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The Social Responsiveness Scale (SRS) is an established tool for screening autism. An increasing number of studies have utilized the
SRS in the general population as an outcome measure to gain insight into the etiology of autism spectrum disorder (ASD). However,
SRS scores have not been well characterized in large pediatric cohorts, particularly in relation to their demographic, genetic,
neuroimaging, and comorbidity profiles, or how these patterns compare to those observed in clinically diagnosed ASD. This study
included 9788 non-ASD children and 182 autistic children aged 9-11 years from the Adolescent Brain Cognitive Development
Study. Generalized linear mixed-effect models were applied to evaluate the associations of short social responsiveness scale (SSRS)
with a spectrum of demographic, genetic, neuroimaging, and behavioral characteristics. We estimated the heritability of SSRS using
a subsample of twin and sibling data. Our finding revealed that children with higher SSRS exhibited a higher male-to-female ratio.
SSRS had a high heritability of 0.52 (95% Cl, 0.45-0.63), and higher SSRS scores were correlated with increased polygenic risk for
ASD (P < 0.001). Neuroimaging analyses identified both overlapping and unique neurobiological underpinnings, with sex-specific
variations in structural and functional connectivity similar to those observed in ASD. Higher SSRS scores were linked to lower fluid
intelligence, more behavioral problems, more sleep problems, and more psychotic-like symptoms. These findings highlight both
the overlap and distinction between patterns reflected in SSRS scores and those observed in clinical ASD, highlighting the need for

caution when interpreting findings only utilizing SRS as the outcome for autistic-like trait.
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INTRODUCTION

The Social Responsiveness Scale (SRS) is an instrument designed
to assess social behaviors and screen autism spectrum disorder
(ASD), mostly completed by caregivers and teachers [1]. In
addition to its demonstrated efficacy in autism screening, SRS
has been commonly used a quantitative outcome measure for
autistic-like traits in epidemiological studies investigating risk
factors and etiological pathways of ASD among the general
population [2-4]. Although the quantitative traits offer promising
insights into autism, the traits may lack specificity due to overlap
with features of other neurodevelopmental and psychiatric
conditions. It remains unclear whether this overlap represents
the confounding of distinct psychiatric dimensions or reflects the
well-documented comorbidity patterns between autism and other
conditions such as anxiety and Attention-Deficit/Hyperactivity
Disorder (ADHD) [5]. Despite the broad application of SRS,
comprehensive characterization of SRS in large pediatric cohorts
remains limited, leaving a gap in understanding the extent to
which the SRS reflects an autism-related dimension [6-10]. A more
systematic investigation of its genetic, neuroimaging, and
behavioral profiles is therefore required.

To address this research gap, our study leveraged the extensive
dataset of the Adolescent Brain Cognitive Development (ABCD)
study, which includes a shortened version of SRS (short SRS, SSRS)
and comprehensive phenotypic data from over 10,000 children
across the United States. We primarily investigated correlates of
SSRS among typically developing children. Meanwhile, we utilized
a subset diagnosed with ASD as positive controls, since numerous
studies and ongoing projects have referred to the SRS as
indicative of ‘autistic-like traits’, a dimension present across the
general population and potentially sharing etiology with ASD [11].
Given this presumption, we formulated four primary hypotheses.
First, children with higher SSRS scores are likely to exhibit
demographic profiles similar to those with ASD, such as a higher
male-to-female ratio. Second, the traits may show a high degree of
heritability and a correlation with the polygenic risk score (PRS) for
ASD, an acknowledged genetic factor that explains 40-76% of the
etiology [11-13]. Third, the traits may share similar neural
correlates with ASD, such as atypical development of the frontal
and temporal lobes, reduced gray and white matter volumes, and
functional or structural alterations in the default mode network
(DMN) [14-17]. Lastly, children with higher SSRS scores are
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anticipated to display a spectrum of physical and mental health
comorbidities commonly associated with ASD. Through systematic
examination of these hypotheses, our study aims to provide a
comprehensive characterization of the SRS phenotype in children.

METHODS

Study design

The ABCD Study enrolled a total of 11,876 children between 9 and 11 years
of age through school systems at 21 research sites across the United States
between 2016 and 2018 [18]. This cohort is comprised of over one-fifth of
the population within this age range in the United States [18, 19]. This
study utilized the ABCD Data Release 4.0. In this study, we excluded
children who had no or invalid total score of SSRS (N = 1906), which was of
our primary interest. All participants and their guardians provided
informed consent [18].

This study examined the relationship between SSRS scores and various
characteristics known to be associated with ASD. These characteristics
include the proportion of males [20], PRS for ASD [21], structural brain
alterations [22], white matter integrity [7], brain connectivity [23], cognitive
function [24], behavioral problems [25], sleep disturbances [26], and
psychotic-like symptoms [27].

