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A B S T R A C T

The urban heat island (UHI) effect poses a significant environmental and public health challenge, particularly in 
the context of climate change. While urban green infrastructure (UGI) is widely recognised for its cooling po
tential, its implementation and effectiveness in complex, high-density urban environments, especially in 
extremely cold climate cities, require a comprehensive multi-scale assessment. This study presents a holistic 
framework that integrates seasonal variability, socioeconomic transitions, and spatial heterogeneity to evaluate 
UHI mitigation strategies. Drawing on satellite imagery (Landsat and MODIS), land use surveys, socioeconomic 
regression analysis, and computational fluid dynamics (CFD) simulations using ENVI-MET 4.0, the study iden
tifies UHI hotspots and assesses incremental, space-efficient greening interventions. A longitudinal case study 
(2000–2020) in a severely cold climate city in northeast China reveals that population decline did not reverse 
UHI or UGI trends, as the extent of built-up areas remained largely unchanged. The findings demonstrate that 
green roofs provide significant cooling benefits in high-density urban settings while also enhancing thermal 
regulation during winter months. By integrating analyses across multiple scales, this research offers a robust 
methodology for quantifying UHI mitigation potential and informing data-driven urban greening strategies. The 
study refines vegetation metrics using land survey data, challenges assumptions about seasonal UHI dynamics, 
and highlights the urgent need for targeted green infrastructure in both growing and shrinking urban contexts. 
Overall, the research contributes to a deeper understanding of green retrofitting in extreme climates and iden
tifies future directions for policy development, design optimisation, and interdisciplinary approaches to climate- 
resilient urban planning.

1. Introduction

The Urban Heat Island (UHI) phenomenon has become an increas
ingly critical environmental and public health challenge worldwide. 
UHI refers to the temperature difference between urban areas and their 
surrounding rural counterparts, primarily driven by anthropogenic heat 
emissions, impervious surfaces, and reduced vegetation cover. The in
tensity of Surface Urban Heat Island (SUHII) varies significantly due to 
factors such as urban morphology, land use patterns, population density, 
seasonal variations, and climate zones (Du et al., 2021; L. Li & Zha, 
2019; Tran et al., 2006; J. X. Yang et al., 2021). Research indicates that 
UHI can contribute to biodiversity loss (Reid, 1998), degradation of air 
and water quality (Grimm et al., 2008), climate alterations (Hales, 2016; 
Jin et al., 2005), and increased morbidity and mortality rates (Luber & 
McGeehin, 2008; Tan et al., 2010). Additionally, UHI has been linked to 

shortened life expectancy (Patz et al., 2005), higher risks of violence 
(Gong et al., 2012), and mental health issues such as depression 
(Sundquist et al., 2004). Addressing UHI is therefore crucial for pro
moting sustainable urban development and enhancing public well-being 
(Xing, 2024a,b, 2025).

A key driver of UHI is rapid urbanisation, which induces Land Use/ 
Land Cover (LULC) transformations, resulting in the loss of natural 
landscapes and increased surface heat retention (Amiri et al., 2009; 
Chen et al., 2006; Hu & Jia, 2010; Jusuf et al., 2007; Kawamoto, 2016; 
Singh et al., 2017). Consequently, urban green infrastructure (UGI) has 
emerged as a promising nature-based solution to mitigate UHI effects 
(Lehmann, 2014; Y. Li et al., 2023; QIU et al., 2013). UGI refers to 
interconnected networks of vegetative and water-based ecosystems, 
including parks, forests, grasslands, urban agriculture, green roofs, and 
water bodies (Ely & Pitman, 2014; Naumann et al., 2011; The North 
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West Green Infrastructure Think Tank, 2008). Several studies have 
demonstrated that increased vegetation cover is inversely correlated 
with land surface temperature (LST) in diverse climate zones (Bai et al., 
2018; Greene & Kedron, 2018; Jenerette et al., 2007; X. Li et al., 2013; 
Ma et al., 2008; Y. Wang & Akbari, 2016a; T. Wang et al., 2022; Weng 
et al., 2004; Zhou et al., 2011).

A number of studied explored correlation coefficients between green 
vegetation fraction and land surface temperature (LST) across various 
Köppen climate classifications. Most studies found a significant negative 
correlation, indicating that increased vegetation cover generally reduces 
LST. For instance, Li, Zhang and Kainz (2012) reported a strong negative 
correlation (R = − 0.81) in a CFa climate, while Weng, Rajasekar and Hu 
(2011) found even stronger correlations (R = − 0.98) in a DFa climate. 
The significance levels (P) in these studies were mostly below 0.01, 
confirming the reliability of the correlations. However, some studies, 
such as Wang and Akbari (2016b), observed positive correlations during 
specific times of the day, highlighting the complexity of the relationship 
between vegetation cover and LST. Overall, the findings in the existing 
literature underscore the importance of green infrastructure in miti
gating urban heat island effects across different climates and land use 
types. Furthermore, different types of green infrastructure exhibit 
varying cooling potentials. Empirical studies suggest that urban parks 
can reduce LST by 0.1 ◦C to 6.7 ◦C, with cooling effects extending about 
1000 m beyond park boundaries. The extent of cooling depends on park 
size, species composition, and spatial configuration (Feyisa et al., 2014; 
T. Wang et al., 2022). Similarly, water bodies exert significant cooling 
effects through evapotranspiration, lowering ambient temperatures by 1 
◦C to 4 ◦C (Sun et al., 2012). Urban agriculture has also been shown to 
reduce local temperatures by 0.5 ◦C to 4 ◦C (QIU et al., 2013). In 
high-density urban areas, green roof infrastructure can lower ambient 
temperatures by 1 ◦C to 2 ◦C, provided there is sufficient moisture 
availability (Bass et al., 2002).

