferation of bubble-like tendencies in these
assets. Similarly, debt covenants can moderate SA, especially for
financially constrained and over-levered firms (Devos
et al. 2017). Conversely, if a firm is further away from its target
leverage, its incentive for capital structure rebalancing is
stronger, leading to faster SA (Mukherjee and Wang 2013). SA
is also higher for fast-growing firms and when the economic
prospect is favorable, with a close relationship with the business
cycle (Drobetz and Wanzenried 2006).

However, SA has received less attention within the context of
co-movement (or cointegration) among financial assets, espe-
cially the novel crypto assets in DeFi. SA in this setting deserves
more attention for two important reasons. First, given the
increasing popularity of DeFi and blockchain technology, DeFi
has become one of the most popular areas of interest in the
crypto space recently (Arslanian 2022). The total value of virtual
assets used in various DeFi applications increased ex-
ponentially, from less than $1 billion in 2019* to around $250
billion in 2022.% Similarly, blockchain is expected to be adopted
extensively worldwide in the near future (Lu 2019). This
development suggests greater reach and relevance of DeFi to
many market participants. Secondly, SA is particularly impor-
tant due to the high volatility of DeFi assets (Pifieiro-Chousa
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et al. 2022). DeFi is mostly powered by volatile crypto assets
(Chen and Bellavitis 2020) and thus remains a risky environ-
ment for investors (Didenko 2022).

Regarding the determinants of SA, faster SA is observed in
periods of greater uncertainty due to major economic and
political events (e.g., war, energy crisis, recession, stock market
crash) (Spierdijk et al. 2012). Similarly, substantially faster SA is
observed when the market is in a large decline, which is robust
to different markets, sampling periods, and investment horizons
(Bali et al. 2008). SA is also generally higher in emerging
markets than in developed markets (Ahmed et al. 2018).
Moreover, the strength of cointegration may affect SA (e.g.
strongly cointegrated assets may show fast adjustment).

Prior research has advanced understanding of digital assets by
documenting stylized return and volatility properties of cryp-
tocurrencies and NFTs (Ghosh et al. 2023), examining market
efficiency during crises (Okorie et al. 2024), and exploring the
hedging ability of gold-backed tokens against DeFi and NFTs
(Belguith et al. 2024). While these studies enhance knowledge
of short-term behavior, efficiency, and hedging performance,
they do not address how assets structurally adjust to dis-
equilibria. Our paper fills this gap by focusing on the SA, as
noted earlier, the rate at which DeFi assets revert to long-run
equilibrium following shocks. This perspective provides a dee-
per understanding of stability, systemic resilience, and pro-
ductivity in DeFi markets. Methodologically, we employ an
FCVAR model to capture the slow dissipation of shocks typical
of crypto assets and introduce the novel concept of spillover in
SA to evaluate contagion risk across tokens. These contribu-
tions offer new insights into the dynamic interdependence of
DeFi assets with direct implications for trading, portfolio
diversification, and risk management.

Our objective is to examine not only the SA of DeFi per se but
also their spillover effects, motivated by not only the fast-
growing significance but also strong empirical evidence in
previous studies for a high level of interdependence and rela-
tionship among crypto assets (Mensi et al. 2021; Qureshi
et al. 2020; Kim et al. 2021). This increased financial integration
is associated with an increase in spillover effects, and an
accurate analysis of spillover is essential for risk management
and portfolio investment (Vo and Tran 2020). However, we
investigate the spillover in SA, which is informative in a dif-
ferent way from the traditional return and volatility spillover in
earlier research.

Our study is of immense interest to investment and portfolio
managers who aim to utilize digital assets in the emerging area
of DeFi based on the novel blockchain technology. We con-
tribute to their practice in the following ways. First, we reveal
the presence of cointegration and close relationships among the
assets, which could potentially facilitate various lucrative trad-
ing strategies. Second, we uncover heterogeneous speed of
adjustment among assets, which supports decisions about
portfolio selection and risk management. Investment managers
should select markets with a suitable speed for their risk
appetite and pace their activities according to this speed. Third,
we warn investors of a high level of contagion risk among the
assets, as shown by their strong spillover effects. Investors need

to be more cautious about holding a portfolio of these assets and
adapt their strategies to how the spillover in market speed de-
velops over time. Fourth, we highlight the most and least
important assets in the spillover network, directing investors to
the assets with the most diversification benefits. Finally, we
alert investors to a potential bias to enhance their analysis and
decision-making. Specifically, they should not assume that the
larger assets always play the most important roles in spillover.

As noted earlier, we adopt the FCVAR model (Fractionally
Cointegrated Vector Autoregressive) to estimate the SA for
various crypto assets, following (Cheah et al. 2018). The ‘frac-
tional’ nature of a time series refers to the speed at which
shocks would dissipate. Fractional integration of crypto asset
time series would mean that the shocks in these assets taper off
very slowly—a realistic possibility. In a dynamically inter-
dependent system such as the Vector Autoregression (VAR),
shocks dissipate slowly, which inevitably makes interaction
within the system very complex and highly nonlinear. It
becomes increasingly difficult for an investor to derive a
straightforward assessment of the nature of co-evolving patterns
of assets without devoting attention to sophisticated modeling
to disentangle shocks in a highly nonlinear environment. In this
circumstance, researchers employ an FCVAR mechanic to
model the effects of slow-converging shocks on the long-term
stability of co-moving assets. Fractional cointegration is supe-
rior to traditional cointegration since it can measure various
degrees of cointegration more accurately, thus reducing the
chance of over- or underestimating the SA. Then we repeat the
estimation on a rolling basis to obtain a time series of SA. To
investigate the cross-market spillover of SA, we employ the
(Diebold and Yilmaz 2012, 2014) method within a Fractionally
Integrated Vector Autoregressive (FIVAR) model.