Measures

Diagnosis of ASD. By design, the ABCD study excluded children
diagnosed with “moderate or severe” ASD, intellectual disability, and
major neurological conditions [18]. During recruitment, trained inter-
viewers conducted comprehensive face-to-face assessment with the
children and their guardians [28]. Diagnosis of ASD was based on a
parent-reported response to the question, “Has your child been diagnosed
with autism spectrum disorder?”. Additionally, parents reported whether
their children with ASD were attending regular classes at school, which
might reflect their disease severity.

SSRS.  The SSRS is an 11-item parent-reported instrument (scored from
0-3 per item, with a total score ranging from 0-33) derived from the 65-
item Social Responsiveness Scale (SRS). SSRS data were collected at one-
year follow-up assessment. The SRS is a validated screening tool for ASD
and could reflect disease severity [10, 12, 29, 30]. To address the right-
skewed distribution of SSRS scores and explore the potential non-linear
associations with outcomes, non-ASD children were categorized into four
groups based on the 33rd, 66th, and 95th percentiles of their SSRS scores,
referred to as Q1, Q2, Q3, and the top 5% (Figure S1). A higher score
indicated more pronounced autistic-like traits. Children with ASD were
classified as a distinct group.

PRS for ASD. Genotype data from the ABCD Study were sourced from
saliva or blood specimens using the Affymetrix NIDA SmokeScreen Array
[31]. A subset of 5807 individuals of European descent were selected based
on genetic lineage. Quality control and imputation were conducted using
PLINK v1.90 [32], Michigan Imputation Server [33], and Eagle v2.4, resulting
in 4673 samples for analysis. To construct PRS for ASD, we incorporated
data from the iPSYCH-2017 dataset including 18,382 ASD cases and 27,969
controls of European ancestry [34], using a continuous shrinkage with a
global shrinkage prior of 0.01 [35]. The first ten ancestry principal
components were calculated and used as covariates in the PRS-related
analyses.

Neuroimage data. The ABCD teams conducted standardized preproces-
sing pipelines to the structural, diffusion, and resting-state functional
magnetic resonance imaging (MRI) data [36], including manual quality
control, reconstruction, and subcortical segmentation using the FreeSurfer
v5.3 software (http://surfer.nmr.mgh.harvard.edu/) [37]. The quality control
was performed following the recommended image inclusion criteria of the
ABCD 4.0 (see Supplement).

For structural MRI (sMRI), high resolution T1- and T2-weighted structural
MR images (1 mm isotropic, prospective motion correction) were collected
and processed [36]. The regions of interested included 68 cortical
thicknesses, 68 cortical areas, 68 cortical volumes, and 40 subcortical
volumes defined by the Destrieux atlas [38, 39].

In the collection of diffusion tensor imaging (DTI) data, high angular
resolution diffusion imaging data were acquired at a resolution of 1.7 mm
isotropic using multiband acquisition (factor = 3), comprising 96 diffusion
directions and four distinct b-values [36, 37]. The ABCD team employed
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AtlasTrack, an automated segmentation method based on a probabilistic
atlas, for the labeling of major white matter tracts [40]. In this study, we
studied tract-average mean diffusivity (MD) and fractional anisotropy (FA)
of 35 major white tracts.

Resting-state functional MRI (fMRI) scans in children were conducted
using the high-resolution imaging with a multi-band technique [37]. The
standardized preprocessing procedures included registration, distortion
correction, and normalization [37]. Subsequently, connectivity measures
were extracted within and between networks from the parcellated cortical
ribbon, as delineated by the Gordon atlas [41]. The fMRI data obtained on
Philips scanners were excluded due to problems in processing, in
accordance with previous studies [42]. In line with this approach, we
specifically examined 36 network-level RSFC averages encompassing both
intra- and inter-task-control circuits that were reported to be related to
ASD and social function [43-45], including cingulo-opercular (CO), cingulo-
parietal (CP), dorsal attention network (DAN), fronto-parietal (FP), salience
network (SN), ventral attention network (VAN), DMN, and auditory network
(AN).

Cognitive functions. NIH Toolbox were utilized to assess the neurocog-
nitive performance [46]. The NIH Toolbox Cognitive Function Battery
comprises seven tasks that assess different dimensions of cognitive
abilities. Cognitive performance was quantified using age-corrected T
scores (mean = 100, SD = 15), which reflect a comprehensive measure of
intelligence quotient (IQ). These scores were further analyzed to
distinguish between crystallized and fluid intelligence components [47].

Behavioral problems. Behavioral problems were evaluated using the
parent/guardian-reported child behavior checklist (CBCL) [48], a compre-
hensive tool to evaluate internalizing and externalizing symptoms across
113 items. The CBCL generates three composite scores: internalizing,
externalizing, and total syndrome [49], with higher scores indicating
greater severity of symptoms. Additionally, exploratory analyses were
conducted on CBCL-derived measures, including anxiety-depress, with-
draw-depress, somatic, social, thought, attention, rule-breaking, and
aggressive problems.