Despite increasing research on the urban heat island (UHI) effect, 
several critical gaps remain. Most existing studies focus on temperate or 
hot climates, with limited attention to cold-climate cities where seasonal 
thermal dynamics and vegetation responses differ significantly 
(García-Cueto et al., 2007; He et al., 2007; Yang et al., 2020). This limits 
the applicability of current UHI mitigation strategies across diverse 
climatic contexts. Moreover, while rapid urbanisation is widely recog
nised as a major driver of UHI (Mathew et al., 2017; Singh et al., 2017), 
the thermal implications of urban depopulation remain underexplored. 
Population decline does not necessarily result in reduced UHI intensity, 

particularly when it is accompanied by continued urban expansion and a 
lack of investment in green infrastructure. In addition, existing UHI 
mitigation strategies have primarily targeted growing cities, over
looking the emerging risks faced by shrinking cities. There is a pressing 
need for integrated, context-sensitive approaches that account for so
cioeconomic transitions, seasonal variability, and spatial heterogeneity. 
Furthermore, few studies employ a multi-scale analytical framework 
capable of linking meso‑scale (e.g. 1.2 km grids) assessments with 
micro-scale, building-level simulations. Such integration is essential for 
designing spatially adaptive and thermally effective interventions. This 
study addresses these gaps by applying a multi-level, seasonally 
informed framework to analyse UHI dynamics and evaluate green 
infrastructure solutions in an extremely cold-climate urban context.

2. Methodology

A holistic methodological framework (Fig. 1) is created in this paper 
for assisting urban green retrofitting decision-making, integrating multi- 
source data and computational modelling techniques. The framework 
begins with the collection of socio-economic data, remote sensing data, 
and land use/land cover (LULC) data, which serve as key inputs for 
analysing urban heat island (UHI) dynamics. From remote sensing data, 
land surface temperature (LST) and Surface Urban Heat Island Intensity 
(SUHII) are retrieved, while LULC data contribute to the calculation of 
the green infrastructure fraction. These datasets are then processed 
through linear regression analysis, establishing relationships between 
UHI intensity and green infrastructure distribution. Identified UHI hot
spots inform the next stage, where Computational Fluid Dynamics (CFD) 
simulations are employed to model different urban green retrofitting 
scenarios. The results from CFD simulations support evidence-based 
decision-making for urban green infrastructure planning, facilitating 
the development of effective UHI mitigation strategies tailored to 
complex urban environments.

2.1. Phase 1: land surface temperature (LST) retrieval and accuracy 
enhancement

This study employs the radiative transfer equation (RTE) method for 
land surface temperature (LST) retrieval, as it has been demonstrated to 
provide superior accuracy compared to alternative methods such as the 
mono-window, single-channel, and split-window algorithms (José A. 
Sobrino et al., 2004; Yu et al., 2014). Existing LST retrieval approaches 
include the RTE method (Yu et al., 2014), mono-window algorithm 
(Singh et al., 2017; Zandi et al., 2022), single-channel method 
(Jiménez-Muñoz, 2003; Walawender et al., 2014), split-window algo
rithm(J. A. Sobrino & Raissouni, 2000; Wan, 1996), multi-channel and 
multi-angle algorithms (J. A. Sobrino et al., 1996), and 
emissivity-corrected methods (Son et al., 2017; C. Yang et al., 2020). 
Comparative analyses indicate that the RTE method consistently yields 
the most accurate results, with biases for Landsat 8 data of 0.06 K (band 
10) using RTE, 0.44 K using the single-channel method, and − 0.15 K 
using the split-window algorithm (Yu et al., 2014). Similarly, for Landsat 
5 data, the biases are − 0.17 K for the RTE method, 2.09 K for the 
mono-window algorithm, and 0.78 K for the single-channel method 
(José A. Sobrino et al., 2004). Kan, Liu and Li (2016) further confirm 
that the RTE method provides LST estimations closest to ground mea
surements compared to the single-channel and split-window ap
proaches. This study enhances LST retrieval accuracy by incorporating 
spatio-temporal corrections and emissivity calibration, ensuring more 
robust estimations from Landsat 5, 7, and 8 datasets. By refining tem
perature retrievals, this methodology strengthens the reliability of sur
face urban heat island intensity (SUHII) analysis. In accordance with the 
RTE framework, the thermal infrared radiance value (Lλ) is consist of the 
atmospheric upwelling radiance (L↑), the atmospheric downwelling 
radiance (L↓), and the land surface radiance. It can be expressed in Eq. 
(1) (José A. Sobrino et al., 2004; Yu et al., 2014): 

Fig. 1. A Generic Holistic Analytic Framework to Support Urban Retrofitting 
Decision Making.
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Lλ = [εB(Ts)+ (1 − ε)L↓]τ + L↑, (1) 

