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ABSTRACT
The effective modelling of high-frequency waves is critical to accurately describing noise generation
and control in a broad range of engineering applications. We will explain the connection between
high-frequency asymptotic solutions to frequency domain wave equations and the radiative transfer
equation (RTE) via a kinetic formulation of the classical Hamiltonian ray dynamics. The numerical
solution of the arising RTE requires a discretisation in both the position and direction coordinates. We
will introduce a computational framework based on the Discontinuous Galerkin method in space and
compare the commonly used discrete ordinates method in direction with a Fourier-based approach.
This work builds on previous research into high-frequency vibroacoustic simulation methods, having
the same advantages as Dynamical Energy Analysis (DEA), which offers higher precision than the
more established Statistical Energy Analysis. The RTE approach adopted here is beneficial since it
uses a more familiar finite element based methodology and the degree of the local spatial polynomial
approximation can be increased more simply and at lower computational cost than in DEA. We then
discuss future work to extend our approach for analysing complex built-up structures, incorporating
multi-material modelling and the subsequent wave interactions such as refraction and reflection at
the inter-element boundaries.

1. INTRODUCTION
High-frequency wave phenomena arise in a wide range of noise and vibration problems, [1–4],

and occur whenever the wavelength is significantly smaller than the characteristic length scales of
a vibrating structure. This provides challenges in complex structures where the requirement to
adequately resolve the rapid wave oscillations, as well as the complex geometric features can lead
to very large and computationally costly numerical schemes as the frequency is increased [5–7].
In this paper, we explore the connection between high-frequency asymptotic solutions of frequency
domain wave equations and the radiative transfer equation (RTE) through a kinetic formulation rooted
in classical Hamiltonian ray dynamics. This is beneficial as it offers a framework that captures
the detailed local wave dynamics accurately and efficiently, which is crucial for modelling high-
frequency waves, and thereby enabling the development of simulation techniques that are both robust
and computationally efficient in complex structures. We also explain how the RTE is numerically
solved using a discretisation framework based on the Discontinuous Galerkin (DG) method. During
the presentation, I will discuss simulation results that underscore the potential of this integrated
framework in addressing high-frequency wave propagation challenges.

2. MONOCHROMATIC WAVE PROBLEMS AT HIGH-FREQUENCIES
We begin by considering frequency domain wave equations of the form:

∆αϕ(x, y) − (ik)2αϕ(x, y) = 0, (1)

for a given α = 1, 2, where k = ω/c with ω being the angular frequency and c > 0 the wave speed
in the structure [7]. When α = 1, Equation 1 is the Helmholtz equation which models, for example,
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acoustic waves or in-plane waves in thin plates. When α = 2 and c(k) ∝
√
ω, Equation 1 is the

biharmonic wave equation describing the flexural motion of thin plates [6]. In the high-frequency
regime for the Helmholtz equation, we adopt the usual ansatz [8]:

ϕ(x) = A(x)eiωS (x) (2)

with x = (x, y) representing the two-dimensional spatial coordinates, A(x) denoting the amplitude
function, and S(x) the phase function [7]. Substituting Equation 2 into the Helmholtz equation, we
obtain:

∆
(
A(x)eiωS (x)

)
+ k2A(x)eiωS (x) = 0. (3)

Equation 3 can be simplified to give:

∆A + 2iω (∇A · ∇S ) + iωA∆S − ω2A|∇S |2 + k2A = 0. (4)

In the high-frequency regime ω ≫ 1, and thus Equation 4 is predominantly influenced by the highest
order ω terms. Therefore, considering only the O(ω2) terms and noting that k = ω/c we obtain:

ω2

c2 A − ω2 |∇S |2 A = 0. (5)

Equation 5 can be rearranged to yield the Eikonal equation [6]

|∇S | =
1
c
= η, (6)

where η is referred to as the slowness. Similarly for the biharmonic wave equation, where α = 2 in
Equation 1, the frequency domain wave equation is:

∆2ϕ(x, y) − k4ϕ(x, y) = 0. (7)

Here the solution ansatz is modified to

ϕ(x) = A(x)ei
√
ωS (x), (8)

in order to ensure that |∇S | is independent of ω. Following a similar procedure to the one outlined for
the Helmholtz equation, we again arrive at the Eikonal equation

|∇S | =
√
ω

c
= η. (9)