Sleep problems. Sleep problems were evaluated using the Sleep
Disturbance Scale for Children (SDSC) [50], reported by parents or
guardians based on observations over the previous six months. The SDSC
comprises a 26-item inventory rated on a 5-point Likert-type scale,
resulting in six subscales that address various sleep disturbances, including
disorders of initiating and maintaining sleep, sleep breathing disorders,
disorder of arousal, sleep-wake transition disorders, disorders of excessive
somnolence, and sleep hyperhidrosis. The overall sum score, which ranges
from 26-130, indicates the severity of sleep problems, with higher scores
reflecting poorer sleep quality.

Psychotic-like symptoms. Psychotic-like symptoms in adolescents were
measured using the Prodromal Questionnaire - Brief Child version (PQ-BC)
[51], which includes items querying the occurrence and distress level of
psychotic experiences, rated on a 5-point Likert scale. The total PQ-BC
score ranges from 0-105, with scores > 2 standard deviations above the
mean considered indicative of significant psychotic-like symptoms.

Covariates

We consider the following covariates as confounders: age, sex (male or
female), race/ethnicity (White, Black, Hispanic, Asian, or other), and family
annual income (<$35,000, $35,000~$75,000, $75,000~$100,000, or
>$100,000) [52]. Body mass index (BMI; kg/m?, continuous) and pubertal
score were also described, given their potential association with ASD
[53, 54]. The pubertal score was the average of self- and parent-reported
score on a scale from 1 (prepuberty) to 5 (post puberty) [55].

Statistical analysis

To confirm SSRS as a valid measure of autistic-like traits, we assessed the
prediction performance of SSRS for ASD using the receiver operating
characteristic (ROC) curve and reported the area under curve (AUC), which
ranged from 0-1. An AUC close to 1 indicated that SSRS would be highly
predictive for ASD.

To investigate the correlation between SSRS and demographic
characteristics, we applied linear, logistic, and multinomial regressions,
whichever appropriate, and tested the trend associated with a higher SSRS
group with weights assigned according to the median of each category.
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The trend test was only performed among children with no ASD diagnosis.
Also, we compared the demographic characteristics between children with
ASD and children in the lowest SSRS tertile (Q1) for comparison, using
t-test and chi-squared test, whichever appropriate.

Heritability of SSRS. The ABCD study is characterized by a substantial
number of twins and siblings, permitting family-based design to estimate
heritability. The ABCD team identified the monozygotic twins, dizygotic
twins, and non-twin siblings based on genetic relatedness data [56]. To
identify full siblings from non-twin siblings, we limited the sample to
children whose both recorded guardians were their biological parents. In
this subsample of twins and full siblings, we calculated the Spearman’s
rank correlation coefficients for the SSRS scores within each kinship group
(monozygotic twins, dizygotic twins, and full siblings). We applied the ACE
model to decompose the variance in SSRS into proportions that could be
explained by additive genetics (A), common environment (C), and unique
environment (E), using structural equation modeling [57]. The ACE model
assumed that the genetic relatedness was 1 between monozygotic twins
and 0.5 between dizygotic twins and full siblings [25]. Correlation of shared
environmental effect was assumed to be 1 between each pair of twins and
full siblings. Unique environment involves nonshared environmental
factors as well as measurement error. In an additional analysis, we
excluded full siblings for comparison. SSRS scores were log-transformed to
meet normality assumptions and regressed for age, sex, and study site
prior to the ACE analyses [25]. The goodness-of-fit was measured and
compared by log-likelihood, chi-square, Comparative Fit Index, Tucker-
Lewis Index, and Root Mean Square Error of Approximation. The model
was fitted with the R package lavaan (version 0.6-18) [58].

Associations with genetic, neural, and clinical indicators. We applied
generalized linear mixed-effect models to estimate the associations
between SSRS group and outcomes, accounting for the nested structure
(family nested within site, or family nested within MRI scanner for
neuroimaging analysis) of the ABCD data [59]. Specifically, linear regression
was applied for normally distributed outcomes, including the PRS for ASD,
neuroimaging measures, cognitive functions, and sleep problems. Poisson
regression was applied to CBCL scores that were right-skewed and passed
over-dispersion. Logistic regression was applied to the dichotomized
outcome, psychotic-like symptoms. The association with PRS was
investigated adjusting for the first ten principal component of the ABCD
genotyping data. This adjustment was applied in both the regression
models and correlation analyses. The associations with neuroimaging
measures and mental health problems were investigated adjusting for sex,
age, race, and family income [59]. In structural MRI analysis, we additionally
adjusted for the child height, T1 image signal-to-noise, and intracranial
volume. In DTl analyses, we additionally adjusted for mean frame-wise
displacement. In RSFC analyses, we additionally adjusted for the number of
frames retained after processing. In analyses on neuroimaging measures,
due to the generally small effect size and the relatively small number of
children in the top 5% group after quality control, risk estimates within this
group were likely to be underpowered. Thus, we were interested in both
alterations in the Q3 and the top 5% group compared to the Q1 group. For
significant findings within the Q3 group, we then confirmed the
directionality of the risk estimates in the top 5% group. Considering
potential different etiology of autistic traits between male and female
[8, 20], we tested the interaction term of SSRS x sex and stratified the
analyses by sex when the interaction was significant. Trend test was also
performed to investigate the trend of risk estimates associated with SSRS.