The rest of the paper is as follows. Section 2 provides a literature
review on the issues to be examined in the subsequent analysis,
namely, cointegration and spillover effects among crypto assets.
Section 3 describes the research methodology, including data
collection as well as the frameworks for analyzing fractional
cointegration and spillover in SA. Section 4 presents and dis-
cusses our results. Finally, Section 5 concludes the paper and
provides directions for future research.

2 | Literature Review
21 | Co-Movement

The phenomenon of co-movement, or more technically, coin-
tegration among crypto assets, has been documented in several
studies Keilbar and Zhang (2021) show that cryptocurrencies
have multiple cointegrating relationships, and their error correc-
tion process became more nonlinear at the peak of the crypto
bubble.* Cointegration has also been observed for crypto deriva-
tives. Bitcoin spot and futures markets are fractionally coin-
tegrated, and using the traditional full cointegration model may
lead to estimation errors (Wu et al. 2021). Moreover, there is
evidence that this cointegrating relationship is time-varying rather
than fixed (Hu et al. 2020) and deviations from the long-run
equilibrium can help predict spot returns (Kapar and Olmo 2019).
Interestingly, cointegration has even been found among non-
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fungible tokens (NFTs), unique digital assets that have emerged
on blockchains recently (Ante 2023).

Given the presence of cointegration, (Leung and Nguyen 2019)
test and confirm the profitability of statistical arbitrage for co-
integrated portfolios of several major cryptocurrencies. Similarly,
(Tadi and Kortchemski 2021) find that a pairs trading strategy
based on cointegration can outperform the buy-and-hold
approach, with reasonably low drawdown. It is important to
note that certain crypto assets have more arbitrage potential than
others. However, despite excellent in-sample performance, out-
of-sample results of arbitrage strategies suggest that they should
be used with caution (Keilbar and Zhang 2021). A reason could
be that disequilibria among cryptocurrency markets have been
found to only adjust slowly in the long term (Cheah et al. 2018),
which may be due to arbitrage frictions (Kroeger and
Sarkar 2017). Since SA is a strong indicator of potential arbitrage
duration, in this case, traders should be more patient and ready
to be in the market for possibly a long time. There is also recent
research (Ghosh et al. 2023), which studies return and volatility
of NFTs and cryptocurrencies, capturing short-term price
behavior rather than long-run stability mechanisms as we do in
our work. In a related contribution, (Okorie et al. 2024) study
market efficiency of NFTs under extreme events and offer evi-
dence of crisis-driven inefficiencies in different asset classes, not
the structural long-term dynamics like speed of mean-reversion.
Some other research, such as (Belguith et al. 2024), explores
hedging and safe-haven properties of gold-backed tokens against
DeFi and NFTs and addresses the hedging performance rather
than the internal systemic dynamics and spillovers within DeFi
assets themselves. This paper fills the above gap in the existing
literature and exploits the mean-reversion properties of DeFi.

2.2 | Spillover Effects

Spillover effects can be considered a measure of contagion risk
among crypto assets (Koutmos 2018). Kumar and Anandarao
(2019) find a moderate level of volatility spillover, while (Katsiampa
et al. 2019) confirms bidirectional pairwise volatility spillover for
several major cryptocurrencies. The total spillover among many
cryptocurrencies varies over time and has been on the rise since

TABLE 1 | DPI constituents.

2017 (Yi et al. 2018). Bitcoin is the main contributor to spillover
(Koutmos 2018), and the bitcoin-USD market can help predict
volatility shocks in other bitcoin markets (Gillaizeau et al. 2019).
However, the role of Bitcoin has diminished since 2017 (Zigba
et al. 2019). Surprisingly, some minor crypto assets with small
market capitalization are more likely to transmit strong shocks to
their larger counterparts (Yi et al. 2018; Huynh et al. 2020).

Regarding the drivers and determinants of spillover, previous
studies have found several factors, such as market size, oil price,
and important external events and news related to crypto-
currencies (Koutmos 2018; Kumar and Anandarao 2019; Yi
et al. 2018; Moratis 2021; Katsiampa 2019). Moreover, this
spillover effect has also been shown to strengthen in periods of
high uncertainty and/or financial integration among markets
(Gillaizeau et al. 2019; Moratis 2021). It is worth noting that the
empirical results of spillover may depend on the measure of
volatility used (Omane-Adjepong and Alagidede 2019). More
importantly, due to the linkage among crypto assets, adding a
less correlated asset, such as gold, can help diversify crypto
portfolios (Huynh et al. 2020). However, diversification may be
more efficient in the short and medium term (Omane-Adjepong
and Alagidede 2019). Unlike earlier research on return and
volatility spillover, we examine spillover in SA, which is
uniquely informative given the importance of SA.

3 | Data and Methodology
3.1 | Data Collection

We use the Coin Market Cap database® to collect daily spot
price data of the top DeFi assets, namely constituents of the
DeFi Pulse Index (DPI),® which tracks the performance of the
largest protocols in DeFi. The weighting scheme of DPI is based
on the total value of each asset's current supply in circulation
(i.e., market capitalization). The DPI aims to follow DeFi proj-
ects with substantial usage and commitment to development
and maintenance on a regular basis. Table 1 shows the con-
stituents of DPI, together with their relative contributions to the
index and start dates (i.e., when they came into existence and
their data records began).

