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ABSTRACT

Single Pulse Electrical Stimulation (SPES) has emerged as a promising technique for
the assessment of drug-resistant epilepsy (DRE). SPES offers a controlled method to
probe the excitability and connectivity of neural circuits to identify regions associated
with epileptic seizures. Current limited methods employed in practice for processing
and diagnosing epilepsy using SPES sometimes fall short of explaining the underlying
neurophysiological mechanisms and identifying the regions associated with seizure
and seizure onset zone (SOZ). The unique nature of the data recorded during SPES
sessions, such as the morphology and inconsistent behaviour of responses even for
an individual case in a fixed setup, presents significant challenges for conventional
processing algorithms. Such methods may lead to misleading results, underscoring the
need for innovative approaches in SPES data analysis.

This PhD thesis focuses on increasing the efficacy of SPES used for the treatment of
DRE cases by developing signal processing and machine learning pipelines to investi-
gate the responses to SPES. We aim to answer the critical questions regarding the excita-
tion and inhibition imbalance in regions associated with seizure, the relation between
the source of responses to SPES and that of interictal epileptiform discharges (IEDs)
as important biomarkers for epilepsy, and also provide accurate and robust tools for
identifying the regions responsible for seizure generation focusing on array processing
using beamforming.

By leveraging advanced techniques like adaptive and nonlinear signal processing,
subspace analysis, single-channel source separation, regularised beamforming, and the
related optimisations, this work is committed to improving the accuracy of the diag-
nosis stage, leading to more effective and individualised treatment strategies for DRE
cases.

The excitatory and inhibitory components of brain responses to SPES are separated
to study their imbalance associated with seizures. Moreover, more accurate and robust
source localisation pipelines, including a distributed beamforming algorithm, are sug-
gested and implemented to identify the regions responsible for generating abnormal
responses to SPES. The source of these responses is compared with the origin of other
epileptiform activities, such as IEDs and SOZ. The methods developed in this work
not only offer a better insight into epilepsy and abnormal activity present in the in-
tracranial electroencephalogram data recorded from DRE cases but also provide more
reliable tools for their clinical diagnosis in the future, leading to more efficient and

cost-effective DRE treatment techniques.
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INTRODUCTION

The brain is undeniably the most complex organ in the human body. It comprises a
vast number of neurons that are anatomically or functionally connected. Researchers
have been diligently investigating neuronal communication within the brain for many
years. This extensive research has significantly enhanced our understanding of brain
functionality and has led to improved methods for diagnosing and treating various
neurological diseases and conditions, including autism, epilepsy, dementia, Parkinson’s
disease, and Alzheimer’s disease [1].

To explore brain functionality, researchers employ various neuroimaging modalities.
Among them, the electroencephalography (EEG) [2] and functional magnetic resonance
imaging (fMRI) [3] are particularly prominent. fMRI is based on the brain’s hemody-
namic response, measuring the changes in blood flow to track alteration in neural
activity. However, one of the limitations of fMRI is its low temporal resolution due
to its nature, meaning it cannot capture and track the rapid changes in brain activity.
Conversely, EEG records the brain’s electrical activity directly, which provides a high
temporal resolution and is invaluable for investigating the brain activities and overall
functionality as a dynamic system.

EEG can be recorded either non-invasively from the scalp using wet or dry elec-
trodes, known as scalp EEG (scEEG), or invasively by recording the electrical activity
directly from the cerebral cortex or deeper brain areas called intracranial EEG (iEEG)
[4]. Although scEEG is an easily available low-cost method for recording brain activity,
it lacks sufficient precision in pinpointing their exact sources due to its limited spatial
resolution. The volume conduction effect, a phenomenon where EEG signals generated
by neuronal activity are spread and diffused through the various tissues of the head,
causing a smearing effect on EEG [5], is worse for scEEG compared to iEEG as the sig-
nals propagate through extra layers of tissue (skull and scalp). In contrast, iEEG offers
high spatial resolution, making it a powerful tool for detailed investigation of brain ac-
tivity. This high spatial resolution is particularly crucial for patients with neurological
conditions such as epilepsy, where precise localisation and characterisation of the brain

activity are essential for effective diagnosis and treatment.

1.1 EPILEPSY AND EPILEPTIC SEIZURES

Epilepsy, a chronic brain disease, is characterised by epileptic seizures caused by an

expected imbalance between excitatory and inhibitory activity in regions associated
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with the epileptic seizure, known as epileptogenic regions [6]. Based on reports from
the World Health Organization (WHO), epilepsy is the most prevalent neurological
disease, affecting more than fifthy million people globally [7].

Epileptic seizures are characterised by sudden, uncontrolled electrical disruptions in
the brain, which can lead to various symptoms, including loss of consciousness, and
changed sensory perceptions [8]. The condition of epilepsy is diagnosed when a case
experiences two or more unprovoked seizures, which are seizures not caused by iden-
tifiable factors such as head injury, stress, trauma, hypertensions, or fever. These rates
can be influenced by demographic and regional factors, such as ageing populations
and improvements in medical care and diagnosis, which may lead to variations over
time [9].

The prognosis for individuals experiencing their first unprovoked seizure can vary
significantly. Research indicates that approximately 27% of individuals experience a
second seizure within six months of their first, and this risk increases to 43% within
two years. This data is crucial for clinicians in counseling patients about the likelihood
of recurrence and making informed treatment and management decisions [8, 10].

Approximately 30% of individuals with epilepsy do not respond positively to med-
ication and show no improvement in their symptoms during or after the treatment,
classifying them as drug-resistant epileptic (DRE) patients [11]. For these patients, al-
ternative treatments such as resection surgery [12], where the regions responsible for
seizures, if possible, are surgically removed, can be an option. Given the considerable
global population afflicted by epilepsy and the complexities doctors and clinicians en-
counter in managing this condition, there has been a significant emphasis in research
on enhancing the understanding of epilepsy and refining treatment approaches for the
affected individuals.

Seizures are periods of unusual electrical activity in the brain that can manifest in
various forms. They are generally grouped into epileptic and non-epileptic seizures,
each with distinct etiologies, manifestations, and treatment approaches. Understanding
these differences is necessary for accurate diagnosis and management [13].

Epileptic seizures stem from abnormal electrical discharges in the brain. These dis-
charges disrupt normal brain function, leading to various symptoms such as convul-
sions, loss of consciousness, and sensory disturbances [14, 15]. The causes of epileptic
seizures can be diverse, including genetic factors, brain injuries, strokes, brain tumors,
and other neurological disorders [15].

Epileptic seizures are categorised into generalised and partial (focal) seizures. Gen-
eralised seizures affect the entire brain and are often associated with genetic factors. In
contrast, partial seizures originate in a specific area in the brain and can be caused by
localised brain damage or lesions [15]. Diagnosis typically involves EEG monitoring to

detect abnormal electrical activity [16].
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Non-epileptic seizures (NES) resemble epileptic seizures in appearance but are not
due to changed brain electrical activity. Instead, they may result from psychological
factors, such as stress or trauma, or physical conditions like metabolic imbalances or
cardiovascular issues [14, 16]. NES can be further divided into functional (psychogenic)
seizures and those with an organic cause [14, 16]. Functional seizures, also named psy-
chogenic non-epileptic seizures (PNES), are physical manifestations of psychological
distress. They occur unconsciously and are not under the individual’s control [14, 17].
Diagnosis often involves ruling out epilepsy through EEG monitoring and assessing
psychological factors [16, 17]. Organic NES has a physical cause, such as fainting or
metabolic disturbances like hypoglycemia. These seizures are generally easier to diag-
nose and treat due to their identifiable physical causes [14, 16].

One important challenge in distinguishing between epileptic and non-epileptic seizures
is their similar presentation. Both can involve convulsions, altered consciousness, and
other seizure-like symptoms [16]. Hence, EEG monitoring is crucial for differentia-
tion [17]. The paper "Differentiating between nonepileptic and epileptic seizures" ad-
dresses the complexities in distinguishing psychogenic nonepileptic seizures (PNES)
from epileptic ones [13]. Wrong diagnosis can happen, which leads to inadequate treat-
ment and prolonged patient distress. While clinical features such as seizure duration,
motor activity, and responsiveness can offer the indications, none is definitive in isola-
tion. Therefore, a comprehensive approach is required. The gold standard for diagnosis
is video-electroencephalography (video-EEG), which can capture the brain’s electrical
activity during a seizure, helping distinguish between epileptic and nonepileptic events
[13]. However, video-EEG alone may not be sufficient in all cases, and the paper advo-
cates for integrating thorough neurological and psychiatric examinations to improve
diagnostic accuracy [13].

Epileptic seizures are primarily managed with antiepileptic drugs and, in some cases,
resection surgery to remove epileptogenic regions [18]. In contrast, treatment NES in-
volves addressing the underlying psychological or physical causes. For PNES, cognitive
behavioural therapy and psychiatric interventions are commonly used [17].

The iEEG recordings from ictal (during seizure) and interictal (between seizures) peri-
ods play a critical role in identifying the epileptogenic areas responsible for generating
seizures during the clinical assessment stage, especially for DRE cases, prospected for
resection surgery. Although monitoring the ictal recordings can be helpful during the
treatment period, seizures are not always frequent and might not happen during the
limited clinical assessment time in the clinical environment. The same applies to interic-
tal epileptiform discharges (IEDs) observed during interictal periods [19]. Considering
the sparsity of ictal periods and IEDs during interictal periods for a large number of
DRE patients and the limited time they spend after electrode implantation at the teleme-
try unit, deep brain stimulation (DBS), mainly single pulse electrical stimulation (SPES)

[20], is a method developed to investigate the brain responses to electrical stimulation
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and identify the epileptogenic regions responsible for seizure generation. SPES results
can help reduce the duration of chronic recordings, consequently lowering costs and the
risk of infection during the assessment period. Additionally, various SPES modalities
could be particularly relevant for patients who do not experience seizures during the
intracranial recording periods [21]. Furthermore, exploring the relationship between
SPES responses and IEDs can enhance the efficiency of pre-surgical assessments for
patients undergoing evaluation for resection surgery [22].

Epilepsy research is continuously advancing, aiming to provide better diagnostic
tools and treatment options for those affected by this neurological disorder. The in-
tegration of iEEG recordings and innovative techniques like SPES in clinical practice
holds promise for improving the management and outcomes of epilepsy, particularly
for those who are resistant to conventional treatments. These advanced methods al-
low for more precise localisation of seizure sources and mapping of the epileptogenic
network in the brain, enabling tailored surgical interventions and possibly reducing
the invasive procedures [23, 24]. Furthermore, recent studies have explored the use of
machine learning algorithms to analyse iEEG data, enhancing the accuracy of seizure
prediction and detection [25]. The combination of these cutting-edge approaches with
traditional diagnostic methods, such as neuroimaging and standard EEG, paves the
way for more personalised and effective epilepsy assessment and care, ultimately aim-
ing to improve the quality of life for individuals living with this challenging condition

[23, 26].

1.2 DBS AND SINGLE PULSE ELECTRICAL STIMULATION

The surgical procedure for DBS involves implanting electrodes where each electrode
can be supplied by a pulse generator in targeted brain regions. This setup allows for
the modulation of brain activity through electrical stimulation [27, 28]. DBS is mainly
used for Parkinson’s disease and epilepsy, but the mechanisms, targets, and outcomes
differ between these conditions. DBS delivers electrical impulses to targeted brain areas,
disrupting abnormal neural circuits. In both Parkinson’s disease and epilepsy, DBS
aims to modulate dysfunctional brain activity to alleviate symptoms. The procedure
is reversible and adjustable, offering advantages over lesioning techniques [29, 30]. In
addition to treatment, DBS has been used as a diagnostic tool for DRE cases [20].

The most common targets for DBS in Parkinson’s are the subthalamic nucleus and
the globus pallidus interna [31]. These areas are involved in motor control, and their
stimulation helps alleviate symptoms like tremor, rigidity, and bradykinesia [27, 30].

The anterior nucleus of the thalamus is a common target for epilepsy. This area is
involved in seizure propagation, and its stimulation can reduce seizure frequency in

patients with refractory epilepsy [28]. In addition, DBS has been applied to various
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regions in the brain to identify the epileptogenic regions responsible for seizure gener-
ation using the responses to electrical stimulation [20, 22].

The stimulation parameters, like frequency and intensity, can differ significantly
between Parkinson’s and epilepsy. Parkinson’s DBS typically uses continuous high-
frequency stimulation. At the same time, epilepsy may benefit from both open-loop
and closed-loop systems, with the latter providing responsive stimulation based on
detected seizure activity [22, 28, 29].

In Parkinson’s disease, the DBS significantly improves motor symptoms and can re-
duce medication requirements. However, it does not halt disease progression and may
not address non-motor symptoms like cognitive decline [27]. In epilepsy, the DBS can
reduce seizure frequency and severity, particularly in patients with DRE. However, the
efficacy can vary, and some patients may not achieve complete seizure control [28, 29].
The adverse effects of DBS can vary between the two conditions. In Parkinson’s, cogni-
tive and mood changes can occur, especially with subthalamic nucleus stimulation. In
epilepsy, the side effects may include sleep disturbance and mood change, but these are
often related to the specific brain target and the stimulation parameters [27, 30]. DBS
may be used to treat refractory status epilepticus (SE). SE is a medical emergency where
a seizure lasts for an unusually long time or when a person has repeated seizures with-
out regaining full consciousness between the events. It is a condition that can occur in
people with or without a history of epilepsy. DBS can be considered a salvage therapy
for these conditions, which have high mortality rates. In some cases, DBS has resulted
in a significant reduction or complete elimination of seizures in SE subjects [32].

In previous studies, the researchers have increasingly emphasised the synchronisa-
tion of brain cortical signals as a crucial predictor of impending epileptic events [33].
The balance between excitatory and inhibitory neural activities is fundamental for di-
recting optimal information transmission within the brain necessary for normal brain
functioning. Any deviation from this balance can disrupt normal brain function, im-
peding effective information processing [34—36].

Extensive research efforts have delved into elucidating the role of excitatory and in-
hibitory mechanisms in the transition from normal brain function to epileptic seizures.
Traditional theories, such as the excitation (E)-inhibition (I) imbalance hypothesis, have
posited that aberrant ion channel function and synaptic activity contribute to height-
ened seizure susceptibility [37]. However, recent advancements in understanding en-
compassing genetic mutations, neurotransmitter dynamics, medication mechanisms,
and metabolic influences, necessitate a nuanced re-evaluation and expansion of this
hypothesis [38].

In the context of epilepsy, where an imbalance between excitatory and inhibitory ac-
tivities is anticipated within regions implicated in seizure initiation, the responses to
electrical stimulation hold promise for assessing the E-I imbalance [22]. As a result of

SPES the delicate interplay between E and I can be investigated. This technique records
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1.2 DBS AND SINGLE PULSE ELECTRICAL STIMULATION

Figure 1.1: SPES setup and telemetry at King’s College London Hospital.

the responses induced by applying the single electrical pulses to different cortical re-
gions. Therefore, it is also known and referred to as cortico-cortical evoked potentials
(CCEPs) [39]. By selectively activating localised populations of neurons, SPES generally
elicits two distinct responses: early responses (ERs) and delayed responses (DRs) [20,
40].

The recorded responses in various brain regions typically exhibit a characteristic pat-
tern, beginning with a negative spike or sharp wave, which frequently blends with the
stimulation artefact. This initial phase is followed by a slow wave lasting for several
hundred milliseconds. Termed ERs (or CCEPs) commence immediately following the
stimulus (typically observed within 100ms post electrical stimulation) and are believed
to reflect the brain’s normal response to a stimulation. The detection of ERs at a specific
site suggests the presence of functional connections with the stimulated region. Con-
sequently, these responses serve as valuable indicators for mapping and quantifying
brain functional connectivity [20, 39, 41].

Moreover, epileptogenic sites commonly demonstrate ERs followed by sharp waves
or pronounced epileptiform discharges occurring between 100oms to 1s post-stimulation,
known as DRs [20]. The presence of DRs typically signifies increased excitability, indi-
cating a hyperexcitable region with potential epileptogenicity, often localised at the
ictal onset zone. DRs play a crucial role in prognosticating seizure control, identifying
epileptogenic areas, and pinpointing epileptogenic zones within the cortex [22].

Many researchers utilise single pulses for SPES characterised by a constant current
intensity ranging from 2 to 6 mA [20, 39, 41]. These pulses typically display a biphasic
waveform with a phase duration of 0.15 ms and an overall pulse span of 1 ms. They
are administered at frequencies ranging from 0.2 Hz to 1 Hz. Apart from intensity, the
number of pulses per second is another important parameter. Considering the presence
of DRs serves as a helpful marker for identifying the seizure onset zone (SOZ), ensuring
that the interval between pulses must be sufficiently long to capture these responses.
As DRs may persist for as long as one second, employing a frequency of 1 Hz has the
risk of misinterpreting DRs as seizures or inadvertently inducing real seizures. To bal-

ance test duration and the accurate interpretation of DRs, a frequency of 0.5 Hz could
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1.3 SPES EARLY RESPONSES

Figure 1.2: Implanting the iEEG electrodes for a DRE case at King’s College London Hospital.

serve as a viable compromise [22]. Figure 1.1 shows the iEEG recordings alongside
the SPES properties and equipment used for the assessment sessions at King’s College
London Hospital. The iEEG recordings can be obtained using two types of electrodes:
subdural and depth electrodes. These two types differ significantly in their placement,
structure, and the type of neural information they provide. Subdural electrodes are
placed directly on the brain’s surface (cortex), beneath the dura mater. These electrodes
are typically arranged in grids or strips and provide extensive coverage over the corti-
cal surface [42—44]. Depth electrodes are inserted into the brain tissue, targeting deeper
brain structures. These electrodes are typically cylindrical and can monitor superficial
and deep brain regions [42, 43]. Figure 1.2 shows the intracranial electrodes (depth and
subdural) implantation for a DRE case.

1.3 SPES EARLY RESPONSES

Previous research has delved into the neuronal mechanisms underlying SPES responses
[45]. The results suggest that SPES does not appear to alter the firing rate of approx-
imately half of the neurons proximal to the stimulus. Among the remaining neurons,
roughly 25% exhibit a brief burst of action potentials (indicative of E, typically last-
ing less than 100 ms), while 14% demonstrate a prolonged period of firing suppression
(representing I, often lasting up to 80o ms). Additionally, 12% of neurons display a brief
burst of action potentials followed by an extended period of suppression. The temporal
dynamics of these action potential bursts and suppressions suggest that the initial N1

component of the ERs corresponds to E, whereas the subsequent slow wave reflects I
[45]-



1.4 SPES DELAYED RESPONSES

To enhance the effectiveness of SPES for localising the SOZ, Hays et al. [46] under-
took a study on the characteristics of ERs in patients undergoing intracranial recordings.
Their investigation involved comparing ER characteristics across various stimulated re-
gions and found that the first negative peak amplitude of responses was significantly
higher within the SOZ compared to non-SOZ regions, regardless of whether the stimu-
lation occurred within or outside the SOZ. This finding provided evidence of increased
excitability at the SOZ. Additionally, by using progressive increments of current inten-
sity, it was demonstrated that this approach could better estimate the SOZ than a fixed
maximal stimulation intensity [46].

Furthermore, SPES and the corresponding ERs have been employed to explore brain
functional connectivity in patients with epilepsy or brain tumors. The outcome of recent
research has led to a paradigm shift in understanding brain function. While previous
understanding considered highly localised hierarchical structures as the intermediate
steps between the environmental stimuli and the responses, the current view asserts
that brain functions are primarily intrinsic and involve the acquisition and integration
of external stimuli to respond to environmental demands. ER analysis has proven in-
strumental in investigating the dynamic functional connections crucial to brain function
as a dynamic system [47].

Studies focused on ERs to explore brain functionality have provided new insights
into the limbic and, in general, language systems functionality [48]. Moreover, a se-
quential series of studies have been focused on using ERs to investigate the cortical
motor network in and across hemispheres [49, 50]. ER studies face some limitations.
First, as the data is recorded from epileptic brains or subjects with brain tumors, the re-
ported ER cannot be assumed to correspond to a completely healthy brain and normal
functional network. Also, the outcome of these studies are subject to the intracranial
electrode implantation setup and their location. Therefore, these studies lack the infor-
mation outside the coverage area. Finally, knowing that cognitive conditions can affect
ER responses, it is essential to consider the influence of anesthetic agents, particularly

during intraoperative ER monitoring [47].

1.4 SPES DELAYED RESPONSES

As mentioned earlier, studies focused on SPES for epileptic patients reveals two types
of brain responses to electrical stimulation. Apart from ERs, DRs are also observed
generally 100 ms to 1.5 seconds post-stimulation in regions believed to be epileptogenic
and possibly responsible for seizure generation in the brain [20, 22]. A later study
focuses on the outcome of resection surgery and investigate the relative location of the
observed DRs and the resected sections in adults, emphasising the relation between

the DRs and epileptogenic regions in the brain and their capability to identify these
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regions, particularly when a frontal or temporal focus is suspected [40]. A sequential
study targeting children shows similar results regarding the capability of DRs in SPES
for identifying the epileptogenic cortex in children, demonstrating that in cases where
these responses are present, the removal of the area responsible for generating them
leads to improved conditions for these children after resection surgery [51].

Another study investigates the role of SPES in guiding electrode implantation un-
der general anesthesia in the pre-surgical assessment of epileptic patients [52]. The
findings of this study demonstrate that, when utilising general anesthesia, DRs can be
consistently replicated without eliciting false positive epileptiform responses to SPES.
However, it is noted that the sensitivity of the method is significantly diminished by
the presence of spontaneous discharges [52]. These results advocate for using SPES as
a supplementary technique, particularly beneficial for enhancing electrode placement

accuracy during epilepsy surgery in cases where substantial interictal activity is absent.

1.5 CURRENT CHALLENGES IN SPES

Several challenges arise when applying SPES to pinpoint epileptogenic regions in the
brain in its current form. Firstly, there is still ambiguity surrounding the nature of brain
responses to SPES, including the underlying excitatory and inhibitory neural activities
[53]. While an imbalance between E and I is expected, delving into alterations in E and
I and the ratio between them can aid in pinpointing the SOZ.

Secondly, the weak and spike-like nature of brain responses to electrical stimulation
(especially DRs) [20, 40] presents obstacles for conventional methods in the analysis of
these waveforms. They also vary in morphology, and latency after stimulation, posing
difficulties for conventional signal processing techniques to identify and analyse them
effectively.