Previous reports showed correlations between SRS and other psychiatric
conditions [51]. In sensitivity analysis, we excluded non-ASD children that
had diagnoses of other psychiatric conditions reported by parents,
including attention deficit hyperactivity disorder, depression, bipolar
disorder, anxiety, phobias, schizophrenia, alcohol or substance use
disorder, and other psychological or psychiatric diagnoses. We performed
all analyses using R software version 4.2.1. Mixed models were fitted with
the package Ime4 (version 1.1-31) [60]. Missing values were imputed by
chained equations with package mice (version 3.15.0). In the neuroimaging
analyses, to address the issue of multiple comparisons, false discovery rate
(FDR) correction was applied.

RESULTS

Of the 9970 eligible children in the ABCD study aged 9-11, 182
(1.8%) were reported to be diagnosed with ASD (87% male; Figure
S1). Consistent with the eligible criteria of the ABCD study, these
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children with ASD showed normal cognitive function (mean NIH
Toolbox total score, 99.0 [SD, 20.1], compared to 101.5 [SD, 17.7] in
children with no diagnosis of ASD). The majority (N = 177 [97.3%]]
were able to attend regular school. Among non-ASD children, 275
(2.8%) had NIH Toolbox total cognitive scores below 70, while
among children with ASD, 10 (5.5%) scored below 70.

The SSRS had a satisfactory predictive accuracy for ASD (AUC,
0.928; Figure S2A). We categorized children with no ASD
according to the 33rd, 66th, and 95th percentiles of their SSRS
score (Q1, 0-1, N =4502 [46.0%]; Q2, 2-3, N = 2409 [24.6%]; Q3,
4-11, N=2460 [25.1%]; top 5%, 12 or higher, N=417 [4.3%)];
Figure S2B). Compared with children in the Q1 group, children
with higher SSRS, as well as the children with ASD, were more
likely to be male (P for trend, <0.001), had higher BMIs (P for trend,
<0.001), and had parents with lower income levels (P for trend,
<0.001; Table 1).

The heritability of SSRS

We hypothesized that SSRS should exhibit a comparable level of
heritability to ASD, which is known to be 50-80% [61]. We
identified 343 pairs of monozygotic twins, 552 pairs of dizygotic
twins, and 485 pairs of full siblings. The Spearman’s p for SSRS
score were 0.66, 0.22, and 0.24 among these groups, respectively.
In the ACE model, we found no evidence of common environ-
mental influences (C) contributing to SSRS (the estimated
coefficient for the C paths was <0.001). After dropping the C
paths, we yielded a model with good fit (Table S10) and estimated
a genetic contribution of 52% (A, 0.52, 95% Cl, 0.42-0.54), with the
remaining 48% (E, 0.48, 95% Cl, 0.45-0.60) of the variation in SSRS
score accounted for by unique environmental factors. In the
additional analysis restricted on twins only, the path estimate for A
was consistent (A, 0.54, 95% Cl, 0.45-0.63).

SSRS and genetic predisposition for ASD

We hypothesized that SSRS should share, at least partially, some of
the polygenic risk associated with ASD. In a subsample of 4288
white children, we validated that those children with ASD had a
higher average PRS for ASD compared to the Q1 group (P = 0.026;
Fig. TA). The top 5% group also showed a higher average PRS for
ASD than the Q1 group (P = 0.006; Fig. 1A). An additional analysis
considering SSRS score as a continuous variable showed
consistent results of positive correlation with the PRS for ASD.
This correlation remained significant after adjusting for the first
ten ancestry principal components (Spearman’s rho=0.059,
p <0.001; Pearson’s r = 0.008, p < 0.001; Fig. 1B).

SSRS and grey matter structure, functional connectivity in the
brain, and white matter integrity

We hypothesized that SSRS should exhibit similar neural correlates
with ASD. Thus, we examined the neuroimaging correlates of SSRS
with the sMRI, RSFC, and DTI features.

On structural features, boys with ASD showed an increased
volume of the left parahippocampal cortex (t (4544)=4.056,
P <0.001, FDR = 0.014) compared with Q1, whereas girls with ASD
exhibited a decreased volume of this region (t (4132) = —2.841,
P=0.01, FDR=0.360; P for interaction, 0.002; Fig. 2A, C). This
finding was not observed in non-ASD children with higher SSRS
scores. In addition, boys in Q3 exhibited lower volume of cerebral
white matter in both hemispheres, but this was not observed in
ASD boys, while the risk estimate for males in the top 5% group
was in the opposite direction (Fig. 2A), which did not support a
consistent pattern. No other differences in cortical thickness, area,
volume, and subcortical volume passed the FDR correction
(Table S1).