Where Ts is the real LST; B(Ts) is the thermal radiance of a blackbody 
(the earth’s surface) when the temperature is Ts; τ is the atmospheric 
transmissivity in the thermal infrared band; ε is the land surface emis
sivity which can calculate according to Qin et al. (2004). The parameters 
L↑, L↓, τ can obtain through a web-based atmospheric correction 
parameter calculator (J. A. Barsi et al., 2003; Julia A Barsi et al., 2005). 
Thus, the equation of the blackbody radiance (B(Ts)) can be deduced 
(José A. Sobrino et al., 2004): 

B(Ts) = [Lλ − L↑ − τ(1 − ε)× L↓]/(τε), (2) 

At last, Ts can be obtained using the inversion of the Planck’s law (Eq. 
(3)) (José A. Sobrino et al., 2004), 

Ts =
K2

ln(K1/B(Ts) + 1)
, (3) 

For the Landsat 5 TM, K1 = 607.76 W/(m2⋅sr⋅μm), K2 = 1260.56 K. 
For the Landsat 7 ETM+, K1 = 666.09 W/(m2⋅sr⋅μm), K2 = 1282.71 K. 
For the band 10 of the Landsat 8 TIRS, K1 = 774.89 W/(m2⋅sr⋅μm), K2 =

1321.08 K. The results can be expressed in degrees centigrade by sub
tracting 273.15 from their value in Kelvin.

In the meanwhile, to improve the spatiotemporal continuity and 
robustness of the analysis, this study also uses MODIS data to obtain 
daytime and nighttime LST. The calculated equation is shown as fol
lowed: 

Ts(░
∘C) = B1 × Sf + AO − 273.15, (4) 

Where B1 is the scientific data sets named LST; Sf is the scale factor of 
scientific data set, here it is 0.02; AO is additive offset of scientific data 
set, here it is 0.

Finally, obtained LST from MODIS and Landsat data is incorporated 
by gap-filling algorithms to improve the spatiotemporal continuity.

2.2. Phase 2: surface UHI intensity (SUHII) determination and green 
infrastructure fraction calculations

The surface UHI in this study refers to the phenomenon that the 
temperature of urban areas is higher than that of the surrounding rural 
areas (Maimaitiyiming et al., 2014; Oke, 1973). Therefore, the SUHII 
can determine by the mean LST difference between urban areas and 
suburbs. According to the mean LST distribution in Harbin city, the 
Acheng District, the Hulan District, and the Shuangcheng District are 
selected as the suburbs. To investigate the relationship between the 
SUHI and the green infrastructure fraction, the study calculates the 
SUHII in the subarea scale and 1200 m x 1200 m grid-scale, respectively.

The Normalized Difference Vegetation Index (NDVI) is often used as 
an indicator of green infrastructure coverage. However, NDVI has 
several limitations. For example, during early crop growth stages, when 
green leaf area is small, NDVI is highly sensitive to soil background ef
fects (EARTH OBSERVING SYSTEM, 2019). Additionally, NDVI may 
saturate at later growth stages when crops reach canopy closure, leading 
to inaccurate results (EARTH OBSERVING SYSTEM, 2019). Further
more, the presence of clouds and snow can interfere with NDVI values, 
as water bodies are indistinguishable from snow and clouds when NDVI 
values fall below zero (Saravanan et al., 2018).

To address these limitations, this study replaces NDVI with a green 
infrastructure fraction index to investigate the relationship between 
land use and land cover (LULC) changes and surface urban heat island 
(SUHI) effects (Ma et al., 2008; Weng et al., 2004). By developing linear 
regression models incorporating NDVI and SUHII, this study evaluates 
whether using the green infrastructure fraction provides an advantage 
over NDVI in this context.

Land use types are reclassified according to the Ministry of Land and 
Resources of the People’s Republic of China (2013) into farmland, forest 
land, grassland, construction land, water bodies, and other land Zhang 
and Xia., 2024. Among these, farmland, forest land, grassland, and water 
bodies are considered green infrastructure. The green infrastructure 
fraction (GIF) is then calculated as the proportion of green infrastructure 
area relative to total land area. At the subarea scale, GIF is calculated for 

Fig. 2. Geographical location of study area - Harbin (45◦08ʹ~46◦25ʹN, 125◦41ʹ~127◦39ʹE).
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each district, whereas for the grid-scale analysis, it is computed based on 
grid units.

2.3. Phase 3: analysis of the relationship between SUHI and green 
infrastructure

Fractional vegetation cover is commonly used as an indicator of 
vegetation abundance to examine the correlation between LULC and 
LST/SUHII (Amiri et al., 2009; Weng et al., 2004; Zhou et al., 2011). One 
widely used approach to assess the relationship between vegetation 
cover and SUHI is statistical analysis, including correlation and regres
sion analyses (Cui & Foy, 2012; Greene & Kedron, 2018; Jenerette et al., 
2007; X. Li et al., 2013; Y. Y. Li et al., 2012; Ma et al., 2008; Y. Wang & 
Akbari, 2016a; Weng et al., 2004, 2011; Zhou et al., 2011).

This study employs linear regression analysis to assess the relation
ship between green infrastructure and SUHI. Several simple linear 
regression models are developed, treating the green infrastructure 
fraction as the independent variable and SUHII as the dependent vari
able. Additionally, models incorporating NDVI and SUHII are built to 
compare the effectiveness of using the green infrastructure fraction 
instead of NDVI in this context.

