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Abstract

The Timed Up and Go (TUG) test is a widely used clinical tool for assessing mobility and
fall risk in older adults and individuals with neurological or musculoskeletal conditions.
While it provides a quick measure of functional independence, traditional stopwatch-based
timing offers only a single completion time and fails to reveal which movement phases con-
tribute to impairment. This study presents a smartphone-based system that automatically
segments the TUG test into distinct phases, delivering objective and low-cost biomarkers
of lower-limb performance. This approach enables clinicians to identify phase-specific
impairments in populations such as individuals with Parkinson’s disease, and older adults,
supporting precise diagnosis, personalized rehabilitation, and continuous monitoring of
mobility decline and neuroplastic recovery. Our method combines adaptive preprocess-
ing of accelerometer and gyroscope signals with supervised learning models (Random
Forest, Support Vector Machine (SVM), and XGBoost) using statistical features to achieve
continuous phase detection and maintain robustness against slow or irregular gait, accom-
modating individual variability. A threshold-based turn detection strategy captures both
sharp and gradual rotations. Validation against video ground truth using group K-fold
cross-validation demonstrated strong and consistent performance: start and end points
were detected in 100% of trials. The mean absolute error for total time was 0.42 s (95%
CI: 0.36–0.48 s). The average error across phases (stand, walk, turn) was less than 0.35 s,
and macro F1 scores exceeded 0.85 for all models, with the SVM achieving the highest
score of 0.882. Combining accelerometer and gyroscope features improved macro F1 by
up to 12%. Statistical tests (McNemar, Bowker) confirmed significant differences between
models, and calibration metrics indicated reliable probabilistic outputs (ROC-AUC > 0.96,
Brier score < 0.08). These findings show that a single smartphone can deliver accurate, in-
terpretable, and phase-aware TUG analysis without complex multi-sensor setups, enabling
practical and scalable mobility assessment for clinical use.

Keywords: Timed Up and Go; smartphone sensors; supervised learning; accelerometer;
gyroscope; turning; walking

1. Introduction
Mobility decline is a common issue among older adults and is closely linked to fall

risk, loss of independence, and reduced quality of life [1–4]. Clinical functional assessments
often rely on subjective evaluations and a stopwatch [4,5]. In the Timed Up and Go (TUG)
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test, clinicians typically measure only the total completion time from the moment the
participant starts with standing from a chair, walks 3 m, takes a turn, walks back to the
chair, and sits back down [6]. The test completion time is used to estimate mobility quality
and independence [7–9]. Another widely used tool, the Modified Rankin Scale, assigns a
score from 0 (no mobility issues) to 6 (severe impairment) [10].

Manual timing is prone to error and provides limited insight, whereas smartphones
equipped with inertial sensors can capture detailed motion data [11–13]. Two patients may
have the same overall TUG time but very different movement patterns: one may struggle
to stand up, while another may have difficulty turning. Knowing which phase takes longer
helps clinicians identify the source of impairment and design targeted interventions, such
as strength training for sit-to-stand or balance exercises for turning. Phase-level information
can also track subtle changes over time, supporting early detection of deterioration and
personalized rehabilitation planning [8,9].

Recent advances in smartphone technologies highlight the importance of automat-
ing traditional approaches [11,14–20]. This enables automated detection of test start and
end points and, more importantly, segmentation of sub-phases, which is essential for
understanding where mobility challenges occur. For example, prolonged sit-to-stand
may indicate lower limb weakness, while extended turning time may suggest balance
or vestibular issues. Such insights go beyond total time and provide actionable infor-
mation for clinical decision-making. Existing studies have validated instrumented TUG
using wearable sensors, but most work has focused on controlled environments [21–24].
Real-world monitoring requires adaptability to variations in age, sex, test settings, and in-
dividual movement styles, making phase-level analysis even more critical for personalized
care [5,10,25,26]. Continuous monitoring could also reveal changes in phase timings over
time, reflecting fatigue, daily routines, or underlying health conditions [10].

The motivation for this work is to introduce a smartphone-based system that automati-
cally segments the Timed Up and Go test into distinct phases, providing objective, low-cost
biomarkers of lower-limb performance. Unlike traditional stopwatch-based timing, our
approach enables clinicians to identify phase-specific impairments in Parkinson’s disease
and older adults, supporting precise diagnosis, personalized rehabilitation, and continuous
monitoring of mobility decline and neuroplastic recovery. In this study, we propose a
smartphone-based system with the following contributions:

• Adaptive preprocessing: Thresholds derived from median and median absolute de-
viation (MAD) per trial adjust sensitivity to individual movement amplitude and
enforce a no-gaps policy, preventing fragmentation during slow or irregular walking.
This adaptability ensures reliable segmentation across diverse gait patterns, which is
critical for clinical use.

• Sensor fusion: Accelerometer and gyroscope signals are combined to capture both
linear and rotational dynamics, improving detection of walking and turning phases.
This enables an accurate phase-level analysis, which helps clinicians identify whether
difficulties arise from straight walking or turning.

• Adaptive turn detection: A peak-based path and an angle-area path work together
to identify both sharp and gradual rotations, addressing a key limitation in prior
single-device approaches. Accurate turn detection is clinically important because
turning deficits are strongly associated with fall risk.

• Statistical features and classical models: Features summarizing magnitude, variability,
and energy are extracted from short windows and classified using Random Forest, Sup-
port Vector Machine (SVM), and XGBoost, ensuring interpretability and efficiency. This
design supports practical deployment on consumer devices without sacrificing accuracy.
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Our work is validated against video-based ground truth, reporting start and end
detection in 100% of trials, a mean absolute error of 0.42 s for total time, an average
phase-level mean absolute error below 0.35 s, and macro F1 scores above 0.85 across all
models. These results demonstrate that a single consumer device can deliver accurate,
phase-aware TUG analysis without complex multi-sensor setups, advancing automated
mobility assessment toward practical deployment.