The third challenge arises from the current procedure of implanting intracranial elec-
trodes based on presumed SOZ. Despite the higher spatial resolution of iEEG compared
to scEEG, it’s crucial to acknowledge that seizure-related stimulation responses can
only be observed (visible in iEEG data) if the electrodes are planted close to the epilep-
togenic regions. Consequently, there’s no assurance of precise electrode placement, po-
tentially leading to a loss of necessary information in the recorded iEEG signals. Clin-
ical reports from King’s College London Hospital suggest instances where DRE cases
underwent resection surgery multiple times (in some cases up to three times). This is
due to ineffective surgery and no sign of improvement in the severity of the symp-
toms, highlighting the suboptimal nature of this approach in a considerable number of
patients.

Finally, a noteworthy limitation of SPES sessions lies in the unique setup mandated

for each patient. Ths is often tailored to their medical history and condition, while fol-
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1.6 AIMS AND OBJECTIVES

lowing the standardised clinical assessment approach for DRE cases eligible for surgery.
This variability in SPES setups complicates comparison of the results across different
subjects. Demonstrating the efficacy of advanced signal processing and machine learn-
ing techniques in analysing SPES responses and identifying epileptogenic regions helps
developing the SPES processing pipelines. This which can lead to an improved clinical

assessment and treatment plannig for the DRE patients.

1.6 AIMS AND OBJECTIVES

With the critical need to address the limitations in understanding abnormal epileptic
activities in the brain, uncertainties surrounding seizure generators, and the existing
challenges in SPES, this research is a timely and crucial endeavor. It aims to develop
advanced signal processing and machine learning techniques that can significantly en-
hance the efficacy of DBS, notably SPES sessions.

Firstly, this thesis seeks a more profound insight into the nature and underlying
brain responses to SPES by examining E-I imbalance from ERs and DRs in epilepto-
genic regions. The question that needs to be answered is: What is the alteration in the
ratio of I to E during these responses? To answer this question, this thesis employs
subspace analysis to extract and investigate the excitatory and inhibitory parts of SPES
ERs and DRs. By means of an adaptive single-channel source separation algorithm
suitable for non-stationary EEG signals, the E-I components are extracted, and the al-
terations in the I-to-E ratio are investigated. The adaptive source separation algorithm
used in this thesis performs the E-I separation in the temporal domain without any
prior assumptions about their spectral or spatial properties. Furthermore, this work
aims to devise more effective methodologies for investigating these activities, enabling
the identification of seizure sources with greater accuracy using recorded signals. The
critical question that needs addressing is how to improve the performance of current
conventional approaches. Having a more reliable method helps investigate better the
source of abnormal epileptiform activities associated with seizures. This thesis intro-
duces the concept of spatial filtering and beamforming as a well-known tool for source
localisation. This thesis aims to use the concept of adaptive beamforming to improve
the issues the conventional methods face when applied to identification of the source
of SPES responses and other abnormal epileptic activities like IEDs. It aims to develop
adaptive (regularised) beamforming algorithms tailored for identifying the source of

these activities. In summary, the objectives of this thesis are to:
1. Review the state of the art research in SPES for epilepsy.

2. Develop and apply an adaptive single channel source separation to extract the

excitatory and inhibitory components of the responses (ERs and DRs) to SPES.
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3. Develop and apply a suitable source localisation approach to boost the perfor-
mance of conventional methods in identifying the source of responses to the SPES
and potentially SOZ.

4. Improve the overall adaptability and robustness of the source localisation pipeline
by considering possible temporal delay mismatch and the effect of correlated

sources.

5. Introduce a temporally distributed beamformer to increase the accuracy and con-

sistency of source localisation

6. Incorporate tensor decomposition and temporal distributed approach in a hybrid

localisation system to increase the consistency of results for each case.

1.7 ORGANISATION OF THE THESIS

Chapter 1 introduces the SPES method as a necessary tool for the assessment of epilepsy,
especially for DRE cases, and outlines the necessity of advanced signal processing
pipelines in analysing SPES results and iEEG data recorded during these sessions, con-
sidering challenges associated with SPES, leading to a delineation of aims and objec-
tives.

Chapter 2 undertakes a comprehensive review of relevant publications on SPES that
use pertinent methods for the investigation of brain functional connectivity and epilep-
togenicity. In this chapter, areas that can potentially be improved are pinpointed.

In Chapter 3, the concept of singular spectrum analysis (SSA) as a subspace analysis
tool is introduced, followed by the development of an adaptive SSA pipeline for single
channel iEEG to separate the excitatory and inhibitory components of SPES responses
[54]. The chapter further explores the I-E ratio for the recorded responses to SPES in
epileptogenic regions.

Chapter 4 introduces spatial filtering and the concept of beamforming, including the
linearly constrained minimum variance beamformer (LCMYV), as a prominent source
localisation tool in various research fields, including EEG-related studies. Subsequently,
a novel method, named "adaptive iterative LCMV (AI-LCMYV)," [55] is introduced for
localising DR sources, leveraging the morphology of DRs as an added constraint. The
iterative algorithm that utilises iEEG data recorded via intracranial electrodes over the
cortex is employed to optimise the beamformer weights.

The resemblance between IEDs and DRs [56] prompts inquiry into their shared
brain origins in Chapter 5. An improved source localisation method, named "adaptive
Bayesian beamformer with multiple constraints (ABMC)," [57] is proposed to determine
sources of IEDs from interictal periods and SPES DRs associated with epileptogenic re-

gions.
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Chapter 6 aims to enhance the input SNR and exploit temporal variabilities through
tensor factorisation and cooperative array processing in a temporally distributed beam-
former. This endeavour seeks to strengthen source localisation pipelines by further
adapting to the low-power and dynamic nature of DRs and IEDs.

Finally, in Chapter 7, the work presented in the thesis is summarised and concluded.
The clinical impact of the overall work is highlighted, and possible areas for improve-

ment in future works are mentioned.
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LITERATURE REVIEW

The primary objective of this project is to uncover the data contained in the responses to
SPES in order to pinpoint epileptogenic areas within the brain effectively. SPES stands
out as a tool in epilepsy studies as it provides valuable glimpses into brain activity
and possible treatment options. Through the employment of signal processing and
machine learning techniques for SPES data analysis scientists can delve into neural
reactions and derive vital insights, for comprehending epileptogenesis and creating
specific remedies. This chapter discusses the current state of the art research on SPES
data analysis, focusing on the signal processing and machine learning techniques. The

aim here is to identify research gaps and areas needing improvement in this field.

2.1 BRAIN STIMULATION AND EVENT-RELATED RESPONSES

Most studies regarding brain stimulation are related to event-related potentials (ERPs)
extracted from EEG signals, which are the brain responses evolving after visual, audio,
or haptic stimulation and are cognitive or motor events [30]. However, here, events
refer to electrical stimulations directly applied to brain tissue. In the context of SPES,
ERPs can be used to study the brain’s response to electrical stimulation to investigate
E-I imbalance. Most SPES studies refer to the ERPs as early responses (ERs) or CCEPs
and delayed responses (DRs) [20, 40]. The use of ERs and DRs allows researchers to
investigate the dynamics of processing in the brain through the sequence of ER-DR
components, making this technique valuable for testing theories of perception, atten-
tion, and cognition [58, 59]. The high temporal resolution of these responses makes
them particularly useful for examining the precise timing of neural responses to elec-
trical stimulation [58—60].

Common ERP analysis techniques include averaging and peak detection. Averaging
multiple trials of SPES-evoked responses has been shown to significantly enhance the
signal-to-noise ratio (SNR), offering a clearer insight into the underlying responses to
SPES [58, 60].

One significant issue is the averaging procedure employed for ER analysis (consid-
ering that ERs are more consistent in appearance). Although averaging over several
segments of data can lead to increased SNR, which is helpful for time-frequency analy-
sis, it causes a loss of information related to the variability in time. Moreover, they need
a timing cue to keep tracking the stimulation instants. Therefore, research has been di-

verted to tracking and monitoring the ERPs over single EEG trials [4]. Previously, a
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2.1 BRAIN STIMULATION AND EVENT-RELATED RESPONSES

large number of studies have used methods like particle filtering and Kalman filtering
for single-trial EEG signal processing for ERP detection [61-63].

Particle filtering, a nonlinear and non-Gaussian filtering method, has been very use-
ful for single-trial EEG signal processing. It is notably useful when dealing with com-
plex, nonlinear models, as often encountered in EEG applications. One of its key ap-
plications is tracking the time-varying states of neural activity, a task that is inherently
nonlinear and can benefit from the flexibility of particle filtering [61]. Another impor-
tant application is decoding brain states from EEG signals, where the non-Gaussian
nature of the brain dynamics can be effectively handled by this method [61, 63]. Parti-
cle filtering works by representing the posterior distribution of the state variables using
a set of weighted particles, which are then propagated over time to model the system
dynamics. This approach allows for the estimation of nonlinear and non-Gaussian pro-
cesses that are common in EEG data, making it a powerful tool for tasks like real-time
neural state estimation, and detecting transient events in EEG signals [61, 63].

Kalman filtering is another useful method previously used for EEG signal processing.
Kalman filtering is a recursive linear filtering technique that estimates the state of a
dynamic system from noisy observations, making it suitable for EEG signal processing
where real-time tracking of brain activity is required [64]. It assumes that both the
system and observation models are linear and that the estimated state and output
noises are Guassian. Kalman filtering is widely used in EEG applications for smoothing
and noise reduction, artefact removal, and real-time tracking of brain states [64, 65]. The
filter works by predicting the next state of the system based on the previous state and
updating this prediction using the new observations, leading to an optimal estimate of
the current state. This method is computationally efficient and can be implemented in
real-time systems, making it ideal for applications such as online ERP tracking.

A recent study introduced a novel method to investigate brain P300 (spike in EEG
activity approximately 300ms following target stimulus presentation) variability across
different trials. The method utilises spatial correlation between EEG channels through
a nonlinear coupled particle filtering approach, which tracks these subcomponents in
the temporal domain [63]. The algorithm incorporates physiological constraints and
inter-channel information sharing to enhance accuracy and robustness, outperforming
non-cooperative methods in single-trial estimation of P300 components.

While particle and Kalman filtering generally estimate dynamic systems’ states from
noisy data, they each bring unique features to the table. Kalman filtering offers com-
putational efficiency, making it a preferred choice for real-time EEG applications. In
contrast, particle filtering’s ability to handle nonlinear, non-Gaussian models makes it
useful for complex EEG signal processing tasks. These tasks usually involve highly non-
linear brain functions, where the rigid assumptions of Kalman filtering are not correct
[66]. For example, in a previous study, a method based on WT and particle filtering was

employed to estimate single-trial ERPs. Simulation results and results from real data

14



2.2 SPES RESPONSE ANALYSIS

indicated the better performance of particle filtering over Kalman filtering for EEG
signals [61].

The studies related to SPES show that the majority of them primarily focus on the ERs
or CCEPs, as DRs lack consistency when using the same SPES setup and are not present
across all regions. The averaging enables an overall comparison of SPES response char-
acteristics across different brain regions, shedding light on disparities between normal
and epileptogenic areas. However, as stated above the averaging process is not without

its flaws.

2.2 SPES RESPONSE ANALYSIS

In the context of epilepsy research, ERs and DRs can provide insights into the func-
tional connectivity of the brain and help identify abnormal neural activity associated
with epileptogenic zones [60]. Brain functional connectivity refers to the temporal re-
lation between spatially remote brain regions that share functional properties [67]. It
is a measure of how different areas of the brain communicate or coordinate with each
other during specific tasks or at rest [67, 68]. The temporal relationship is crucial be-
cause it helps reveal how different parts of the brain communicate and coordinate to
perform cognitive functions, process sensory information, or maintain baseline activity.
Functional connectivity is typically assessed using neuroimaging techniques together
with estimation of casuality between the activities in different brain regions. These
methods help identify networks of brain regions that work together to support cog-
nitive functions, behaviour, and sensory processing [69]. In neuroimaging studies, the
temporal dynamics of functional connectivity are often analysed using techniques like
cross-correlation or coherence analysis to estimate the casuality. These methods assess
how consistent the activity patterns are between regions over time. For example, if one
brain region’s activity consistently precedes or follows another area, this might indicate
a directional or causal connection, leading to further investigation into the underlying
neural mechanisms [70].

Wavelet transform-based time-frequency analysis is a technique used to examine
how the frequency content of a signal evolves over time [71]. The key advantage of
wavelet analysis is its ability to present the signals in the time-frequency domain in
various scales. At lower frequencies, wavelets use wider time windows to capture slow
oscillations accurately. For higher frequencies, narrower windows pinpoint rapid sig-
nal changes [71]. This adaptive approach enables wavelets to achieve an optimal bal-
ance between time and frequency resolution across different scales. In practice, the
continuous wavelet transform (CWT) is commonly used for time-frequency analysis
of non-stationary signals [72]. The CWT convolves the signal with wavelet functions

at various scales and positions. This process generates a time-frequency representation
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called a scalogram, which displays how the signal power is distributed across both
time and frequency [72]. Unlike traditional Fourier analysis, which provides frequency
information but does not capture temporal variations well, wavelet transform-based
analysis allows for both time and frequency localisation [73].

Applying wavelet transform (WT)-based time-frequency analysis to SPES data eluci-
date evoked responses spanning the spectrum of spikes, ripples, and fast ripples (FRs).
This investigation underscores the utility of time-frequency analysis in delineating the
epileptogenic cortex, with particular emphasis on time-frequency single pulse-evoked
fast ripples as a potential biomarker for epilepsy. The results of these studies provide
valuable insights into the use of time-frequency analysis in epilepsy research and clin-
ical practice. In a study by Van't Klooster et al. [74], ECoG data are gathered at a
sampling rate of 2048 Hz from 13 patients. The experimental protocol involves SPES,
consisting of 10 stimuli administered at one millisecond duration and 8 mA intensity,
with a frequency of 0.2 Hz. Using pairs of adjacent electrodes the brain is stimulated.
Morlet wavelet is used for transformation which is conducted within a time window of -
1 second to 1 second around the stimulus instant, spanning a frequency range of 10-520
Hz. Morlet wavelets are complex wavelets that oscillate at a specific frequency and are
localised in time. They are well-suited for capturing both low and high-frequency sig-
nal components of signals. Significant changes in power spectra, determined at a signif-
icance level of P = 0.05, were computed based on the averaging of 10 epochs, yielding
event-related spectral perturbation images. These images facilitate the examination of
single pulse-evoked responses across different frequency bands, specifically targeting
spikes (10-80 Hz), ripples (8o—250 Hz), and FRs (250-520 Hz). The sensitivity, specificity,
and predictive value of time-frequency single pulse-evoked responses within these fre-
quency ranges were compared against the SOZ and post-surgical outcomes, revealing
intriguing patterns. For all patients, the evoked responses consistently include spikes,
ripples, and FRs. Notably, within the SOZ, the median sensitivity of time-frequency
single pulse-evoked responses decreased from 100% for spikes to 67% for FRs, while
median specificity increases from 17% for spikes to 79% for FRs. The median positive
predictive value for evoked responses within the SOZ is 17% for spikes, 26% for ripples,
and 37% for FRs, suggesting potential implications for the assessment and treatment of
epilepsy considering the significant alteration obsereved in SOZ.

A later study by Mouthaan et al. [75] investigates SPES as a tool to explore the
epileptogenic cortex in iEEG recordings. It distinguishes pathological DRs linked to the
SOZ and physiological ERs, reflecting cortical connectivity. Data from twelve refractory
epilepsy patients were analysed, revealing that ERs, particularly those with frequencies
higher than 80 Hz, are more prevalent in SOZ and seizure propagation areas. This
association suggests that ER analysis can offer insights into epileptogenic pathology, as

ERs are strongly linked to SOZ and coincide with areas of seizure propagation.
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Power spectrum analysis of post-stimulation segments has shown alterations in higher
frequency bands. As a result, high-frequency oscillations (HFOs) have become another
widely used keyword in SPES and CCEP-related research for epileptic patients. SPES
has been found to induce HFOs, including namely ripples and FRs. In a study by Van 't
Klooster et al. [76], for ten patients with focal epilepsy, SPES was administered during
ECoG at a sampling rate of 2048 Hz. Both evoked and spontaneous HFOs were visually
analysed using time-frequency plots, comparing the occurrence of HFOs in electrodes
located in the SOZ and outside the SOZ. The results illustrated that SPES successfully
evoked HFOs, including ripples (8o-250 Hz) and fast ripples (250-500 Hz). In compari-
son with spontaneous HFOs, two patients without spontaneous FRs exhibited evoked
FRs in the SOZ. The percentages of electrodes with evoked and spontaneous HFOs in
the SOZ were similar (ripples: 32% vs. 33%, FRs: 43% vs. 48%). Evoked HFOs demon-
strate lower specificity but higher sensitivity for identifying the SOZ than spontaneous
HFOs. Additionally, more electrodes with evoked ripples are found in areas outside
the SOZ than spontaneous ripples. In [76], the multitaper method is used for spectral
estimation. This method [77] is commonly employed in signal processing and data anal-
ysis where precise frequency information is required. The multitaper method improves
spectral estimation by using multiple orthogonal tapers or windows instead of only
one. Traditional spectral estimation techniques like the Fourier transform [78] apply a
single window function to the entire signal. This can lead to spectral leakage, where
the energy from one frequency leaks into the neighbouring frequency bands, causing
a reduction in frequency resolution. In the multitaper method, multiple orthogonal
window functions are employed instead of applying a single window function. These
tapers are designed to be uncorrelated, which helps reduce the spectral estimate’s vari-
ance. The signal is multiplied by each taper, and the Fourier transform is computed for
each tapered signal segment. This results in multiple spectral estimates. The spectral
estimates obtained from each taper are combined using appropriate weighting schemes.
The weights are typically chosen to minimise bias or variance, depending on the spe-
cific requirements of the analysis.

One area worth focusing on is the application of single channel source separation or
decomposition methods to investigate the SPES ERs and DRs, considering their unique
nature and the expected imbalance between E and I as an underlying mechanism for
epilepsy. Previously, various signal processing methods like SSA, Independent Compo-
nent Analysis (ICA), Empirical Mode Decomposition (EMD), and Wavelet Transform
(WT) [4, 79-81].

As an example, in a study by Corsini et al., [82] a new technique to quantify the dy-
namic changes of the brain using the scalp EEG was developed in which the scalp EEG
is preprocessed using an effective block-based blind source separation technique to sep-
arate the underlying sources within the brain. The algorithm significantly excludes the

effect of eye-blink artefacts.
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2.3 SPES AND BRAIN CONNECTIVITY

Looking at the previously published research papers related to the SPES sessions and
ERs or CCEPs, it is clear that the majority focus on using the brain responses to electri-
cal stimulation to investigate the brain’s functional and effective connectivity. In recent
years, independent groups at the Cleveland Clinic [39, 83], University of Iowa [84], and
King'’s College London [20] developed their methodologies using SPES to investigate
functional connectivity and cortical excitability. Since then, SPES has been utilised in
epilepsy surgery to examine the functional and seizure networks as well as the epilep-
togenicity. Since ERs to SPES show the brain’s normal reaction to the stimulation, they
can be used to study the functional relation between various brain regions in the epilep-
tic brain. Although there might be differences in non-epileptic regions of the epileptic
brain compared to a completely normal brain for these patients, the iEEG recordings
from SPES sessions create an opportunity to study brain connectivity and investigate
the differences in epileptogenic regions. Here, we summarise the overall research re-
lated to SPES for brain connectivity while focusing on the engineering side of this
concept.

The earliest efforts to investigate connections using SPES in the human brain can be
traced back to the early 1990s. Goldring et al. applied SPES to the sensorimotor cortices
to record direct cortical responses nearby initially explored in animals [85, 86]. These
preliminary attempts to map cortical responses aim to delineate the wave morphology
of the N1 counterpart of CCEP specific to the primary motor, primary sensory, or
premotor cortex. Wilson et al. pioneered SPES to examine adjacent and remote cortical
responses [87, 88]. They utilised depth electrodes to apply SPES to mesial temporal
structures and recorded cortical evoked responses in the ipsilateral and contralateral
mesial temporal areas.

Functional connectivity refers to the statistical or temporal relations between the
activities of different brain regions [89, 9o]. In ER (CCEP) related studies, the functional
connectivity is inferred from evoked potentials between cortical areas, indicating that
they are functionally connected [9o]. One the other hand, effective connectivity refers
to the causal influence that one neural system exerts over another [89—91]. SPES and ER
mapping can probe effective connectivity by directly perturbing a cortical region with
electrical stimulation and measuring the evoked responses in other areas [90, 91]. The
amplitude, latency, and propagation patterns of the ERs provide information about the
direction and strength of functional connections between various regions, which might
also help investigate seizure networks [90, 92].

Early studies investigate the functional connectivity between the stimulated regions
using SPES to other regions of interest (ROI) simply by checking if any of the responses
is visible in ROI [39, 41]. In addition, later studies have tried to examine the effective

connectivity between various regions in the brain using the responses to SPES as it can
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help better identify the directionality and nature of these connections. As an example,
in the work performed by Krieg et al., [93] the effective connectivity based on the elec-
trophysiological feature ( for example, amplitude) of ERs is evaluated and subjected to
node strength and betweenness centrality as graph metrics. These metrics are directly
linked to how one node (small active region) influences the functionality of the overall
network. This influence on the information transfer may depend on factors such as
the strength of connections or the extent to which a node enhances the overall acces-
sibility of other nodes within the network. The total of its weights determines node
strength. Additionally, betweenness centrality refers to the proportion of all the short-
est paths in the network that traverse a specific node. The shortest path between two
nodes is the series of edges with the lowest sum of weights between the nodes. Nodes
that bridge disconnected network segments tend to have higher betweenness centrality,
which shows how important a node is to the flow of information through a network
[94]-

In another work by Prime, et al. [95], synthetic cortical responses are superimposed
onto stereo EEG (sEEG) data to evaluate various metrics” ability to detect the simulated
patterns. This study aims to compare the efficacy of different measures in analysing
effective connectivity using SPES.

The assessment metrics include root mean square (RMS), which calculates the square
root of the average of the squares of the values, providing a measure of the magnitude
of the signals [96]. Standard deviation, a statistical measure, quantifies the variation or
dispersion of a set of values, indicating how spread out the values are from the mean.
Dynamic time warping is an algorithm for measuring similarity between two temporal
sequences that may vary in speed, aligning the sequences in a way that minimises the
distance between them [97]. Edit distance with real penalty determines the dissimilarity
between two sequences by counting the minimum number of operations required to
change one sequence into another, with penalties for real-valued differences.