2.4. Phase 4: urban green retrofitting decision making and detailed case 
study

To further investigate the influence of green infrastructure on UHI, 

the study uses the ENVI-MET software to simulate air temperature 
changes under different green infrastructure fraction scenarios. Based on 
the spatial distribution of LST and SUHII, urban heat hotspots are 
identified. One of these hotspots is selected for the development of 
multi-scenario 3D models, each representing a different green retrofit
ting strategy. Comparing the effectiveness of different strategies in 
mitigating UHI provides insights for future land use planning and de
cision-making.

2.5. Phase 5: socioeconomic shifts and UHI intensification

In this phase, we explored the relationship between surface urban 
heat island intensity (SUHII) and key socioeconomic indicators, 
including population density, gross domestic product (GDP), and the 
green infrastructure fraction (GIF). SUHII data were extracted from 
remote sensing imagery, while socioeconomic and land use information 
was sourced from statistical yearbooks and LULC datasets. The aim was 
to identify patterns and associations between socioeconomic dynamics 
and urban thermal behaviour. Particular attention was given to how 
population decline, economic shifts, and variations in green infrastruc
ture relate to changes in SUHII, especially in the context of an extremely 
cold-climate city.

2.6. A case study

A detailed case study of Harbin is developed based on this framework 

Fig. 3. The LST patterns and distribution histograms of Harbin city in the summer day (2000–2020).
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(Fig. 1). Harbin (DWa climate zone) located in northeastern China, is the 
capital of Heilongjiang Province (Fig. 2). It has a total administrative 
area of 53,100 km², a city area of 10,198 km², and a built-up area of 428 
km². By the end of 2015, Harbin had a total population exceeding 5.49 
million, with 5403 km² of farmland and 135.14 km² of urban green 
space. The per capita public green space was only 9.5 m². Harbin ex
periences a mid-temperate climate, with an annual average temperature 
of 4.7 ◦C (2015) and distinct seasonal variations. From November to 
February, the monthly average temperature remains below 0 ◦C, with 
seasonal temperature differences reaching almost 60 ◦C—ranging from 
28 ◦C in summer to − 24 ◦C in winter. During winter, vegetation 
coverage is nearly non-existent. According to the updated 
Köppen–Geiger climate classification (Beck et al., 2020), Harbin falls 
within a cold climate zone with hot summers and dry winters, where the 
warmest month’s temperature exceeds 22 ◦C while the coldest monthly 
mean temperature falls below 0 ◦C. In this study, in order to minimize 
the impacts of cloud coverage on the quality of images and considering 
available of data, the Landsat series remote sensing images (spatial 
resolution 30 m) were downloaded from the U.S. Geological Survey 
website. MODIS data are from NASA website (https://search.earthdata. 
nasa.gov/search/).

3. Results

3.1. The temporal and spatial characteristics of the urban heat island 
effects

Using the radiative transfer equation method (Eqs. (1)–3), this study 
retrieves the summer and winter diurnal LST of Harbin City from 2000 
to 2020. The LST at night are also obtained by MODIS data. Figs. 3–6
show the results and distribution histograms of the daytime and night
time LST in summer and winter, respectively. As shown in Fig. 3 and 4, 
in general, the extent of high-temperature areas in summer expands 
gradually from 2000 to 2020. The most remarkable temperature in
crease occurs between 2015 and 2020, as observed in the temperature 
distribution on the histograms (upper left corner of Figures). The 
occurrence frequency of temperatures above 34 ◦C increases from 
13,789 to 139,163, with a growth of 125,374 at day. The total land area 
with nighttime LST more than 24 ◦C also expand by 710 km2 from 2015 
to 2020. The higher LST value at daytime concentrates on central part of 
Harbin City where usually undergoes more heat release and absorption. 
While it comes to central areas and water bodies at night. This is because 
of massive heat radiation storage during daytime but slower cooling and 
evaporation rates for water bodies and built-up areas during nighttime 
(Steeneveld et al., 2014; R. Wang et al., 2021).

There is a clear fluctuation in Harbin City’s winter LST over the 20- 
year period, as shown in Fig. 5&6. The diurnal mean LST increases from 
− 26.57 ◦C in 2000 to − 18.84 ◦C in 2005, then drops to − 28.68 ◦C in 
2010, before rising again to − 16.25 ◦C in 2020. The nighttime mean LST 

Fig. 4. The LST patterns and distribution histograms of Harbin city in the summer night (2000–2020).
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climbs up to-25.68 ◦C in 2005, then goes back down to − 31.50 ◦C of 
2010. After an increase of 7.74 ◦C in 2005, the nighttime mean LST 
appears a smaller decrease with 0.51 ◦C to − 24.27 ◦C in 2020. The 
histograms on the left of each figures depict clearly the frequency dis
tribution of different LST ranges. For example, for winter daytime in 
2020, the highest frequency is observed in the LST range appears at 
more than − 16 ◦C, followed by − 17~− 16 ◦C. Nearly 146,621 frequency 
(4588 km2) have an LST above − 16 ◦C, which is 14,662.1 and 15.7 times 
of 2000 and 2005, separately. Even though in winter of cold climate 
area, high temperature phenomenon is enhancing.