The remainder of this paper is organized as follows: Section 2 reviews related work on
sensor-based TUG automation. Section 3 provides the details on the proposed methodology.
Sections 4 and 5 present results and discussion. Finally, Section 6 concludes the study with
future directions.

2. Related Work
Existing studies on automating the TUG test have shown that it is feasible to use both

wearable sensors and smartphones for automating the TUG test. Research using wearable
sensors often places multiple devices on different body parts to capture detailed motion
data [27–30], while smartphone-based approaches aim for a simpler and more practical so-
lution for real-world use. Both strategies have demonstrated strong potential but need more
exploration to address gaps, particularly adaptive methods that can adjust to individual
differences in mobility. This adaptability is essential for handling variability in real-world
conditions and for providing accurate, quantitative measures of participant performance.

One of the early works conducted by Salarian et al. [21] proposed an algorithm to
automatically analyze the subcomponents of the instrumented TUG (iTUG) test. This study
enrolled 12 subjects with early-stage idiopathic Parkinson’s disease (60.4 ± 8.5 years) and
12 age-matched controls (60.2 ± 8.2 years), who performed a modified iTUG over a 7-m
distance. Completion time was measured using a stopwatch, and video recordings were
used for verification. Inertial sensors were placed on multiple body locations, including the
forearms, shanks, thighs, lower back, and sternum, to capture movement data. A subgroup
of nine participants was included to assess test-retest reliability. The system identified four
subcomponents: sit-to-stand, steady-state walking, turning, and stand-to-sit. This study
reported accuracy above 0.75 for spatial and above 0.90 for temporal gait parameters, but
the setup was complex and not practical for real-world settings.

In order to make the TUG test automation setup easy, Ishikawa et al. [31] analysed gait
during the TUG test using a smartphone application to evaluate six components: stand,
walk, turn1, walk, turn2, and sit. The study involved 87 older adults (stroke, cardiac
disorder, hip fracture) and 32 participants with idiopathic normal pressure hydrocephalus
(iNPH). An iPhone was placed on the abdomen to record iTUG at the fastest possible
walking speed. The system showed excellent inter-class correlation (ICC) with manual
measurements (ICC = 0.93 for manual TUG and ICC = 0.94 for iTUG). Completion times
were 12.5 s for active participants and 19.4 s for iNPH in iTUG, compared to 10.9 s and
18.1 s in manual TUG. Validation against video annotations achieved 87.4% accuracy for
active participants and 81.2% for iNPH.

Clavijo-Buendía et al. [32] developed a free mobile application for spatio-temporal
gait analysis in individuals with Parkinson’s disease. The app was mounted on the anterior
thigh of the affected side and tested on 30 participants (71.7 ± 5.1 years) during a 10-m walk.
Parameters were measured using both a stopwatch and the app (RUNZI) within two hours
of medication intake. The study also included iTUG, Tinetti Scale, and Berg Balance Scale
for construct validity. The primary objective was to compare gait parameters between the
10-m walk and TUG, but phase-level segmentation for TUG was not addressed. More recent
work by Matey-Sanz et al. [15] combined smartphones and smartwatches to automate TUG,
while Böttinger et al. [16] explored self-administered TUG using a smartphone. These
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studies improve accessibility but still focus mainly on total time and do not fully solve
phase segmentation or turn detection.

Mellone et al. [30] examined the validity of a smartphone-based iTUG in 49 participants
without specific inclusion or exclusion criteria. The smartphone was compared against
the McRoberts Dynaport Hybrid, a research-grade device. Both devices were attached to
the lower back and recorded data simultaneously. The study identified heel strikes and
computed step time, sit-to-stand duration, and total completion time. Intra-rater reliability
was 69.75, and inter-rater reliability was 94.25.

Turki S. Abualait et al. [33] investigated the effect of assistive walking devices on
modified iTUG performance in 20 healthy adults (22.8 ± 4.42 years). The study analyzed
spatio-temporal and functional mobility parameters, reporting significant differences in
stride velocity, stride length, and cadence (p = 0.001) when walking with and without aid.
Sit-to-stand time was slower compared to walking with a walker (p = 0.004) or a cane
(p = 0.004). No significant difference was observed between the cane and the four-wheeled
walker (p = 0.94). The findings indicate that assistive devices alter gait by increasing stride
time and reducing cadence, but the study did not address automation or remote monitoring.
A summary of the reviewed related studies is provided in Table 1.

Table 1. Summary of related work studies closely related to our work on TUG automation.

Study Device and
Placement

What They
Achieved Limitations

Salarian et al. [21] Multiple IMUs on
limbs and trunk

Accurate phase
detection and
gait metrics

Complex setup, not
practical for

home use

Ortega-Bastidas
et al. [14]

Single IMU on
lower back

Segmentation for
walking phases

Weak turn
detection; no

adaptive thresholds

Matey-Sanz
et al. [15]

Smartphone +
smartwatch

Automated TUG
with better

usability

Requires multiple
devices

Ishikawa et al. [31] Smartphone on
abdomen

Six-phase
segmentation;

ICC ≈ 0.94

Limited
adaptability to
variable gait

Mellone et al. [30]
Smartphone on

lower back +
reference device

Valid total time and
sit-to-stand
detection

Minimal
phase-level detail

Existing studies are either focusing on multiple sensors or assume controlled condi-
tions [14–16,30,32]. Few combine simplicity with adaptability. Our work addresses this
gap by using a single smartphone at the lower back, adaptive preprocessing to handle
quiet starts and curvilinear turns, sensor fusion for better phase detection, and supervised
learning for robust classification. We validate the approach against video ground truth
using group K-fold cross-validation and support feasibility for practical deployment.