Asset Index contribution Start date
Uniswap (UNI) 24.8% September 17, 2020
Lido DAO (LDO) 20.7% January 05, 2021
Synthetix Network Token (SNX) 14.6% March 14, 2018
AAVE 13.7% October 02, 2020
Maker (MKR) 12.5% January 29, 2017
Rocket Pool (RPL) 5.2% July 17, 2018
Compound (COMP) 3.6% June 16, 2020
yearn. finance (YFI) 3.0% July 18, 2020
Balancer (BAL) 1.8% June 24, 2020
Wrapped Ether (WETH) 0.1% August 08, 2022
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We exclude Wrapped Ether (WETH) from our sample due to its
much shorter period of available data (only from August 2022)
compared to the other assets. WETH also contributes very little
to the DPI (only 0.1%, the lowest weight among all the con-
stituents). Out of the remaining nine assets, we use the intro-
duction of the most recent one, namely Lido DAO (LDO,
introduced in January 2021), as the beginning of our sampling
period. Our data set ends in July 2025.

3.2 | Methodology

i. Fractional Cointegration

We estimate the fractionally cointegrated vector auto-
regressive model proposed by (Johansen 2008) to calculate
the speed of adjustment (SA). The R package “FCVAR”” is
used for the purpose. To briefly describe FCVAR, assume
that for a time series X; of order p, the error correction
representation of the FCVAR model is given as

k
NX, = af NPLy X, + ) GALLX, + & (1)
i=1
where A? is the operator for fractional difference, Ly, is the
operator for fractional lag (L, = 1 — AY),® and ¢, is p-order
i.id. (0, Q). The most important parameters are a and f3,
which are p X r matrices where the cointegration rank r
satisfies 0 <r < p.  contains the vectors of cointegrating
coefficients, so 8’X; shows the long-run cointegrating re-
lationships among the variables in the system. Meanwhile,
a contains the SA of each variable toward the collective
equilibrium. The parameter d denotes the order of frac-
tional integration in the original time series, while b
denotes the level of fractional cointegration (i.e., how
much the fractional integration of X; is reduced by the
cointegrating combinations £'X;).

The model is further augmented with the inclusion of
autoregressive terms characterized by the parameters I;. In
terms of lag selection, we set the maximum lag length to 5
for parsimony and choose the optimal number of lags
based on the Schwarz information criteria (SIC), which is
stricter than the Akaike information criteria (AIC).

For the subsequent analysis of spillover effects, we develop
a dynamic time-varying version of SA using a rolling win-
dow estimation approach. We set the window to be
6 months, which is a reasonable length given the available
data (i.e. long enough for reliable estimations but still short
enough to have many observations remaining for the spil-
lover analysis). We apply Equation (1) to the first 6 months
in the sample to derive the first value (point estimate) of SA,
then we roll forward 1 day at a time until the end of the
sample to obtain subsequent values. In the end, we have a
time series of SA for each of the 9 DeFi assets.

ii. Spillover Analysis

To investigate the dynamic patterns of SA and its spillover
effects across our 9 DeFi assets, we employ the approach of
(Diebold and Yilmaz 2012, 2014) within the 9-dimensional
Fractional Integrated VAR (FIVAR) model. The FIVAR

specification is a general multivariate framework that al-
lows flexibility in capturing long memory degrees of the
SA time series. We estimate the 9-dimensional FIVAR
model as follows:

B(L)X, = v, (2)
=1

p
[19 - DAL

where X; is a column vector of the SA series. The error term,
v ~ ii.d. (0, H), with H = {h,.; r,c = 1, 2, ..., 9} as its variance-
covariance matrix. A; denotes the (9 x 9) coefficient matrix
associated with X;_;, and Iy is the (9 X 9) identity matrix. L
represents the lag operator, and the lag order p is determined
using the SIC. B(L) = diag {(1 — L)%, ..., (1 — L)%} where d;
denotes the memory degree of the ith SA. The memory degrees
of the SA series are allowed to be different in our modeling
framework. We follow (Do et al. 2014) and (Yip et al. 2017) to
estimate Equation (2) using the two-step estimation method.

To construct the spillover index, we first obtain the generalized
forecast error variance decomposition (FEV®) matrix from
Equation (2). We employ a rolling window of 200 days with a
10-day forecast horizon, which is a standard choice in the
original papers (see Diebold and Yilmaz 2012). The (r, ¢) ele-
ment of the FEV® matrix can be calculated as

[ S (e’,ASHeC )2
Zts;}) (e’,ASH A ec)

FEVE, = 3

Following (Do et al. 2014), we adapt the Diebold and
Yilmaz approach in an FIVAR model by adjusting the moving
average coefficient matrix ®d;with the long memory degree
(d) to construct A as, A=Y E?®,_;, where E® =

. r'(l+dy) T(l +do)
dlag { Td)Td+1)” 7" T(do)I(+1)

® can be obtained recursively from its previous lagged values
®,_; and the coefficient matrices A, obtained from (2)
as, @, = Y/, ®,_;A;. Note that both ®, and A, are (9 X 9)
identity matrices, and e, is the identity vector with its P
element being 1.