Regarding RSFC, compared with Q1, both boys within the Q3
and those diagnosed with ASD exhibited an enhanced positive
AN-CP connectivity (Q3, t (3238) =3.930, P <0.001, FDR=0.02;
ASD, t (3238) =2.720, P =0.007, FDR=0.19; P for trend, <0.001;
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Table 1. Characteristics of the study population.
Q1 Q2 Q3 Top 5% P for trend ASD P-value vs. Q1
(N =4502) (N =2409) (N =2460) (N=417) (N=182)

Age (years), mean (SD) 9.5 (0.6) 9.5 (0.5) 9.5 (0.5) 9.5 (0.5) 0.86 9.6 (0.5) 0.005
Sex (%) <0.001 <0.001

Female 2351 (52.2) 1190 (49.4) 1036 (42.1) 143 (34.3) 24 (13.2)

Male 2151 (47.8) 1219 (50.6) 1424 (57.9) 274 (65.7) 158 (86.8)
Race/ethnicity (%)* 0.024

White 2566 (57.0) 1343 (55.7) 1290 (52.4) 222 (53.2) Reference 97 (53.3)

Black 573 (12.7) 310 (12.9) 335 (13.6) 51 (12.2) 0.16 24 (13.2)

Hispanic 847 (18.8) 454 (18.8) 520 (21.1) 83 (19.9) 0.011 28 (15.4)

Asian 101 (2.2) 0 (1.7) 30 (1.2) 7 (1.7) 0.054 4 (2.2)

Other 397 (8.8) 251 (10.4) 273 (11.1) 52 (12.5) <0.001 29 (15.9)
Pubertal status®° (mean (SD)) 2.04 (0.82) 2.04 (0.83) 2.12 (0.85) 2.15 (0.837) <0.001 2.03 (0.79) 0.89
BMI® (kg/m? mean (SD)) 18.5 (3.93) 18.9 (4.30) 18.9 (4.39) 18.9 (4.07) <0.001 19.6 (4.93) 0.004
Family income (%)* <0.001

<$35,000 621 (13.8) 392 (16.3) 573 (23.3) 97 (23.3) Reference 47 (25.8)

$35,000 ~ $75,000 876 (19.5) 518 (21.5) 510 (20.7) 103 (24.7) <0.001 29 (15.9)

$75,000 ~ $100,000 637 (14.1) 334 (13.9) 336 (13.7) 57 (13.7) <0.001 24 (13.2)

2>$100,000 2051 (45.6) 982 (40.8) 820 (33.3) 116 (27.8) <0.001 71 (39.0)

The non-ASD children were categorized into four groups according to the 33, 66, and 95 percentiles of their SSRS score (herein referred to as Q1, Q2, Q3, and
the top 5%), where higher score indicated more prominent autistic-like traits. Children with ASD were classified as a distinct group. Group differences based
on SSRS total score presence were compared by t-test or chi-squared test, with the Q1 group serving as the reference.

ASD autism spectrum disorder, BMI body mass index, SSRS short social responsiveness scale, ABCD adolescent brain cognitive development, N number, SD

standard deviation.

#Missing values in the baseline characteristics were imputed while analyzing and the number of the missing values were listed below: race/ethnicity = 43,

pubertal status = 1918, BMI = 20, family income = 776.
PPubertal status ranged from one to five.

Fig. 2B). Also, boys with ASD showed the enhanced negative
within-DMN connectivity as compared with Q1 (t (3238) = —4.595,
P <0.001, FDR = 0.004). Compared with Q1, boys in the Q2, Q3,
the top 5% group showed a consistent negative pattern in within-
DMN connectivity (P for trend, <0.001; Fig. 2B), though the 95% Cls
for some risk estimates crossed unity. These findings were not
observed in girls (Fig. 2B; Table S2).

Regarding DTI, girls with ASD had lower FA in 9 tracts and the
higher MD in 28 tracts (all FDR < 0.05; Table S3, Table S4). We
observed consistent findings of MD among girls in the Q3 group
among 6 tracts: left superior longitudinal fasciculus, left temporal
superior longitudinal fasciculus, left parietal superior longitudinal
fasciculus, right superior corticostriate tract, right superior
corticostriate tract - frontal cortex and right superior corticostriate
tract - parietal cortex (Fig. 2D, Table S3). Point estimates of
associations with these tracts among the top 5% group showed a
consistent direction, while the 95% Cls crossed unity. No
difference in FA or MD was observed in autistic male compared
to the Q1 group (all FDR > 0.05).

SSRS and cognitive ability, behavioral problems, sleep
problem, and psychotic-like symptoms

To assess whether sex-specific analyses were warranted, we tested
for interaction between sex and SSRS on each outcome of interest.
Significant sex-by-SSRS interactions were observed only for
behavioral problems, whereas no significant interactions were
found for cognitive ability, sleep problems, or psychotic-like
symptoms (Table S5).

Children with higher SSRS exhibited slightly lower cognitive
ability as measured by the NIH Toolbox (mean + SD for Q1, Q2, Q3,
and the top 5% group, 102.8+17.1, 1024+18.3, 99.0+17.9,
97.7+£18.0, respectively; mean+SD for children with ASD,
99.0 + 20.1). Adjusting for age, sex, race, and family income, we
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still observed lower cognitive ability in children in the Q3 group
(B, —2.29; 95% Cl, —3.09 to —1.48), top 5% group (B, —3.56; 95%
Cl, —5.18 to —1.95), and in children with ASD (B, —2.28; 95% ClI
—4.72-0.15; P for trend among the non-ASD children, <0.001;
Fig. 3A). Specifically, this trend was consistently observed in fluid
intelligence, while children with ASD showed comparable crystal-
lized intelligence with Q1 (Fig. 3A; Figure S3A).