3. Methodology
A custom Android application was developed to record motion data using the smart-

phone’s built-in inertial sensors. Before each trial, the experimenter entered participant
ID and demographics (age, height, and weight) and selected activity type, trial number,
and recording duration from drop-down menus. Data capture was started manually. At
the end of each session, sensor data and metadata were combined into a single JSON file
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and uploaded to a secure server at Aberystwyth University. If no internet connection
was available, the file was stored locally and uploaded automatically once connectivity
was restored.

3.1. Participants

A total of 27 volunteers (13 males, 14 females; age: 71.5 ± 12.07 years; weight:
67.8 ± 14.36 kg; height: 165.5 ± 10.2 cm) were recruited. Participants were classified as frail
based on slow walking speed (<0.8 m s−1) and prolonged TUG completion time (>10 s) [6].
All participants were able to walk independently. Five participants had Parkinson’s dis-
ease, while the remaining participants had no additional neurological or chronic physical
conditions that could affect gait during the TUG test. Sample sizes were determined based
on recruitment feasibility and the study’s focus on older adults (n = 22), for whom TUG
test performance is most clinically relevant. A Parkinson’s disease subgroup (n = 5) was
included to assess the feasibility and adaptability of the proposed algorithm within a
clinical cohort. These allocations reflect practical constraints and the exploratory nature of
the study.

While our smartphone-based system has been validated on diverse subject datasets,
comprising older adults and patients with Parkinson’s disease, the current implementation
does not explicitly differentiate between these groups during segmentation. However, the
adaptive preprocessing and phase-level analysis are designed to generalize across hetero-
geneous gait patterns, making the approach suitable for future group-specific modeling.

All participants provided informed consent before participation. The study was
approved by Aberystwyth University and NHS Ethical Committees and conducted in
accordance with the Declaration of Helsinki.

3.2. Data Collection

TUG Protocol: Participants performed the standard TUG test, which consists of rising
from a chair, walking three meters, turning 180 degrees, walking back, and sitting down
while turning 180 degrees, as illustrated in Figure 1.

TUG tests were recorded using a Google Pixel 2 smartphone at an average sampling
rate of 405 Hz. The device was secured at the lower back near the L3 vertebra using a
fixation belt to minimize motion artifacts. While the device size may influence participant
behavior due to its placement, this location was chosen because it approximates the body’s
center of mass and is widely recommended in IMU-based gait analysis. It provides stable
axes for acceleration and angular velocity, reducing orientation variability compared to
pocket placement. We acknowledge that this choice does not fully eliminate the possi-
bility of altered movement due to device awareness. However, prior validation studies
confirm that lumbar-mounted smartphones achieve excellent reliability and validity for
spatiotemporal gait parameters (ICC ≥ 0.90, r ≥ 0.89) across walking speeds [29]. Although
front-pocket and shoulder bag placement remain a promising option for real-world de-
ployment, they introduce variability in sensor orientation and body coupling, factors not
addressed in the present study. As part of future work, we plan to collect pocket-mounted
trials and develop placement-aware models to evaluate performance equivalence with the
L3 configuration. Furthermore, existing evidence indicates that a smartphone positioned
at L3 does not materially alter gait, and trunk kinematics measured at this position are
accurate within 5–10◦ of motion capture systems [27]. The smartphone’s orientation was
standardized across all trials: the accelerometer’s z-axis aligned with the anterior–posterior
direction, the y-axis with the medial–lateral direction, and the x-axis represented vertical
acceleration. Data collection began approximately five seconds before and ended five
seconds after each trial, and all uploaded data were visually inspected for quality control.
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Ground Truth Recording: Each trial was recorded using a GoPro Hero 6 (240 fps,
1920 × 1080 resolution) mounted on a tripod at a height of 56 cm to capture the entire
walking path. Videos were reviewed frame by frame to ensure precise identification of
transitions, including the start and end of sit-to-stand, walking, turning, and stand-to-sit
phases. These annotations provided ground truth for computing phase durations and total
TUG time. The manually extracted timings served as the reference for validating algorithm
outputs. Agreement between algorithm-derived and video-derived timings was quantified
using mean absolute error (MAE).
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Figure 1. Overview of the smartphone-based pipeline for TUG segmentation. The top row illustrates
the processing stages: (i) data acquisition from the smartphone, (ii) preprocessing, (iii) rule-based
segmentation, (iv) feature extraction, (v) classifier training, and (vi) output generation (TUG phase
type, phase duration, and total completion time). Below, an image of the actual TUG test demonstrates
the setup, including the chair and the 3-m turning cone. Underneath, gyroscope and accelerometer
traces are shown with shaded regions corresponding to the five core phases: (i) sit-to-stand, (ii) walk
forward, (iii) turn, (iv) walk back, and (v) stand-to-sit. Accelerometer signals capture linear motion
during walking and transitions, while gyroscope signals highlight rotational motion during turns.

3.3. Data Processing Pipeline

The pipeline consists of processing, rule-based segmentation, feature extraction, classi-
fier training and testing, and phase type, duration and total time estimation. The framework
is shown in Figure 1.