}is a (9 x 9) diagonal matrix, and

On this basis, the total generalized spillover index among the 9
DeFi assets is given as

9 /8
- FEV
TS = Zr.c_l, r#gc rc % 100 (4)

FEV§,
cast error variance decomposition, which also represents the
pairwise spillover from variable cth to variable rth in the sys-
tem. The net pairwise spillover effect from the cth variable to
the r variable is therefore, NS,. = FEV®,. — FEVS,,.

where FEVg,C = is the normalized generalized fore-

4 | Results

In this section, we present and discuss results from FCVAR
estimation, in particular, the Speed of Adjustment (SA). We
begin by presenting some temporal properties of our data.
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4.1 | Data Characteristics: Understanding Trend

Figure 1 demonstrates how the prices of the DeFi assets deve-
loped during the sampling period. For comparison purposes, we
rescale the original prices such that the starting price of each
asset is set to 1.

One can see that RPL, the third oldest constituent in the DPI
(starting from July 2018), with a modest contribution of 5.2%
(see Table 1), behaved differently from the rest. Except for RPL,
all the assets show similar price changes over time, with higher

volatility in the first half of the sample compared to the second
half. Interestingly, the prices reached their highest levels
around May 2021. At that time, traditional cryptocurrencies
such as Bitcoin were suffering from a significant market crash
(Bitcoin lost almost half of its value, plummeting from $65,000
to $35,000 in a very short time during April—June 2021), pos-
sibly due to the crackdown on mining in China and the
announcement of Elon Musk that Tesla would no longer accept
payments in bitcoin.’ As a result, perhaps investors were
looking for alternative crypto assets, and DeFi assets proved
resilient to the crypto market crash.’® We do not report the

A Price development of all assets

25

20

15

10

5
0
05/01/2021 05/01/2022 05/01/2023 05/01/2024 05/01/2025
e ) niswap Maker e |_ido DAO
e Aave e Synthetix e Rocket Pool
e Compound emyearn.finance esBalancer
B Price development of all assets excluding RPL

9

8

7

6

5

4

3

2

1

0

)5/01/2021 05/01/2022 05/01/2023 05/01/2024 05/01/2025
Uniswap Maker e | ido DAO Aave
e Synthetix Compound emyearn.finance esBalancer
FIGURE 1 | Price development over time of the DeFi assets. For comparison purposes, the starting value of each asset has been set to 1, and the

subsequent values adjusted accordingly. (A) Price development of all assets. (B) Price development of all assets excluding RPL. Note: The above
figures present time series variations of assets. [Color figure can be viewed at wileyonlinelibrary.com]
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descriptive statistics for returns of the assets since our coin-
tegration analysis is based on prices. However, this information
will be available upon request.

4.2

i.

| Main Results

Characterizing co-movement pattern: Evidence of Fractional
Cointegration:

Using our data, we have run long-run FCVAR and have
recovered the fractional error correction component,
which we broadly refer to as the Speed of Adjustment (SA).
In Table 2, we have presented the descriptive statistics of
the SA time series obtained from a rolling window esti-
mation of fractional cointegration for the 9 DeFi assets. In
our estimation, we find the three cointegration ranks, so
there are three different cointegrating relationships among
all variables in the system. This means that there are also
three corresponding sets of SA series.'"

For the first set of SA (SA1), the mean values are negative
for 5 out of 9 assets, which suggests a general tendency of
the DeFi assets to move toward the equilibrium and help
correct disequilibrium errors. LDO shows the weakest
response to disequilibria (lowest absolute value, 0.0001),
whereas RPL shows the strongest response (highest abso-
lute value, 0.2634), which is consistent with RPL being the
most volatile asset (see Figure 1). The SA of RPL is also
the most volatile, with the highest standard deviation and
the largest range between minimum and maximum.
Meanwhile, the SA of SNX is the most stable with the
lowest standard deviation and the smallest range.

For the second set of SA (SA2), the mean values also show
that 5 assets move toward equilibrium (i.e., UNI, MKR,

ii.

AAVE, SNX, BAL) while others move away from it. On
average, BAL and RPL show the weakest and strongest
response to disequilibria, respectively. RPL still has the
most volatile SA with the highest standard deviation and
the largest range, while SNX still has the most stable SA
with the lowest standard deviation and the smallest range.

For the third set of SA (SA3), the mean values are all
positive except LDO, which suggests that most of the assets
generally move away from the equilibrium and thus do not
contribute to the error correction process. The average
response of SNX is the weakest and that of RPL is still the
strongest. Finally, like SA1 and SA2, RPL and SNX have
the most and least volatile SA, respectively, as shown by
the standard deviation as well as the range from minimum
to maximum.

Overall, some results are consistent across the three sets of
SA. First, there is always at least 1 asset that tends to move
toward the equilibrium (i.e. negative mean SA). Second,
RPL always responds most strongly to disequilibrium er-
rors, with the highest absolute value of mean SA. Third,
RPL and SNX have the most and least volatile SA,
respectively, in all cases.

Results of Spillover Analysis:

Table 3 shows the fractional degrees estimated from the
FIVAR model for the SA time series of the 9 DeFi assets.
All estimates are consistently between 0 and 1, and sta-
tistically significant at 1% level. These results show strong
evidence of the long-memory characteristics in the SA
series, which supports our use of the FIVAR model.

