The Journal of Clinical Endocrinology & Metabolism, 2023, 108, 3178-3189 “

https://doi.org/10.1210/clinem/dgad370
Advance access publication 20 June 2023 i
ini i OXFORD

Clinical Research Article ENDOCRINE
OCIETY

Tissue Glucocorticoid Metabolism in Adrenal Insufficiency:
A Prospective Study of Dual-release Hydrocortisone
Therapy

Rosemary A. Dineen,’'® Julie Martin-Grace,"® Khalid Mohamed Saeed Ahmed,?

Angela E. Taylor,>® Fozia Shaheen,® Lina Schiffer,3® Lorna C. Gilligan,® Gareth G. Lavery,®
Isolda Frizelle,? Anjuli Gunness,?® Aoife Garrahy,"® Anne Marie Hannon,"® Paal Methlie,*
Sverre Husebye Eystein,* Paul M. Stewart,*® Jeremy W. Tomlinson,*® James M. Hawley,’
Brian G. Keevil,”® Michael W. O'Reilly,” Diarmuid Smith," John McDermott,® Marie-Louise Healy,®
Amar Agha," Agnieszka Pazderska,® James Gibney,? Lucy-Ann Behan,?® Chris J. Thompson,’
Wiebke Arlt,>'°® and Mark Sherlock’

'Academic Department of Endocrinology, Beaumont Hospital/Royal College of Surgeons in Ireland, Dublin, D09 YD60, Ireland

“Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, D24 TP66, Ireland

3Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK

*Department of Clinical Science, University of Bergen, 5021 Bergen, Norway

SFaculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK

®0xford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, Churchill Hospital, University of
Oxford, Oxford 0X3 7LE, UK

"Department of Clinical Biochemistry, University Hospital of South Manchester, Manchester Academic Health Science Centre, The University
of Manchester, Manchester M23 9LT, UK

8Department of Endocrinology, Connolly Hospital, Dublin, D15 X40D, Ireland

®Department of Endocrinology, St James Hospital, Dublin, D08 KOY5, Ireland

%Medical Research Council London, Institute of Medical Sciences, London W12 ONN, UK

Correspondence: Mark Sherlock, Academic Department of Endocrinology, Beaumont Hospital and the Royal College of Surgeons in Ireland, Dublin, D09 YD60,
Ireland. Email: marksherlock@rcsi.ie.

Abstract

Background: Patients with adrenal insufficiency (Al) require life-long glucocorticoid (GC) replacement therapy. Within tissues, cortisol (F)
availability is under the control of the isozymes of 11B-hydroxysteroid dehydrogenase (11B-HSD). We hypothesize that corticosteroid
metabolism is altered in patients with Al because of the nonphysiological pattern of current immediate release hydrocortisone (IR-HC)
replacement therapy. The use of a once-daily dual-release hydrocortisone (DR-HC) preparation, (Plenadren®), offers a more physiological
cortisol profile and may alter corticosteroid metabolism in vivo.

Study Design and Methods: Prospective crossover study assessing the impact of 12 weeks of DR-HC on systemic GC metabolism (urinary
steroid metabolome profiling), cortisol activation in the liver (cortisone acetate challenge test), and subcutaneous adipose tissue
(microdialysis, biopsy for gene expression analysis) in 51 patients with Al (primary and secondary) in comparison to IR-HC treatment and age-
and BMI-matched controls.

Results: Patients with Al receiving IR-HC had a higher median 24-hour urinary excretion of cortisol compared with healthy controls (72.1 ug/24
hours [IQR 43.6-124.2] vs 51.9 pg/24 hours [35.5-72.3], P=.02), with lower global activity of 11p-HSD2 and higher 5-alpha reductase activity.
Following the switch from IR-HC to DR-HC therapy, there was a significant reduction in urinary cortisol and total GC metabolite excretion,
which was most significant in the evening. There was an increase in 11p-HSD2 activity. Hepatic 11p-HSD1 activity was not significantly
altered after switching to DR-HC, but there was a significant reduction in the expression and activity of 11p-HSD1 in subcutaneous adipose tissue.
Conclusion: Using comprehensive in vivo techniques, we have demonstrated abnormalities in corticosteroid metabolism in patients with
primary and secondary Al receiving IR-HC. This dysregulation of pre-receptor glucocorticoid metabolism results in enhanced glucocorticoid
activation in adipose tissue, which was ameliorated by treatment with DR-HC.
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Patients with adrenal insufficiency (AI) receiving essential
glucocorticoid (GC) replacement therapy continue to have in-
creased morbidity and premature mortality (1-4) with the ex-
act mechanisms underpinning this increased mortality not
fully elucidated. Patients with Al receiving GC replacement
exhibit adverse metabolic and body composition profiles, in-
cluding a propensity to central obesity and visceral fat dispos-
ition compared with control populations with similar body
mass index (BMI) (5-8). Standard GC therapy with immediate
release hydrocortisone (IR-HC) is unable to accurately repli-
cate the physiological circadian cortisol rhythm, and together
with the uncertainties of glucocorticoid dose adjustment and
the absence of reliable biomarkers, patients receiving GC ther-
apy may be over- or-underexposed to cortisol over a 24-hour
period.