3.3.1. Processing

The raw accelerometer and gyroscope signals are filtered to reduce noise and make
them suitable for phase detection [21,22,31]. A low-pass filter is applied to each channel
(cut-off frequency 6 Hz for acceleration and 6 Hz for angular velocity) to remove high-
frequency components while preserving gait dynamics [8]. After filtering, we compute
magnitude envelopes and remove the gravity component using a zero-phase 2nd-order
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Butterworth lowpass baseline filter at 0.25 Hz. This isolates dynamic acceleration, which is
essential for detecting transitions such as sit-to-stand and turning.

To capture local energy patterns that characterize walking and turning, we calculate
root mean square (RMS) envelopes using short moving averages: 150 ms for acceleration
and 200 ms for gyroscope signals. The window sizes differ because acceleration changes
more rapidly, especially during heel strikes and sit-to-stand transitions, so a shorter window
(150 ms) preserves temporal sensitivity without over-smoothing. In contrast, angular
velocity varies more smoothly during rotation, so a slightly longer window (200 ms)
provides stability for turn detection and reduces false peaks. These RMS envelopes provide
a smoothed representation of motion intensity, making it easier to distinguish between
active and still phases of TUG. After that, we resample all envelopes to a common time base,
using the gyroscope as the reference, to ensure alignment across both signals. This design
balances temporal sensitivity for accelerometer data and stability for gyroscope data.

Finally, we compute adaptive thresholds based on the median and median absolute
deviation (MAD) of each trial. This choice is motivated by robustness: median and MAD
are less sensitive to outliers and skewed distributions than mean and standard deviation,
which is critical because gait signals often include irregular peaks from slow walking or
brief pauses.

Adaptive thresholds were computed to detect significant motion events during the
TUG test. For the accelerometer signal, the threshold thacc(t) was based on the envelope of
the acceleration magnitude (Accenv) and defined as:

thacc(t) =

median(Accenv) + 2.0 × MAD, t ≤ t0 + 1.5 s,

median(Accenv) + 2.25 × MAD, otherwise.

Here, median(Accenv) is the median of the accelerometer envelope, and MAD is the Median
Absolute Deviation. A lower multiplier (2.0) is applied during the first 1.5 s after the
start time t0 to capture early movements, while a slightly higher multiplier (2.25) is used
afterward to reduce false positives. For the gyroscope signal, the threshold thgyr was
computed from the root mean square of the gyroscope signal (Gyrrms) as:

thgyr = median(Gyrrms) + 2.0 × MAD.

These adaptive thresholds leverage robust statistics (median and MAD) to accommo-
date individual variability and noise, ensuring reliable detection of both linear and rota-
tional movements.

3.3.2. Rule-Based Segmentation

The rule-based segmentation was used to automatically generate training labels from
the 27 trials, ensuring consistent and reproducible annotation without manually labeling
every frame. Labels were derived from adaptive thresholds applied to accelerometer
and gyroscope envelopes, and short pauses during walking were merged into the near-
est walking segment to avoid fragmentation. This is clinically important because brief
hesitations are common in frail or neurologically impaired individuals and should not
be misclassified as separate phases, which could otherwise distort timing and mislead
clinical interpretation.

Phase Detection with no gaps policy: Our objective is to identify distinct phases of TUG
test: sit-to-stand, walk forward, turn, walk back, and sit down. Accurate segmentation of
these phases is essential for identifying phase-specific impairments. Our adaptive threshold
based approach applied on each feature window ensures robust detection under variable
gait patterns.
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First, a global movement window [ts, te] (ts is the start of the window and te is the
end of the window) is identified, representing the entire active period of the TUG test.
Within this window, a no-gaps policy is enforced: any ambiguous or idle segments between
phases are re-labeled as walking. This reflects the biomechanics of TUG, where continuous
motion is expected between sit-to-stand and turning phases. This strategy prevents artificial
fragmentation and ensures physiologically consistent phase sequences.

Whereas turns are detected using a dual-path approach to capture both sharp and
gradual rotations:

1. Peak-based detection: Identifies high-intensity rotational activity using gyroscope
RMS values. Early in the test, thresholds are lower to avoid missing the typically
curvilinear, lower-peak first turn, while later thresholds are higher to avoid false
positives during return walking.

2. Angle-area detection: Integrates rotational activity over a 1 s window to detect low-
amplitude, curvilinear turns that peak-based methods might miss. This ensures
sensitivity to gradual rotations often seen in frail or Parkinsonian gait.

Each candidate’s turn is required to persist for a minimum duration of 0.25 s. Subse-
quently, the two events exhibiting the largest integrated angles are retained, corresponding
to the first and second turns.

The final sit phase is assigned deterministically based on two conditions: (i) the
accelerometer envelope falls below a threshold for at least 0.6 s near the end of the trial,
and (ii) a short deceleration impulse is observed. The onset of sitting is marked at the first
sharp drop in acceleration to avoid misclassifying residual micro-movements as walking.

The final sequence of phases is constructed as:

stand-to-walk → walk forward → turn → walk back → (turn) → walk-to-chair → sit.

This deterministic ordering, combined with the no-gaps policy, ensures biomechanical
plausibility and robustness against sensor noise or irregular gait patterns.

While the rule-based approach provides transparent and interpretable labels, it may
not generalize well to unseen subjects with different gait patterns. Therefore, machine
learning classifiers (Support Vector Machine, Random Forest, XGBoost) were trained on
these rule-based labels to learn and generalize the segmentation logic, producing smoother
and more adaptive phase detection for new participants and conditions. Finally, both
approaches were validated against the true manual ground truth obtained from GoPro
video annotations.

The output of this stage includes labeled time series, segmentation files, and visual-
ization plots for verification. These labels form the foundation for feature extraction and
model training, ensuring that the learning process is interpretable.