Table 4 shows the overall spillover effects in SA among the
assets. Again, there are three sets of results for the three sets of

TABLE 2 | Descriptive statistics of SA.
UNI MKR LDO AAVE SNX RPL COMP YFI BAL
Panel A: SA1
Mean —0.0645 0.0122 0.0001 0.0056 —0.0008 —0.2634 0.0121 —0.0009 —0.0020
Std. Deviation 0.1185 0.1453 0.1136 0.1025 0.0257 1.4965 0.0527 0.0330 0.0579
Minimum —0.3816 —0.3087 —0.4736 —0.2418 —0.0744 —7.3541 —0.1676 —0.1060 —-0.1796
Maximum 0.2230 0.4903 0.2759 0.4513 0.0858 1.5246 0.2346 0.1357 0.2323
Panel B: SA2
Mean —0.0050 —0.0356 0.0036 —0.0105 —0.0065 0.0775 0.0016 0.0069 —0.0005
Std. Deviation 0.0559 0.0565 0.0460 0.0484 0.0180 0.3851 0.0272 0.0210 0.0223
Minimum —0.1333 —0.2309 —0.1409 —0.1924 —-0.0751 —1.1438 —-0.0979 —0.0606 —0.0801
Maximum 0.3673 0.1257 0.1731 0.2268 0.0761 1.7217 0.2414 0.1688 0.1316
Panel C: SA3
Mean 0.0488 0.0204 —0.0524 0.0149 0.0067 0.1335 0.0104 0.0139 0.0077
Std. Deviation 0.1029 0.1011 0.0899 0.0695 0.0135 0.6318 0.0281 0.0229 0.0193
Minimum —0.2253 —0.4406 —0.4086 —0.3896 —0.0642 —2.0818 —0.0973 —0.0598 —0.1021
Maximum 0.5994 0.2399 0.1250 0.3080 0.0588 1.6600 0.1054 0.1215 0.0716
N 1465 1465 1465 1465 1465 1465 1465 1465 1465

Note: This table presents descriptive statistics for the time series of the speed of adjustment for three sets of SA series selected based on their cointegrating rank (of order 3).
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TABLE 3 | Fractional degrees of the SA time series from the FI-
VAR model.

SA1l SA2 SA3
UNI 0.80 0.80 0.88
MKR 0.87 0.79 0.95
LDO 0.73 0.72 0.83
AAVE 0.81 0.88 0.76
SNX 0.83 0.90 0.84
RPL 0.77 0.75 0.80
COMP 0.82 0.85 0.88
YFI 0.70 0.76 0.90
BAL 0.82 0.77 0.76

Note: This table presents estimates of the fractional order of integration (d) for the
Speed of Adjustment time series for three sets of SA. The values are less than 1,
which implies that the series has long memory but can be mean-reverting in the
long run (in the absence of intervention of any other stochastic shocks in the
system).

SA time series. The empirical findings reveal a high degree of
interconnectedness among the SAs of the considered DeFi as-
sets. The total spillover index, which quantifies the contribution
of shocks from SAs of other assets to the forecast error variance
of a given asset on average, is substantial across all three sets of
SA time series. As presented in Table 4, the total spillover is
calculated at 74.39% for SA1, 74.88% for SA2, and 65.58% for
SA3. These figures indicate that a significant majority of the
volatility in any SA of a single asset is attributable to shocks
originating from elsewhere in the network, underscoring the
systemic nature of risk in this market. This can be considered
solid evidence of the close connectedness among these DeFi
assets.

A detailed analysis of directional spillovers identifies specific
assets that are key transmitters and receivers of SA's shocks.
The primary sources of spillover vary across the different sets of
SAs, as shown in Table 4. BAL emerges as the largest shock
transmitter in SA1 (110.34), a role assumed by AAVE in SA2
(110.28) and COMP in SA3 (109.27). In contrast, RPL is con-
sistently one of the weakest transmitters of SA's shocks (34.21 in
SA1 and 19.82 in SA2), with LDO occupying this position in
SA3 (29.26). On the receiving side, the impact of spillovers is
more diffuse, with no single asset consistently absorbing the
most risk. The largest shock recipients are SNX in SA1 (79.73),
YFI in SA2 (84.44), and BAL in SA3 (75.46). Conversely, RPL
and LDO are consistently the weakest receivers of systemic
shocks.

Based on the results in Table 4, Figure 2 provides a visual
representation of these complex interdependencies. The size of
the nodes, which corresponds to the magnitude of transmitted
spillovers, visually confirms the shifting dominance of BAL,
AAVE, and COMP as the central players in the network across
the three sets of the SA time series. Other assets, such as UNI
and SNX, are also shown to be consistently significant within
the network structure. In stark contrast, RPL and LDO are
consistently depicted as peripheral players, reflecting their
minimal role in the transmission of spillovers throughout the
system.

Figure 3 shows the time-varying total spillover in SA among the
assets. These indices follow a similar pattern in all three sets of
results until early 2024. More specifically, the index exhibits a
decline to a low point of approximately 60%-65% in the third
quarter of 2022 before recovering to and maintaining a
heightened level of around 80% until early 2024. The indices
dropped quickly to between 50% and 60% within the first
quarter of 2024 before bouncing back. This pattern suggests a
period of decreased systemic risk followed by a rapid return to a
state of high market integration.

4.3 | Discussion of Findings

In our research, we show that DeFi assets, though resilient
during major crypto crashes, exhibit strong interconnectedness
with important implications for trading and risk management.
We find multiple cointegrating relationships among leading
tokens, creating opportunities for arbitrage and directional
strategies, but the speed of adjustment (SA) determines how
long such opportunities last. Assets differ widely: fast adjusters
like RPL are volatile and suit risk-tolerant, short-horizon trad-
ers, while slow adjusters such as LDO, BAL, and SNX are more
stable and appeal to conservative investors. Spillover analysis
reveals high contagion risk, with about 75% of SA variations
driven by cross-asset transmissions. Key transmitters (BAL,
AAVE, COMP) reduce diversification potential, while marginal
players (RPL, LDO) offer valuable hedging opportunities. Cru-
cially, asset size does not equal systemic influence—smaller
tokens can drive major spillovers, while some larger ones play
minor roles. Investors and regulators must recognize these
dynamics to design resilient portfolios and policies.