Time warped edit distance is a variation of the edit distance that incorporates time
elasticity, allowing for the comparison of time series data by considering both tempo-
ral and value differences [98]. Minimum jump cost measures the similarity between
sequences by accounting for the minimal cost required to match segments of the se-
quences, considering both temporal shifts and amplitude changes [95]. The autoregres-
sive model represents a time series using its previous values, providing a way to de-
scribe and predict temporal dependencies in the data [99]. Finally, Fourier coefficients
are derived from the Fourier transform, which decomposes a signal into its constituent
frequencies, offering a way to analyse the frequency components of the time series
data [100]. These measures are compared to determine their capability for effective con-
nectivity analysis using sEEG data and SPES. The results show different benefits and
disadvantages for each measure to some degree. Before this work, only a few measures

were applied to evaluate CCEP responses using sEEG. The most common approach
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involves employing RMS or quadratic mean, which primarily addresses low-frequency
trends [101].

Despite the valuable insights provided by SPES and ERs in studying the functional
and effective connectivity of ROI in the brain, there are still areas that require refine-
ment. For instance, a more detailed analysis of the connectivity of each ROI could
provide a better understanding, accommodating the variability in structural epilepto-
genicity among patients, the variances in physiological connectivity, and the asymmetry
of bidirectional effective connections. However, this level of detail would necessitate a
more comprehensive sampling of each structure. Notably, while capable of investigat-
ing the relationship between different regions, the current measures are insufficient
to account for spurious connections. This underscores the need for more advanced
connectivity measures, especially for effective connectivity. Investigating brain effec-
tive connectivity using ERs can also help to provide valuable insights into the optimal
placement of responsive neurostimulation electrodes for treating drug-resistant focal
epilepsy. As an example, a recent study has shown that the functional connectivity in-
vestigated by the correlation between ERs offers valuable information for guiding the
placement of responsive neurostimulation electrodes, potentially improving treatment

efficacy [102].

2.4 SPES FOR SOZ LOCALISATION

Another area of focus for studies related to SPES and brain responses to stimulation is
the SOZ localisation to aid surgical planning for DRE cases. Considering that ictal peri-
ods are not always present for a large number of DRE cases, localising the SOZ can be
time-consuming and tedious, involving visual inspection of iEEG recordings captured
during passive patient monitoring by trained clinical staff. One particular approach
used to check if the responses to SPES can help identify the SOZ in recent studies
is transfer function models. A recent study by Kamali et al. [103] involves construct-
ing patient-specific transfer function models from SPES-evoked responses and iEEG
recordings of 22 epilepsy patients. The authors analyse the system’s frequency and
connectivity-dependent peak gain using systems theory metrics. The results revealed
that in cases where clinicians confidently localised the SOZ, the highest peak gains
occurred when stimulating the clinically annotated SOZ and close regions.

Transfer function models are mathematical representations used to explain the rela-
tion between input and output signals in a system [104]. In the context of SPES, transfer
function models are constructed to capture the relationship between the electrical stim-
ulation and the resulting neural responses recorded through iEEG monitoring. These
models quantify how the brain responds to SPES across different frequencies and con-

nectivity patterns. By analysing the transfer function models, researchers can gain in-

20



2.4 SPES FOR SOZ LOCALISATION

Non-epileptic Epileptic
Amygdala IQATG - - STG
N .
S nyaata— Inst{la
S )
N “QIFG 7 ~7 © > gHippocampus
@Fusiform @Fusiform™ :
‘ ( ~ . ) ) )
(__@lnsula \._‘»- j"«{’STG @®Subcallosal
N @Hippocampu A 15
= A\ J;‘
\ A TG
Subcallosal | | @MTG™ MeFG 10
e y 5
MeFG g ’
- - 0
@Rectal @®Rectal

Figure 2.1: Epileptic and non-epileptic brain network analysis results from [106]. (A, B) Graph
representation using degree measurements of the non-epileptic (A) and epileptic networks (B)
in the temporal epilepsy patient group. SFG: superior frontal gyrus; MiFG: middle frontal gyrus;
IFG: inferior frontal gyrus; MeFG: medial frontal gyrus; Rectal: Gyrus rectus; SPL: superior
parietal lobe; IPL: inferior parietal lobe; STG: superior temporal gyrus; MTG: middle temporal
gyrus; ITG: inferior temporal gyrus; TTG: temporal pole; SOG: superior occipital gyrus; MOG:
middle occipital gyrus; ACC: anterior cingulate cortex; MCC: middle cingulate cortex; PCC:
posterior cingulate cortex [106].

sights into the brain’s response to electrical stimulation dynamics. In a previous study,
parameters such as peak gain and floor gain were examined to understand how the
brain’s response varies depending on the location and complexity of the SOZ. The
transfer function models provide a mathematical framework for understanding and
predicting the behaviour of complex systems [105] like the brain in response to exter-
nal stimuli, which can be valuable for various applications, including medical diagnosis
and treatment planning.

Apart from transfer function models, other machine learning methods have recently
been used to identify the SOZ. A study by Dou et al. aimed to enhance the localisa-
tion of epileptic brain zones employing iEEG data, mainly focusing on ERs alongside
traditional oscillatory patterns and functional connectivity analysis [106]. The method
involves developing a two-stream model utilising unsupervised learning and graph
convolutional networks tailored for analysis of SPES datasets. A comparison with clini-
cally marked electrode sites exhibited promising classification capabilities. Addition-
ally, group-level analysis in this study revealed distinct epileptic and non-epileptic
brain networks across different types of focal epilepsy. Figure 2.1 shows the results
of epileptic and non-epileptic brain networks analysis presented in [106].

Another recent study aimed to develop a novel method for identifying the SOZ using
ERs and compare the connectivity patterns from the patients with different clinical
phenotypes [107]. Patients were analysed using logistic regression with six metrics as

features. Results showed high accuracy in localising the SOZ. Additionally, differences
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in ER metrics between clinical phenotypes were observed, with higher N1 RMS values
in the hippocampus sclerosis group compared to the focal cortical dysplasia group.
The sensitivity of localisation varied between seizure-free and non-seizure-free groups.
The study suggests the potential of this machine learning approach for predicting SOZ
localisation across different focal epilepsy phenotypes and highlights the impact of
clinical phenotypes on epileptogenic network anomalies.

Deep learning methods have received substantial attention in various fields due
to their capability to extract highly complex patterns and robust classification per-
formance. Deep learning refers to a subgroup of machine learning methods that in-
volves training artificial neural networks with multiple layers to automatically discover
patterns and representations from large quantities of data [108, 109]. Unlike conven-
tional machine learning, which often mandates manual feature extraction, deep learn-
ing models can discover complex patterns directly from raw input, which makes them
extremely effective for pattern recognition tasks [108, 109].

Recent advancements in deep learning have also been applied to SPES responses to
identify the SOZ for DRE cases. In a study by Johnson et al. [110], researchers explored
machine learning methods to aid in localizing the SOZ. To identify SOZ, they train a
multichannel convolutional neural network using CCEPs recorded via sEEG. The study
involves SPES conducted on ten patients, utilising 500,000 unique post-stimulation
sEEG segments to train the model to detect whether a SOZ is stimulated. Using a leave-
one-patient-out testing approach, the model achieved a mean sensitivity of 78.1% and
a specificity of 74.6%, with the best classification accuracy occurring within a o to 350-
millisecond post-stimulation window. Further analysis indicated the model’s capability
to accurately differentiate between distinct SOZs, marking the first successful applica-
tion of a deep learning framework to classify SOZs using SPES responses. The findings
suggest that precise SOZ classification hinges on the complex temporal dynamics of
evoked responses within the initial 350 milliseconds after stimulation.

In another research the authors try to address the problem of having an accurate SOZ
localisation method. The researchers applied an existing deep learning model to com-
pare two SPES analysis paradigms: divergent, which assesses outward effective connec-
tions, and convergent, which evaluates inward effective connections. In this study, the
models” generalisability to the new patients and varying electrode placements using
held-out test sets have been tested [111]. The results show considerable improvement
when switching from the divergent to convergent approach. This research highlights
the effectiveness of convolutional transformers with cross-channel attention in manag-
ing heterogeneous electrode placements, further enhancing the performance.

After reviewing the previous studies on the SPES for DRE cases, it becomes clear that
multiple areas lack comprehensive investigation and need more thorough and effective
processing pipelines for analysis. The first topic is the concept of array processing and

beamforming, which has been used for a large number of EEG/ magnetoencephalog-
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raphy (MEG) related studies for source localisation [112]. Array processing refers to
techniques for processing the signals recorded by an array of sensors. These techniques
use the spatial information provided by available sensors to improve signal quality
and extract meaningful information related to underlying neural sources [4, 81, 113].
In EEG-related studies, array processing involves exploiting the combined signals from
multiple electrodes to improve the SNR and spatially resolve the locations of neural
activity [4]. The electrode array’s spatial information can be used to distinguish sig-
nals stemming from different regions in the brain. Beamforming is a spatial filtering
technique employed in array processing that is particularly useful for EEG source lo-
calisation [114, 115]. It involves steering a beam or focus towards a particular region
of interest such as that of abnormal generators in the brain, which leads to enhancing

signals from that region. In contrast, the signals from other regions are suppressed.

2.5 CONCLUSION

To alleviate the shortcomings of the previous methods in SPES analysis and identi-
fication of the brain responses, there are several areas for research. The first area is
identifying the relation between excitatory and inhibitory components of epileptogenic
regions using the response to SPES. Considering the critical role of E-I imbalance in
epilepsy and seizures, it is necessary to investigate the E-I imbalance and pinpoint the
alterations in these regions. It would also be useful to compare the results of depth
electrodes from deeper regions to the ones acquired by subdural channels. The investi-
gation of excitatory and inhibitory activities would be helpful in better investigating the
brain functional network and monitoring the role of E-I imbalance in the propagation
of information between various regions.

The second critical area is employing the responses to SPES for SOZ localisation. A
specific approach neglected in previous studies is the concept of spatial filtering and
beamforming as a powerful source localisation tool. Beamforming has already proved
helpful in EEG and MEG studies as a valuable source localisation tool. Considering
the main aim of SPES, which is the identification of abnormal regions, including SOZ
for DRE cases and its significant role in patients” diagnostic and assessment period,
the thesis also focuses on the benefits of using the iEEG data recorded from the SPES
sessions, along with tailored adaptive beamforming methods for identifying the SOZ
in the brain.

Signal processing and machine learning methods offer valuable tools for analysing
SPES data, especially for DRE cases. By benefiting from these approaches, the re-
searchers can gain deeper insights into the mechanisms underlying epileptogenesis,
identify biomarkers for seizure prediction and intervention, and develop targeted treat-

ments for DRE cases. Considering the limitations of the previous studies, this thesis
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aims to develop advanced signal processing and machine learning pipelines to inves-
tigate some gray areas related to SPES research better and improve the processing
algorithms to reach more robust results specifically for DRs, given that, the majority
of previous studies focus on ERs. In the following chapters, the aim is to address the
ambiguities regarding the E-I imbalance expected in epileptogenic regions associated
with DRs using an adaptive subspace single-channel decomposition algorithm. Then,
Chapters 4, 5 and 6 focus on developing advanced source localisation pipelines using
beamformers as the primary foundation for identifying the source of DRs to SPES, in-
vestigating the relation between the source of IEDs and DRs, and ultimately moving

towards having an accurate and robust SOZ localisation algorithm for clinical practice.
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INVESTIGATION OF EXCITATION-INHIBITION
IMBALANCE IN EPILEPTIC BRAIN

This chapter aims to investigate the imbalance between E and I in epileptogenic regions
of the brain using brain responses to SPES (ERs and DRs). To accurately recognise neu-
ronal excitability in an epileptic brain for modeling or localisation of the epileptic zone,
the brain’s response to SPES has been decomposed into its components using an adap-
tive SSA algorithm. Given the neuronal response, these components are expected to be
inhibitory and excitatory activities. The primary objective is to thoroughly examine the
nature of ERs and DRs. SSA is a useful subspace signal analysis method for separating
single-channel iEEG signals into their basic uncorrelated components. The results for
both ERs and DRs verify the usability of this approach. Here, the single-channel decom-
position approach depends on the fact that the underlying signal components (i.e., E
and I) originate from distinct sources within the brain, allowing separability. Following
an introduction to the SSA method and the available data, the adaptive SSA algorithm
performed on single-channel iEEG signals recorded from SPES sessions is introduced,

and the results are reported.

3.1 SINGULAR SPECTRUM ANALYSIS

SSA is a method for analyzing time series data that stands out for its adaptability and
ease of use. It excels at breaking down time series information into understandable
elements like trends, cyclical patterns and background noise. Originally designed for
dynamical systems research SSA has been applied extensively in various fields.

SSA is based on the principles of multivariate statistics and dynamical systems theory.
Its objective is to convert a time series into a trajectory matrix by performing eigenvalue
decomposition (EVD), and finally reconstruct the original series from a subset of the
obtained singular values and vectors. SSA can reconstruct the time series while effec-
tively isolating distinct orthogonal components within it [116]. SSA has found a range

of applications across various fields. Some notable uses include:

1. Climate Science: SSA can extract seasonal and long-term trends from temperature
and precipitation data, helping in climate modeling and prediction [117]. SSA can
also decompose temperature time series into sub-components, which represent
annual cycles, multi-decadal trends, and short-term variations, providing insights

into climatic changes.
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2. Economics and Finance: In financial time series analysis, SSA helps identify and
forecast economic cycles, market trends, and volatility patterns [118]. It can de-
compose stock prices into trends, cyclical components, and noise, facilitating bet-

ter predicting market behaviours.

3. Engineering: SSA is used in the analysis of physiological signals, such as elec-
trocardiograms (ECG), to detect abnormalities and underlying rhythms. It can
separate the ECG signal into components representing the main heartbeat pat-
tern and noise, which enhances the detection of arrhythmias and other cardiac
issues [119, 120]. SSA is also used for vibration analysis and fault detection in
mechanical and structural engineering [121]. For example, it can decompose the
vibration signal of a machine into different frequency components, helping to

identify and diagnose faults in machinery.

4. Environmental Science: SSA is used in hydrology and environmental monitoring
to analyse water quality data, river flow rates, and other environmental time
series [122, 123]. It helps identify trends, seasonal cycles, and anomalies in the

data critical for environmental management and planning.

One main advantage of SSA over other subspace analysis methods is its model-free
nature. SSA does not require prior assumptions about the data’s underlying structure
for analysis. This flexibility allows SSA to adapt to different types of time series data,
including EEG. Subject to right choice of its parameters, SSA’s ability to handle non-
stationary data makes it suitable for applications where the data characteristics change
over time. It effectively isolates trends and oscillatory components from noise in the
data [119]. SSA provides an explicit decomposition of the time series into interpretable
components, which can be individually analysed and reconstructed. This facilitates the
understanding of complex time series data.

While SSA offers numerous benefits, its use requires careful consideration. The choice
of window length (a.k.a embedding dimensions) significantly impacts the results, and
there is no universal criterion for selecting the optimal length. However, each windowed
time series segment must be stationary and cover at least the longest cycle of the series
(i.e. the main harmonic) [4]. The method’s computational complexity increases with the
length of the time series, making it less efficient for extensive datasets. Applying EVD
to large trajectory matrices can be computationally intensive. Grouping the elemen-
tary matrices into meaningful components can be subjective and may mandate domain
knowledge. Incorrect grouping can lead to misinterpretation of the results.

Apart from using EVD for SSA, ICA can be applied to the covariance of the trajec-
tory matrix. ICA is a statistical method that represents a group of random variables as
linear mixtures of statistically independent components. While initially used for multi-

channel source separation, it can be used instead of EVD for single channel decompo-
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sition considering the independency of the underlying source [4, 124]. These adapta-
tions typically generate multiple copies of the signal (e.g., delayed versions) to create
a pseudo-multichannel scenario [124]. ICA is widely used in audio signals, EEG/MEG,
and image processing. Its strength is in separating mixed signals into independent
sources based on the assumption of statistical independence [124]. One limitation of
ICA is its assumption that the observed signal is a linear combination of the sources,
which is not always correct particularly for audio signals where the mixtures are con-
volutive. Also, its performance can degrade significantly in the presence of noise.

Another method for source separation is EMD. EMD is a non-parametric data decom-
position technique that has gained considerable attention in various fields, including
signal processing and time series analysis. This method, developed in the late 1990s
[125], offers an approach for decomposing complex signals into a limited group of
components called intrinsic mode functions (IMFs). Unlike decomposition methods
like Fourier transform or wavelet analysis, EMD is not based on any predefined ba-
sis functions. EMD operates directly on the local characteristics of the signal, making it
useful for analysing nonlinear and non-stationary data like EEG. The process iteratively
extracts IMFs from the original signal. It starts with the highest-frequency oscillations
and progresses to lower-frequency components until a residual trend remains. This
data-driven approach allows EMD to uncover inherent patterns within the original
data, providing valuable information that might otherwise remain hidden when using
conventional processing methods like Fourier transform [126]. A common problem in
EMD is where different modes are mixed in a single IMF, leading to ambiguous inter-
pretations. EMD can also be sensitive to the endpoints of the signal, which can affect the
decomposition results. At the start and end of a signal, fewer data points are available
to estimate the local extrema and measure the envelopes accurately. This lack of data
leads to less reliable IMFs near the edges, which can cause distortions. The inaccuracies
at the edges can cause different components to get mixed in a single IMF, which compli-
cates the understanding of the results. Techniques like mirroring (reflecting the signal
at the boundaries), zero-padding (extending the signal with zeros) or even new corre-
lation based methods to identify the signal pattern are usually employed to mitigate
edge effects problem [127]. However, these techniques can introduce artificial artefacts
or change the chracteristics of the original signal near the edges.

Another alternative approach is WT. WT is a time-frequency analysis method that
decomposes the original signal into different frequency components [128]. WT has
been broadly used in signal processing, considering its capability to capture temporal
and spectral information. WT has been utilised in image compression, denoising, and
biomedical signal processing applications. It is particularly effective in scenarios where
signal characteristics vary across time, such as transient signal identification [128]. In
WT, selecting an appropriate wavelet function can significantly impact the performance
[128]. Like EMD, WT can suffer from edge effects. Like with EMD, techniques such as
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padding or periodic extension (where the signal is assumed to repeat beyond its bound-
aries) are used to reduce the edge effects. However, these can introduce artefacts not
present in the original signal. The type of wavelet used can also influence the severity
of edge effects. Some wavelets are more localised in time and less prone to edge effects,
but the trade-off is often reduced frequency resolution.

SSA, EMD, and WT are well-suited for handling nonlinear and non-stationary sig-
nals, making them preferable in scenarios where these characteristics are prominent.
However, ICA, on the other hand, assumes linearity of the mixing system, which may
limit its applicability in such cases. Also, unlike the EMD approach, SSA decomposes
the data (here, recorded iEEG signals using the implanted electrodes) into its orthogo-
nal components. Therefore, SSA is a better option when there is no clear information
on which domain or how the underlying components are disjoint. The advantages of
SSA method over the other mentioned methods make it suitable for the aim of this

chapter.

3.2 DATA DESCRIPTION

The iEEG data was meticulously collected at a sampling rate of 1024 Hz from a cohort
of 20 individuals with epilepsy treated at King’s College London Hospital. This data
acquisition is a crucial component of the clinical assessment process, tailored to each
patient’s specific condition and medical history. The selection of electrode type, num-
ber, and placement is specifically guided by the suspected SOZ, determined through
a comprehensive non-invasive assessment process. This evaluation includes various
modalities such as clinical history, scalp EEG recordings, anatomical MRI and X-ray
images, neuropsychological evaluations, and neuroimaging techniques. Detailed crite-
ria for electrode selection and implantation procedures have been previously outlined,
particularly catering to participants suffering from DRE [52].

For the implantation procedure, multi-contact flexible bundles of depth electrodes
[129] are precisely positioned stereotactically under the guidance of MRI imaging [130].
These electrodes with platinum contacts, each measuring 2.3 mm in length, are strate-
gically spaced at intervals of 0.5 cm between the centers of adjacent electrodes within
the same bundle. Additionally, subdural electrode strips and/or grids from the same
manufacturer are utilised. Each strip features a series of platinum disc electrodes, with
a spacing of 1 cm between the centers of adjacent electrodes within the same strip.
These discs are securely embedded in a 0.7 mm thick polyurethane strip, extended
beyond the edges to expose a diameter of 2.3 mm while maintaining a recess of approx-
imately 0.1 mm from the surface plane. Figure 3.2 provides a representative illustration
of a post-surgery computed tomography (CT) scan, showcasing the placement of both

subdural and depth electrodes in a subject. Grids, on the other hand, are configured
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Figure 3.1: The ERs and DRs to the SPES visible in both subdural and depth channels after SPES.
The first 32 EEG channels are subdural, and the rest are depth electrodes. The last channel is
the ECG signal recorded from the subject.

with similar platinum electrode arrangements, forming rectangular arrays. This metic-
ulous selection and placement of electrodes tries to provide comprehensive coverage of
the suspected epileptogenic regions, facilitating accurate monitoring and intervention
strategies.

The recording methodology adhered closely to the system and techniques delineated
by Kokkinos et al. [52], ensuring consistency across the dataset derived from 20 patients.
During the SPES operation, a constant current, typically ranging from 1 to 8 mA and
primarily set at five mA, is administered through the neurostimulator. This stimulation
involves brief pulses lasting 1 ms at a frequency of 0.4 Hz, with a single monostatic
pulse applied every five seconds. Importantly, EEG signals obtained from the electrodes
are not utilised for stimulation purposes, maintaining fidelity to the recording process.

Subsequent to data acquisition, 11 out of the 20 cases underwent surgical interven-
tion, the outcomes of which are delineated using the Engel Outcome Scale (EOS) [131].
The EOS is a system used to categorise the outcomes of epilepsy surgery, specifically

regarding seizure control. It provides a standardised way to describe how well a patient
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Subdural
electrodes

Depth eleetrodes

Figure 3.2: Pot-implantation X-ray image showing the implanted subdural (blue arrows) and
depth electrodes (yellow arrows) for one subject.

has responded to surgery. The scale is divided into four main categories. Within this
scale, Class I signifies achieving freedom from disabling seizures, Class II denotes infre-
quent disabling seizures, Class III indicates notable improvement or extended seizure-
free intervals, and Class IV indicates negligible improvement.