Note that since c(k) ∝
√
ω, then |∇S | is frequency independent and thus S may be assumed to be

slowly varying. In general, the Eikonal equation for the phase S can be written as:

|∇S | =
ω
α−1

2

c
= η, (10)

where α is either 1 or 2 for the Helmholtz or the biharmonic equations, respectively.
We now shall seek to transform the Eikonal Equation 10 into an ordinary differential equation (ODE)
system, by using the method of characteristics [9]. To do so we denote the momentum vector by
p = (p1, p2) and the position by x = (x, y). The method of characteristics gives

dp
dt
=

1
η
∇η and

dx
dt
=

1
η2p, (11)

where these equations describe the evolution of both x and p along the ray trajectories. These ODEs
are known as the ray equations and can be recast in Hamiltonian form as

dx
dx
= ∇pH(x,p),

dp
dx
= −∇xH(x,p), (12)

with the Hamiltonian defined by

H(x,p) =
|p|

η(x)
. (13)

Therefore, we find that the ray dynamics follow Hamiltonian mechanics [10].
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3. FROM THE LIOUVILLE EQUATION TO RADIATIVE TRANSFER
Adapting a kinetic interpretation of the rays as trajectories of particles following the

Hamiltonian dynamics of Equation 12 and Equation 13, then we can introduce a phase-space particle
density function ρ(t,x,p) that will satisfy the Liouville equation [7]:

ρt + ∇pH · ∇xρ − ∇xH · ∇p ρ = 0. (14)

Since we are interested in frequency domain wave equations (see Equation 1), which are considered
without their harmonic time-dependence until after a solution has been found, we assume that in the
high-frequency regime the particle density has reached a steady state. Therefore, we consider the
stationary Liouville equation, where ρt = 0. Now let u(x,p) satisfy the stationary Liouville equation
as follows

∇pH · ∇xu = ∇xH · ∇pu. (15)

Using Equation 12, Equation 15 can be re-written as

1
η2p · ∇xu = −

1
η
∇xη · ∇pu. (16)

For a spatially constant slowness function η we have ∇xη = 0 and thus the stationary Liouville
equation can be simplified again to give:

1
η2p · ∇xu = 0. (17)

Note that in general, we will consider the slowness η to be piecewise constant due to changes in
the structure or material properties/parameters. Hence Equation 16 will model our system locally
within each region of constant slowness. Fixing the energy as a constant normalised to unity, then the
Hamiltonian H ≡ 1 and Equation 13 gives

|p| = η. (18)

Taking p1 and p2 as the x and y components of the direction of the ray normalised so that p satisfies
Equation 18, we obtain

p =

(
p1

p2

)
=

(
ηcos(θ)
ηsin(θ)

)
, (19)

where θ ∈ [−π, π) is the angle between the ray vector and the positive x-axis. Therefore, Equation 17
can be written as:

1
η2

(
ηcos(θ)
ηsin(θ)

)
·

(∂u
∂x
∂u
∂y

)
= 0. (20)

Now, setting ŝ = (cos(θ), sin(θ))⊺ ∈ S 1 (the unit circle), we obtain:

1
η
ŝ · ∇u = 0, (21)

where we have simplified the notation and used ∇ to represent ∇x. Equation 21 describes the transport
of energy along ray trajectories. However, it does not account for realistic scenarios where the energy
density is typically reduced as the wave travels through the structure, for example due to material
damping. Therefore, to incorporate these energy losses, we introduce a viscous damping term with
decay rate µ in agreement with the Beer–Lambert law [11]. This leads to the modified equation

ŝ · ∇u + µu = 0, (22)
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where Equation 22 is the homogeneous radiative transfer equation without the scattering term [12]. In
many contexts, such as tomography or meteorology, the absent scattering term is essential to model
the redirection of rays due to inhomogeneities in the structure. However, for our application involving
high-frequency waves in complex built-up media, we assume that the waves propagate unimpeded
until they encounter a boundary or an abrupt change in material. To account for internal emitters or
energy injections, we also consider an external source term f on the right-hand side, yielding

ŝ · ∇u + µu = f . (23)