Our findings have important implications for investment and
portfolio managers interested in the emerging assets in DeFi,
possibly as an attractive alternative to traditional crypto assets
such as Bitcoin. DeFi assets have proved resilient to crypto
market crashes on several occasions, such as March 2020 and
May 2021.% Our cointegration analysis reveals multiple coin-
tegrating relationships among the leading DeFi assets in the DPI
index, which is consistent with the study of (Keilbar and
Zhang 2021) for cryptocurrencies. The presence of cointegration
offers excellent trading opportunities. For example, (Leung and
Nguyen 2019) confirm the profitability of statistical arbitrage for
cointegrated portfolios of several major cryptocurrencies. Simi-
larly, (Tadi and Kortchemski 2021) find that a pairs trading
strategy based on cointegration can outperform the buy-and-hold
approach, with reasonably low drawdown. However, arbitrage
strategies should be used with caution (Keilbar and Zhang 2021)
due to arbitrage frictions (Kroeger and Sarkar 2017) and hence
the possibility of the assets only adjusting slowly (Cheah
et al. 2018). Since SA is a strong indicator of potential arbitrage
duration, in this case, traders should be more patient and ready
to be in the market for possibly a long time.

In addition to market-neutral strategies such as statistical
arbitrage/pairs trading, directional strategies could also be
highly lucrative. We find that RPL always responds most
strongly to disequilibrium errors with the fastest adjustment,
whereas LDO, BAL, and SNX have the weakest response and
slowest adjustment. Effective strategies can be designed to
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TABLE 4 | Overall spillover (%) in SA among the 9 DeFi assets.

UNI MKR LDO AAVE SNX RPL COMP YFI BAL To others
Panel A: SA1
UNI 28.51 13.91 12.24 17.24 12.42 13.94 12.97 9.69 13.44 105.85
MKR 8.95 29.23 6.20 7.87 8.64 5.13 6.89 5.46 8.03 57.16
LDO 6.05 4.72 26.36 5.23 5.48 13.71 5.26 4.21 5.37 50.04
AAVE 13.52 10.23 8.27 26.40 10.87 6.99 11.36 9.98 9.80 81.01
SNX 11.19 12.06 10.00 11.00 23.93 8.05 12.52 11.72 12.72 89.28
RPL 5.28 2.80 10.62 3.17 3.52 26.68 2.22 2.61 3.99 34.21
COMP 10.88 10.10 7.99 12.40 14.07 4.52 27.53 15.56 14.43 89.95
YFI 5.74 5.05 4.42 7.71 8.41 3.90 9.05 27.08 7.41 51.69
BAL 14.26 13.45 10.99 12.64 16.33 11.50 16.84 14.33 30.15 110.34
From others 75.86 72.32 70.73 77.27 79.73 67.74 77.11 73.57 75.19 Total
Net spillover 29.99 —15.16 —20.69 3.74 9.54 —33.53 12.84 —21.88 35.15 74.39
Panel B: SA2
UNI 27.86 7.78 10.72 14.80 12.80 10.61 10.76 13.34 10.94 91.74
MKR 4.49 35.35 6.58 6.74 6.79 5.60 8.42 4.26 9.03 51.91
LDO 5.62 4.35 26.19 3.97 4.11 11.58 3.93 5.15 3.79 42.50
AAVE 17.15 11.13 9.58 26.58 17.24 7.31 16.92 16.25 14.70 110.28
SNX 14.09 9.20 9.79 14.31 22.67 6.03 15.43 14.71 12.22 95.78
RPL 2.86 2.09 6.98 1.76 1.70 31.62 1.12 1.13 2.17 19.82
COMP 11.15 12.92 9.23 14.95 15.10 4.31 24.23 15.88 14.16 97.70
YFI 9.99 3.06 7.12 8.85 9.86 2.88 9.12 19.36 6.30 57.19
BAL 11.69 16.30 9.68 14.84 15.67 8.62 16.46 13.73 34.36 106.99
From others 77.04 66.84 69.68 80.22 83.27 56.95 82.15 84.44 73.33 Total
Net spillover 14.70 —14.93 —27.18 30.07 12.51 —-37.13 15.55 —27.26 33.67 74.88
Panel C: SA3
UNI 35.12 10.95 5.83 13.40 9.49 5.92 9.07 9.73 8.90 73.28
MKR 8.89 40.57 4.34 4.63 5.95 4.30 7.64 5.65 5.68 47.07
LDO 2.71 2.81 40.22 2.94 1.76 14.00 1.61 1.43 2.00 29.26
AAVE 13.32 6.01 5.87 38.04 9.67 3.99 11.61 9.62 7.89 67.98
SNX 9.78 10.28 4.97 11.12 29.87 7.02 15.79 14.47 16.64 90.07
RPL 3.32 2.79 18.15 2.25 3.27 42.71 2.38 2.04 3.66 37.87
COMP 12.45 14.14 5.88 15.67 18.11 6.35 33.62 18.62 18.04 109.27
YFI 9.04 6.33 2.09 8.69 13.47 291 13.00 31.40 12.65 68.18
BAL 8.24 6.10 3.94 7.04 13.11 6.65 11.40 10.73 27.53 67.21
From others 67.76 59.41 51.06 65.74 74.83 51.14 72.49 72.29 75.46 Total
Net spillover 5.52 —12.34 —21.80 2.24 15.24 —13.26 36.78 —4.12 —8.25 65.58