To mimic the physiological circadian rhythm of endogen-
ous cortisol, novel modified-release hydrocortisone prepara-
tions have been developed. The dual-release formulation of
hydrocortisone (DR-HC), Plenadren®, has been licensed for
use in clinical practice and is taken once daily in the morning.
In a prospective crossover study including patients with pri-
mary and secondary adrenal insufficiency, we have previously
shown favorable metabolic changes following 12 weeks of
DR-HC therapy with improvements in blood pressure, weight
reduction, and improved quality of life (QoL) (9).

A further confounding issue in patients receiving exogenous
GC therapy is the tissue-specific regulation of glucocorticoid
action. Although circulating GC concentrations are regulated
by the hypothalamic—pituitary—adrenal (HPA) axis, at the tis-
sue level, GC action is also modulated through a series of en-
zymes, including the isozymes of 11p-hydroxysteroid
dehydrogenases (11B-HSD). The 2 isozymes of 11B-HSD inter-
convert hormonally active cortisol (F) and inactive cortisone
(E). 11B-HSD type 2 inactivates cortisol to cortisone in min-
eralocorticoid tissues such as the kidney, whereas 118-HSD
type 1 performs the reverse reaction converting inactive corti-
sone to active cortisol in key GC metabolic tissues including
the liver and adipose tissue (10). Alteration in expression of
these 11B-HSD isozymes in peripheral tissues modifies cortico-
steroid action. Tissues may thus be exposed to a relative excess
of cortisol without any increase in cortisol secretion or circu-
lating plasma cortisol concentrations. Glucocorticoids are also
metabolized by the A-ring reductases, So-reductase (SoR),
5B-reductase, and 3a-hydroxysteroid dehydrogenase, to their
tetrahydro metabolites. Thus, Sa-reduction contributes signifi-
cantly to the metabolism and clearance of GCs (11). Several
translational study techniques can be employed in clinical stud-
ies to investigate corticosteroid metabolism in vivo including
urine steroid metabolite ratios in 24-hour collections (12),
tissue-specific biopsies to measure gene expression, and dynam-
ic tests such as cortisol generation profiles (13).

We hypothesize that corticosteroid metabolism is altered in
patients with Al because of supraphysiological GC replace-
ment therapy and the nonphysiological pattern of current
IR-HC replacement therapy. The wuse of DR-HC,
Plenadren®, may lead to improved markers of steroid metab-
olism because of the more physiological profile, which may re-
store normal GC metabolism. With this background, we
aimed to perform a detailed prospective, crossover study to
first characterize corticosteroid metabolism in patients with
primary and secondary adrenal insufficiency and compared
with an age-, gender-, and BMI-matched control population
at baseline and after 12 weeks of DR-HC therapy.

Methods

Study Design and Population

We performed an investigator-initiated, open-labeled, multi-
site, prospective study at two University Hospitals in Ireland
(Tallaght University Hospital and Beaumont Hospital). This
study could not be blinded or placebo-controlled because of
the risk of adrenal crisis in the study population with primary
adrenal insufficiency (PAI) and secondary adrenal insufficiency
(SAI). The inclusion and exclusion criteria of the study popula-
tion have been previously published (9). Briefly, eligible patients
were male and female patients aged > 18 years, with a diagnosis
of Al, either PAI or SAI, who were on immediate-
release hydrocortisone replacement therapy, without any ad-
justment in hormone replacement for at least 3 months before
study entry. Control participants were healthy individuals re-
cruited via local advertisement and a diagnosis of adrenal insuf-
ficiency was excluded by clinical and biochemical parameters.

The study was approved by the Joint Research Ethics
Committee of Tallaght University Hospital/St James’s
Hospital and the Beaumont Hospital Research Ethics
Committee. Written informed consent was obtained from all
patients before participation. All patients had an emergency
kit and a steroid emergency card and received education re-
garding the management of an adrenal crisis.

This study was registered with ClinicalTrials.gov as
NCT03282487.