Analysis of the outcomes, as depicted in Table 3.1, underscores the significance of
DRs as an effective assessment tool in pinpointing epileptogenic neuronal regions. Ap-
proximately 80% of the cases subjected to surgery exhibited improvement, underscor-
ing the pivotal role of DRs in refining surgical interventions and enhancing therapeutic

outcomes for DRE cases.

3.3 SEPARATION OF SINGLE CHANNEL EEG INTO EXCITATORY AND
INHIBITORY COMPONENTS

In order to investigate the separability of E and I activities and the ratio between them in
ERs and DRs, we apply a suitable subspace method to these responses. As mentioned,
SSA is a nonparametric method that can be applied to random statistical processes,

whether linear or nonlinear, stationary or even mildly non-stationary and Gaussian
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Table 3.1: The locations and number of the implanted electrodes alongside the results of
the surgery for each case (R=Right, L=Left, T=Temporal, F=Frontal, A=Anterior, P=Posterior,
O=0ccipital, In=Insular, H=Hippocampus, Ms=Mesial, Par=Parietal).

Case Locations and number of implanted electrodes Results of surgery (Engel outcome scale)
1 LT 40,LO 8, LMs 8, LF 8 No Surgery
2 LTA 8, LTP 8, RT 8 I
3 LA 8, LPSubT 8, LF 8, LP 8 I
4 RF 8, RMidT 4, RPost 8, LA 8, LMidT 4, LP 8 v
5 RT 40, RAT 8, RMsT 8, RPT 8 I
6 RF8,RT 8, LF 8, LF8, LT 8 No Surgery
7 SubF 8, F 8, TPole 8, AT 8, PT 16, TO 8, Par 8 No Surgery
8 RAH 10, RMidH 10, RH 10, LAH 8, LMidH 10, LPH 10 I
9 RT 32, Tpole 5, MidT 5, PMT 5, Aln 5, MidIn 5, PIn 5 No Surgery
10 RT 32, TPole 5, MidT 5, PMT 5, Aln 5, MidIn 5, PIn 5 I
11 RF 8, RSubT 8, LSubT 8 I
12 RT 32, AT 6, MidT 6 I
13 AF 8, PF 8, SupF 8, AT 8, MsT 8, PT 8 No Surgery
14 RT 8,LT 8 No Surgery
15 LT 20, F8,IF 8, PF 8, ST 8 v
16 RT 64, RTPole 5, RMsT 6 No Surgery
17 FIns 4, TIns 4 No Surgery
18 LT 64, LFP 8 I
19 RF8,RT 8, LF8, LT 8 No Surgery

20 RMidF 10, RPF 10, LF 10 I

or non-Gaussian, without making prior assumptions about the data [119, 132]. The
main purpose of using SSA is its ability to separate the underlying components of
single-channel signals belonging to different subspaces. Due to this elegant property,
it has found many applications in detection [133, 134], decomposition [135, 136], and
forecasting [137, 138]. Given the properties of SSA and its effectiveness with small
sample sizes, it appears to be a suitable method for investigating the ERs and DRs and
separating each one into its E and I components. This suitability arises from the fact

that these components fall into different orthogonal subspaces.
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Figure 3.3: Block diagram of adaptive SSA system for E detection from ER or DRs. The I com-
ponent is obtained by subtraction of E and noise from the original iEEG signal.
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Figure 3.4: A sample segment of data that includes SPES DR

It is important to emphasise that the adaptive SSA pipeline dose not rely on any
spectral information in its decomposition process. Here, the intention is not to separate
components with different morphologies but those with inherently different statisti-
cal distributions. SSA, regularised by the information about statistical distributions, is
used to decompose the data into orthogonal subspaces. However, after separating the
components using SSA, we examine them in terms of their spectral signatures, and it is
clear that they fall perfectly into different frequency ranges. Here, the pipeline based on
single-channel SSA has been followed in which, in the reconstruction stage, the eigen-
triples are adaptively selected. The above SSA stages, together with the mathematical
derivations, have been described in the following sections.

3.3.1 Signal Decomposition

The decomposition stage includes an embedding process followed by EVD. In the

embedding process, after selecting a fixed window length of L, in the first step, the
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the decomposition stage.
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Figure 3.6: The relative contribution and cumulative contribution of extracted components from
the original signal to the trajectory component.
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Figure 3.7: The original signal and the extracted components after decomposition stage.
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trajectory matrix X that transfers the one-dimensional signal x of length T into the
multi-dimensional series Xy, ..., X;_1, with vectors X; = (x;,...,xi;1_1)! where K =
T — L+ 1 is computed.

X0 X1 -0 XK-1

L—1,K-1
X = (xi,]')l'/j:() =

Xp—1 XL -+ XT-1

Figures 3.4 and 3.5 show samples of a data segment and the trajectory matrix con-
structed using that data segment. In the next step, S = XX" is factorised into its
eigenvalues and eigenvectors to decompose trajectory matrix X into its orthogonal
bases, where S = UAU'. A is the diagonal matrix of eigenvalues ordered so that
A >A> ... > AL >0,and U = (U, Uy, ..., UyL) is the corresponding orthonormal
matrix of eigenvectors of S. Here, X = X; + Xo + ... + X, where X; = VA
Figure 3.7 demonstrates the original signal shown in figure 3.4 decomposed into its

orthogonal components.

3.3.2 Component Reconstruction

The reconstruction step corresponds to selection of the eigentriples into groups (eigen-
triple grouping) for the reconstruction of the one-dimensional time series by splitting
the elementary matrices into multiple groups and summing the matrices in each group
like X; = X1 + Xpp + - -+ + X|p. Figures 3.6 show the relative contribution and cumu-
lative contribution of extracted components from the original signal to the trajectory
component. Both figures can help better assess if the extracted components can rep-
resent the overall original time series. After grouping, diagonal averaging is used to
transform the matrices into one-dimensional reconstructed signals like X;. Here, know-
ing that x;; € X, the x; € X; which is the kth term of the resulting time series X1 is
Mean(x;;|(i +j = k+ 1)). Here, for the reconstruction stage and regrouping of the com-
ponents, an adaptive approach has been developed and used after most of the noise-
related eigentriples are removed. Following this method, the remaining components are
grouped into two waveforms, which best define the target E and I components. This
is performed based on knowing that the E waveform has a spike shape with a peaky
distribution, implying high kurtosis. Therefore, during the grouping process, the algo-
rithm tends to separate a component with maximum kurtosis adaptively. To express
the reconstruction of the E component mathematically, we employ a diagonal matrix

W with binary diagonal elements, i.e. w;; = {0,1} . During the reconstruction process,
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W is iteratively estimated in order to achieve the maximum kurtosis related to the E

component, i.e.,
Wopt = m“alx(Kurtosis (WA%V)) G-1)

As depicted in Figure 3.3, the SPES ER and DR are first decomposed into N sep-
arate components. Often, the first eigentriples represent the overall signal trend, and
the rest include low power activities such as noise, spikes, and low-amplitude oscilla-
tions. During the presented adaptive process, and after excluding the very last (noise-
related) components, the eigentriples related to the E waveform are grouped adaptively
to achieve the highest kurtosis. The result is anticipated to be the E waveform. The E
component is then subtracted from the refined original signal to obtain the I compo-
nent. Looking at their temporal, PSD, and time-frequency domain representations, we
can conclude that the components are disjoint and belong to orthogonal subspaces.
This verifies that the E and I components naturally originate from independent sources

and, therefore, are separable.

3.4 EXPERIMENTS AND RESULTS

Overall, 300 annotated segments of iEEG data from 20 DRE cases, each 0.7 second long,
containing ERs and DRs, were processed. Considering the length and shape of ERs
and DRs in the data, a window length (also known as embedding dimension) of L =20
samples was selected for the SSA algorithm. After plotting the relative contribution
and cumulative contribution to the trajectory (Hankel) matrix of base components, the
first N=10 components were conisdered within the signal subspace and the rest for
the noise subspace. Figure 3.1 demonstrates an example of the ERs and DRs to the
SPES in the intracranial EEG from one of the subjects. After separating ERs and DRs,
the E and I components and their PSD were inspected. The results show that the I
component consists of the overall EEG trend, including lower frequency oscillations
with a generally narrow PSD concentrated in low frequencies up to approximately 10
Hz. However, the E component consists of higher frequency oscillations with lower
power and a wider PSD, comprising frequencies ranging from 10-20 Hz up to nearly
60 Hz. The frequency ranges for I and E components varied slightly among subjects,
reflecting various morphological responses.

Figure 3.8 illustrates the results of the algorithm for a sample ER and DR to SPES
recorded by a subdural electrode in the right temporal region. Figure 3.9 shows the
PSD plots of E and I components for the sample ER and DR responses, and Figure
3.10 shows the STFT plots for these components, indicating a clear separation in the

frequency domain. As shown in the images related to the ERs, the electrical stimulation
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Figure 3.8: (a) An iEEG segment including an ER elicited immediately after SPES, (b) ER au-
tomatically decomposed into E and I parts (The arrow shows the stimulus artifact mixed with
the E component), (c) An iEEG segment including a DR after SPES, and (d) DR automatically
decomposed into E and I components

spike is considered an artefact added to the ER, obscuring the actual excitatory part of
the ER. This makes the evaluation of the ER excitatory component difficult.

To ensure that the noise removal process does not significantly alter the morphol-
ogy of the SPES responses, while the sum of E and I remains similar to the selected
overall SPES response, we used the adaptive signed correlation index (ASCI) [139]. The
ASCI is a statistical measure used to evaluate the relationship between two variables,
considering the direction and the strength of their correlation. It is designed to pro-
vide a more nuanced understanding of the relationship between variables, especially
in situations where the traditional correlation measures, such as Pearson’s correlation
coefficient, cannot fully capture the complexity of the data [139].

One of the key components of ASCI is its adaptive nature. The ASCI adapts to the
data by considering the variability and distribution of the variables involved. This
adaptability allows it to better handle non-linear relationships and varying scales of

data. Unlike traditional correlation coefficients that only measure the strength and di-
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Figure 3.9: (a) PSD of I activity for ER, (b) PSD of E activity for ER (c), PSD of I activity for DR,
and (d) PSD of E activity for DR.

rection of a linear relationship, the ASCI explicitly incorporates the sign of the correla-
tion. This means it distinguishes between positive and negative relationships, providing
more detailed insight into how the variables interact. Moreover, the ASCI takes into ac-
count the magnitude of the correlation, offering a more comprehensive measure that
reflects not just whether the variables move together or in opposition but also how
strongly they do so [139]. The adaptive nature of ASCI also helps mitigate the impact
of outliers, which can significantly distort traditional correlation measures. By adapt-
ing to the data distribution, ASCI provides a more robust measure in the presence of
outliers. This makes it particularly useful in finance, biology, and social sciences, where
the relationships between variables can be complex, nonlinear, and influenced by out-
liers. Its adaptability and sensitivity make it a valuable tool for researchers and analysts
[139].

The exact mathematical formulation of ASCI can vary depending on its specific im-
plementation. Measurment of ASCI involves several steps. First, the data is normalised
to ensure comparability across different scales. Then, the weights are assigned to the
data points based on their distribution and relevance, which helps emphasise signifi-
cant correlations while reducing the impact of noise and outliers. The weighted and

normalised data is then used to compute the signed correlation, incorporating both di-
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Figure 3.10: (a) STFT magnitude of I component for ER, (b) STFT of E component for ER, (c)
STFT magnitude of I component for DR, and (d) STFT magnitude of E component for DR. The
plots show how effectively the two components have been separated using SSA.

rection and magnitude. Finally, the individual correlations are aggregated to produce
the overall ASCI value, which reflects the adaptive signed correlation between the vari-
ables [139].

Interpreting the ASCI is straightforward. An ASCI close to +1 indicates a strong
positive correlation, while an ASCI close to -1 indicates a strong negative correlation.
An ASCI around o suggests little or no correlation. By incorporating both the sign and
the magnitude of correlations and adapting to the data distribution, the ASCI provides
a richer, more detailed measure of the relationship between variables compared to
the traditional correlation coefficient methods. The average ASCI score was 0.85+0.15
for the conducted tests, indicating the close similarity of the two waveforms. Also,
C =( Z}\I:o E;jxI;)/L | j:samples has been measured to check the correlation between
the E and I components. The correlation is close to zero for all the tests, illustrating that

the E and I components do not share the same subspaces.
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From the PSD and STFT magnitudes, the E and I components can be inspected sepa-
rately. The I-to-E power ratio is plotted for the selected ER and the related DR segments.
The I-to-E power ratio plot demonstrates the changes for the selected windows. A con-
sistent observation (approximately 0.75 of overall tests) is that in channels where DRs
are present after SPES, there is a considerable increase in the I-to-E power ratio right
after ERs and before the appearance of DRs. Figure 3.11 illustrates the ratio for a se-
lected window containing ER and the related DR for a subdural channel implanted in
the brain right temporal pole region.

As the E-I imbalance is considered a significant indicator of epilepsy in the epileptic
brain and regions associated with seizures [38], investigating the E and I components
and the alterations in the I-to-E ratio helps to better understand the underlying in-
formation in DRs and consequently, the overall seizure network in future steps. The
hypothesis is that the epileptic zones contribute more to the elicitation of I. Therefore,
a deeper investigation of the I-to-E power ratio for the DRs could provide more in-
sight into seizure diagnosis and localisation. One possible explanation for the severe
and consistent increase in the I-to-E power ratio before DRs in some channels might
be their relative location and short distance to the actual SOZ or their association with
regions in the seizure network. Previous studies have shown that DRs are generally
observed in regions associated with seizure networks. Therefore, after applying SPES
to these regions, the role of DRs may be compensatory, preventing further increase of I
and synchronisation between various regions, possibly leading to seizure onset.

Also, previous studies have highlighted the similarities between DRs and IEDs [140],
suggesting that the occurrence of IEDs might prevent seizures due to their high levels
of I indicated by the long suppression periods seen in single-cell activity [56]. Another
possible explanation is that the I-to-E ratio might affect the occurrence of DRs, where
the I-to-E ratio alteration needs to surpass a limit for elicitation of DRs, even in regions
capable of producing such responses after applying electrical stimulation. There is no
statistically significant correlation between the location of the selected electrode and the
observed changes in the I-to-E ratio in the selected intervals. However, it is worth noting
that for all the DRE cases included in this chapter, most of the intracranial electrodes
are implanted in the temporal regions based on the preassumptions regarding the SOZ
location from the medical history, where most of the DRs are observed.

Findings from a recent study highlight the important relationship between the mor-
phology of the responses to the SPES and the location of the implanted electrodes.
According to the results of this study, the local and distant cortical responses to SPES
are differentially modulated by specific parameters like the intensity and location of
the stimulation point in the brain [141]. Although the differences in the morphology
of responses to the SPES (especially DRs), stemming from different SPES setups, make
it difficult to perform a direct comparison between these responses, the single channel

separation algorithm introduced in this chapter offers the opportunity to investigate
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the E-I imbalance for the recorded iEEG data using the implanted electrodes in the
epileptogenic region.

Several points need to be considered to ascertain whether the I-to-E ratio measure-
ments explicitly estimated based on our proposed method can elucidate the DRs. Ini-
tially, the proposed algorithm was applied to the data recorded from the depth elec-
trodes. However, the method was later applied to the iEEG signals recorded using
subdural channels due to the similarity (morphology) of the responses to the SPES
recorded from the depth and subdural electrodes. Depth electrodes permit recording
the activity from a local and specific region including a much smaller group of neurons.
In contrast, subdural channels record a superposition of activities from various sources.
Therefore, the decomposed components from subdural channels are more likely the
result of synchronised activities for a population of neurons. The E activity is more
localised than the I activity, which can affect the observed separated components and
I-to-E power ratio in subdural electrodes compared to depth electrodes.

The second point is that the DRs seen in multiple depth electrodes sometimes ex-
hibit different behaviors regarding E and I components and the I-to-E ratio. They have
dissimilarities in their morphologies. The DRs or part of them in some depth channels
may stem from a propagated signal from a nearby source, causing these differences.

Finally, it must be noted that the adaptive SSA algorithm’s performance in separating
the input time series into distinguishable orthogonal components differs according to
the morphology of the signal and the length of the selected window (L) for computing
the trajectory matrix. Therefore, an adaptive approach for selecting SSA parameters like
window size instead of having a fixed value for all tested segments is worth exploring

in future works.

3.5 CONCLUSION

In this chapter a subspace-based approach based on SSA with an adaptive reconstruc-
tion step has been introduced and employed to extract the excitatory and inhibitory
components from ER and DRs to SPES in epileptogenic regions where an imbalance
between E and I is expected. This approach takes a big step in investigating the sepa-
rability of E and I activities for ERs and DRs to the SPES for the epileptic brain. Unlike
most EEG-based studies that refer to E and I activities solely based on the frequency of
the waveforms, the method employed here exploits the waveform morphology and dis-
joint components using subspace decomposition. However their spectrum show that
they are well distinct in their frequency band. This approach can potentially deepen
understanding of the excitability of the brain tissue, seizure network, localisation of
epileptic regions, and extraction of other valuable information for seizure treatment,

mainly through SPES for DRE patients who undergo intracranial electrode implanta-
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tion. After showing the imbalance in E-I components expected in epileptogenic regions
where the DRs are visible, considering the importance of identifying the SOZ, it is es-
sential to introduce robust algorithms to identify the source of these responses. This

topic is discussed in the following chapters.
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LOCALISATION OF SPES DR SOURCES

SPES DRs in DRE cases, as observed from their intracranial recordings, can assist in
identifying regions associated with epileptogenicity. Automatic DR source localisation
significantly advances the identification of epileptogenic regions and SOZ. This chapter
introduces the concept of spatial filtering and beamforming for source localisation ap-
plications, particularly in EEG-related studies. Afterward, the newly developed adap-
tive iterative linearly constrained minimum variance beamformer (AI-LCMYV) is for-
mulated and utilised to localise the DR sources from iEEG recorded using subdural
electrodes introduced previously. The primary objective is to accurately localise the
regions responsible for the corresponding SPES DRs using a regularised localisation
algorithm that leverages the morphology of DRs as the desired sources. The traditional
closed-form LCMV (CF-LCMV) solution is designed to track sources with dominating
power. By incorporating the morphology of DRs as an additional constraint to an it-
erative LCMV solution, the array of subdural electrodes can be utilised to localise the
low-power DRs, some of which may not even be visible in any of the electrode signals.
The results also indicate more distinctive locations than those achievable by conven-
tional beamformers. Most significantly, the proposed AI-LCMYV can localise the DRs

that are not necessarily visible over the data recorded by subdural electrodes.

4.1 SPATIAL FILTERING AND BEAMFORMING
4.1.1  EEG Source Localisation

Source localisation in EEG studies refers to identifying the spatial origins of these sig-
nals [4]. This is a challenging task considering the ill-posed nature of the problem,
considering that an infinite number of possible sources configurations can lead to the
recorded signals. Forward and inverse models localisation problems have been widely
researched. The forward model predicts the recorded signals (EEG data) from a given
source distribution [142], and the inverse model estimates the source distribution from
the observed signals using the EEG electrodes [143].

The forward model describes the relationship between the electrical activity within
the brain and the measured EEG signals. It involves computing the potential field gener-
ated by a set of neural sources within a head model. The forward problem has a unique
solution but needs precise modelling of the head’s anatomy and tissue conductivities

or having access to the source temporal and spectral properties.
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The simplest head model is the spherical model, which assumes the head is com-
posed of concentric spherical layers representing different tissues (like the scalp, the
skull, and the brain). While computationally efficient, this model often lacks topologi-
cal accuracy. More advanced models include the boundary element method (BEM) and
the finite element method (FEM) [144].

BEM is widely used in EEG forward modelling. It approximates the head as a set of
surfaces (boundaries) between different tissues, reducing the problem to solving bound-
ary integrals rather than volume integrals. This approach is computationally efficient
and balances the accuracy and computational cost [145].

FEM involves discretising the entire volume of the head into small elements, allowing
for modelling the complex geometries and inhomogeneous conductivities. This method
is particularly useful in EEG forward modeling, where the skull’s inhomogeneities
significantly affect the electrical potential distribution due to different layers of tissue.
FEM is more accurate than BEM but it is computationally more expensive [145].

EEG signal sources are commonly modelled as equivalent current dipoles (ECDs),
distributed sources, or more complex models like multiple dipoles or cortical patches.

The ECD model considers that a small number of dipoles with fixed locations and
orientations can represent neuronal activity. This model is simple and computationally
efficient but may not capture the distributed nature of brain activity [146].

Distributed source models assume that the brain’s activity is distributed across a
grid of dipoles, each with an amplitude and orientation. The distributed approach is
more flexible and can represent complex patterns of brain activity. However, it leads
to an underdetermined problem, which requires regularisation methods in the inverse
modelling process [147].

Cortical patch models constrain the sources to the cortical surface, aligning them with
the brain’s anatomy. Cortical patch models reduce the dimensionality of the source
space and improve the interpretability of the results where the primary sources are
tangentially oriented [148].

The inverse problem in EEG source localisation aims to estimate the distribution
of neural sources from the recorded signals [149]. As mentioned earlier, unlike the
forward problem, the inverse problem is ill-posed. Inverse methods can be classified
into various approaches.

Dipole fitting methods estimate the location, orientation, and strength of a small
number of dipoles that best explain the recorded signals. The most common approach
is the least-squares fitting, where the parameters of the dipoles are iteratively adjusted
to reach the minimum difference between the measured and predicted sensor data
[150]. Single dipole models assume that the neural activity can be represented by a sin-
gle dipole, which is effective for well-localised sources but inadequate for multiple iso-
lated distributed or complex source configurations. Multiple dipole models allow for

localisation of multiple dipoles, providing greater flexibility in representing complex
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brain activity. However, the increased number of parameters requires more sophisti-
cated optimisation algorithms and can lead to overfitting if not adequately regularised
[150].

Distributed source imaging methods estimate the activity of a large number of dipoles
distributed throughout the brain. These methods often employ regularisation tech-
niques to constrain the solution, addressing the ill-posed nature of the inverse problem.

Minimum norm estimation (MNE) is a widely used method that estimates the source
distribution by minimising the L2-norm of the source amplitudes, subject to the con-
straint that the forward model explains the measured data [151]. While computationally
efficient, the MNE produces smeared or biased solutions, especially for deep sources.
Low-resolution electromagnetic tomography (LORETA) extends MNE by imposing an
additional smoothness constraint, encouraging neighbouring sources to have similar
activity [152]. Beamforming techniques estimate source activity by constructing spatial
filters that pass signals from a specific location while attenuating signals from other lo-
cations. Beamforming is particularly effective for localising oscillatory sources but may
suffer from localisation errors in the presence of correlated sources [153].