Note: The above table presents estimates of spillover using the Diebold and Yilmaz method. “To others” shows the total spillover from each asset to all the others. “From
others” shows the total spillover to each asset from all the others. “Net spillover” is the difference between “To others” and “From others.” “Total” shows the total spillover
in the whole system of all nine assets. The remaining values show the spillover for each pair of assets. The principal diagonal elements (in bold face) indicates spillover to

itself, for instance, UNI to UNI (28.51), and BAL to BAL (30.15).

exploit the difference in SA between these assets, since this
difference is particularly suitable and offers a fertile ground for
certain types of strategies. For instance, traders can wait for a
signal from the fast markets (e.g., RPL) and then use a lead-lag
algorithm to trade the slow markets (e.g. LDO, BAL, SNX) in
the same or opposite direction of the fast markets (perhaps

depending on their correlations) before the slow markets make
their moves. Meanwhile, contrarian trading strategies based on
mean reversion outperform not only buy-and-hold but also
other contrarian strategies in many markets (Balvers
et al. 2000), and the error correction process in cointegration is
a type of mean-reverting behavior. Moreover, deviations from
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A SAl

B SA2

FIGURE 2 | Network of pairwise spillover in SA. The node size (smaller to bigger) indicates the strength (weaker to stronger) of total spillover
from that asset to all other assets. The node color (from lighter to darker) shows the strength (weaker to stronger) of total spillover to that asset from
all other assets. The arrows indicate the direction of net pairwise spillover, and their thickness shows the strength of this net pairwise spillover. [Color

figure can be viewed at wileyonlinelibrary.com]

the long-run equilibrium can help predict returns of crypto
assets (Kapar and Olmo 2019).

On one hand, traders with a higher level of risk tolerance may be
more interested in and comfortable with fast and volatile periods/
markets, which offer ample opportunities to capture quick profits.
On the other hand, risk-averse and conservative participants may
choose to trade in less volatile periods/markets, which also
decreases their risk of missing out on opportunities. The risk
aversion aptitude differs measurably across investors’ life cycle: a
young investor (in their 30s, for instance) will be more inclined to
take higher risks than one who is in their 50s or close to retirement.
For the latter type, the investors would like greater security with
their savings (pension funds) that are less susceptible to volatility
contagion. Therefore, for those classes of investors, there is a
high degree of substitutability between riskier (viz., crypto assets)
and less risky (e.g., pension savings or fixed investment)."®

Regarding market timing, SA is a strong indicator of how fast
investors should act since they need to react to price move-
ments based on their expectation of SA (Hillebrand 2003). If
they participate in fast markets with high expected SA (e.g.,
RPL), they must respond faster and adjust their pace
accordingly to keep up. Conversely, slow markets with low
expected SA (e.g. LDO, BAL, SNX) should give participants
more time to act. Moreover, since markets cannot be per-
fectly efficient (Grossman and Stiglitz 1980), temporary
inefficiencies, such as over- or under-reaction, will happen.
SA can directly measure the current extent of this over- or
under-reaction in markets (Theobald and Yallup 2004) and
help investors make more informed decisions about
whether/how to take advantage of this phenomenon. SA is
particularly relevant for crypto assets since (Borgards and
Czudaj 2020) find that over-reaction is common in this
market.

10
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FIGURE 3 | Dynamic total spillover in SA over time among the 9 DeFi assets. Note: The set of figures presents temporal variations of the dynamic

total spillover of the speed of adjustment for 9 DeFi assets, each demo

Regarding the roles of individual DeFi assets in the spillover
effects, our findings are as follows. First, BAL, AAVE, and
COMP are the system's key players in the transmission of the
spillovers. Second, UNI and SNX are also important

nstrating a sharp fall in the second quarter of 2024.

contributors to the network's dynamics. Third, RPL and LDO
consistently feature as the least minor players, characterized by
their smaller node sizes across all three considered cases.
Finally, RPL is both the weakest transmitter and the weakest
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receiver of spillover. For portfolio management purposes,
markets with a low level of integration can offer diversification
benefits and vice versa (Patel et al. 2022). Hence, investors
should consider the smallest players with the least connections
in the spillover network (i.e., RPL and LDO) in their portfolio
selection. RPL is particularly interesting since it is the weakest
asset in terms of both transmission and receipt of spillover,
which suggests that it is quite detached from the rest of the
system. This may help explain the different price behaviors of
RPL compared to the others, and it may indeed be the best
option for those who want some exposure to DeFi assets while
also avoiding their contagion risk via the SA spillover mecha-
nism. Meanwhile, investors may want to exclude certain assets
(e.g., BAL, COMP, and AAVE) from their portfolios since they
are closely connected to other assets, so they may offer little
diversification benefit.

Our spillover analysis shows that the total spillover in SA among
all 9 DeFi assets is quite strong, around 75% over the whole
sample period. This finding is different from (Kumar and
Anandarao 2019), who only report a moderate level of spillover
among cryptocurrencies. Since spillover effects can be considered
a measure of contagion risk among crypto assets (Koutmos 2018),
there is a high contagion risk among the assets in our sample. We
also find that the total spillover varies over time, which is con-
sistent with the study of (Yi et al. 2018) for many crypto-
currencies. Therefore, portfolio managers must pay attention to
this temporal development of spillover in SA and act accordingly.