According to Table 1, the SUHII of Harbin City shows an overall 
increase in both summer daytime and nighttime from 2000 to 2020, 
while it emerges obvious fluctuation in winter (Table 2). When 
comparing the winter SUHII with the summer SUHII for all study years, 
it is found that the summer diurnal SUHII (ranging from 1.38 ◦C to 5.51 
◦C) is significantly higher than the winter diurnal SUHII (0.52 ◦C to 1.10 
◦C). This contradicts the findings of previous studies (García-Cueto et al., 
2007; He et al., 2007), in which García-Cueto’s study focused on a hot, 
arid desert climate (BWh) city Mexicali, and He et al.(2007) used very 
limited number of meteorological stations (673 for whole China). Fig. 7
also illustrates that the UHI effect in summer daytime is stronger than 
that in winter for cold climates, and more interestingly, higher summer 
urban heat island effects correspond to lower winter urban heat island 
effects in that specific study year during daytime.

3.2. Relationship between SUHII and green ration (GIF and NVDI)

In the study, the green infrastructure fraction (Fig. 8) and SUHII are 
first extracted using 1200 m × 1200 m grids. The Green Infrastructure 
Fraction (GIF) statistics are derived from LULC classification data (2010) 
of Second National Land Survey Database in China. Its value is between 
0 and 1. The value 0 indicates that the LULC types of the grid are the 
construction land or other land, while the value 1 demonstrates that the 
grid is entirely covered by green infrastructures. The middle yellow part 
in Fig. 8 with sparse green infrastructure cover, belongs to the urban 
built-up area of Harbin city. Therefore, the 0 value is mainly distributed 
in these areas.

The current paper establishes linear regression equations between 
the green infrastructure fraction and SUHII at the grid scale. The results 
(Fig. 9) indicate that SUHII still shows a negative correlation with the 
green infrastructure fraction (Weng et al., 2011) in both summer and 
winter at a significance level of 0.0005. The correlation between SUHII 
and GIF in winter (with R = − 0.30 at daytime, and R = − 0.24 at 
nighttime) is significantly lower than that in summer daytime (with R =
− 0.72). While the Nighttime SUHII also displays inapparent relevance to 
GIF. Nevertheless, the linear relationship confirms that an increase in 
green vegetation can indeed alleviate urban heat island effects, espe
cially for summer daytime.

The study also analyses the correlation between SUHII and NDVI (as 
a proxy for the green ratio) to determine whether the green 

Fig. 5. The LST patterns and distribution histograms of Harbin city in the winter day (2000–2020).
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Fig. 6. The LST patterns and distribution histograms of Harbin city in the winter night (2000–2020).

Table 1 
The changes of the SUHII for Harbin city in the summer (2000–2020).

Time (Year) Mean Daytime LST (◦C) Daytime SUHII (◦C) Mean Nighttime LST Nighttime SUHII (◦C)

Total Urban Suburban Total Urban Suburban

2000 27.77 29.99 27.07 2.92 17.14 17.46 17.04 0.42
2005 26.22 27.27 25.89 1.38 19.05 19.87 18.80 1.07
2010 25.72 27.22 25.24 1.98 16.75 17.83 16.42 1.41
2015 27.44 29.38 26.83 2.55 18.01 18.58 17.82 0.76
2020 33.57 37.76 32.25 5.51 21.74 22.60 21.47 1.13

Table 2 
The changes of the SUHII for Harbin city in the winter (2000–2020).

Time (Year) Mean Daytime LST (◦C) Daytime SUHII (◦C) Mean Nighttime LST Nighttime SUHII (◦C)

Total Urban Suburban Total Urban Suburban

2000 − 26.57 − 26.10 − 26.72 0.62 − 34.92 − 33.64 − 35.32 1.68
2005 − 18.84 − 18.18 − 19.05 0.87 − 25.68 − 24.73 − 25.98 1.25
2010 − 28.68 − 28.28 − 28.80 0.52 − 31.50 − 30.28 − 31.88 1.6
2015 − 19.27 − 18.43 − 19.53 1.1 − 23.76 − 23.04 − 23.99 0.95
2020 − 16.25 − 15.62 − 16.45 0.83 − 24.27 − 23.09 − 24.64 1.55

Y. Bai and Y. Xing                                                                                                                                                                                                                             Sustainable Cities and Society 133 (2025) 106843 

7 



infrastructure fraction index is more effective than NDVI in the study of 
UHI. Fig. 10 reveals that SUHII is negatively correlated with NDVI in 
summer but positively correlated in winter. Furthermore, the linear 
trends between SUHII and NDVI are weaker than those between SUHII 
and GIF in both summer and winter daytime. Whereas the correlation 
coefficient between SUHII and NDVI in summer is only − 0.36, the co
efficient between winter SUHII and NDVI is even lower, at just 0.17. This 
again indicates that the vegetation fraction is superior to NDVI, as shown 
in similar studies (Ma et al., 2008; Weng et al., 2004), when investi
gating the correlation between vegetation cover and UHI at daytime. 
When it comes to nighttime SUHII in summer, its relevance to vegetation 
index is just opposite to daytime. Using NDVI as an indicator is better 
than GIF, and the correlation coefficient shows a superiority of 0.5.

3.3. The results of green retrofitting scenario simulation

Dense urban areas and highly commercial zones are observed to have the 
highest UHI levels (Mohan et al., 2013; Zandi et al., 2022). In Harbin City, 
dense urban areas and highly commercial zones are located in Daoli District, 

Nangang District, and Xiangfang District. Based on LST distribution char
acteristics in 2010, hot spots are also concentrated within these areas, as 
shown in Fig. 11. The selected UHI hot spot is characterised by high-density 
mixed-use building blocks without designated spaces for parks. The building 
blocks measure 60 m × 60 m, with building heights ranging from around 12 
m to 22 m. Currently, the site has only a limited number of street trees and a 
small roadside green space, and it is situated far from public green spaces. 
Therefore, this site, shown in Fig. 11, is selected for green retrofitting studies.