Behavioral problems were more prevalent in children with
higher SSRS score. We found interaction between SSRS and sex in
this association (P for interaction, 0.037; Table S5). Compared to
children in the lowest SSRS tertile, children with higher SSRS and
children with ASD had higher mean total CBCL scores in both girls
(mean ratio [95% Cl] for Q2, Q3, top 5%, and children with ASD,
145 [1.38-1.52], 232 [2.20-2.43], 3.53, [3.20-3.90], and 3.13
[2.71-3.61], respectively; P for trend, <0.001; Fig. 3D) and boys
(mean ratio [95% Cl] for Q2, Q3, top 5%, and children with ASD,
1.50 [1.43-1.56], 2.17 [2.08-2.27], 3.26, [3.04-3.50], and 2.64
[2.42-2.88], respectively; P for trend, <0.001; Fig. 3D). The
associations were consistent in both internalizing and externaliz-
ing syndrome scales (Fig. 3D). Specifically, we found that the
association between externalizing syndrome and SSRS appealed
to be more prominent in male children (Fig. 3D). Consistently,
higher SSRS was associated with increased mean scores among all
eight syndrome subscales of CBCL (Figure S3B).

Children with higher SSRS score and children diagnosed with
ASD exhibited more sleep problems, measured by the SDSC scale,
compared to children in the lowest SSRS tertile (B [95% Cl] for Q2,
Q3, top 5%, and children with ASD, 0.05 [0.04-0.06], 0.11
[0.10-0.12], 0.21 [0.20-0.23], and 0.14 [0.11-0.16], respectively; P
for trend, <0.001; Fig. 3B). Specifically, this trend was consistently
observed in all six subscales of SDSC (Figure S3C).

Children with higher SSRS score and children diagnosed with
ASD were more likely to have psychotic-like symptoms,
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Fig. 1 The association between SSRS and PRS for ASD in the ABCD study. A Distribution of PRS for ASD by SSRS categories. The non-ASD
children were categorized into four groups according to the 33, 66, and 95 percentiles of their SSRS score (herein referred to as Q1, Q2, Q3,
and the top 5%), where higher score indicated more prominent autistic-like traits. Children with ASD were classified as a distinct group. B The
scatter plot between SSRS and PRS for ASD. A solid line indicates the fitting correlation between PRS and SSRS. SSRS was log-transformed to
account for its right-skewed distribution. Group difference: ns p > 0.05, *p < 0.05, **p < 0.01. ASD autism spectrum disorder, SSRS short social
responsiveness scale, ABCD adolescent brain cognitive development, PRS polygenic risk scores.

measured by the PQ-BC scale, compared to children in the
lowest SSRS tertile (OR [95% CI] for Q2, Q3, top 5%, and
children with ASD, 1.24 [0.97-1.58], 1.87 [1.50-2.35], 2.45
[1.68-3.58], and 4.46 [2.72-7.31], respectively; P for trend,
<0.001; Fig. 3Q).
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Sensitivity analyses

After excluding children with any psychiatric diagnosis from the
non-ASD group, the associations of SSRS scores problems were
generally consistent, while the associations with neuroimaging
measures attenuated. (Figure S4; Table S6-9).
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Fig. 2 Sex-specific associations between SSRS and neuroimaging features. A Sex-specific associations between SSRS and structural MRI.
B Sex-specific Associations between SSRS and resting-state functional connectivity. C The position of the Left Parahippocampal Cortex. Below
the brain image, a color scale ranging from yellow to red indicates a gradient corresponding to the estimate of the association between
Autistic Traits and Structural MRI in the highlighted region. D Indication of the 6 white matter tracts with higher MD in both children with ASD
and the Q3 group measured by DTI: left superior longitudinal fasciculus, left temporal superior longitudinal fasciculus, left parietal superior
longitudinal fasciculus, right superior corticostriate tract, right superior corticostriate tract - frontal cortex and right superior corticostriate tract
- parietal cortex. Each cross-section is marked with different color areas, indicating regions of abnormalities within white matter integrity
measured by DTI. The color bar with a gradient from white to red represented estimates of the associations between autistic traits and DTI.
The non-ASD children were categorized into four groups according to the 33, 66, and 95 percentiles of their SSRS score (herein referred to as
Q1, Q2, Q3, and the top 5%), where higher score indicated more prominent autistic-like traits. Children with ASD were classified as a distinct
group. Bold indicates p-values that have passed FDR correction. sMRI structural magnetic resonance imaging, lh-parahippocampal left
parahippocampal, RSFC resting-state functional connectivity, CP cingulo-parietal network, DMN default mode network, DTl diffusion tensor
imaging, MD mean diffusivity, AN auditory network, ASD autism spectrum disorder, SSRS short social responsiveness scale.