Several studies have found that some minor crypto assets with
small market capitalization are more likely to transmit strong
shocks to their larger counterparts (Yi et al. 2018; Huynh
et al. 2020). Similarly, we find that AAVE, which contributes
only 13.7% to the DPI index (not even in the top 3 constituents),
is one of the strongest transmitters of spillover. COMP is
another important player in the network despite its small index
weight of only 3.6%. Meanwhile, LDO plays a very minor role
despite being the second-largest index constituent with a con-
tribution of more than 20%. UNI and SNX are two notable ex-
ceptions since their sizes do correlate with their roles in the
spillover effects. They are the largest and third largest assets
(with around 25% and 15% index weight, respectively), and they
play important roles in the system. These observations imply
that investment managers need to be aware of and avoid their
own potential bias where they assume that the largest assets are
also the most dominant in terms of spillover, which may not
always be the case. To ensure financial stability, regulators
should also be aware of the quantitative importance of the
likelihood of the large assets being more/less contagious. The
financial stability policy should be nonlinearly proportional
(such as the inverted U-shaped) to the weight of volatility
spillovers of those assets.

5 | Conclusions

To conclude, we contribute to the under-researched strand of
existing finance literature on the time-varying co-movement
and spillover among emerging DeFi asset classes based on the
novel blockchain technology and argue as well as demonstrate
that greater adjustment speed is an important marker of greater

productivity of the interdependent system. Given the strong
significance and profound implications of SA, it is high time for
investment and portfolio managers to learn about its dynamics,
especially in the emerging area of DeFi. The time-varying
nature of SA makes it even more important to keep a close eye
on its temporal evolution. In our work, we find multiple coin-
tegrating relationships among the assets, which should pave the
way for various lucrative trading strategies. We also confirm
cross-sectional heterogeneity in SA. More specifically, RPL
always responds most strongly to disequilibrium errors with the
fastest adjustment, whereas LDO, BAL, and SNX have the
weakest response and slowest adjustment. In addition, RPL and
SNX have the most and least volatile SA. These findings help
investors make more informed decisions about asset selection
and risk management. Adventurous investors may prefer fast
and volatile markets, whereas their conservative peers may
prefer slow and stable markets. Regarding market timing,
investors need to pace their activities in line with the speed of
their chosen markets.

We confirm a high level of contagion risk among the assets, as
shown by their strong spillover effects (around 75% over the
whole sample period). Thus, investment managers need to be
more cautious about holding a portfolio of these assets. They
must also pay attention to the development of spillover in SA
over time and act accordingly. For diversification purposes,
investors should consider the smallest players with the least
connections in the spillover network (i.e., LDO and especially
RPL) in their portfolio selection. Meanwhile, they should ex-
clude certain assets (e.g. AAVE, COMP, and BAL) since they
may offer little diversification benefit. Also importantly, inves-
tors should not make decisions or act based on the assumption
that the large assets are always the dominant ones in spillover.
Finally, we conclude our study by suggesting several promising
directions for future research.

Future research should examine empirically the performance and
profitability of these strategies, and potentially many others, for
the emerging DeFi assets. Another promising research direction is
to explore determinants/drivers of SA and its spillover among
crypto assets. Regarding SA, previous studies have found several
determinants in the context of stock markets, such as economic
and political uncertainty or market conditions (Spierdijk
et al. 2012; Bali et al. 2008). In terms of spillover among crypto
assets, many drivers have been reported, such as (i) market size,
(ii) oil price, (iii) important external events and news related to
cryptocurrencies, (iv) uncertainty, and/or (v) financial integration
among markets (Koutmos 2018; Kumar and Anandarao 2019; Yi
et al. 2018; Gillaizeau et al. 2019; Moratis 2021; Katsiampa 2019).
However, the spillover examined previously was in return and
volatility rather than SA. Future studies can investigate the role of
all the factors above, among others, in the unique setting of SA
and its spillover among crypto assets.
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Endnotes

'We will shortly present our proposed mechanism, the FCVAR, to
model stability.

Zhttps://wifpr.wharton.upenn.edu/wp-content/uploads/2021/05/
DeFi-Beyond-the-Hype.pdf.

*https://medium.com/momentum6/the-new-wolf-of-wall-street-defi-
2021-overview-and-2022-outlook-70cb053442c5.

“Cryptocurrency bubbles have occurred several times since February
2011, when the price of Bitcoin rose to US $1.06, then fell to US $0.67
that April. Likewise, the prices experienced large fluctuations in
2013 (boom) and 2014-2015 (crash). Bitcoin once again experienced
a boom in 2017 and a crash in 2018 and a pattern that occurred in
2021, 2022, and 2024.

Shttps://coinmarketcap.com/.
Shttps://indexcoop.com/products/defi-pulse-index.
7https://cran.r-project.org/web/packages/FCVAR/index.html.

8Both operators are defined based on their binomial expansion in L,
the lag operator. There is no term in L° for the expansion of L, so
Equation (1) contains only lagged disequilibria.

°https://time.com/6175370/why-bitcoin-crashing/.

https://cointelegraph.com/news/defi-proved-resilient-during-the-
march-2020-and-may-2021-market-crises.

"' Given the various sets of results, we only report the most important
and relevant statistics for our discussion to avoid potential confusion
and unnecessary information. However, other statistics (e.g. skew-
ness, kurtosis) will be available upon request.

2https://cointelegraph.com/news/defi-proved-resilient-during-the-
march-2020-and-may-2021-market-crises.

¥Many thanks to an anonymous referee for suggesting this argument.
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