For urban green retrofitting planning, we establish three simulation 
scenarios (Fig. 12): the basic scenario, the improved scenario, and the 
green scenario. The basic scenario simulates conditions based on the 
existing green infrastructure fraction (1.6 %). In the improved scenario, 
only street trees are increased, raising the green infrastructure fraction 
to 4.3 %. The green scenario builds upon the improved scenario by 
replacing conventional roofs with green roofs, further increasing the 
green infrastructure fraction to 30 %.

Using ENVI-met software, this study simulates air temperature at 
6:00 am, 2:00 pm, and 8:00 pm under the three scenarios. The simula
tion results for the three scenarios are presented in Fig. 13 and Table 3. 
The higher temperature occurs at 2:00 pm, while the temperature dis
tributions at 6:00 am and 8:00 pm are similar. This pattern is broadly 
consistent with the temporal temperature distribution reported by the 
meteorological station, which recorded 25 ◦C at 6:00 am, 28 ◦C at 2:00 
pm and 8:00 pm (weather station data are from https:// en.tutiempo. 
net/climate). Based on long-term real-time weather statistics for Harbin 
City, 2:00 PM is typically the hottest time of the day. Furthermore, the 
National Climatic Data Center estimates that peak temperatures gener
ally occur two to three hours after noon, depending on cloud cover and 
wind speed variability (Finfrock, 2008). An increase in street tree can
opy cover, raising the green infrastructure fraction to 4.3 %, yield no 
statistically significant decline in air temperature at 1.5 m height 
compared to the baseline scenario (Fig. 14). At this stage, the highest air 
temperatures are recorded in streets and courtyard spaces enclosed by 
buildings at afternoon, followed by the buildings themselves. In the 
morning, buildings themselves are of lower temperature than other 
areas, while building areas turn into hottest among the site at night. 
When green roofs replace conventional roofs, increasing the green 
infrastructure fraction to 30 %, air temperature exhibits a slight overall 
reduction. Fig. 14 illustrates that the temperature in the simulated area 
decreases by approximately 0~9.41 ◦C if adding the use of green roofs. 
The most significant effect of green roofs on temperature manifest in the 
early morning with biggest reduction of 9.41 ◦C. These findings indicate 
that air temperature at 1.5 m above ground level begins to decrease only 
once the green infrastructure fraction reaches a certain threshold—30 % 

Fig. 7. Yearly and seasonal SUHII Variations.

Fig. 8. The distribution pattern of the green infrastructure fraction.
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in this study. Therefore, a strategically measured increase in green roofs 
in densely populated urban areas can serve as a viable approach to 
mitigating the urban heat island (UHI) effect as confirmed in related 
studies (Jamei et al., 2019; Liu et al., 2021).

3.4. Population decline, UHI and, urban green infrastructure

Research shows that rapid urbanisation has significant impacts on 
the urban heat island (UHI) effect (Mathew et al., 2017; Singh et al., 
2017; Son et al., 2017). However, there is very little research on the UHI 
effects of depopulation in cities. Depopulation does not necessarily lead 
to a reduction in construction land or an increase in green infrastructure; 
instead, it has been associated with a significant rise in UHI effects, as 

demonstrated in Section 3.2. We introduced a regression model to 
examine the relationship between SUHII and various socioeconomic 
indicators, including population density, GDP, and land use/land cover 
(LULC) changes. The results as shown in Table 4 indicate that over 67 % 
of the variation in SUHII can be explained by these socioeconomic fac
tors. However, the regression model fails to pass standard diagnostic 
tests, suggesting that the influence of these socioeconomic variables on 
SUHII in Harbin is statistically uncertain. Based on prior feature analysis 
of seasonal SUHII during both day and night, only diurnal SUHII was 
found to be meaningful for assessing the impact of socioeconomic fac
tors on urban heat islands (UHI). Consequently, a robust regression 
model—designed to mitigate the influence of outliers—was employed. 
The results suggest that SUHII increases as population density decreases, 

Fig. 9. The linear regression results of the SUHII and GIF at 1.2 km by 1.2km.

Fig. 10. The linear regression results of the SUHII and NDVI at 1.2 km by 1.2km.

Y. Bai and Y. Xing                                                                                                                                                                                                                             Sustainable Cities and Society 133 (2025) 106843 

9 



whereas it tends to decline with reductions in GDP and the Green 
Infrastructure Fraction (GIF). However, current analysis was limited by 
a lack of detailed and reliable geospatial data on these specific urban 
elements. This constraint prevented us from modelling their direct 
thermal contributions at finer spatial scales. Nevertheless, the results in 
Table 4 indicate intensified urban heat island (UHI) effect despite pop
ulation decline at the macro city level.

4. Discussion

This study analysed the temporal and spatial characteristics of the 
Urban Heat Island Effects, and assessed the relationship between green 
infrastructure and SUHI under the scale of grid. To further investigate 
the influence of green infrastructure on UHI, the study simulated air 
temperature changes under different green infrastructure fraction sce
narios, and also explored the impact of key socioeconomic indicators on 
SUHII. The key findings and innovations of this study are as follows:: 

• Vegetation-UHI Dynamics in Cold Climates: It provides a detailed 
spatiotemporal case study demonstrating a strong negative correla
tion between green infrastructure fraction (GIF) and surface urban 
heat island intensity (SUHII) in both summer and winter, filling a gap 
in understanding year-round UHI mitigation in cold-climate cities.