4. DISCRETISATION OF THE RADIATIVE TRANSFER EQUATION
In this section, we describe the discretisation process for numerically solving the radiative

transfer equation (RTE), addressing both spatial and directional dependence. For the spatial
discretisation, we employ the Discontinuous Galerkin (DG) method, while for the directional
discretisation, we compare the discrete ordinates method with a Fourier-based approach.
Consider a spatial domain Ω ⊂ R2 with boundary Γ = ∂Ω. We begin by applying the DG
method to Equation 23, discretising the spatial domain Ω into Nh non-overlapping elements E j,
where j = 1, 2, . . . ,Nh. Each element E j has boundaries defined by κ edges, denoted Γi, j, for
i = 1, 2, . . . , κ. To capture the essential spatial and angular behaviour within the element E j we
introduce a local approximate solution u j(x, θ) ≈ u(x, θ) for x ∈ E j and u j(x, θ) = 0 otherwise, for
each j = 1, 2, . . . ,Nh. To approximate the spatial dependence of u j we use orthonormal Legendre
polynomials of degree n = 0, 1, 2, . . ., given as

P̃n(ξ) =

√
2n + 1

2
Pn(ξ), −1 ≤ ξ ≤ 1, (24)

where Pn denotes the standard Legendre polynomials of degree n. The scaled Legendre polynomials
satisfy

∫ 1

−1
P̃m(ξ) P̃n(ξ) dξ = δmn, where δmn is the Kronecker delta. To implement these Legendre

polynomials as basis functions, we first enclose each element E j ⊂ Ω in the smallest possible
Cartesian bounding box BE j =

(
xc −

hx
2 , xc +

hx
2

)
×

(
yc −

hy

2 , yc +
hy

2

)
with side-lengths hx and hy, and

centroid (xc, yc). We define the affine map as

(x̂, ŷ) = x̂ = F j(x) =
(
2 (x − xc)

hx
,

2 (y − yc)
hy

)
, (25)

which carries BE j on to the reference box B̂E j = (−1, 1)2. The Jacobian of the inverse map F−1
j is

given as |JE | =
1
4 hx hy and as |JΓ| = ∥J⊤En̂∥ |JE | along the boundary Γ [13]. We express the Legendre

polynomials in terms of the local co-ordinates x̂ as we employ the exact integration method outlined
in [13], which is based on integration with respect to x̂.
To discretise directionally, we employ two distinct methods, the discrete ordinates method or a
Fourier approach. The discrete ordinates method is well-suited for problems where fluxes propagate
in discrete directions, whereas the Fourier-based discretisation is more effective when handling
unidirectional forces. Firstly, in the Fourier approach we combine a directional Fourier expansion
with the spatial Legendre polynomial basis P̃α1(x̂) P̃α2(ŷ), from Equation 24, with values of α1 and α2

containing the degrees of the Legendre polynomials in x̂ and ŷ and satisfying α1 +α2 ≤ k. Altogether,
in the Fourier approach we expand u j(x̂, θ) as

u j(x̂, θ) =
k∑
α1=0

k−α1∑
α2=0

N∑
n=−N

û jP̃α1(x̂) P̃α2(ŷ)
einθ

√
2π
. (26)

Now, the weak form is found by multiplying by a test function v(x̂, θ), drawn from the same finite-
dimensional space as our spatial and Fourier basis functions in Equation 26, and integrating of E j and
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θ. In the Fourier approach, this test function is set to be

v j(x̂, θ) = P̃β1(x̂) P̃β2(ŷ)
e−imθ

√
2π
, (27)

with m = −N,−N + 1, . . . ,N and (β1, β2) taking the same values as the corresponding indices (α1, α2)
in Equation 26. Substituting the approximation u j into Equation 23, multiplying by v j and integrating
over E j and θ ∈ [−π, π) then yields∫ π

−π

∫
E j

(
ŝ(θ) · ∇u j (x̂, θ) + µu j (x̂, θ)

)
v j (x̂, θ) |JE j |dx̂dθ =

∫ π

−π

∫
E j

f (x̂, θ) v j (x̂, θ) |JE j |dx̂dθ. (28)

Since ŝ is independent of spatial coordinates x, we note that ŝ·∇u j = ∇·(ŝu j). Using this relationship,
Equation 28 can be expressed as∫ π

−π

∫
E j

(∇ · (ŝ (θ) u j (x̂, θ)))v j (x̂, θ) |JE j |dx̂dθ +
∫ π

−π

∫
E j

µu j (x̂, θ) v j (x̂, θ) |JE j |dx̂dθ

=

∫ π

−π

∫
E j

f (x̂, θ) v j (x̂, θ) |JE j |dx̂dθ. (29)