3.3.3. Feature Extraction

After segmentation, we extract features that capture the essential dynamics of each
phase while remaining computationally efficient for real-time use. Features are com-
puted over sliding windows of 1.0 s with a 0.5 s overlap. This window length ensures
that at least one gait cycle is included, while the overlap keeps the system responsive to
rapid transitions.

From each envelope, we calculate the mean, standard deviation, RMS, peak-to-peak
range, signal energy, and histogram entropy. These features were chosen because they
summarize magnitude (mean, RMS), variability (standard deviation, peak-to-peak), energy
distribution (signal energy), and complexity (entropy), which are critical for distinguishing
between steady walking, transitions, and rotational movements. Signal energy represents
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the overall magnitude of movement captured by the smartphone sensor. Higher energy
values generally correspond to more vigorous or forceful movements, which can aid in
differentiating gait phases or detecting abnormal patterns. Energy is computed as:

Energy =
n

∑
i=1

x2
i , (1)

where xi represents the signal amplitude at sample i.
Whereas, entropy captures the complexity or unpredictability of the signal distribution

by applying Shannon entropy to the histogram of signal values. Higher entropy indicates
greater variability in movement patterns, reflecting irregular or unstable gait. This fea-
ture complements amplitude-based metrics by revealing subtle differences in movement
dynamics, making it particularly useful for distinguishing normal from pathological gait
behaviors. Entropy is calculated as follows:

Entropy = H(hist(x)) = −
m

∑
j=1

pj log2(pj), (2)

where hist(x) denotes the histogram of the signal values, pj is the probability of the j-th
bin in the histogram, and m is the number of histogram bins.

Together, they yield 12 features per window (6 from the accelerometer and 6 from
the gyroscope), balancing discriminative power with low computational cost. Figure 2
illustrates this process, showing how windows slide across the signal and how features are
derived from each segment.

M
ag

. v
el

.(
ra

ds
-1

)

Time (s)

M
ag

. a
cc

.(
m

s-
2 )

0 6 12 18

1 seconds

overlap (50%)

features

mean, std
RMS,
peak-to-peak
energy
histogram entropy

start end

0

3

6

-1

0

2

Figure 2. Labels for each window are assigned by majority overlap with the rule-based segments.
Feature extraction preprocessing was applied to smartphone-based TUG data. Sliding windows
of 1 s with 50% overlap are used after start and end detection. Statistical descriptors (mean, stan-
dard deviation, RMS, peak-to-peak, energy, and entropy) are computed from accelerometer and
gyroscope envelopes.

From 27 trials (one per subject), we obtained 763 windows: stand (316), walk (272),
turn (148), and sit (27). The sit class is excluded from training because it occurs only once
and would introduce severe class imbalance. Instead, we recover it deterministically during
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inference using the threshold. The final classification task is defined over three classes:
(i) stand, (ii) walk, and (iii) turn.

3.3.4. Training Classifiers

The goal of this stage is to test whether classical machine learning models can deliver
strong accuracy using statistical features [9]. We trained three widely used models on
the same dataset and preprocessing pipeline to ensure a fair comparison. Each model
was selected for its ability to handle nonlinear decision boundaries and small tabular
feature sets.

Random Forest (RF): We implemented RF in scikit-learn with 500 trees, square-root
feature selection, a minimum leaf size of 3, and a minimum split size of 6, with no depth
restriction. RF is selected for its robustness to noisy features and its ability to model
complex relationships without extensive tuning [34]. Inverse-frequency sample weighting
was applied to address class imbalance, which is critical because TUG phases are inherently
uneven in duration and representation across the test.

Support Vector Machine (SVM): We used an RBF-kernel SVM with standardized
features, gamma set to scale, and a cost parameter C = 5.0. Class weights were balanced
to improve performance under residual skew. The RBF kernel was selected because it can
capture non-linear decision boundaries even when the feature set is compact, ensuring that
minority classes such as turns were not overshadowed by more frequent phases [35].

XGBoost: For gradient-boosted trees, we used a multi-class objective with a maximum
depth of 4, 300 estimators, a learning rate of 0.08, and subsampling and column sampling
rates of 0.9. This configuration balances bias and variance, making the model efficient and
less prone to overfitting on small datasets [36].

Evaluation We used 5-fold cross-validation (StratifiedGroupKFold) to prevent data
leakage from correlated windows belonging to the same participant [8]. Approximately 20%
of subjects were held out for final testing to provide an unbiased estimate of generalization.
We report accuracy, macro-F1, weighted-F1, and per-class F1 scores, as these metrics capture
both overall performance and class-specific balance. Confusion matrices are generated for
both cross-validation and test sets to visualize misclassifications.

Window-level classification metrics (accuracy and F1) are computed with respect to
the rule-based reference labels, whereas timing metrics (total and phase durations) are
computed with respect to the frame-by-frame annotated GoPro video ground truth.

To assess statistical significance between models, we used McNemar’s test and
Bowker’s test for paired classification results. These tests are specifically designed for
comparing paired categorical predictions on the same items, which fits our scenario where
each model predicts the same set of windows. Unlike parametric tests, they do not assume
normality, making them appropriate for discrete classification outcomes. Normality checks
are only required when comparing continuous per-subject metrics (e.g., macro-F1 scores),
which was not the case here [37,38]. For probabilistic calibration, ROC-AUC and Brier
scores are calculated.

3.3.5. Duration Estimation

After classification, we reconstruct phase boundaries by merging consecutive windows
with the same label. This step reduces fragmentation and creates continuous segments that
represent the actual execution of the sequence. To maintain logical consistency, we apply
rules that enforce the expected order: standing occurs before walking, the turn is placed
between the two walking segments, and the final sit follows the last walk.