• Re-evaluation of Seasonal UHI Patterns: By showing that summer 
daytime SUHII exceeds winter values contradicting previous studies. 
It challenges existing assumptions and calls for regionally nuanced 
seasonal UHI analyses.

• Improved Vegetation Metrics: The study identifies GIF as a poten
tially more accurate and stable metric than NDVI for quantifying 

urban vegetation, suggesting a methodological shift in how vegeta
tion cover is assessed in UHI studies.

• Practical UHI Mitigation Strategies: It demonstrates the effectiveness 
of green roofs in lowering air temperatures, encouraging planners to 
consider diversified green infrastructure strategies tailored to local 
conditions.

• Urban Greening in Shrinking Cities: It reveals that UHI effects can 
intensify despite population decline, due to continued urban 
expansion and loss of vegetation, highlighting an overlooked need to 
integrate greening policies into planning for shrinking cities.

In this study, it is found that GIF is a better than NDVI when inves
tigating the correlation between vegetation cover and UHI (Ma et al., 
2008; Weng et al., 2004), except for the summer nighttime. NDVI only 
represents vegetation greenness and cannot distinguish vegetation types 
(such as grasslands and trees). For instance, under high summer tem
peratures, low grasslands (with probably higher NDVI values) have 
limited cooling effect than green spaces dominated by trees (Skelhorn, 
Lindley & Levermore 2014; Sodoudi et al. 2018), resulting in a weaker 
correlation between NDVI and SUHII. Moreover, the NDVI value of 
water bodies is below zero, it also cannot be distinguished from snow 
and clouds (Saravanan et al., 2018). However, GIF reflects the overall 
proportion of green spaces (grasslands, water bodies, forests, etc.) in the 
city, including the structural integrity and ecological functions of 
vegetation, which can better influence the change of SUHII (Chen et al. 
2022; Rakoto et al. 2021). But in Harbin’s winter, vegetation enters a 
dormant period. At this point, green spaces in GIF loses its cooling 
function, while the NDVI can still reflect limited greenness of evergreen 
vegetation. Therefore, it is important to be more cautious when using 
NDVI in UHI and urban green research and policy analysis.

Fig. 11. Green Retrofitting Study Site.

Fig. 12. Three green retrofitting scenarios of the ENVI-met model. (60mX60m).
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Based on the simulation of year-round thermal regulation potential 
of green roofs in cold climates, practical green roof policies are needed 
to encourage their installation (Clar & Steurer 2023; Liberalesso et al. 
2020), particularly in areas with limited open space for street trees. 
However, appropriate fiscal support must be provided for economically 
disadvantaged neighborhoods. Additionally, practical characteristics of 

buildings, such as the structural suitability of existing constructions 
need to be carefully assessed.

The SUHII in Harbin continues to rise despite declining population 
density, primarily due to urban spatial development strategies and 
planning orientations influenced by specific institutional frameworks 
and policy directives (Harbin Municipal People’s Government, 2006, 
2004). Urban development policies in Harbin have often prioritised 
economic efficiency, promoting increased GDP output with reduced 
labour input, which has led to urban expansion and a growth in built-up 
areas despite a declining urban population and diminishing green 
spaces. As a result, surface urban heat island intensity (SUHII) in Harbin 
continues to rise, primarily driven by spatial development strategies and 
planning orientations shaped by institutional frameworks and policy 
directives (Harbin Municipal People’s Government, 2004, 2006). For 
instance, policies such as the “Relocation of Secondary Industries and 
Tertiary Industry Development” (Tui er Jin San), the Harbin New Dis
trict Development Policy, and population decentralisation programmes 
have effectively redistributed the population from traditional 
high-density core urban areas, often mixed-use industrial and residential 
zones, to newly developed peripheral areas. While this redistribution 
has contributed to a city-wide decrease in population density, it is 
paradoxically associated with a rise in SUHII due to several interrelated 
factors. Firstly, the vacated core areas have increasingly transitioned to 
energy-intensive tertiary sectors (e.g. commercial, office, financial ser
vices), which, despite declining residential populations, drive anthro
pogenic heat emissions and increase the extent of impervious surfaces, 
thus sustaining or intensifying UHI effects. Second, outward spatial 
expansion has led to the proliferation of newly built-up areas at the cost 
of natural vegetation and green spaces. These new developments often 
lack mature green infrastructure, particularly tree canopy cover with 

Fig. 13. The simulated results of the air temperature change with the green infrastructure fraction.

Table 3 
The percentage of temperature reduction in three scenarios.