The precision of EEG sources relies on a range of factors, like the head model’s qual-
ity and the source model’s selection, in addition to the regularisation methods applied
to solve the inverse problem. Enhancements in imaging technologies like combining
EEG with MRI or fMRI can enhance the accuracy of pinpointed sources by offering
more precise head models. Balancing resolution and resistance to noise pose key ob-
stacles in pinpointed source determination. Techniques like conventional beamforming
algorithms can offer estimations of sources but are prone to noise and model errors
compared to the more reliable yet less detailed approach of low-resolution methods,
such as LORETA, for source localisation.

Lately, there has been a lot of interest in merging inverse methods with machine
learning techniques. Methods like learning have shown potential in enhancing source
localisation by recognizing intricate patterns from large datasets [154, 155]. As an ex-
ample, a recent research paper introduced a neural network structure for identifying
and monitoring the spread of seizure activity in multichannel EEG data by combining
a convolutional neural network encoder for each EEG channel using recurrent neural
networks to track seizure progression over time [156].

In another recent study, the researchers introduced a machine learning methodology
aimed at localising SOZ with a new approach that involves representing brain states as
functional networks derived from iEEG recordings, using correlation and phase-locking
values to measure the interactions between different brain regions [157]. The methodol-
ogy is built on the foundations of graph neural networks and the attention mechanism,
two major advancements in artificial intelligence studies. The study demonstrates that
the regions identified by the network align closely with those pinpointed by experts
as the SOZ. The approach was validated with both human patients and brain activity
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simulators. It also showed the network’s ability to express uncertainty in those cases
where the clinical localisation was unsuccessful, underscoring the robustness of this
method.

Deep learning techniques have also been recently applied to SPES responses to iden-
tify the SOZ. In a recent study by Johnson et al. [110], authors explored the use of
machine learning methods to aid in the localisation of the SOZ in DRE cases with tem-
poral lobe epilepsy. The study involved training a multichannel convolutional neural
network on CCEPs recorded via sEEG to identify SOZs. The authors utilised 500,000
unique poststimulation sEEG segments to train the network to determine whether an
SOZ had been stimulated. Based on leave-one-patient-out testing, the results showed
that the model could classify SOZs with a mean sensitivity of 78.1% and specificity of
74.6%. The optimal classification accuracy was achieved within a o- to 350-millisecond
poststimulation window. Further analysis revealed that the model could accurately dis-
tinguish between different SOZs. This study represents the first demonstration of a
deep learning framework effectively classifying SOZs using SPES responses.

In another study by Norris et al. [111], authors try to address the challenge of pre-
cisely localising the SOZ. Firstly, the authors executed an existing deep learning model
to compare two SPES analysis paradigms: divergent and convergent. These paradigms
evaluate outward and inward effective connections, respectively. The study evaluated
the generalisability of these models to new patients and electrode placements using
held-out test sets. The results showed notable improvement when shifting from the
divergent to the convergent approach. This study demonstrated the effectiveness of
convolutional transformers with cross-channel attention in managing heterogeneous
electrode placements, further increasing the performance.

Although deep learning methods show promising advancement in EEG source locali-
sation, employing techniques like deep neural networks for source localisation requires
considerable amount of annotated information, which is not frequently accessible in

medical or research environments.

4.1.2  Spatial Filtering

The spatial filtering objective is to create a directional array of signal energy, or in
other words, manipulate the spatial characteristics of signals to enable the localisation
of sources within a particular area or volume [158, 159]. Spatial filtering has various
applications in various fields, like neuroscience and wireless communications. Spatial
filtering entails employing an array of sensors to record signals at different spatial
locations and then applying mathematical operations to enhance certain components
and suppress others based on their spatial properties. Some of the key concepts of

spatial filtering are:
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1. Spatial filtering focuses on the spatial domain (location), analysing how signal

properties change across different locations.

2. An essential component of spatial filtering is an array of sensors (such as mi-
crophones, antennas, or electrodes). These sensors capture signals from different
spatial positions, providing data that encompasses spatial information for the fil-

ter.

3. Spatial signals can be analysed in terms of spatial frequencies. Spatial filtering

can then be performed in the spatial frequency domain.

4.1.3 Beamforming

Beamforming is a signal processing technique that falls within the adaptive array pro-
cessing and spatial filtering domain used to direct the reception or transmission of
signals in specific directions using an array of sensors, such as microphones, antennas,
sonar transducers, or EEG electrodes [153]. By manipulating the signals received by
each sensor in the array, the beamformer enhances the signal from a desired direction
while suppressing signals from other directions [160, 161]. This technique is widely
used in applications such as wireless communications, radar, sonar, and audio process-
ing [162, 163].

Conventional beamforming involves an array of sensors arranged in specific geome-
tries, such as linear, circular, or planar, to capture the signals received from different
spatial locations. The fundamental idea of beamforming is to modify the phase and am-
plitude of the signals recorded by each sensor, allowing for a constructive combination
of signals from the desired direction and rejecting those which come from other direc-
tions. A critical aspect of beamforming is the estimation of direction of arrival (DOA),
which helps in aligning the beam toward the desired source. The radiation or reception
pattern of a beamformer includes a main lobe, which is the primary direction of signal
enhancement, and side lobes, which are secondary, often unwanted, directions of signal
reception. The goal for an optimum beamformer is to maximise the main lobe toward
the desired direction and minimise the side lobes to exclude unwanted activity. Min-
imising side lobes relative to the main lobe in an optimum beamformer is important for
several reasons. It improves the SNR by enhancing the desired signal while suppressing
unwanted noise and interference from other directions. This also aids in better inter-
ference suppression, as smaller side lobes reduce the impact of signals from unwanted
directions, thereby improving system performance. Additionally, smaller side lobes
enhance spatial resolution, enabling the system to distinguish closely spaced sources
more accurately and reducing the likelihood of false alarms. Finally, minimising side

lobes increases energy efficiency by concentrating more energy in the desired direction.
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The Minimum Variance Distortionless Response (MVDR) beamformer, also known
as the Capon beamformer, is a popular adaptive beamforming technique used in array
signal processing. The primary goal of the MVDR beamformer is to minimise the total
output power of an array while ensuring that the signal coming from a desired direction
is received without distortion [164]. One main disadvantage of the conventional MVDR
beamformer is that it can have a high side lobe, which is notably not ideal for low
sample inputs. This characteristic can lead to a significant performance drop in the
presence of unexpected interference [165].

One strategy to overcome the shortcomings of the conventional MVDR beamformer
is to introduce side lobe pattern control. In work by Liu et al. [165], the authors present
a method for an adaptive beamformer that improves upon the standard MVDR beam-
former and control the high side lobe effect. The authors introduce a second-order cone
programming approach that includes additional constraints to control sidelobe levels,
ensuring they remain below a preselected threshold. This helps to move towards the
optimum beamforming solution. This method is computationally efficient and capable
of detecting infeasibility in the optimisation problem, providing a robust solution for
maintaining performance in the presence of interferers. Simulation results demonstrate
its effectiveness compared to the traditional MVDR solution.

The beamforming process generally consists of various steps, including:

1. Signal Collection: Signals are collected from the array of sensors (here, subdural
electrodes). Each sensor receives the signal with a different phase and amplitude
depending on the signal’s direction and electrod’s relative location to the source

location.

2. Weight Calculation: Appropriate weights (amplitude and phase adjustments) are
calculated for each sensor to steer the beam toward the desired direction. In fixed
beamforming, these weights are predetermined. In adaptive beamforming, the
weights are dynamically adjusted based on the signal environment or source char-

acteristics.

3. Signal Combining: The weighted signals from each sensor are aligned and com-
bined. For reception, this means summing the weighted signals to enhance the
desired signal and suppress others. For transmission, this means distributing the
signal to the array elements with the appropriate weights to form a directional

beam.

4. Beam Pattern Formation: The combined signal forms a beam pattern with a main

lobe pointing towards the desired direction and minimised side lobes.

In addition to beamforming, there are other methods available for source localisation.
Multiple Signal Classification (MUSIC) [166] decomposes the signal covariance matrix

into signal and noise subspaces, identifying DOA from the peaks of a pseudo-spectrum.
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MUSIC offers high resolution and can resolve closely spaced sources, whereas adaptive
beamforming provides good interference rejection and higher resolution than provided
by the conventional beamformers. However, MUSIC is computationally intensive and
requires a large number of sensors. An extenstion of MUSIC method is recursively
applied and projected (RAP) MUSIC. It is an advanced algorithm for estimating the
DOA of signals in array signal processing. It enhances the standard MUSIC algorithm
for detection of closely spaced multiple source, by iteratively projecting the signal sub-
space onto a noise subspace, refining the estimation of signal sources in scenarios with
closely spaced or correlated signals [167]. RAP MUSIC is particularly useful in situa-
tions where the traditional MUSIC algorithm may struggle due to signal correlation or
insufficient resolution. [167, 168].

Estimation of signal parameters via rotational invariance techniques (ESPRIT) [169]
leverages the rotational invariance of signal subspaces for DOA estimation. Beamform-
ing, in contrast, manipulates the phase and amplitude of received signals to focus on
desired directions. ESPRIT offers high resolution and is less computationally intensive
than MUSIC. Adaptive beamforming excels in interference rejection and offers good
resolution. However, ESPRIT requires a significant number of snapshots.

Regarding computational complexity, MUSIC, and adaptive beamforming are highly
complex, while the ESPRIT method is moderately complex, and conventional beam-
forming is relatively low in complexity. For robustness to noise and interference, the
adaptive beamforming method is highly robust, MUSIC and ESPRIT offer moderate
robustness, and conventional are less robust. Sensitivity to model errors and array im-
perfections is high for adaptive beamforming, moderate for MUSIC and ESPRIT, and
low for conventional beamforming and ICA. Finally, ease of implementation is great-
est for conventional beamforming, moderate for ICA, and most complex for adaptive
beamforming, MUSIC, and ESPRIT.

Adaptive (regularised) beamforming has been successfully used in EEG source lo-
calisation studies. In a study by Spyrou et al., [112], an algorithm for the localisation
of ERP sources within the brain is proposed. In this spatial filtering algorithm, spatial
notch filters are developed to exploit the EEG data with a model of ERP with variable
parameters to accurately localise the corresponding ERP signal sources. The results in-
dicated the algorithm’s robustness in the presence of noise and superior performance
compared to conventional LCMV beamformer, indicating the benefits of regularised

beamforming for EEG source localisation.

4.1.4 Linearly Constraint Minimum Variance Beamformer

A popular and effective beamforming method used for various applications is the

LCMYV beamformer [170]. The LCMV beamformer is a more generalised version of the
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MVDR beamformer. While the MVDR beamformer sets a single constraint to preserve
a distortionless response in the direction of the desired signal, the LCMV beamformer
can impose multiple linear constraints. These constraints can be utilised to control the
response in several directions or to shape the beam pattern in distinctive ways.

The conventional LCMV beamformer, although flexible, might not consistently ac-
quire the optimal beam pattern (high main lobe, low side lobes). This suboptimality
arises due to multiple reasons. First, the multiple constraints in the solution might
conflict, which can compromise beam pattern performance. Also, while the LCMV
beamformer allows for the regulation of multiple aspects of the beam pattern, it does
not inherently optimise the sidelobe levels. Finally, the complexity introduced by mul-
tiple constraints might make it more challenging to achieve the most efficient solution,
especially compared to approaches specifically developed to minimise sidelobes [153,
171].

The LCMV beamformer is a method that has been used extensively in the context
of neuroimaging and signal processing. In neuroimaging, the LCMV beamformer was
first applied to MEG data by Van Veen et al. [171]. This groundbreaking step demon-
strated the beamformer’s ability to localise neural sources with high spatial resolution,
while effectively suppressing interference from other brain regions and external noise
sources. The LCMV beamformer has since found widespread use in various applica-
tions, particularly in the analysis of MEG and EEG data. LCMV algorithm’s primary
function is to estimate the activity of neural sources by scanning through a predefined
grid of source locations and constructing spatial filters for each point [172]. This ap-
proach allows for the reconstruction of source activity without the need for averaging
across trials, making it particularly useful for studying ongoing brain activity and tem-
porary events.

One of the key advantages of the LCMV beamformer is its ability to provide focal
reconstructions of neural activity, even for deep brain sources. In addition to source lo-
calisation, the LCMV beamformer has been extensively used to study functional connec-
tivity. By applying the beamformer to time series data, the researchers can investigate
the temporal dynamics of neural networks and assess the interactions between different
brain regions [173]. Also, the versatility of the conventional LCMV beamformer has led
to its availability in various open-source neuroimaging toolboxes, including FieldTrip
[174], SPM12 [175], Brainstorm [176], and MNE-Python [177].

A conventional form of the LCMV beamformer is CF-LCMYV, in which the weights are
determined through covariance minimisation [171, 178, 179]. The CF-LCMV minimises
the output power (with a narrow main lobe) while maintaining a constant response
in the direction of the signal of interest. Key concepts and equations related to the
conventional form of the LCMV beamformer are presented here.

In the context of the LCMV beamformer, several key concepts are fundamental to

understand its operation. An array signal model describes an array of M sensors re-
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ceiving signals, where the received signal vector X(¢) at time t consists of a desired
signal component S(t) and noise plus interference n(t). The beamformer output Y (¢)
is computed as a weighted sum of sensor outputs, given by Y(t) = WHX(t), where
W is the beamforming weight vector and W' denotes its conjugate transpose. The
objective of beamforming is to minimise the output power, typically formulated as
minw E[|Y(t)]?] = minw WHRW, where R is the covariance matrix of X(t). Constraints
are imposed to preserve the desired signal, often expressed as linear constraints. One
constraint here is GEW = £, where G is a constraint matrix (leadfield matrix based
on head model estimation for EEG source localisation) and f is a vector of desired re-
sponses. To reach the solution for the CF-LCMV beamformer, the Lagrange multipliers
method can be employed. This technique allows the incorporation of the constraints
directly into the optimisation problem. By doing so, the original constrained optimi-
sation problem can be transformed into an unconstrained format, which makes it eas-
ier to solve analytically [180]. The Lagrange multipliers method introduces additional
variables for each constraint. These multipliers enable us to construct a new objective
function called the Lagrangian, which combines the original objective function and the
constraints. Solving the Lagrangian yields the optimal solution for the beamformer
that satisfies the given constraints. Here, the Lagrangian function for the constrained

optimisation problem is:

LW, A) = WHIRW + A (f — GHW) + (f — GITwW)HA (4.1)

where A is the vector of Lagrange multipliers. Taking the derivative of £ with respect

to W and setting the value eqaul to zero leads to:

oL
W_RW—G/\—O = RW=GA\ (4.2)

Taking the derivative of £ with respect to A and setting the value equal to zero gives:

d
aﬁ:f_(;Hw:o = GHw=f¢ (4-3)

From RW = GA, W can be measured as:

W=R"'GA (4-4)

Substitute this into the constraint GHFW = f:
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GiRIGA=f = A= (GHFR'G)'f (4.5)

Finally, substitute A back into the expression for W:

W =R!G(GIR'G)f (4.6)

This approach allows us to determine the optimal beamforming weights W that satisfy
the given constraints using the LCMV beamformer. The CF-LCMV beamformer weight
vector W is given by:

W =R!G(GIR'G)f (4.7)

This solution ensures that the beamformer minimises the output power while satis-
tying the linear constraints imposed to preserve the desired signal.

Although conventional LCMV beamformer has proven useful for various applica-
tions, including EEG-MEG source localisation [181], its robustness is poor when the
target signal is sparse or with low power, such as spike type waveforms, or the SNR
is low [153, 171]. A typical approach to compensate for the beamformer’s sensitivity
to the power of the recorded signal and to increase the SNR is averaging the signals
over a large number of segments [182]. However, averaging overlooks the variability in
time and source power and diminishes the algorithm’s sensitivity to localising multi-
ple nearby sources. Moreover, unlike some ERPs, DRs are inconsistent in latency and
exhibit differences in morphology even for the same subject, stimulation region, and
parameters. Therefore, averaging over various segments can be deceitful.

To address the limitations of conventional LCMV beamformer, numerous methods
have been introduced previously, including LCMV with stochastic gradient (LCMV-
SG) [183], LCMV with recursive least squares (LCMV-RLS) [184], and robust adaptive
iterative suboptimal solution for LCMV (RAIS-LCMV) [185]. For example, in [185], the
authors derive a low-complexity RAIS-LCMYV using the conjugate gradient (CG) optimi-
sation method. The steepest descent weight update strategy is adopted for this simple
iterative process. The main contributions of the RAIS-LCMV approach are (1) lower
computational complexity compared to CF-LCMYV, achieved by using a CG optimisa-
tion method, (2) adaptive output adjusted to the measurements with convergence speed
comparable to existing methods and (3) robust performance in challenging conditions,
including low SNR and small numbers of snapshots (samples in a selected segment
of input data). In RAIS-LCMYV, the authors employ the steepest descent weight update

strategy to create a simple iteration process. This approach differs from some other
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recent methods that use more complex recursive least squares techniques for weight
updates [185]. The simulation results reveal the superiority of this algorithm. However,
although the mentioned iterative methods achieve better results than the conventional
CF-LCMV, they are still sensitive to the overall power of the input signal. Therefore,
these methods cannot fully differentiate between sources with similar power ranges
that differ in morphology or detect low-power sparse events, in our cases sources re-

sponsible for the generation of SPES DRs.

4.2 AI-LCMV BEAMFORMER

Here, the aim is to develop an iterative adaptive beamformer that employs the DR mor-
phology as an additional target for the beamformer output. This beamformer considers
a dipole assumption of the source in three-dimensional space, and the considered tem-
plate ensures a unique solution for the beamformer. In the conventional LCMV beam-
former design, the main objective is to detect the source location by steering the beam-
former toward maximum received power. In the closed-form solution of the LCMV
beamformer [186], the weight vector W can be obtained from the solution to the multi-

ple linearly constrained optimisation problem of minimising:

1
§wTRw subject to GTW = f

where Ry, is the covariance matrix (M x M, M : number of channels) of the recorded
signal X, G is the leadfield vector, and f is the vector indicating the unit gains in the

considered directions of arrival. The optimal weight for the CF-LCMV beamformer is

—1
Wopsimal = R™'G (G'R7'G) (48)

and indicates the high sensitivity of the beamformer to the covariance and power of
the input signal.

Previous studies have introduced various approaches, including RAIS-LCMV [187],
to reduce computational complexity and achieve better performance for smaller sam-
ple sizes and higher robustness for low SNR recorded signals. Although previously es-
tablished iterative methods can offer better performance compared to CF-LCMYV, they
remain sensitive to the covariance and power of the recorded activity and are, therefore,
not ideal for identifying DR sources, which are generally spike-type with low power.
To further improve the performance of the iterative form of the LCMV beamformer
for such sources, a new adaptive approach is employed by adding a second constraint
to the iterative LCMV formulation. This second constraint matches the output of the

beamformer to the morphology of DRs as the source of interest. After each iteration,

53



4.2 AI-LCMV BEAMFORMER

the algorithm adjusts the weighting coefficients to minimise the output signal variance,
similar to the main objective of the conventional LCMV beamformer, while adhering to
the linear constraint related to the desired source due to the availability of information
about the approximate shape of the DRs. After a sufficient number of iterations, the
algorithm converges to the beamformer’s optimal weighting coefficient, which helps
identify the desired source.

Considering the general aim similar to the LCMV beamformer for minimising the
output power, the weight vector W for each of the directions in the three-dimensional
space, which can be used to measure the source activity is the solution to the following

multiple linearly constrained optimisation problem:

1
Minimise EwTRw subjectto GTW=f & WIX=U (4.9)

where R = E{X(n)XT(n)} is the covariance matrix of the recorded signal X and U in
the second constraint (W'X = U) refers to the template as the desired source for the
beamformer output with the same length as X. Here U = Q/||G|| where Q is a visible
DR template selected from the SPES recordings as the desired source (output for the
beamformer). Considering the objective optimisation of (4.9) and rewriting WX = U in
the form of XTW = UT, W can be obtained iteratively after converting the constrained

problem to an unconstrained format using Lagrange multipliers:

J(W) = Min (;WTRW + A1 (f— GTW) + Ay ||UT — xTW||2> (4.10)

where A; and A; are the Lagrange multipliers. By taking the gradient with respect to

W, the following equation can be reached:

W(n+1) =W(n) — Vw](W(n)) (4.11)
where
Vw](W(n)) = RW(n) — 1G — 2A,X(XTW(n) — UT) (4.12)

Therefore, the following iterative equation is used to estimate W:

W(n+1) = W(n) —a(RW(n) — MG — 20:X(X"W(n) — UT)) (4.13)
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where « is the non-negative step size considered for optimisation in each iteration that
can alter the convergence rate. Considering the constraint GTW = f, pre-multiplying
both sides of (4.13) by G yields:

f=GIW(n) — a(GTRW(n) — 1GTG — 2A,GTX(X"W(n) — UT)) (4.14)

By considering A as Ay = PAy, Ay can be obtained from (4.14) as:

(4.15)

M) = f— GTW(n) + aGTRW(n)
WY 0GTG + 2aPGTX(XTW (1) — UT)

Therefore, by substituting the values for A; and A; in (4.13), W(n + 1) can be estimated
for each iteration. Finally, for equation (4.13) to be fully adaptive, R should also be
estimated recursively. To do that, we adopt the iterative R estimation used in the RAIS-

LCMV approach to reduce the estimation error [187].

R(n) = pR(n —1) + (1 = B)X(m)X" (n) (4.16)

where R(n) is the estimate of the covariance matrix in the nth observation with B as
a forgetting factor which determines a trade-off between adaptability and stability for
the algorithm. By substituting R(1) in equation (4.13), the beamformer weight vector

can be estimated in each iteration as:

W(n+1) = W(n) —a(R(n)W(n) — 1G — LX(XTW(n) —UT)) (4.17)

Here, the template selected for the AI-LLCMYV is a waveform with similar morphology
to the DRs recorded by the intracranial channels, normalised by dividing it by the norm
of the leadfield vector for each DOA. A smoother DR waveform is used as the template
to enhance the overall beamformer performance and ensure the beamformer captures
the constraint. This increases the likelihood of overlap between the template and the
actual DRs. Figure 4.1 shows a sample template for the adaptive beamformer.