Once the sequence is validated, we compute the duration of each phase using its start
and end timestamps. These durations allow the system to measure how long each segment
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lasted and to calculate the total completion time by summing all phases. The estimated total
time is then compared against video-based ground truth using mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

|t̂i − ti|,

where t̂i is the total estimated time of TUG using a smartphone and ti is the ground truth video
total time for TUG of a participant. We compute the MAE for individual phases, providing a
detailed assessment of timing accuracy across standing, walking, and turning segments.

4. Results
We report performance for start and end detection, phase classification, phase timing

accuracy, and sensor contribution. All metrics are computed using cross-validation and
confirmed on a held-out test set.

4.1. Start and End Detection

The rule-based preprocessing combined with adaptive thresholds detected the start
and end of the TUG sequence in 100% of trials. The MAE for total completion time com-
pared against frame-by-frame annotated video ground truth was 0.42 s (95% CI: 0.36–0.48 s),
indicating strong agreement with manual timing. Phase-level timing was also accurate:
sit-to-stand (MAE: 0.31 s), walking (MAE: 0.29 s), turning (MAE: 0.34 s), and stand-to-sit
(MAE: 0.28 s). These results demonstrate that a single smartphone can deliver reliable
overall and phase-specific TUG timings without requiring multi-sensor setups. Adaptive
thresholds improved robustness to slow starts and correctly segmented sitting back to the
chair, reducing false positives in slow-motion segments. The summary is given in Table 2.

Table 2. Mean absolute error (MAE) for total TUG time and each phase (N = 27 trials).

Metric MAE (s) 95% CI (s)

Total TUG 0.42 0.36–0.48
Sit-to-Stand 0.30 0.18–0.42
Walk 0.28 0.15–0.41
Turn 0.34 0.15–0.53
Stand-to-Sit 0.31 0.18–0.44

4.2. Phase Classification

Three models were evaluated on the same feature set: RF, SVM, and XGBoost. All
models achieved stable performance, with SVM slightly ahead on macro-F1 (0.88 ± 0.018).
XGBoost and RF tied closely, confirming the suitability of tree-based learners for this task.
Models using both acceleration and angular velocity outperformed single-stream models.
Using only the accelerometer reduced macro-F1 by 12%, while using only the gyroscope
reduced macro-F1 by 9%. Whereas, combining both accelerometer and gyroscope yielded
the best results. The results are reported in Table 3.

Table 3. Classification performance for TUG phases (mean ± SD).

Model Accuracy Macro-F1 Weighted-F1

Random Forest 0.871 ± 0.035 0.850 ± 0.030 0.849 ± 0.028
SVM (RBF) 0.901 ± 0.019 0.882 ± 0.018 0.854 ± 0.017
XGBoost 0.891 ± 0.021 0.875 ± 0.019 0.848 ± 0.018
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Confusion matrices in Figure 3 compare the performance of SVM, RF, and XGBoost
across the three classes: Stand, Walk, and Turn. RF and XGBoost exhibited similar distribu-
tions, with Stand achieving the highest true positive rates and Walk the lowest. This reflects
the challenge of distinguishing short walking segments from transitions. The inclusion of
gyroscope features improves turn detection, as rotational motion is captured effectively.
However, when movements are quick and transitions between walking and turning over-
lap, classification becomes more complex, reducing accuracy for these phases. Consistent
with this, visual inspection of time-aligned predictions showed that most Walk–Turn er-
rors occurred in short transition periods when participants decelerated into the turn or
accelerated out of it, rather than during steady walking or the middle of the turn.

walk

stand

turn

stand walk turn

Predicted

T
ru

e

stand walk turn stand walk turn

PredictedPredicted

XGBoost Support Vector Machine Random Forest

45 3 0

4333

1 0 12 1 1 11

3361

44 4 0 44 4 0

3 33 4

1 1 11

Figure 3. Confusion matrices for three-class classification (Stand, Walk, Turn) using RF, SVM, and
XGBoost models. All models show strong overall performance, with SVM achieving higher true
positives for Walk.

To further assess discriminative ability beyond raw classification counts, Figure 4
presents ROC curves for the same models across all classes. All classifiers achieved high
AUC values (above 0.96), confirming strong separation between phases. SVM showed
slightly higher sensitivity for Walk, while RF and XGBoost performed similarly for Stand
and Turn. These results complement the confusion matrix analysis by demonstrating
that, despite occasional misclassifications in overlapping transitions, the models remain
well-calibrated and robust for phase-level detection.

stand AUC=0.976
walk AUC= 0.965
turn AUC= 0.991
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walk AUC= 0.973
turn AUC= 0.989
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Figure 4. ROC curves were generated using a one-vs-rest approach for each class (Stand, Walk, Turn).
For each model, we used the predicted class probabilities and varied the decision threshold from 0 to
1 in small increments. At each threshold, we computed the true positive rate (TPR) and false positive
rate (FPR) for the target class versus all others. The area under the curve (AUC) was then calculated
for each class and averaged across folds.
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4.3. Phase Estimation

Figure 5 illustrates phase identification and timing estimation for the best-performing
model (SVM), alongside total TUG time estimation. The plots show accelerometer and gyro-
scope signals with detected boundaries for Sit-to-Stand, Walk, Turn, and Stand-to-Sit phases.
The estimated total time closely matches the video ground truth, with differences under one
second, confirming accurate start and end detection. Phase-level segmentation aligns well
with annotated transitions, demonstrating that logical sequence enforcement and merging
short segments produce stable boundaries. These results validate the pipeline’s ability to
deliver both total time and phase durations without introducing unrealistic transitions.
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Figure 5. Phase identification and timing estimation for the best-performing model (SVM). Detected
boundaries for Sit-to-Stand, Walk, Turn, and Stand-to-Sit phases are shown alongside the magnitude
of accelerometer and gyroscope signals. Estimated total time closely matches video ground truth.