DISCUSSION pediatric cohort. Our findings revealed several key patterns. First,
This study systematically characterized the SSRS across demo- our data reveal a consistent male-to-female disparity with higher
graphic, genetic, neuroimaging, and behavioral domains in a SSRS scores more likely to be in males. Second, the heritability of
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Fig. 3 The association between SSRS and mental health problems. Forest plot depicting results from regression modelling of the
association between the SSRS and (A) cognition ability, (B) sleep problem, (C) psychotic-like symptoms, and (D) behavioral problems. All
analyses were adjusted for age, sex, race, and family income. P for trend shows results within the non-ASD groups. The non-ASD children were
categorized into four groups according to the 33, 66, and 95 percentiles of their SSRS score (herein referred to as Q1, Q2, Q3, and the top 5%),
where higher score indicated more prominent autistic-like traits. Children with ASD were classified as a distinct group. CBCL child behavior
checklist, SDSC sleep disturbance scale for children, PQ-BC prodromal questionnaire - brief child version, ASD autism spectrum disorder, SSRS
short social responsiveness scale, N number, SD standard deviation, IQR interquartile range, OR odds ratio.

SSRS was estimated at approximately 52%. Higher SSRS was
correlated with increased polygenic risks for ASD. Third, neuroi-
maging analyses identified both overlapping and unique neuro-
biological underpinnings between high SSRS score and ASD, with
sex-specific variations in structural and functional connectivity
mirroring those seen in ASD. Fourth, children with higher SSRS
exhibited a broad spectrum of neurodevelopmental and mental
health problems. These findings showed that while correlates of
SSRS showed a similar pattern to ASD, the complex non-ASD-
specific cognitive and behavioral symptoms reflected in SSRS
suggest caution when interpreting SRS as a continuous measure
of autistic-like traits in general population.

ASD is more frequently diagnosed in males, a pattern that is
consistent to the increasing male-to-female ratio we observed
with rising SSRS scores. This consistent sex disparity suggests
possible differences in the pathogenesis of ASD across sexes.
Moreover, there is growing evidence that this disparity may be
partially due to the underdiagnosis of ASD in females, attributed
to camouflaging behaviors. Camouflaging behaviors refer to
behavioral coping strategies used by individuals, particularly
females, to conceal autistic traits in social situations, making
these traits less noticeable to others. Examples include imitating
social gestures, suppressing autistic-related behaviors, or actively
rehearsing social interactions [62]. Such behaviors can lead to
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misdiagnosis or delayed diagnosis in females, thereby contribut-
ing to the observed sex disparities in ASD prevalence. The similar
patterns of sex disparity linked with higher SSRS scores in our
study may also reflect underlying, sex-specific expressions. Also,
we could not rule out that SSRS might socialization of a typically
masculine nature, which could be more pronounced among
males. This, in turn, might explain why a higher proportion of
males exhibit elevated SSRS scores.

The heritability of ASD is estimated at 50-80% [21, 61],
reflecting a significant genetic contribution to its etiology. This
aligns with earlier research that attributes high heritability to
autistic-like traits, ranging from 0.40-0.76 [11, 12], one measured
by SRS and the other by another screening questionnaire for ASD
(Autism-Tics, Attention-Deficit/Hyperactivity Disorder, and Other
Comorbidities Inventory). Our study corroborates these findings,
showing that the heritability of SSRS is approximately 52%. We
observed a statistically significant, though modest, positive
correlation. This correlation suggests that genetic loci implicated
in ASD may also contribute to individual differences in social
responsiveness, particularly in those with elevated SSRS scores.
Although the effect size of this association was modest, such small
yet significant associations are common in polygenic risk studies
of dimensional behavioral traits and reflect the complex,
polygenic architecture of social responsiveness [63, 64]. This
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genetic overlap supports the notion of a continuum in social
responsiveness traits, ranging from typical variation to clinical
ASD, and suggests that shared biological pathways may underlie
both clinical and subclinical manifestations. Such findings
contribute to a dimensional perspective on autistic-like traits.