Green’s first identity gives∫ π

−π

∫
E j

(∇ · (ŝu j))v j|JE j |dx̂dθ = −
∫ π

−π

∫
E j

(ŝ · ∇v j)u j|JE j |dx̂dθ +
κ∑

i=1

∫ π

−π

∫
Γi, j

γi, jv j|JΓi, j |dx̂dθ, (30)

where on each face Γi, j ⊂ E j, we define the numerical flux γi, j by an upwind scheme. Let n̂i, j be the
outward unit normal on Γi, j from element E j. Then γi, j(θ) =

(
ŝ(θ) · n̂i, j

)
up

i, j(θ), where up
i, j is

up
i, j(x̂, θ) =

u j(x̂i, θ), if ŝ(θ) · n̂i, j > 0,

u j+(x̂i+, θ), otherwise,
(31)

and where x̂i+ denotes a point on the boundary of the neighbour element E j+ that lies upwind of E j,
connected via Γi, j = Γi+, j+ ⊂ E j+ [14]. Applying Equation 30 to the divergence term in Equation 29
yields∫ π

−π

∫
E j

µu j (x̂, θ) v j (x̂, θ) |JE j |dx̂dθ −
∫ π

−π

∫
E j

u j (x̂, θ) (ŝ(θ) · ∇v j (x̂, θ))|JE j |dx̂dθ

+

κ∑
i=1

∫ π

−π

∫
Γi, j

γi, j (x̂, θ) v j (x̂, θ) |JΓi, j |dx̂dθ =
∫ π

−π

∫
E j

f (x̂, θ) v j (x̂, θ) |JE j |dx̂dθ. (32)

In the discrete ordinates method we approximate u(x̂, θ) by its values at a finite set of Nθ directions
θn for n = 1, 2, . . . ,Nθ which we take to be uniformly spaced between [−π, π). For each θn and x in
element E j we approximate our solution by

u(x̂, θn) ≈ u j(x̂, θn) = un
j(x̂) =

k∑
α1=0

k−α1∑
α2=0

ûn
j P̃α1(x̂) P̃α2(ŷ), α1 + α2 ≤ k, n = 1, 2, . . . ,Nθ, (33)

and choose corresponding test functions to be

w j(x̂) = P̃β1(x̂) P̃β2(ŷ), β1 + β2 ≤ k. (34)
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Similarly to the Fourier approach, we substitute Equation 33 into Equation 23 for θ = θn, n =
1, . . . ,Nθ, multiply by w j from Equation 34 and integrate over E j to obtain

∫
E j

µun
j (x̂) w j (x̂) |JE j |dx̂ −

∫
E j

un
j (x̂) (ŝ(θn) · ∇w j (x̂))|JE j |dx̂ +

κ∑
i=1

∫
Γi, j

γn
i, j (x̂) w j (x̂) |JΓi, j |dx̂

=

∫
E j

f (x̂, θn) w j (x̂) |JE j |dx̂, (35)

where γn
i, j = γi, j (θn).

Now, Equation 32 for the Fourier-based approach and Equation 35 for the discrete ordinates method,
can both be written more succinctly as a matrix system Au = v, where A and v are assembled from
the left hand and right hand sides of each equation respectively and u is the solution vector. The
global solution vector u is assembled by concatenating the element-wise blocks u j for j = 1, . . . ,Nh

via
u =

(
u1,u2, . . . ,uNh

)⊤
. (36)

Each block u j gathers all radiance coefficients, un
j,α1,α2

, corresponding to the spatial and the angular
discretisation. Each u j is of size 1

2 (k+1)(k+2)(2N+1) for the Fourier approach and 1
2 (k+1)(k+2)Nθ

for the discrete ordinates method, and is ordered such that for each spatial multi-index, the directional
index varies first before advancing to the next spatial multi-index.

5. CONCLUSIONS
In this work, we demonstrated that applying a high-frequency asymptotic ansatz to classical

wave equations leads naturally to the eikonal equation, which effectively characterises the evolution
of the wave phase. By utilising the method of characteristics, we transformed the eikonal equation
into a Hamiltonian system of ray equations, thereby establishing a robust framework for tracking
the wave energy densities. We then introduced a phase-space density that satisfies the stationary
Liouville equation, laying the foundation for deriving the RTE without scattering. We discussed
the numerical solution of the aforementioned RTE by discretising both the spatial and directional
variables. We introduced a computational framework that utilises DG for spatial discretisation, and
compare the conventional discrete ordinates method for the directional discretisation with a Fourier-
based approach. In the oral presentation, I will discuss various simulation results that highlight the
method’s potential in addressing high-frequency wave problems.
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