To show the interpretability and identify the most discriminative signals, we computed
grouped-by-trial permutation feature importance for all models (SVM, Random Forest,
XGBoost), as shown in Figure 6. This trial-aware approach measures the mean drop in
macro-F1 when each feature is shuffled within its participant trial, preserving intra-subject
structure and avoiding cross-trial leakage. Across all models, gyroscope RMS magnitude
(gyr_rms) emerged as the most influential feature, followed by dynamic acceleration RMS
and acceleration energy. These findings indicate that rotational dynamics play a dominant
role in detecting turning and transition phases, while acceleration features contribute
strongly to walking and transfers. Importance magnitudes were smaller but more stable
than global permutation, reflecting a conservative and realistic evaluation.

Figure 6 shows the grouped-by-trial permutation feature importance for all three
classifiers. Importance is concentrated in a small subset of features particularly RMS,
variance/standard deviation, and entropy from the gyroscope and dynamic acceleration.
While lower-ranked features such as mean contribute little, suggesting that future work
can safely explore reduced feature subsets without large loss of accuracy.
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Figure 6. Grouped-by-trial permutation feature importance for SVM, Random Forest, and XGBoost
models. Extracted features include gyroscope (gyr_) and accelerometer (acc_) domains, each com-
puted for six metrics: entropy (_entropy), energy (_energy), root mean square (_rms), peak-to-peak
(_ptp), mean (_mean), and standard deviation (_std). Entropy is calculated as Shannon entropy of
the signal histogram, quantifying variability and complexity; energy represents the sum of squared
amplitudes, reflecting overall movement intensity; root mean square captures signal magnitude;
peak-to-peak indicates the range of motion; mean provides the average amplitude; and standard
deviation measures dispersion of signal values. Importance is computed as the mean drop in macro-
F1 when each feature is shuffled within its participant trial, preserving intra-subject structure and
avoiding cross-trial leakage. These results confirm that combining gyroscope and accelerometer
features yields the most discriminative representation for smartphone-based TUG segmentation.

To assess whether differences between models were statistically significant, we applied
McNemar’s test and Bowker’s test on paired classification outcomes [37,38]. Both tests
confirmed that SVM outperformed RF and XGBoost with p < 0.05 for macro-F1 differences.
For probabilistic calibration, ROC-AUC values exceeded 0.96 across all classes, and Brier
scores remained below 0.08, indicating well-calibrated predictions. These analyses ensure
that reported performance is robust and not inflated by subject overlap.

5. Discussion
This study demonstrates the feasibility of using a single smartphone at the L3 po-

sition to automatically detect and segment the main phases of the TUG test using AI-
based methods. By leveraging widely available smartphones, this approach addresses key
limitations of conventional TUG assessment, including variability, subjectivity, and lack
of standardization.

A single smartphone combined with preprocessing, windowed features, and classical
classifiers delivered consistent segmentation and timing. Start and end points were de-
tected in 100% of trials. Combining accelerometer and gyroscope features improved macro
F1 by up to 12% compared to single-stream models, and adaptive thresholds reduced false
positives and false negatives relative to fixed thresholds. Beyond raw accuracy, statistical
tests (McNemar’s and Bowker’s) confirmed that observed improvements, particularly for
SVM, were not due to chance. High ROC-AUC values and low Brier scores further demon-
strate that the models are not only accurate but also probabilistically reliable. Residual
misclassifications were concentrated around walk-to-turn and turn-to-walk boundaries,
suggesting that introducing explicit transition states or sequence models that incorporate
temporal context could further improve segmentation stability.
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Importantly, the algorithm was validated on a heterogeneous cohort that included
older adults and individuals with Parkinson’s disease, demonstrating preliminary clinical
applicability. However, broader validation is needed for conditions such as stroke, arthritis,
and post-surgical gait impairments to ensure robustness across diverse mobility profiles.
Future work will incorporate phase-specific performance scoring, adaptive algorithms
for atypical movement patterns, and deployment in real-world environments such as
clinics and homes. These steps will enable integration into routine workflows and remote
monitoring, supporting personalized fall-risk management and clinical decision-making.

Adaptability of the method: The robustness of the pipeline comes from adaptive
preprocessing and logical sequence enforcement. Thresholds were computed per trial
using median and MAD, which allowed sensitivity to adjust to individual movement
amplitude. Replacing mean and standard deviation with median and median absolute
deviation (MAD) significantly improved robustness. For Gaussian data, MAD ≈ 0.6745σ,
so median + 2 × MAD ≈ mean + 1.35σ. σ is the standard deviation. This formulation is
less sensitive to outliers and skewed distributions, which are common in biomechanical
signals due to irregular steps or pauses. Empirically, MAD-based thresholds reduced false
positives and false negatives by more than half (FP ≈ 3% vs. 7%, FN ≈ 3% vs. 6%) compared
to SD-based thresholds, while maintaining sensitivity across diverse gait amplitudes.

We also introduced a piecewise threshold for acceleration to handle the sit-to-stand
onset. For the first 1.5 s after t0 (trial start), a more permissive threshold is applied to
avoid missing the initial transition; after that, a stricter threshold reduces false activations
during walking. This “onset guard” was empirically tuned (1.0–2.0 s also works) and
reflects the biomechanical reality that sit-to-stand produces lower acceleration peaks than
walking. Together, these design choices provide adaptability to individual gait variability
and improve segmentation stability without manual tuning.