Neuroimaging studies focusing on the “social brain” have
identified structural and functional alterations associated with ASD
[24, 65], particularly in the insula, anterior cingulate cortex/medial
prefrontal cortex, and DMN, as supported by recent meta-analyses
[17]. Similarly, investigations into autistic-like traits using various
behavioral and cognitive assessment scales have revealed
neuroanatomical changes, such as reductions in global brain
volume, cerebellar size, and cortical metrics including gyrification,
thickness, and surface area [7, 66]. However, these studies have
typically been limited by small sample sizes, often involving fewer
than 50 participants. In this study, our large-cohort study
identified specific structural changes in males, such as decreased
cerebral white matter volume in boys with higher SSRS scores and
increased volume of the left parahippocampal gyrus in boys with
ASD, both linked to challenges in social interaction and paralleled
in neuroimaging profiles of individuals with ASD [67-69]. Other
findings further refine the understanding of structural connectivity
in ASD. One case-control study noted a decrease in FA of the
frontal aslant tract across typical development, ASD-sibling, and
ASD groups [70]. In this study, we observed distinct alterations in
MD of six fiber tracts exclusively in females with higher SSRS
scores, which align with changes seen in the ASD group. Notably,
despite previous reports suggesting the involvement of corpus
callosum connectivity in ASD pathogenesis [22, 43, 71, 72], our
study did not observe a significant association between corpus
callosum measures and SSRS scores. Regarding functional
connectivity, prior research has been inconsistent, likely due to
factors such as small sample sizes, variable ages at measurement,
and ASD heterogeneity [23, 73-78]. Our study contributes to this
domain by demonstrating that both the group with higher SSRS
scores and the ASD group exhibit enhanced positive connectivity
within the AN-CP connectivity and enhanced negative connectiv-
ity within the DMN connectivity, exclusively in males. These
findings underscore potential shared and unique neuroimaging
biomarkers between SSRS phenotype and ASD, suggesting that
underlying neural mechanisms may differ by sex. In the sensitivity
analysis excluding children with other neurodevelopmental
disorders, the associations with neuroimaging measures were
attenuated, likely due to the reduced sample size in the analysis.
This highlights the need for cautious interpretation, as the
observed associations could also potentially be influenced by
comorbid mental health issues associated with SSRS scores. This
complexity points to the necessity of larger, more nuanced studies
to disentangle these interactions and further our understanding of
ASD and related conditions.

In line with previous reports, our findings revealed that SSRS
scores are associated a broad spectrum of mental health problems
frequently observed in autistic individuals. These include varia-
tions in cognitive performance [79], behavioral problems [80],
sleep problems [81], and psychotic-like experiences [51]. Prior
studies suggested overlaps of both phenotypic and genetic,
between autistic-like traits and these mental health issues [79, 82].
A particular observation from our data is the association of higher
SSRS scores with reduced fluid intelligence, whereas no consistent
pattern emerged with crystallized intelligence. This divergence
may suggest that individuals with high SSRS scores might
leverage their verbal abilities as a compensatory strategy for
deficits in cognitive flexibility [83]. In addition, it is noteworthy that
the SSRS not only reflects a dimension of sociability but also other
mental health conditions. Studies using SSRS as an outcome to
gain insights into ASD should be cautious, as the outcome may
lack specificity. Adjustments for other comorbid mental health
issues would therefore be recommended.
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Strengths and limitations
This study leverages the extensive dataset of the ABCD study,
notable for its large sample size and comprehensive multimodal
data drawn from a demographically diverse cohort. These attributes
enable a detailed characterization of SRS phenotype during early
adolescence. Additionally, including autistic individuals from the
same cohort as a positive control enriches our comparative analysis
between children with high SSRS scores in the general population
and those with a clinical diagnosis. Furthermore, our exploration of
sex differences across various traits offers novel insights, suggesting
that the underlying neurobiological mechanisms might differ
between high SSRS scores and ASD, potentially informing sex-
specific approaches in future research and interventions.
However, several limitations must be considered when interpret-
ing our findings. First, the ABCD study’s exclusion of children with
intellectual disabilities may introduce a selection bias, as the
enrolled autistic participants generally did not have intellectual
disabilities. This exclusion might also explain why the median SSRS
scores among children with ASD were lower than those in the top
5% of the general population without an ASD diagnosis. Secondly,
reliance on parent-reported ASD diagnoses could lead to mis-
classification; yet, the reported ASD incidence of 1.8%—considering
the exclusion of severe cases—aligns with the general population
incidence of 1-2% [84]. Thirdly, the SSRS's association with other
psychiatric conditions such as attention deficit hyperactivity
disorder could suggest overlapping patterns that might not be
exclusive to autistic-like traits. This overlap was controlled for in
further analyses, which excluded diagnosed psychiatric problems,
yielding consistent findings. Additionally, the study’s cross-sectional
design limits causal inference. While sex-stratified analyses revealed
important insights, they were constrained by the imbalanced
distribution of high SSRS scores and ASD diagnoses across sexes.
The reduced sample size within each sex group, particularly among
females, may have further limited the statistical power to detect
small or moderate effects, especially for neuroimaging outcomes.
Future studies with larger samples are warranted to confirm and
extend these findings. Finally, it is important to emphasize that the
primary focus of this study was on the SSRS as a dimensional
measure of social function in the general pediatric population.
While SSRS scores are often interpreted as proxies for autistic-like
traits, the scale captures a broader spectrum of social function that
may not be specific to ASD. As a shortened version of the full SRS,
the SSRS may also reduce measurement granularity, and the
implications of its results should be interpreted with caution.

CONCLUSION

This study, using the extensive dataset from the ABCD study,
explored demographic, genetic, neural, and behavioral correlates
of the SRS phenotype within the general population. Commonly
used as a measure of autistic-like traits, the SRS phenotype
exhibited both overlapping and distinct features compared to
ASD, highlighting the need for caution when interpreting findings
only utilizing SRS as the outcome for autistic-like trait.
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