The initial weight vector for the beamformer is set to an M x 1 vector of zero values.
The initial covariance matrix R(0) is set to an M x M identity matrix while the forget-
ting factor 8 is set to a constant close to one (0.95) so that the model is stable while still
reasonably adaptable to the changes in the input signal. The value of step size («) and
the ratio between A1 and A, are empirically adjusted considering the convergence rate
for ZWTRW and |[W(n + 1) — W(n)|| in order to find the best possible values. If the ra-
tio of A1 to Ay (P) is too low, the weight for the second constraint related to the desired
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Figure 4.1: A sample DR selected from the recorded data and its smoothed version with similar
morphology which is used as template in the AI-LCMYV algorithm (variable Q).

template for the AI-LCMV becomes negligible, and therefore the results become similar
to those of the conventional RAIS-LCMV beamformer. Increasing the value of P up to a
specific threshold for each segment causes the \WTRW and ||[W(n + 1) — W(n)|| not to
converge, in which case the optimal value for the weight cannot be reached. Figure 4.2
demonstrates the values of sWTRW and ||[W(n + 1) — W(n)|| for a selected segment.

4.3 DATASET AND HEAD MODEL ESTIMATION

The data used in this chapter (SPES procedure and parameters) has already been de-
scribed in chapter 3. Figure 4.3 shows the brain X-ray scan after implantation of the
intracranial electrodes (including the 32 electrodes in the subdural mat) for the SPES
session, in addition to a window of recorded iEEG signals where SPES DRs are visible
after stimulation artefact. As depicted in Figure 4.3, DRs do not necessarily appear after
each stimulation of the same region (same SPES setup) and are not visible in all intracra-
nial electrodes. For all cases included in this chapter, a 32-contact subdural array (mat)
is placed on the cortex. Each subject’s rectangular subdural mat contains a 32 platinum
electrode array with 10 mm center-to-center intervals. The iEEG signals recorded using
this array are used as the input sensor array for the adaptive beamformer, while the
recorded data from the rest of the electrodes, in addition to ictal recordings, are used
to identify the SOZ and assess the performance of the developed beamformer.

Overall, 76 data segments annotated by clinical experts with visible SPES DRs and
47 consecutive segments recorded using the same setup but with DRs invisible on the
recording electrodes are employed as input data for the AI-LLCMV algorithm. Table
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Figure 4.2: (a) Values of sW R W, and (b) |[W(n + 1) — W(n)| for the same segment for both
AI-LCMV with different P values and RAIS-LCMYV with the same step size for a number of
iterations averaged over all grid points. Plots (c) and (d) indicate an example of a wrong P
value for the AI-LCMV beamformer which causes W Ry W and |[W(n + 1) — W(n)|| not to
converge.

4.1 provides the information related to the cases involved in this study, including the
surgical operation outcomes using the EOS [188].

In addition to the intracranial recordings, pre-operation MRI and post-operation CT
scans are used to identify the anatomical positions of the implanted electrodes. These
images are used to measure the head model and the leadfield matrix, which acts as
the linear operator that links brain activity to the signals recorded by the intracranial
electrodes. To estimate the leadfield matrix and localise the intracranial electrodes for
each case, the subjects” pre-surgery MRI and post-surgery (after electrode implanta-
tion) CT images are co-registered using the anterior commissure-posterior commissure
(ACPC) coordinate system. In ACPC, the origin is the anterior commissure, the nega-
tive y-axis passes through the posterior commissure, and the z-axis passes through a
mid-hemispheric point in the superior direction. After identifying electrode locations,
the leadfield matrix is measured for each subject to be used for the beamformer estima-
tion. Various pairs of electrodes are used for stimulation during SPES recordings for

each subject, necessitating multiple measurements of the leadfield matrix for each case
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Figure 4.3: The X-Ray (a) shows the intracranial EEG channels implanted in the head of one
DRE case included in this study with the electrode labels in the subdural mat alongside, (b) the
data recorded using these channels during a SPES session. The red arrow indicates examples of
observed DRs after SPES. Evidently, DRs are not necessarily visible in the data recorded using
the subdural mat placed over the cortex (channels 1-32). For this segment of data, channels 44
and 45 have been used for stimulation and, therefore, are not used for data recording.

accordingly. The coregistration of CT-MRI images and the measurement of the leadfield

matrix is conducted using the Fieldtrip toolbox [189].

4.4 EXPERIMENTS AND RESULTS

The AI-LCMV beamformer is applied to the annotated segments of 0.3 seconds that
contain SPES DRs. To compare the performance, the RAIS-LCMYV is also tried on the
same segments. After DR source localisation, the Euclidean distance between the iden-
tified location with the maximum power and the electrodes closest to the SOZ for each
case is calculated to monitor the relevant distance between the localised primary source
and the SOZ. Figure 4.4 shows the results for both RAIS-LCMV and AI-LCMV algo-
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Table 4.1: The number and locations of implanted electrodes alongside the result of surgery
for each case (R=Right, L=Left, T=Temporal, F=Frontal, A=Anterior, P=Posterior, O=Occipital,
In=Insular, H=Hippocampus, M=Mesial).

Case Number and locations of electrodes EOS

1 32 RT, 8 ROF, 8 RAT, 6 RMT, 6 RPT I

2 32 RT, 5 Tpole, 5 MT, 5PMT, 5 Aln, 5 I
Mln, 5 PIn

3 32 RT, 8 RATP, 8 RAT, 8 RMT, 8 RPT II

4 32 LT, 8 AF, 8 Motor, 8 PE, 8 O No
surgery

rithms for a sample data segment with DRs visible in iEEG data. The results from the
tested segments suggest that the source identified using AI-LCMV is much more dis-
tinctive than that obtained by RAIS-LCMYV, pointing to the possible region responsible
for causing the SPES DRs. As expected, the subdural array captures the information
related to the DR sources and can help identify them even if they are not visible at the
subdural electrode positions.

Estimating the distance between the identified source using the beamformers and the
SOZ reveals that the source identified using the AI-LCMYV is, on average, 2.66 cm closer
to the channel which is closest to the SOZ, compared to that identified by the RAIS-
LCMYV algorithm. This indicates that the source identified by AI-LCMV is closer to the
SOZ in the brain and, therefore, more suited for clinical assessment. Figure 4.5 displays
the localised DR source using AI-LCMYV laid on pre-operation MRI slices for one case
with the SOZ located at the right mesial-temporal region. The localised sources are
highlighted over MRI slices using Fieldtrip toolbox [189]. The difference in the distance
between the SOZ and the source identified using the RAIS-LCMV method was greater
when the amplitude of the observed DRs was lower, confirming the advantage of Al-
LCMYV compared to the conventional iterative form in these cases.

In addition to the segments where the DRs were visible, both AI-LLCMV and RAIS-
LCMYV were used for consecutive data segments where the SPES was applied using
the same setup with similar parameters. However, the DRs were not visible in the data.
Figure 4.6 shows the results of AI-LCMV and RAIS-LCMV beamformers for a segment
where SPES DRs were not visible after the stimulation artefact. Here, the results of
RAIS-LCMV show no distinctive source. In contrast, the AI-LCMV algorithm results
reveal similar sources to the segments with visible DRs alongside other sources with
comparable power levels. For the segments where the DRs were not visible, the Al-

LCMYV algorithm shows multiple active regions with notable power compared to the
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Figure 4.4: The normalised power for (a) the sources localised by the AI-LLCMV and (b) RAIS-
LCMYV beamformers for each location in the head model for a single data segment where
DRs are visible in multiple channels (not necessarily subdural mat used as input). As shown
here, the main source (identified source with maximum power) using AI-LCMYV is much more
distinctive compared to that of the RAIS-LCMV method. Although the peaks are distanced
from each other in number, they point towards the neighborhood of the same seizure generator
depicted in the corresponding MRI.
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Figure 4.5: The locations of the DR sources in the brain via AI-LLCMV beamformer. The identi-
fied source with the maximum power in the right temporal region is very close to the location
SOZ for this case which according to the ictal recordings, is expected to be in the same region.

segments where DRs were visible in the iEEG data. Figure 4.7 illustrates the sources
for the segments where DRs were not visible using AI-LCMV over MRI slices. The
localised sources are highlighted over pre-operation MRI slices [189]. Similar to the
segments where the DRs were visible, the localised primary source using AI-LCMV
was closer (on average, 3.32 cm) to the location of the closest electrode to the SOZ
compared to that achived by the RAIS-LCMV method. Finally, both algorithms were
tested for 30 segments with no stimulation. The overall results for these segments did
not indicate a clear pattern for the identified primary source. The results of AI-LCMV
and RAIS-LCMYV methods for the tested segments are shown in Table 4.2.

Identifying SPES DR sources is crucial to make the SPES recording sessions effec-
tive for the clinical examination of DRE cases. Previous research suggests that deep
regions such as the amygdala, hippocampus, frontal cortex, temporal cortex, and olfac-
tory cortex are frequently noted as potentially epileptogenic [190]. The DRs generated
in these areas can be located very deep in the brain, making some DRs invisible to the
implanted electrodes. This highlights the necessity for a method to identify DRs that
are invisible to the subdural channels.

Current clinical practice identifies DRs when the source is close to an implanted in-
tracranial electrode. However, the proposed method allows for the localisation of these
sources even when they are not detected by any individual electrode, which can also

compensate for possible errors during the electrode implantation process. This is possi-
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Figure 4.6: The normalised power for (a) the sources localised by the AI-LLCMV and (b) RAIS-
LCMV beamformers for each location in the head model for a single data segment where DRs
were not visible in any channels while stimulation is applied using the same pair of channels
(same SPES setup). As shown here, the primary source via AI-LLCMYV is much more distinctive
than the RAIS-LCMV method. The average power of the secondary sources is closer to the
maximum value than the segments where DRs are visible.
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Figure 4.7: The locations of identified brain source via AI-LCMV beamformer. Compared to the
segments where DRs are visible, here, with invisible DRs, the secondary sources close to the
primary source are shown with the white arrow.

Table 4.2: The number of tested segments for each case where DRs were visible (not necessarily
in subdural mat used as input) alongside the Euclidean distance between the estimated location
and SOZ using AI-LCMV and RAIS-LCMV methods. The same numbers are also reported for
the consecutive segments with the same SPES setup where DRs were not visible in any channels.
(N: number of tested segments, D: average distance between the primary source and SOZ, (v):
DRs visible in multiple channels, (inv): DRs not visible in any of the implanted channels).

RAIS-LCMV AI-LLCMV

Case N(v) D (cm) N(inv) D (cm) N(v) D (cm) N(inv) D (cm)

1 23 4.5 £ 0.36 12 5.9 £+ 0.4 23 1.8 £ 0.56 12 2.9 + 0.62
2 18 5.21 + 0.22 15 6.52 + 0.52 18 1.4 £ 0.37 15 2.6 = 0.4
3 20 4.35 £ 0.51 10 6.95 £ 0.81 20 2.5 £ 0.33 10 3.5 £ 0.45
4 15 3.8 £ 031 10 5.5 = 0.68 15 1.5+ 04 10 2.8 £ 0.78

ble due to propagating such sources over the subdural sensor array, which captures the
relevant information. Consequently, the subdural sensor array improves the ability to
detect DR sources, including those that are not visible at any of the individual electrode
locations, thereby improving the overall effectiveness of SPES sessions.

Some researchers have discussed the possible benefits of a probabilistic interpreta-
tion of responses to brain stimulation and their variabilities, even within an individual
[191]. Although recent studies have shown the capability of conventional beamforming

methods like the LCMV beamformer in seizure localisation [192], these methods are

63



4.4 EXPERIMENTS AND RESULTS

not suitable for low-power, spike-like events like DRs. The alterations in the amplitude
and morphology of DRs present a challenge for the conventional beamforming meth-
ods, which are sensitive to the power of recorded signals. A more robust beamformer
has been proposed and applied in this study to address this sensitivity and guide the
beamformer in localising sources with specific characteristics. The existing cortical sen-
sor array (subdural mat) allows us to best exploit the footprints of visible and invisible
sources across all channels to localise the source of DRs. It also allows us to identify
IEDs due to their similar morphology, often coexisting with DRs in epileptic brains
[193].

In addition to the segments where DRs are visible, both AI-LCMV and RAIS-LCMV
were applied to consecutive segments where stimulation was conducted using the same
pair of channels, but DRs were not visible in any of the intracranial EEG channels im-
planted in the brain. In contrast to the conventional method, which was unsuccessful
in identifying the primary active source in the brain after stimulation, the AI-LCMV
revealed secondary active sources in these segments in addition to the primary source
with comparable power. The additional active regions identified for the segments where
DRs were invisible are close to the region with the maximum power and the seizure
onset zone, without a clear pattern among the subjects in this study. These results are
encouraging, as previous research indicates that one key difference between evoked
responses (ERs) and DRs is that DRs are less consistent in appearance [194]. Given that
DRs and IEDs are sparse and low-power in nature, traditional power-based beamform-
ers often fail in their localisation. Therefore, the proposed AI-LCMV outperforms such
beamformers by considering the expected shape of the targets.

In addition to localising DRs to SPES and similar epileptiform activities, the Al-
LCMYV method developed in this study can enhance our understanding of brain syn-
chronisation [54, 195]. This offers an excellent opportunity for a more comprehensive
examination of the E-I imbalance and seizure generation and propagation models. Con-
sidering that the excitatory activity is more localised than inhibitory activity, having a
robust method to monitor and localise these components using subdural channels is
highly valuable. Finally, it has been suggested that the brain responses to electrical
stimulation can be recorded using high-density EEG (EEG setup with a large number
of electrodes), capturing the shape and location of brain responses more accurately
than what can be achived using normal sEEG [196]. The use of proposed AI-LCMV
beamformer in better localisation of DR sources is the major practical contribution of
this chapter. This achievement is a significant step towards the localisation of SOZ in
the epileptic brain.

While the findings and advantages of the established method in this chapter are
significant, there are a few points worth considering for further improvement. First, a
more accurate pipeline for identifying the locations of intracranial electrodes through

more precise coregistration of CT-MRI images to estimate the leadfield matrix can fur-
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ther improve the beamformer’s accuracy, overcoming the problem of anatomical brain
shift after the surgical operation. Secondly, the DR template here is considered similar
to the DRs visible in other available implanted electrodes for each subject. A dictionary
of DR templates can be used instead to account for variability in DR morphology. This
is expected to improve the accuracy of the algorithm. Finally, the geometry of the sub-
dural mat has been the same for all the subjects included in this chapter (a standard
size commonly used in operation). Therefore, the developed AI-LCMV method was not
tested with subdural mats of different geometries. In general, the sensor array geometry
and the spacing between sensors determine the resolution and beamwidth of the beam-
former. Smaller inter-sensor spacing allows for higher spatial resolution and narrower

beamwidth. Larger spacing provides broader beamwidth with lower resolution.

45 CONCLUSION

The objective of this chapter is to establish the groundwork for DR source localisation
highly applicable to DRE cases by analysing the brain’s SPES DRs. The DR sources
in DRE patients with subdural mat are identified, enabling the localisation of hyper-
excitable and potentially epileptogenic regions in the brain that are not close to the
intracranial electrodes. A regularised iterative LCMV beamformer called AI-LCMYV has
been designed and used to identify the DR primary sources to achieve a more accu-
rate and robust localisation solution. This is accomplished using an array of electrodes
arranged in a mat-like structure placed on the cortex. This new pipeline allows for a
more comprehensive and accurate mapping of the brain’s electrical activity. Compared
to conventional localisation methods, the approach used here better suits the charac-
teristics of the recorded responses to SPES and IEDs, overcoming the general spatial
limitations of intracranial recordings. The AI-LCMYV algorithm introduced and exam-
ined in this chapter has the potential to greatly impact the assessment stage in clinical
practice for DRE cases prior to resection surgery for possible candidates. Moreover, de-
tecting DRs that are invisible to the recording electrodes can considerably improve the
certainty in localising SOZ following comprehensive statistical validation. Although
AI-LCMYV and RAIS-LCMV algorithms have been tested on numerous segments from
four DRE subjects, and the results indicate the better performance of AI-LCMYV, there is
still room for improvement particularly on spatial side lobe supression. The AI-LLCMYV,
like other LCMV approaches, is fairly sensitive to possible highly correlated sources
near each other, and the additional constraint in the algorithm makes the beamformer
vulnerable to possible temporal delay mismatch between the selected template and the
beamformer’s output. Additionally, incorporating a dictionary of desired templates,
more accurate head models for subjects undergoing surgery, and even customised sub-

dural mats with specific geometry can help improve the accuracy and practicality of the
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established AI-LCMV method. The following chapters aim to improve the AI-LCMV

algorithm and solve the shortcomings of this method.



INVESTIGATING THE COMMONALITY OF DR
AND IED SOURCES

IEDs are distinctive electrical patterns observed in the EEG of individuals with epilepsy
[197]. These abnormal waveforms typically manifest as sharp waves or spikes that stand
out from the background brain activity, characterised by their high amplitude and brief
duration [197]. IEDs are considered a hallmark of epilepsy, occurring between seizures
(interictal periods) and reflecting the underlying epileptogenic potential of the brain.
They result from the synchronous firing of a population of neurons, producing a sum-
mation of excitatory and inhibitory postsynaptic potentials [198]. The presence of IEDs
can significantly increase the probability of a seizure happening and can provide use-
ful information about the location of SOZ [197, 199]. Accurately identifying the IEDs
requires expertise in EEG interpretation, as normal variants and artefacts can some-
times be mistaken for epileptiform activity [197]. IEDs [200], which may or may not be
frequent in the data recorded during interictal periods, are considered a meaningful
biomarker for epilepsy.

In case DRs and IEDs originate from common locations and the DRs can be accu-
rately localised, there will be a significant step in SOZ identification. The solution to
this critical question has been investigated in this chapter. For this, the morphology of
DRs and IEDs as spike-type events and their variability in the temporal domain has
been exploited to develop new constraints for an adaptive Bayesian beamformer that
outperforms the conventional and proposed beamformer in Chapter 4 (AI-LCMV). Sim-
ilar to chapter 4, this algorithm is applied to a subdural iEEG electrode array (subdural
mat). The significant outcome of applying this beamformer reveals that the IEDs and
DRs associated with seizure for a DRE case originate from the same primary location
in the brain.

As mentioned previously, the conventional form of LCMV beamformer is not robust
when the SNR for the input signal is low. To solve this problem, in the previous chap-
ter, the AI-LCMYV algorithm was developed and employed to identify the DR sources
where the use of a template as the desired source in the form of an additional con-
straint improved the localisation accuracy. It also solved the problem of conventional
LCMYV beamformer sensitivity to low SNR input to a degree [55]. Although the Al-
LCMYV beamformer in its regularised format demonstrated significant refinement over
the conventional algorithm, especially when the DRs are not visible to the implanted
intracranial electrodes, the performance is still questionable due to the possible tempo-

ral mismatch between the selected template and the algorithm output. This is mainly
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due to using Euclidean distance as the similarity measure between the chosen template
as the desired source and the beamformer output at each iteration. Moreover, another
limitation of the AI-LCMYV algorithm, like the conventional format, is the beamformer’s
low sensitivity to multiple nearby sources when trying to distinguish them from each
other, mainly when they are temporally correlated [201]. To exclude the likely effect
of nearby correlated sources, a model data covariance estimation by sparse Bayesian
learning (SBL) has been incorporated into a localisation algorithm recently [202]. As
a result, compared to conventional LCMV beamformer for identifying multiple corre-
lated sources the performance has been improved [202].

In this chapter, a new regularised beamforming pipeline named adaptive Bayesian
with multiple constraints (ABMC) employs the cross-correlation between the selected
template as the desired target source and the beamformer output for each iteration as
the additional constraint to the LCMV. It also incorporates sparse Bayesian learning to
the covariance estimation [203] in which possible correlation between active sources is
exploited and excluded from the input data fed to the beamforming algorithm. In the
cases where the source of DRs or IEDs are spatially close to each other and correlated
in time domain, this approach enhances the localisation performance. The ABMC algo-
rithm developed here considers the morphology of IEDs and DRs as the desired target
source and mitigates the effects of correlated sources exploiting the covariance of input

signals.

5.1 DATASET AND HEAD MODEL ESTIMATION

The iEEG signals recorded from five DRE cases have been included in this chapter. Sim-
ilar to the data included in the previous chapters, for each subject, the unique SPES
setup, including the type, number, and location of the electrodes, is chosen based on
the presumed location of epileptogenic regions using the medical history and other rel-
evant clinical information and inspecting potential brain cortical functions. The SPES
setup has already been explained in previous chapters. Table 5.1 displays the informa-
tion for each case, including the number and locations of the intracranial electrodes
and the EOS score after resection operation[204].

Here, pre-operation MRI and post-operation CT scans are used to identify the anatom-
ical positions of the intracranial electrodes and to estimate the head model used to
estimate the leadfield matrix, which is used as the linear operator linking brain activ-
ity sources to the recorded iEEG signals. The coregistration of pre-operation MRI and
post-operation CT is performed through a pipeline implemented in Lead-DBS [205].
In this process, the CT images are first registered to the MRIs, then the volumes are
normalised, and finally, any potential brain shift due to the surgery is compensated

for [206—208]. The co-registration outcomes are utilised to localise the electrodes using
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X-Ray

Localised subdural array

Figure 5.1: The pipeline for coregistration of pre- and post-operation MRI and CT images and
localisation of intracranial electrodes (including the subdural mat used as the input array of
signals for the beamformer).
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Table 5.1: The number and locations of implanted intracranial electrodes alongside the result
of surgery for each case (R=Right, L=Left, T=Temporal, F=Frontal, A=Anterior, P=Posterior,
O=Occipital, In=Insular, H=Hippocampus, M=Mesial).

Case Number and locations of electrodes EOS

1 20 LT, 4 Posterior Superior Parietal, 8 No surgery
Mid Parietal, 8 Inferior Parietal

2 32 RT, 8 RF, 8 Central II
3 20 RT, 8 RF, 8 AT, 8 SubT No surgery

4 32 RT, 5 Tpole, 5 MT, 5 PMT, 5 Aln, 5 1
Mln, 5 PIn

5 32 RT, 8 RATP, 8 RAT, 8 RMT, 8 RPT II

Fieldtrip [174], and LeGUI [209] independently. These results are then compared by
professionals to make sure the process is as accurate as possible. The final co-registered
images and electrode positions are used to measure the leadfield matrix for the ABMC
beamformer. Similar to the procdure in Chapter 4, since various pairs of electrodes are
used for stimulation during the SPES session for each case, the leadfield matrix is mea-
sured multiple times for each subject accordingly. Figure 5.1 displays the pipeline for

coregistration of pre- and post-implantation MRI and CT scan images.