Scenarios Setting GIF Simulated temperature 
at different time

T changes 
compared to 
a

Min Max

a) Basic 
scenario

Limited green 
vegetation

1.6 
%

6 
am

23.81 
◦C

26.69 
◦C

—

2 
pm

23.83 
◦C

42.21 
◦C

8 
pm

22.14 
◦C

25.31 
◦C

b) 
Improved 
scenario

Increasing 
street trees

4.3 
%

6 
am

23.81 
◦C

26.69 
◦C

0 ~ +0.01 
◦C

2 
pm

29.84 
◦C

42.21 
◦C

− 0.03 ~ 
+0.05 ◦C

8 
pm

22.14 
◦C

25.31 
◦C

0 ◦C

c) Green 
scenario

Increasing 
green roofs 
and street trees

30 
%

6 
am

22.86 
◦C

25.96 
◦C

+0.66 ~ 
− 2.42 ◦C

2 
pm

26.71 
◦C

37.73 
◦C

− 2.10~ 
− 9.41 ◦C

8 
pm

20.65 
◦C

24.48 
◦C

− 0.77 ~ 
− 3.18 ◦C

Note: “+” means the increase in temperature; “-” means the decrease in 
temperature.
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high evapotranspiration capacity, making them vulnerable to becoming 
new UHI hotspots. Additionally, Harbin’s land finance and development 
model continues to favour rapid outward expansion over ecologically 
sensitive urban renewal. This approach, prioritising development speed 
over environmentally refined strategies, further exacerbates the chal
lenges associated with urban heat island effects. These findings highlight 
the urgent need for comprehensive urban re-greening strategies in 
post-industrial cities undergoing population decline. The implementa
tion of large-scale green infrastructure initiatives could play a vital role 
in mitigating UHI impacts, enhancing environmental quality, and 
strengthening urban resilience in the face of socio-economic and 
ecological transitions (De la Sota et al. 2019; Rayan, Gruehn & Khayyam 
2021; Saaroni et al. 2018; Ugochukwu Kanayo Ashinze et al. 2024).

The study acknowledged the limitations of using remote sensing 
data, such as the precision of data fusion and gaps due to clouds. Because 
of a lack of reliable data on biophysical vegetation structure parameters 
(e.g., leaf area index and heights), vacant buildings and underutilised 
grey infrastructure, this study does not analyse the role of these elements 
in urban heat dynamics too. Future research should address these lim
itations and explore interim greening strategies such as green roofs, 
temporary green lots, and community gardens be explored as adaptive 
solutions in future urban climate resilience policies. The substantial 
variations in SUHII at the same GIF can be attributed to several factors. 
Firstly, the influence of surrounding cells plays a crucial role, warranting 
further investigation. Secondly, different types of green infrastructure 
(GI), such as water bodies, bare land, or irrigated areas, exhibit varying 
cooling effects on land surface temperature (LST), which should be 
explored in future studies.

5. Conclusion

This study developed a comprehensive urban greening decision- 
making framework to explore the relationship between urban heat 
islands (UHI) and green infrastructure fraction (GIF), and to support 
green retrofitting efforts. The framework integrates multi-source data 
and computational modelling techniques, enabling evidence-based de
cision-making in UHI mitigation. The main conclusions are following: 

1) A detailed temporal and spatial case study of Harbin revealed a 
significant negative correlation between GIF and SUHII, demon
strating that increased vegetation cover effectively reduces UHI ef
fects in both summer and winter.

2) Summer daytime SUHII values were consistently higher than winter 
values, contradicting some previous findings for cold-climate cities.

3) GIF was proved to be a more reliable measure than NDVI for 
assessing urban vegetation cover. The study’s findings support the 
use of green infrastructure fraction as a proxy for vegetation 
coverage and highlight the need for further investigation into the 
factors contributing to LST changes.

4) The study also demonstrated the effectiveness of green roofs in 
reducing air temperatures, suggesting that urban planners should 
explore various types and proportions of green infrastructure to 
optimize UHI mitigation.

5) Despite a declining population, Harbin experienced increased built- 
up area and UHI effects, highlighting the critical need to prioritize 
urban greening initiatives even in shrinking cities.

In conclusion, this study provides valuable insights into the seasonal 

Fig. 14. The level of temperature reduction when comparing two different scenarios.

Table 4 
The changes of the population density and land use for Harbin city (2000–2020).

Population Density (people/km2) GDP (100 million yuan) LULC Changes ( %) Summer SUHII ( ◦C) Winter SUHII ( ◦C)

GIF Built-up land Daytime Nighttime Daytime Nighttime

2000 539.5 682.0 92.7 7.3 2.92 0.42 0.62 1.68
2005 534.7 678.5 92.4 7.6 1.38 1.07 0.87 1.25
2010 666.8 2578.7 88.9 11.1 1.98 1.41 0.52 1.6
2015 662.5 4129.5 91 9.0 2.55 0.76 1.1 0.95
2020 543.0 3972.4 88.3 11.7 5.51 1.13 0.83 1.55

Data source: Harbin Statistics Yearbook.
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and temporal characteristics of SUHI in Harbin and the relationship 
between SUHII and green infrastructure fraction. The findings under
score the importance of increasing green infrastructure to mitigate UHI 
effects, particularly in cold-climate cities. Urban planners, architects, 
and designers should prioritize the preservation and expansion of green 
infrastructures to enhance urban resilience and sustainability.

However, there is a gap in detailed geospatial datasets, such as 
vegetation height, leaf area index, or building usage types. This restricts 
precise modelling of thermal contributions of different types of green 
and grey infrastructure. Future research should continue to explore the 
role of different types of green infrastructures and their biophysical 
vegetation parameters (such as LAI and height of trees) in improving 
thermal comfort and mitigating UHI. Although socioeconomic variables 
(GDP, population density, land use) explain part of the variation in 
SUHII, the relationships remain statistically uncertain, indicating a need 
for richer datasets and non-linear models to fully capture urban thermal 
responses.
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