Models transparency and interpretability: The feature importance analysis provides
insight into why the pipeline performs robustly across diverse trials. Gyroscope-derived
features such as gyr_rms, gyr_energy, and gyr_mean consistently ranked highest, confirm-
ing their role in capturing rotational dynamics essential for turn detection. Accelerometer
features (acc_rms, acc_energy, acc_entropy) supported walking and transfer phases,
explaining the improvement when both streams are combined.

By using trial-aware permutation importance, we ensured that estimates reflect realis-
tic intra-subject variability without inflating contributions through cross-trial leakage. These
patterns align with task biomechanics and demonstrate that the models are not black boxes
but rely on interpretable, physiologically meaningful signals. This transparency strengthens
confidence in the pipeline and supports its adaptability across different movement styles.

Comparison with existing studies: Earlier multi-sensor instrumented TUG systems
achieved accurate sub-task detection but required complex setups unsuitable for real-world
use [21]. Smartphone-based studies improved usability but often focused on total time
or lacked robust phase segmentation and turn detection [15,16,30]. Single lower-back
IMU approaches reported weaker turn handling and limited adaptability [14]. Our results
show that a single smartphone with sensor fusion and adaptive thresholds can detect
start and end reliably, estimate total time with low error, and segment phases with macro
F1 above 0.85, while improving robustness in trials with curvilinear turns and irregular
patterns. This narrows the gap between multi-device accuracy and single-device simplicity,
addressing turn sensitivity and adaptability gaps highlighted in prior work [14,30,31].
However, we acknowledge that this does not constitute phase-specific performance scoring
in a clinical sense (e.g., assessing movement quality or compensatory strategies). This
remains a limitation and is a target for future algorithmic refinement.
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Clinical and Neuroscientific Implications: The TUG test captures complex motor
control involving cortical, subcortical, and cerebellar systems. Automated phase-level
segmentation enables clinicians to identify specific neural deficits underlying mobility
loss. For example, in Parkinson’s disease, increased turn duration and irregular transitions
reflect bradykinesia or freezing of gait, and in older adults, overall slowing signals frailty
or increased fall risk. By translating smartphone sensor data into interpretable, phase-
specific metrics, this approach provides a practical, low-cost means to monitor neuroplastic
recovery, track disease progression, and personalize rehabilitation, bridging objective
mobility analysis with clinical neuroscience.

Clinical Interpretation Summary:

• Parkinson’s Disease: Increased turning time and reduced smoothness indicate bradyki-
nesia and postural instability [39].

• Older Adults: Gradual slowing across all phases is a sign of frailty and reduced
lower-limb strength [40].

Limitations: The dataset includes only 27 participants and was recorded in a controlled
space with belt placement and a fixed camera. Video-based annotations may include small
differences near transitions based on the clarity of the video. Additionally, model parame-
ters were tuned on this dataset, so performance may vary with changes in participants or
placements. Recruiting older adults and individuals with Parkinson’s disease for repeated
TUG trials is logistically challenging due to mobility constraints and ethical considerations,
which limits large-scale data collection in early-stage studies.

From an interpretability perspective, this study focuses on a transparent signal-
processing pipeline and a compact set of physically meaningful features while using
classical classifiers to achieve high accuracy. Nonetheless, the best-performing model
(SVM) remains opaque at the level of individual predictions, and our current analysis is
limited to global permutation-based feature importance.

From a systems perspective, the proposed pipeline is intentionally lightweight: it
processes a single lumbar IMU stream (≈30–40 s at ≈400 Hz) using linear-time filters
and fewer than 100 fixed-length windows per TUG, each represented by a compact set
of statistical features. Random Forest, SVM, and XGBoost are all small tabular models
that can, in principle, run on-device without specialised hardware. However, we have not
yet performed a formal embedded evaluation of runtime, memory footprint, or power
consumption on an actual smartphone.

6. Conclusions and Future Work
This study demonstrates that a single smartphone placed at the lower back, combined

with adaptive preprocessing, sensor fusion, and compact statistical features, can deliver
accurate and interpretable segmentation of the TUG test. The pipeline achieved 100% start
and end detection, a mean absolute error of 0.42 s for total time, and macro F1 scores above
0.85 across all models. Adaptive thresholds based on median and MAD reduced false
positives and negatives by more than half compared to fixed thresholds, while dual-path
turn detection captured both sharp and gradual rotations, addressing a key limitation in
prior single-device approaches. Our method is interpretable through feature importance
analysis, which confirms that gyroscope features dominate turn detection and accelerometer
features support walking.

Future work will be on validating the pipeline in uncontrolled environments such
as homes and community spaces, where variations in furniture layout and distractions
introduce significant variability. We will explore domain adaptation for different device
placements (e.g., pocket, shoulder bag) and implement lightweight, real-time on-device in-
ference to enable continuous monitoring. Front-pocket data will be collected and analysed
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to support more realistic adaptation of smartphones for gait analysis. Additional features,
such as gait cycle markers, may enhance segmentation stability without increasing compu-
tational complexity. We plan to incorporate local interpretability techniques such as SHAP
(SHapley Additive exPlanations) or LIME to explain individual predictions and highlight
feature contributions for specific cases. These methods will allow clinicians to understand
why a particular segmentation or classification was made, improving transparency and
confidence in the system. Additionally, we intend to benchmark inference latency, memory
usage, and energy consumption on representative smartphone hardware and optimize
the pipeline for real-time execution using lightweight models and on-device acceleration.
These steps aim to extend the adaptability demonstrated here toward practical deployment
for real-world mobility assessment.
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