5.2 ABMC ALGORITHM

Considering the LCMV beamformer’s sensitivity to the SNR for the input signal and
its deficiency in distinguishing nearby correlated sources, the ABMC beamformer is
developed and employed here. The ABMC beamformer mitigates the potential effects
of correlated sources by employing a sparse Bayesian algorithm for covariance esti-
mation. Also, the cross-correlation between the beamformer output and the selected
template is used as an additional constraint. In each iteration, the algorithm adjusts the
weights to minimise the output signal variance, similar to the primary objective of the
LCMYV and AI-LCMV beamformers, while adhering to the additional constraint. This
constraint exploits the maximum cross-correlation between the beamformer’s output
and the chosen DR or IED template for the desired source at the right time lag. After
sufficient iterations, the ABMC algorithm converges to the beamformer’s optimal pa-
rameters, which can be used to identify the primary source. The formulations for the
ABMC beamformer are presented below.

Consider the brain source activity s(t) = [s1(t),...,sn(t)]T at time instant ¢ (t =
1,...,T), and the leadfield matrix G = [g;...gn] € RM*N where M is the number of
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F(a, A) = trace [z XX'R7'] + log |R)|

trace [
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Figure 5.2: Convergence plot for trace HXXTR_l} +log |R| for a selected segment of data.

electrodes in the subdural mat and N is the number of grid points in the head model.

Then, the linear model for brain activity can be presented as:

N
x(t) = ) su(t)gn + &(t) (5.1)
n=1

where x(t) = [x1(f),...,xm(t)]T is the recorded signal using the subdural mat and &(t)
represents noise. This equation is initially presented for scalar values, but an extension
to vector leadfields that considers source orientation in a three-dimensional head model
is utilised in the calculations. Additionally, for simplicity, we define X = [x(1),...,x(T)]
and S = [s(1),...,s(T)].

To derive an estimation for the input signal array covariance via sparse Bayesian learn-
ing, equation (5.1) is converted into its probabilistic form. This conversion involves

defining prior distributions for the unknown variables, outlined as follows:

(x(t) [ s(t)) = N(x(t) | Gs(t), A) (5.2)

The diagonal noise covariance is denoted as A = diag(A4,...,Apm). The noise is as-
sumed to have a zero-mean Gaussian distribution. The source prior distribution is

represented as:
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N
H t) |0, ) (5.3)
n=1
where & = diag(ay, ..., an) and «, is the prior variance for the activity of the n-th grid
location in the head model. The process of estimating the hyperparameters and noise
covariance for each grid point is linked to the maximisation of the marginal likelihood
p(X | &, A).

p(X| &, A) HN t) | 0,R) (5.-4)

The input signal covariance R can be expressed as a matrix in which the sources are
assumed to be uncorrelated, and « is considered as an uncorrelated source covariance

matrix where:

R=GaGT+A (5.5)

The estimation of hyperparameters and data covariance can be achieved through type-

I maximum likelihood or by minimising the cost function [202]:
Fla,A) = —2logp(X|a,A) =tr H,XXTR_l] +log |R| (5.6)

To minimise the non-convex cost function in (5.6), a majorisation-minimisation ap-
proach [210] is followed, providing a convex upper-bound limit as an alternative cost
function for optimisation. Here, z = diag(z1,...,zn) and h = diag(h, ..., hy) are aux-
iliary parameters, with zp and hg being scalar terms dependent only on z and h [211,

212].

1 T
F(a) TZ;XT t) + log |R|
T
<-y [(x(t) ~ G(1)T A7 (x(t) - G5(1))] (5.7)
t=1

1=

+

[§T(t)a’1§(t)} Ftr(zTa) — 2o

H
I
—_
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Figure 5.3: The covariance of (a) input signal X (i.e., LXXT) and (b) the estimated covariance
using the sparse Bayesian learning algorithm after sufficient iterations.
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The convex bounding update rule for the n-th grid position variance and m-th channel
noise variance is derived by equalling the derivatives of F(«) and F(A) with respect to

«y and Ay, to zero, resulting in:

%Z?:; Sa(t) (5.9)

2)
2
I

mm (5.10)

~

. J £T (x () — G(0) (x (1) — Gs()7]
" Thy

The update rule for z and h involves finding two hyperplanes zTa — zgp and hTA — kg
that tightly bound R given &« and A. These hyperplanes, tangential to R, lead to updated

values for z and g given by [213]:

iRg, (5.11)

8 = Rum (5.12)

The update rule for 5, (¢) is presented in:

Sy (1) = a,ghRx(t) (5.13)

The iterative estimation process for the covariance of the input signals, while excluding
the effect of correlated sources, involves iterating across equations (5.9) to (5.13) and
substituting @ and A in equation (5.5). Figure 5.2 illustrates the convergence plot for
equation (5.6) after ten iterations. After sufficient iterations, the estimated covariance is
then used adaptively to estimate the weights for the beamformer. Figure 5.3 shows the
estimated covariance for a segment of data after a sufficient number of iterations.
Considering that the aim of ABMC beamformer is to minimise the output power
while matching the output to the desired target template, the weight vector W for
each of the x, y, and z directions in the three-dimensional space is the solution to the

following multiple linearly constrained optimisation problem:

1
rr%n <2WTRW> subjectto GTW=f & max (WX - u)
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where R is the estimated covariance matrix, W is the weight vector for the beamformer,
and u (a visible IED or DR template selected from the recordings) in the additional
constraint refers to the selected template as the desired source (beamformer’s output)
with the same length as X. Figure 5.4 demonstrates examples of different IEDs observed
in the intracranial data for a single case. This optimisation can be iteratively executed

after converting the constrained problem to an unconstrained one using Lagrange mul-

tipliers:
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Figure 5.4: Various templates (a)-(d) selected as the desired source for identification of the IED
source for a single case.

J(W) = Min <;WTRW + B1(f— GTW) — B (WTX - u)> (5.14)

where 1 and B, are the Lagrange multipliers. By measuring the gradient with respect

to W, the following equation can be reached:

W(n+1) = W(n) — pVw](W(n)) (5.15)
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><1011 %W’RW for ABMC

2 4 6 8 10 12 14 16 18 20
Iteration number

(a)

%10 IW'RW for ABMC

24 5 : —2 ; ; . . ‘
= 2r
&
S
— 19

1.8 ! 1 1 I I | | | !

2 4 6 8 10 12 14 16 18 20
Iteration number
(b)
5 x108 | W(n+1) — W(n) || for ABMC

§ .
|
N
E o
S

2 4 6 8 10 12 14 16 18 20
Iteration number

()

Figure 5.5: The convergence plot for JWTRW and || W(n + 1) — W(n) || for various P values
over 20 iterations.

where
Vw](W(n)) =RW(n) — p1G — B XuT (5.16)

with UT at lag j (UT(m + j)). The following iterative process is used to estimate W:

W(n+1) =W(n) — u(RW(n) — 1G — B2Xu’) (5.17)

where y is the non-negative step size for each iteration. Considering the constraint

GTW = f{, pre-multiplying both sides of (5.17) by GT yields:
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Figure 5.6: Pipeline for the ABMC beamformer.

f= GTW(n) — u(GTRW (1) — B1GTG — ,GTXuT) (5.18)

By considering B> as B2 = Pp1, 1 can be obtained from 5.18 as:

- G™W(n) + uGTRW(n)
pr= uGTG + uPGTXuT

(5.19)

By replacing the values for f; and B; in equation (5.17), W(n + 1) is calculated in each
iteration. The initial W is set to an M x 1 vector of zero values. The step size y and
the ratio between f; and B, (P) are empirically adjusted according to the convergence
rate for ;WTRW and || W(n + 1) — W(n) ||. If P is too low, the weight for the second
constraint related to the template matching with the desired source becomes negligible,
and the output becomes similar to that of conventional iterative LCMV beamformer.
Conversely, increasing the value of P up to a specific threshold for each segment causes
JWTRW and || W(n + 1) — W(n) || not to converge, and therefore, the optimal value
for the ABMC beamformer weight cannot be reached. Figure 5.5 shows the values of
IWTRW and | W(n+1) — W(n) | for a single segment of data over 20 iterations.
Figure 5.6 shows the overal pipeline for the ABMC beamformer.

53 EXPERIMENTS AND RESULTS

Throughout the following experiments, this chapter aimed to demonstrate the perfor-
mance of the ABMC and investigate if IEDs and DRs originate from the same location

for each DRE case. The ABMC beamformer developed in this study has been employed
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Figure 5.7: Localised DR source from a sample segment using (a) conventional LCMYV, (b) Al-
LCMYV, and (c) ABMC approaches for one subject. Plot (d) indicates the localised IEDs using the
ABMC approach for the same case. As shown in this figure, the conventional LCMV approach
identifies a different region as the source compared to the adaptive methods. The ABMC demon-
strates the highest accuracy and consistency in localisation. Most importantly, ABMC localises
DRs and IEDs of a subject at the same position in the brain morphology.

for 300 data segments, each 0.5 seconds long. These include 93 segments with visible
SPES DRs and 57 from the same sessions with a similar setup where DRs were not vis-
ible to the implanted electrodes. Initially, the segments containing DRs were fed as in-
put to ABMC and AI-LCMYV algorithms. The general results from the subjects included
in this chapter revealed that, although the identified sources using both pipelines were
close to the closest electrode to the SOZ, the identified primary source using the ABMC
beamformer was, on average, 0.82 cm closer to the SOZ and more consistent compared
to those achieved by AI-LCMYV for the tested segments with visible DRs. Also, in the
tested segments where no DRs were visible to the implanted electrodes, the identified
primary source using the ABMC was, on average, 1.35 cm closer to the closest elec-
trode to the SOZ compared to those achieved by the AI-LCMYV algorithm. The detailed
results for each case are reported in Table 5.2.

Figure 5.7 shows the localised source for a selected segment of visible DRs using con-
ventional LCMV, AI-LCMYV, and ABMC approaches. Figure 5.8 also shows the results of
ABMC and AI-LCMV algorithms for another DRE case with the clinical report of sus-
pected SOZ in the right temporal region with notable improvement in symptoms after
resection operation. These Figures clearly show the improved accuracy of the ABMC

beamformer compared to the AI-LCMYV approach for the tested segment.
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Figure 5.8: The localised DRs using (a) ABMC, and (B) AI-LCMYV approaches for a DRE case
with the clinical report of suspected SOZ in the right temporal region.

In addition to DRs, 145 data segments with visible IEDs were fed to the ABMC
beamformer. For each case, multiple IED templates observed and annotated by the
experts were used as the desired template for the beamformer. Using the ABMC beam-
former, the localised sources for these segments were compared to the primary identi-
tied source for DRs selected from the SPES sessions and the lead electrode at seizure
onset (hyperexcitable region). The source localisation results for IEDs show similar re-
gions to those achieved from DRs, with a considerably higher average distance between
the primary source and the seizure onset in general. The details related to the average
distance between the identified source for each specific IED template and the lead
channel at the seizure source, alongside the similarity of the selected template with the
selected template for DRs for the same subject, are presented in Table 5.2. The simi-
larity between the templates is measured using an adaptive signed correlation index

[214]. Figure 5.9 compares the locations identified as the primary source of DRs and
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Figure 5.9: The identified source locations (pointed to with red arrow) for (a) DRs and (b) IEDs
via ABMC beamformer for a DRE case with clinical report of regional abnormal responses to
SPES, in the posterior and lateral aspect of the left temporal lobe suggesting that this region is
hyperexcitable and potentially epileptogenic. (c) shows the normalised locations of IED (blue)
and DR (red) sources for various tested iEEG segments.

IEDs for one subject. The results from the selected segments indicate that in overall,
for 9go% of the segments, the sources responsible for IEDs are in the same hemisphere
and in proximity to the closest electrode to the SOZ. However, for 10% of the segments,
including IEDs, the source was in the opposite hemisphere, far from the location of the
DR source and SOZ. This is likely to be an estimation error due to the spurious sources
and the head model estimation. Figure 5.10 shows the ABMC output for the identified
grid point as the primary source of SPES DRs.

The advantage of the proposed ABMC method compared to those of the conventional
methods becomes more evident when the power of DRs and IEDs is low. This advan-
tage is clear when comparing the results of the developed approach here with those
achieved using conventional methods [55]. Compared to the AI-LCMYV introduced in
Chapter 4, the results achieved using the ABMC algorithm are more accurate (con-
sidering the distance between the identified primary source and the SOZ confirmed
using other available implanted electrodes) and more consistent across the tested seg-

ments. The ABMC beamforming employed here not only alleviates the sensitivity of
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Figure 5.10: (a) The output of ABMC beamformer for the grid point (location) identified as the
main source along each axis in three dimensional space and (b) the overall direction of source
acitivity based on the received power along each axis.

the conventional LCMV beamformer to the power of the recorded signals but also can
exploit the sparsity and temporal location variation of the DRs and IEDs. Although the
iterative process can be time-consuming and computationally expensive, the clinical
benefits of a robust localisation pipeline are invaluable. Considering the results of re-
cent research indicating the capability of high-density EEG setups compared to stereo
EEG [215], the ABMC beamformer developed here can significantly contribute to the
non-invasive localisation of seizure generators within the epileptic brain.

Having mentioned the benefits of the ABMC, it is important to note that, like for
AI-LCMY, although the head model and leadfield vectors are measured multiple times
according to the SPES setup for each case using the available software, improving the
electrode localisation and head model estimation can greatly improve the accuracy

and reliability of the results. Another point is that, the geometry of the input array
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Table 5.2: The number of tested segments for each case where DRs were visible and not visible
after stimulation alongside the Euclidean distance (in cm) between the localised SOZ using Al-

LCMYV and ABMC methods (N: number of tested segments).

AI-LCMV

ABMC

Case N (Visible)

Distance (cm) N (Invisible)

Distance (cm) N (Visible)

Distance (cm) N (Invisible)

Distance (cm)

1 15
2 15
3 20
4 23
5 20

1.5+ 0.4

1.4 £ 0.37

2.5 £ 0.33

1.8 £ 0.56

1.4 £ 0.37

10

10

10

12

15

2.8 £ 0.78 15
2.6 £ 0.4 15
3.5 £ 0.45 20
2.9 + 0.62 23

2.6 £ 04 20

0.62+ 0.21 10
0.87 £ 0.1 10
1.4 + 0.24 10
1.1 £ 0.17 12

0.75 £ 0.16 15

1.1 £ 0.16
1.8 £ 0.14
1.7 + 0.33
2.2 £ 0.21

1.4 £ 0.15

Table 5.3: The relative distance between the location of the main identified source for DRs or
IEDs and the SOZ (closest channel to SOZ) and the average ASCI index between the IED and
DR templates.

Case

DR segments IED segments Source distance DR Source distance IED Hyperexcitable region Average ASCI

20

15

20

23

20

30

25

30

35

25

0.62+ 0.21

0.87 £ 0.1

1.3 + 0.24

1.1 £ 0.17

0.87 £ 0.16

0.65+ 0.18

1.23 £ 0.14

1.14 £ 0.33

1.2 £ o.11

1.24 + 0.31

Posterior & lateral
aspects of the left
temporal lobe

Posterior medial
& lateral aspects
of the frontal lobe

Anterior temporal
pole right

Tpole &
mesiotemporal
right

Mid-temporal
lobe right

0.84

0.81

0.83

0.80

0.75

is restricted to the gold-standard clinical assessment equipment available for all the

cases (standard sizes commonly used in operation). Due to this limitation, the ABMC

approach was not tested with different input array geometries for the same subject.

Generally, the arrangement of the sensor array and the distance between the individual

sensors play a crucial role in defining the resolution and beamwidth of the beamformer.

The sensor array geometry and the spacing between sensors determine the resolution

and beamwidth of the beamformer.



5.4 CONCLUSION

54 CONCLUSION

The ABMC localisation algorithm introduced in this chapter not only advances the
general understanding of the sources responsible for SPES DRs and IEDs but also can
provide clinicians with a practical tool for identifying the source of epileptic activities
like DRs and IEDs. The results from applying the ABMC algorithm suggest that for the
pool of cases included in this chapter and over multiple tested segments, these sources
are highly likely to be in the same anatomical location. Clinicians can consider this
information to better manage DRE patients during the assessment stage. The ABMC
robustness and accuracy have been investigated and compared with the AI-LCMV and
the previously established algorithms, and its clear superior performance has been
demonstrated. Having addressed the key challenges of the conventional beamformers,
the following chapter aims to further improve the consistency of the beamforming
algorithm for SPES DR and IED source localisation using a temporally distributed
approach.
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TEMPORALLY-DISTRIBUTED BEAMFORMER

A distributed system includes a network of agents (nodes). A distributed network
exploits the data transferred to each agent from its neighboring nodes. In a single-
objective adaptive cooperative network, the agents in a neighborhood cooperate to
achieve their objectives. This chapter exploits the similarity in the leadfield matrices
of consecutive IEDs and DRs (same SPES setup) by designing a temporally distributed
beamformer. Such a beamformer is expected to enhance the robustness of the solution
against IED/DR shape variability and the inherent noise. After introducing the ABMC
algorithm for localising the source of IEDs and DRs, the primary objective of this chap-
ter is to further enhance the accuracy and robustness of the localisation pipeline. Based
on previous findings, DRs are anticipated to originate from the same location as IED
sources associated with SOZ. Consequently, before localising the DRs, the similarity
between consecutive DRs or IEDs is utilised to design a robust time distributed locali-
sation system to identify the epileptogenic brain zone more precisely. Like the ABMC
approach introduced in Chapter 5, the proposed beamformer leverages the morphol-
ogy of IEDs and DRs as a constraint in its formulation as the template for the desired
source. Additionally, the algorithm benefits from a tensor decomposition approach to
improve the SNR of the input signal recorded using the intracranial subdural mat to
the adaptive beamformer, thereby refining the localisation pipeline. The results indicate
an enhancement in localisation accuracy and consistency compared to the methods in-
troduced in the previous chapters (AI-LCMYV in Chapter 4 and ABMC in Chapter 5).

6.1 DATA AND HEAD MODEL ESTIMATION
The description of SPES setup, interictal recordings, along with the data and pre-

processing stages for the DRE cases included for this part, has already been detailed in

Chapter 5.

6.2 TENSOR FACTORISATION - DISTRIBUTED BEAMFORMING
6.2.1 Tensor Factorisation

Tensor factorisation is a mathematical technique to decompose a high-dimensional ar-

ray, known as a tensor, into a sum of simpler, often lower-dimensional components.
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There are different tensor factorisation methods [216]. This technique is beneficial in
signal processing, data mining, machine learning, and neuroscience, where the mean-
ingful information often naturally lies within multiple dimensions. A tensor is a gener-
alisation of matrices to higher dimensions. While a matrix is a two-dimensional array
of numbers, a tensor can have three, four, or even more dimensions. For instance, a
three-dimensional tensor might be used to represent a series of images (considering
height, width, and time). Similarly, a four-dimensional tensor could represent a dataset
with dimensions such as time, location, frequency, and type. The most common models

include:

1. Canonical polyadic decomposition (CPD), also known as CANDECOMP /PARAFAC,
aims to express a tensor as a sum of rank-one tensors [217]. A rank-one tensor
in three dimensions can be visualised as an outer product of three vectors. For a
tensor X € RI*/*K CPD attempts to find vectors a, € R, b, € R/, and ¢, € RK
such that:

R
X=~) aob,oc (6.1)
r=1

This decomposition is unique under mild condition of disjointedness of sources,
meaning that the components are identifiable without ambiguity, which is bene-
ficial for interpretability. CPD is particularly useful when the data is expected to
have an underlying structure that can be captured by a small number of compo-

nents.

2. Tucker decomposition is a more flexible model compared to CPD. It decomposes a
tensor into a core tensor, which captures interactions among different components
and factor matrices that represent the modes. For a three dimensional tensor, the

decomposition can be written as:

X ~Gx1Ax,Bx3C

Here, G € RR1*R2xRs jg the core tensor, and A € RI*F1, B € R/*R2 and C ¢
RK*Rs are the factor matrices. The core tensor G represents the interactions be-
tween the factors in each mode, allowing for more complex data structures to be
captured. However Tucker decomposition dose not lead to unique results unless
properly regularised.

3. Nonnegative tensor factorisation (NTF) is a variant of tensor factorisation where

the factor matrices are constrained to be no-nnegative. This is useful for data
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that is inherently non-negative, such as pixel values in images or counts in text
analysis. NTF is particularly useful for data that are non-negative by nature, such
as counts or intensities. By constraining the factor matrices to be non-negative,
NTF ensures that the resulting factors are interpretable in contexts where negative

values do not make sense. The NTF model can be formulated as:

X =~

R
arob,oc, a;,b;,c >0

r=1
This constraint aids in interpretability, making NTF popular in areas like image

processing and text mining. The non-negativity constraint makes the factorisation

output unique.

The tensor factorisation has a wide range of applications across various fields includ-

ing but not limited to:

1. Recommender systems: Tensor factorisation is used to model user-item interac-

tions over time, improving recommendation accuracy [218].

2. Social network analysis: It helps in analysing dynamic interactions and commu-

nity detection within social networks [219].

3. Neuroscience: In brain imaging, tensor factorisation aids in identifying patterns

and anomalies in multi-dimensional brain activity data [219].

4. Chemometrics: It assists in decomposing complex chemical data into interpretable

components [219].

5. Computer vision: Tensors are used to represent and process multi-dimensional

visual data like videos or 3D scans [219].

Tensor factorisation provides an opportunity to analyse multi-dimensional data [216].
It reduces the dimensionality of data, making it easier to handle and analyse. By decom-
posing the data into a few significant components, tensor factorisation can effectively
filter out noise, resulting in more robust data representations [218—220]. The resulting
factors often have meaningful interpretations, making it easier to understand the un-
derlying structure of the data [218, 220]. Furthermore, tensor factorisation methods
can be scaled to handle large datasets, especially with advancements in computational
power and algorithms [218-220]. The flexibility of tensor structure allows for various
models to be chosen based on the specific nature and requirements of the data. It has
widespread application in EEG signal processing, particularly in IED detection [221—
223]. Here, the aim is to use tensor factorisation to extract the dominant latent factors

from IED and DR segments to improve the accuracy of seizure source localisation.
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However, tensor factorisation also has some weaknesses. It can be computationally
expensive, particularly for large and high-dimensional tensors, posing a barrier to real-
time or large-scale applications. Many tensor factorisation algorithms are iterative and
may suffer from slow convergence or getting stuck in local minima, leading to subopti-
mal solutions [219]. Choosing the right tensor factorisation model and the appropriate
rank (number of components) is not always straightforward and often requires domain
knowledge and experimentation [218-220]. Additionally, the outcome of tensor factori-
sation can be sensitive to the initial values of the factor matrices or vectors, potentially
affecting the reproducibility and stability of results. In cases of sparse data, tensor fac-
torisation may struggle to find meaningful patterns due to the low signal energy or
lack of sufficient information in certain parts of the tensor [218, 220].

The CPD captures essential patterns, reducing data dimensionality and improving
subsequent beamforming performance. By preserving signal characteristics and elimi-
nating noise, CPD ensures accurate source localisation. Moreover, it enhances generali-
sation to handle complex EEG signals with varying noise sources and subject variability,
which is crucial for dynamic activities like IEDs and DRs.

Consider a scenario where N segments, each comprising L time samples and recorded
across M channels, are available. We consolidate the temporal, spatial, and segmental
aspects into a three-dimensional tensor X' ¢ REXMxN "o decompose this tensor, we
use CPD, breaking it down into a series of rank-one components. These components
possess not only orthogonality but also independence. CPD is defined in (6.1). It is
generally useful to consider that the components are normalised to length one with the
associated weights represented by the vector A € RR. Therefore, (6.1) is reformulated

to:

R
X =~ Ara,ob,oc,. (6.2)
r=1

The factor matrices are formed by combining the rank-one tensors, i.e.,, A = [a; ... ag].

Following the Kruskal operator [224], (6.2) can be represented as:

R
X~ [MABCl=) Araroboc, (6.3)

r=1
where A € REXR, B € RM*R and C € RN*R are factor matrices. Figure 6.1 demon-
strates a diagram of CPD of a 3-way tensor. To optimise the factor matrices with R
components that best approximates X, (6.3) can be formulated as a least-square opti-

misation problem:

_ 1
min - f= 2|~ [A;A,B,C]|°. (6.4)

ABC
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Figure 6.1: L and M correspond to time samples and recording electrodes. N is either the IED
or DR segments, depending on the input. The tensor is decomposed to R rank-one tensors,
which are orthogonal and independent. a, b, and ¢ include temporal, spatial, and segmental
components, respectively.

There are different algorithms to optimise the objective function (6.4). We employ a
gradient-based algorithm for optimisation. For more details, the reader is referred to
[217]. After estimating the factors, the first ] components assuming to have the most

informative content are selected and reconstructed as follows:

J
X~ ) Ajajobjoc; (6:5)
j=1
where X contains the denoised mat data.

As a result of their similar morphology and common origin, DRs (or IEDs) may share
some temporal and spatial characteristics. We aim to merge the time, channel, and seg-
ment dimensions of data (IEDs or DRs) into a 3D tensor. Subsequently, we decompose
the tensor into temporal, spatial, and segmental factors, allowing for the extraction of
more physiologically informative components. These selected components are then re-
constructed to generate more informative data. This is used as input to an adaptive
array processing algorithm introduced in Chapter 5 to improve SOZ localisation. The

mathematical formulation is detailed in the following sections.

6.2.2  Temporally Distributed Beamforming

Despite the promising results from the AI-LCMV and ABMC methods, enhancing the
precision and consistency of localisation during the pre-surgical assessment phase re-
mains a significant challenge that directly impacts patient treatment. Therefore, having
a consistent and reliable localisation algorithm is critical. A crucial aspect of addressing
this challenge lies in the effective exploitation and adaptation to temporal variations in
recorded signals, particularly during SPES sessions. These sessions often present DRs
that exhibit morphological and latency inconsistencies, even across consecutive stimu-

lations using the same SPES setup.
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Temporally distributed beamforming offers several significant advantages. By adapt-
ing to time-varying conditions of the recorded signals, this method can enhance the ac-
curacy and consistency of signal localisation [225, 226]. It leverages temporal diversity
by capitalising on variations in the signal over time, which can lead to improved detec-
tion of relevant features despite inconsistencies. Additionally, temporally distributed
beamforming can better suppress interference by adjusting to the dynamic nature of
the signals, thereby enhancing overall robustness in signal processing [225, 226].

This method helps improve the accuracy of neural activity locations even when deal-
ing with changes in shape or delays over time. The system can sustain decent per-
formance despite the temporal variability inherent in SPES sessions by adjusting the
beamforming weights. Moreover, it can easily adjust to signal or channel failures on
the fly, ensuring dependable performance [225, 226].

The use of temporally distributed beamforming can be very important in enhancing
the dependability and efficiency of localisation algorithms in medical environments.
Especially in situations, like pre-operation evaluations where accuracy is extremely
important.

In the time distributed approach employed in this chapter, the weights estimated
for the selected segments are averaged following each iteration, serving as the weight
vector’s current value for the subsequent iteration. Through sufficient iterations, the al-
gorithm converges toward the optimal weighting coefficients for the beamformer while
mitigating any irregularities (e.g., spurious IEDs). In this approach, according to a num-
ber of consecetive stimulations using the same SPES setup (ten stimulations using the
same pair of channels) and also the initial localisation results after manually adjusting
the number of considered consecutive segments for the algorithm, three data segments
were utilised to estimate the distributed weight of the beamformer, striking a balance
between adaptability to signal variabilities and specificity in localisation.

The formulations for the beamforming algorithm are detailed below. Similar to the
previous algorithms, the preliminary objective of the beamformer is to minimise output
power while aligning the output with the selected template for each data segment. The

Temporally Distributed

Beamformer

A

[ iEEG Electrode
=[ Locations &

Leadfield Matrix
iEEG Data Identified Source

Figure 6.2: Pipeline for temporally distributed beamformer.
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weight vector ¢ for each of the x, y, and z directions is reached using the solution to a
constrained optimisation problem similar to ?? in Chapter 5.

Here again, u (a visible IED or DR template selected from the recordings) in the
additional constraint refers to the desired template with the same length as the input
signal. The optimisation problem can be executed iteratively after converting the via
Lagrange multipliers.

Unlike Chapter 5, here for each iteration, after estimating the weight vector for the
kh segment, the value is averaged over neighbouring consecutive segments. Therefore,
the current weight vector for the weight vector in the next iteration is derived by the

following combination step:

k+m

Wi(n+1) = % Y pi(n+1) (6.6)
I=k—m

where m is the neighbourhood radius. Therefore, in the adaptation step, the following

iterative process is used to estimate ¢:

Pr(n+m) = pp(n) — p(Rpp(n) — p1G — BoXuT) (6.7)

where y is the non-negative step size for each iteration. Considering the constraint

GT¢y = f, pre-multiplying both sides of (6.7) by GT yields:
f=GT¢r(n) — u(GTR¢r(n) — B1GTG — oG XuT) (6.8)
By considering B> as B2 = B1, B1 can be obtained from (6.8) as:

_ £ GT¢x (n) + uGTR¢x (1)
Filn) = = GG + upGrxwr (6.9)

By replacing the values for p; and B, in (6.7) ¢x(n + 1) is calculated in each iteration.
The initial ¢ is set to an M x 1 vector of zero values. The value of step size y and
the ratio between B and B, (P) are empirically adjusted according to the convergence
rate for sW/RW; and || Wy (n + 1) — Wi(n) ||. With the value of P too low, the weight
for the second constraint related to the desired template for the beamformer becomes
negligible, and the output becomes similar to those of the conventional iterative LCMV
beamformer. Also, increasing the value of P up to a specific threshold for each segment
causes sW/RW and || Wy (1 +1) — Wy (n) | not to converge, and therefore, the optimal
value for the weight cannot be reached. Figure 6.2 shows the implemented pipeline for

source localisation.
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Table 6.1: The measured distance between the location of the main identified sources for DRs
or IEDs and the SOZ using the hybrid time-distributed beamformer, and the average ASCI
number between the IED and DR templates.

Case DR segments IED segments Source distance DR Source distance IED SOz ASCI
1 20 30 0.47% 0.13 0.56+ 0.08 Posterior 0.86
& lateral

aspects of the
left temporal
lobe

2 10 25 0.83+ 0.11 1.1 £ 0.1 Posterior me- 0.85
dial & lateral
aspects of the
frontal lobe

3 20 30 1.15 + 1.1 £+ 0.23 Anterior tem- 0.83
0.15 poral  pole
right
4 20 35 0.8 + 0.12 0.54 + Tpole & 0.80
0.17 mesiotempo-
ral right
5 20 25 0.81 + 1.14 + Mid- 0.8
0.15 0.22 temporal
lobe right

6.3 RESULTS AND EXPERIMENTS

The temporally distributed adaptive beamformer has been used to analyse 235 data
segments, each lasting 0.5 seconds, and annotated by experts as either SPES DR or IED
segments (9o segments for DRs and 145 segments for IEDs) after applying the CPD al-
gorithm to the data to increase the SNR. The source identification in each segment was
followed by measuring the Euclidean distance between the localised primary source
(source with the maximum power) and the electrode closest to SOZ, identified from
seizure recordings. In the implemented experiments the m was emperically set to 1 as
the neighbourhood radius which is sufficients for obtaining favourable results.

The results of analysed segments reveal that the distributed algorithm has higher
consistency and accuracy than the previously introduced ABMC across the DRE cases
included in this chapter. On average, the source identified using the distributed algo-
rithm for DR segments is 0.13 cm closer to the closest electrode to the SOZ than that
determined by the ABMC. Similarly, for the IED segments, the source identified using
the distributed algorithm is, on average, 0.27 cm closer to the closest electrode to the
SOZ. Table 6.1 presents the outcomes of applying the distributed algorithm developed
here for localising the sources of DRs and IEDs. Figure 6.3 shows the output of the em-
ployed algorithm for identifying the source of sample DR and IED segments alongside
the identified source overlaid on the anatomical MRI image. Figure 6.4 shows the nor-
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Figure 6.3: (a) The identified location of IED and DR primary sources for sample segments via
the temporally distributed approach. (b) the identified source overlaid on the MRI brain image
(pointed by the yellow arrow) for a DRE case with a clinical report of clear regional abnormal
responses to SPES in the posterior and lateral aspect of the left temporal lobe.

malised location of the identified primary source for IEDs and DRs for the same subject
using the ABMC and the temporally distributed algorithm. The results of the analysed
segments suggest that the temporally distributed approach developed in this chapter
exhibits superior consistency and accuracy compared to the ABMC for the tested DRE
cases. The use of tensor factorisation prior to source localisation, further influences the

results towards higher accuracy.

6.4 CONCLUSION

This chapter aimed to enhance the accuracy and robustness of localising SPES DR and
IED sources. Building on the speculation that DRs and IEDs often originate from the
same primary regions in the brain, a temporally distributed beamformer was devel-
oped and tested. This approach was integrated into an adaptive beamformer, similar
to the ABMC method discussed in Chapter 5, with additional constraints based on the
morphology of IED and DR signals. To improve the SNR of the input to the adaptive

beamformer, we incorporated a tensor decomposition approach. Specifically, we em-
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@ IED primary source
@ DR primary source

Figure 6.4: The identified normalised locations of IED (blue) and DR (red) primary sources for
various intracranial EEG segments using (a) the ABMC and (b) the temporally distributed ap-
proach developed here for a subject with a clinical report of clear regional abnormal responses
to SPES in the posterior and lateral aspect of the left temporal lobe implying that this region is
hyperexcitable and epileptogenic.

ployed CPD to effectively capture essential patterns in the data, reducing dimensional-
ity and enhancing the beamformer’s performance by preserving signal characteristics
and eliminating noise.

The experimental results demonstrated a significant improvement in localisation ac-
curacy. Analysing data segments showed that the proposed distributed algorithm out-
performed the ABMC approach. The improved precision and consistency of the method
highlight its potential for more accurate identification of SOZ, which is crucial for ef-

fective pre-operation evaluation and treatment of epilepsy.
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SUMMARY, CONCLUSION, AND FUTURE
RESEARCH

7.1 CLINICAL IMPACT AND EXPLOITATION

SPES has emerged as a promising technique in the context of drug-resistant epilepsy.
This method offers a controlled approach to probing the excitability and connectivity
of neural circuits involved in epilepsy, thereby facilitating the identification of regions
associated with seizure in the brain. Existing methods for processing, assessing, and
treating epilepsy fall short of precisely identifying SOZ and understanding the under-
lying neurophysiological mechanisms. The data recorded using intracranial electrodes
during SPES sessions present significant challenges due to the complex morphology
and inconsistent behaviour of the responses, even within a fixed setup for a patient.
These complexities render conventional processing algorithms inadequate, often result-
ing in misleading or inaccurate conclusions. This PhD thesis aimed to enhance the
efficiency of SPES sessions by developing advanced signal processing and machine
learning pipelines. To enable that the E-I imbalance was investigated and the sources
responsible for generating DRs and IEDs were identified.

In this thesis, after introducing the current challenges for the SPES sessions, an
adaptive single-channel EEG separation pipeline based on SSA was developed and
employed to investigate the E-I imbalance in regions associated with seizures. The
developed and employed algorithm separates the E-I components verified by a clear
separation in the frequency domain. The results revealed an increase in the I-to-E ratio
in majority of the tested segments from recordings collected from regions associated
with seizures immediately after ERs and before DRs, implying that the DRs can be a
brain compensatory reaction aiming to reset the E-I balance and avoid an increase in I
and synchronisation between different channels leading to seizure.

Next, identification of the regions responsible for generating DRs, IEDs, and conse-
quently seizures in the brain was researched. The main aim of SPES, as an assessment
tool, is to better identify the regions responsible for DR and seizure generation. Recog-
nising the importance and significance of having an accurate and robust method to
identify the DR and IED sources, we developed several adaptive source localisation
methods. Considering the specific nature of the brain responses to SPES, we aimed to
introduce regularised methods that perform better than those sensitive to signal power
only. Using the concept of beamforming as a powerful source localisation tool, we first

developed AI-LCMYV, which aims to adjust the beamformer weights in an iterative fash-
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ion while trying to match the output of the beamformer to a selected template as the
desired source. After showing a significant improvement in DR source localisation per-
formance for AI-LCMV compared to that of the conventional method (LCMYV), further
attempts were made to improve the localisation performance considering the limita-
tions of AI-LCMYV, such as possible temporal delay mismatch for the additional con-
straint and the lower accuracy for spatially close correlated sources. Later in the thesis,
we introduced the ABMC pipeline, in which, by using the sparse Bayesian algorithm,
we try to exclude the effect of the correlated sources from the input covariance and
fix the temporal delay mismatch using a new constraint based on the cross-correlation
between the beamformer’s output and the desired source. The results of the ABMC
beamformer indicated another step towards having a robust and accurate source local-
isation tool for identifying the source of DRs and IEDs. In addition, the ABMC method
developed and employed in Method introduced in Chapter 5 was used to investigate
the source of IEDs and DRs, revealing that the most IEDs are likely to originate from
the same region as DRs. This is an important finding as it demonstrates the relation
between the source of IEDs and epileptogenic regions in the brain. Finally, the hybrid
tensor decomposition time-distributed array processing algorithm introduced in Chap-
ter 6 aims to further improve the consistency and reliability of the ABMC beamformer
for localising the IEDs and DRs. Tensor decomposition has been employed to increase
the SNR of the input and capture more relevant information related to DRs and IEDs.
Additionally, estimating the optimal weights for the beamformer in a time-distributed
fashion over multiple data segments after sufficient iterations can help increase the
consistency and adaptability of the algorithm for each subject.

The methods developed in this thesis offer deeper insights into the underlying mech-
anisms of epilepsy and provide more reliable tools for clinical applications, including
SOZ identification. This is especially true for the DRE cases who undergo intracra-
nial electrode implantation and are the possible candidates for resection surgery. This
progress holds the promise of more efficient and cost-effective treatments in the future,

instilling a sense of hope and optimism in the field of epilepsy research and treatment.

7.2 AREAS FORIMPROVEMENT AND FUTURE DIRECTION FOR FUTURE

Having mentioned the aims and results of this thesis, there are areas that can be im-
proved in the future and topics worth pursuing.

The first area is the possible opportunities to alter stimulation during SPES sessions.
Although the data used in this work was recorded from multiple cases from various
SPES sessions, the stimulation parameters were fixed. Recent studies have shown that
changing the stimulation parameters can help to better identify the epileptogenic re-

gions possibly responsible for seizure generation. In a recent study [46], researchers
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examined 15 patients undergoing intracranial EEG monitoring and SPES with different
stimulation intensities. Key findings of the study indicate that at stimulation intensities
of 2 mA and above, the increase in N1 amplitude (a component of ERs) was greater for
responses within the SOZ compared to the non-SOZ. The distribution of SOZ responses
was maximised at stimulation intensities between 4-6 mA. The authors concluded that
differences in ER amplitude over a range of current intensities can improve the ability
to discriminate SOZ regions.

A more comprehensive investigation of the relationship between the E and I periods,
SPES, and neuronal firing rates is required. Considering that a significant number of
neurons firing in close proximity can imply E, and a period of no firing can imply I,
it will be helpful to further explore the relationship between E or I with stimulation
and related parameters. Investigating the correlation between pre-stimulus firing rates
and the duration of E and I after stimulation, as well as any possible irregularities in
segments where DRs are visible in the data compared to segments from normal regions,
will be beneficial.

While initial results from the adaptive SSA pipeline employed to separate E and I ac-
tivities indicated an increase in the I-to-E ratio immediately after ERs and before DRs,
implying a period of increased I before the appearance of DRs in the majority of seg-
ments with visible DRs [54], examining the differences between various regions before
stimulation and their correlation with neuronal firing rates and the period of E and I
activities can help to better pinpoint the abnormalities expected in the epileptogenic
regions compared to normal areas. Another area for improvement is the electrode lo-
calisation, head model, and leadfield estimation for more accurate results. The head
model and leadfield estimation and electrode localisation in this work are performed
using available open-source software, including Filedtrip [174], LeGUI [209] and Lead-
field [205]. In this work, pre-surgery MRI and post-surgery CT scans are used to localise
the positions of the implanted intracranial electrodes and to measure the head model
and leadfield matrix, which serve as the linear operator linking brain activity sources
to the recording signals for the beamforming algorithm. Pre-operative MRI and post-
operative CT co-registration is performed through a pipeline implemented in Lead-DBS
[205]. In this process, the CT images are first registered to the MRIs, then the volumes
are normalised, and finally, any potential brain shift due to the surgery is compensated
for [206—208]. Although using the available software, we tried to have the most accu-
rate electrode localisation and leadfield estimation, there is still some error in MRI-CT
coregistration due to various factors. The accuracy of CT-MRI coregistration in DBS
surgery is influenced by multiple factors related to both MRI and CT imaging. In MRI,
higher magnetic field strengths, optimised imaging sequences, and careful attention to
slice thickness and voxel size enhance anatomical detail and precision. Geometric dis-
tortions and artefacts, particularly from metal implants or patient movement, must be

corrected for accurate coregistration [227] [228]. Similarly, in CT imaging, optimising
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slice thickness, spacing, and voxel size is crucial, along with managing artefacts like
beam hardening. General factors such as the quality of coregistration algorithms, con-
sistent patient positioning, and minimising the temporal gap between scans also play
significant roles.

Developing more accurate image processing pipelines for coregistration and more
accurate head models can help to have a more realistic leadfield vector and increase
the overall reliability of the source localisation pipeline.

The aim of the proposed localisation methods introduced in this thesis is to develop
accurate pipelines for identifying the source of responses to SEPS and other epilepti-
form activity like IEDs to pinpoint regions responsible for seizure generation. Despite
significant improvement, the proposed beamforming methods assume a planar mat ar-
ray as input for the algorithm, which is not fully accurate due to the brain’s convexity.

The shape and geometry of the input array for the beamforming algorithm is an im-
portant factor. Larger spacing provides broader beamwidth with lower resolution [229,
230]. For uniform linear arrays (ULAs), the standard beamwidth is inversely propor-
tional to the array length. The relationship between beamwidth and array length can
be expressed as 05 = %, where L is the array length in wavelengths [153]. To avoid spa-
tial aliasing, the element spacing should be less than half the wavelength of the highest
frequency of interest. However, smaller spacing can lead to mutual coupling between el-
ements, which degrades performance [231]. Beyond ULAs, other array geometries like
uniform circular arrays (UCAs) and uniform rectangular arrays (URAs) offer different
performance characteristics. UCAs provide 360-degree coverage but lower resolution
than ULAs, while URAs can achieve high resolution in two dimensions at the cost of
increased complexity [232]. Non-uniform and sparse array designs have also been pro-
posed to optimise the performance metrics like sidelobe levels and directivity while re-
ducing the number of elements. By establishing the current research on array geometry
impacts, future work could focus on developing novel array configurations and signal
processing techniques to enhance resolution and beamwidth performance, particularly
for applications with size, cost, or computational constraints. Adaptive and cognitive
beamforming approaches that dynamically optimise the array geometry could be an-
other promising direction.

Finally, as mentioned in Chapter 5, the physical shape and positioning of the sub-
dural mat as the array input are other areas worth investigating for source localisa-
tion pipelines based on beamforming algorithms. Research indicates that the spatial
arrangement of array elements influences key beamforming parameters such as direc-
tivity, sidelobe levels, and beam steering capabilities [233, 234]. The sensor array ge-
ometry and the spacing between sensors determine the resolution and beamwidth of
the beamformer: smaller inter-sensor spacing allows for higher spatial resolution and
narrower beamwidth, while larger spacing provides broader beamwidth with lower

resolution [229, 230]. For ULAs, the standard beamwidth is inversely proportional to
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the spacing between sensors. The relationship between beamwidth and array length
can be expressed as 65 = %%, where L is the array length in wavelengths [153]. To
avoid spatial aliasing, the element spacing should be less than half the wavelength of
the highest frequency of interest. However, smaller spacing can lead to mutual cou-
pling between elements, which degrades performance [231]. Beyond ULAs, other array
geometries like UCAs and URAs offer different performance characteristics. UCAs pro-
vide 360-degree coverage but lower resolution than ULAs, while URAs can achieve
high resolution in two dimensions at the cost of increased complexity [232, 235]. Non-
uniform and sparse array designs have also been proposed to optimise the performance
metrics like sidelobe levels and directivity while reducing the number of elements.

By establishing the current research on array geometry impacts, future work could
focus on developing novel array configurations and signal processing techniques to en-
hance resolution and beamwidth performance, particularly for applications with size,
cost, or computational constraints. Adaptive and cognitive beamforming approaches
that can dynamically optimise the array geometry could be another promising direc-

tion.
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