Clinical Protocol

After screening for eligibility and obtaining informed consent,
study participants attended the research wunit in the
Department of Endocrinology, Tallaght University Hospital,
or the Clinical Research Facility, Beaumont Hospital, after
an 8-hour fast on 2 separate occasions, visit 1 and visit 2,
for a day of integrated assessments (Fig. 1). On visit 1, patients
presented for baseline evaluation on IR-HC therapy.
Thereafter, if biochemical investigations were within the nor-
mal reference range, patients were switched from IR-HC to
the daily dose equivalent of once-daily DR-HC, Plenadren®,
per the summary of product characteristics, for 12 weeks.
At the end of the intervention treatment period, patients pre-
sented for visit 2. Thereafter, patients were switched back to
their usual IR-HC regimen because Plenadren was not avail-
able in clinical practice in Ireland at the time of the study.
Patients were followed up in the outpatient clinic according
to the standard surveillance protocol of the clinic. Control
participants presented after an overnight fast on a single occa-
sion and underwent the same biochemical investigations ex-
cept for the adipose tissue biopsy and microdialysis.

At each visit (before and 12 weeks after DR-HC), patients
presented at 8 am, having taken 1 mg of dexamethasone at
11 pm/midnight the night before the visit. A complete physical
examination was performed in addition to baseline anthropo-
metric assessment, which included body composition analysis
with a bioimpedance body composition analyzer (Tanita
BC418 MA for patients recruited in Tallaght University
Hospital and Tanita DC360 S for patients in Beaumont
Hospital). Baseline blood was drawn for fasting laboratory
investigations including routine renal/bone/liver profiles,
fasting total cholesterol, high-density lipoprotein- and low-
density lipoprotein-cholesterol, triglycerides, hemoglobin
Alc, C-reactive protein, and full blood count using in-hospital
assays.
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Figure 1. Study protocol. Study visit 1 completed on IR-HC and visit 2 completed after 12 weeks of DR-HC. Patients fasted for the duration of the
cortisol generation curve. Healthy control participants did not undergo the adipose tissue biopsy. Al, adrenal insufficiency; BIA, bioelectric impedance
(BIA); DR-HC, dual-release hydrocortisone; IR-HC, conventional immediate-release hydrocortisone.

Measurement of Corticosteroid Metabolism

Global corticosteroid metabolism

Immediate-release HC results in peaks and troughs in serum
cortisol levels over the day (14), which may not be reflected
in a 24-hour urine collection because this provides a global as-
sessment of urinary steroid excretion. Therefore, all study par-
ticipants collected 24-hour urine in 8-hourly intervals, in 3
separate containers (ie, bottle A, urine from 8.00 am-4.00
pM; bottle B, urine from 4.00 pm-midnight; and bottle C, urine
from midnight-8.00 am). This was performed in the week be-
fore visit 1 (on IR-HC), and before visit 2 (12 weeks after
DR-HC) but not in the 24 hours when dexamethasone was
taken (ie, not the day before each visit) because this would
interfere with steroid metabolite excretion. The total urine
volume for each 8-hourly collection was recorded and two
20-mL volumes were preserved for storage at —80 °C until
analysis for quantitative data on the urinary excretion of indi-
vidual cortisol metabolites could be performed.

Urinary steroid metabolite excretion analysis was carried
out by liquid chromatography-tandem mass spectrometry
(LC-MS/MS) in the Institute of Metabolism and Systems
Research, University of Birmingham, UK, using a Waters
Xevo mass spectrometer with Acquity uPLC system, as previ-
ously described (15). The systemic relative SaR activity was
assessed by the ratio of Sa-tetrahydrocortisol (50-THF)/tetra-
hydrocortisol (THF). The ratio of (THF +5a-THF)/
tetrahydrocortisone (THE) was used as a marker of
11B-HSD1 activity, and the ratio of urinary cortisol:urinary
cortisone (urinary F/E) as a reflection of 113-HSD2 activity.
Total GC metabolite excretion was assessed as the sum of
SoTHF + THF + THE + cortols + cortolones + cortisol + corti-
sone. Patients’ results were compared with an age-, gender-,
and BMI-matched healthy control database established by
the Institute of Metabolism and Systems Research.

Hepatic corticosteroid metabolism: cortisol generation curves
After baseline fasting bloods were taken, participants were
given 25 mg of oral cortisone acetate. Following this, serial
30-minute serum samples were taken for 240 minutes.

Measuring cortisol generated over time from oral cortisone
acetate (in a dexamethasone-suppressed state) results in a
curve representing 11B-HSD1 activity predominantly in the
liver (16, 17). The serum samples stood at room temperature
for 30 minutes to facilitate clotting before being centrifuged at
3000 rpm for 15 minutes, stored in 1-mL aliquots and at —80 °C
until analysis. Serum cortisol and cortisone were analyzed by
LC-MS/MS as previously described (18). For cortisol, analytical
performance characteristics were as previously described (18).
For cortisone, inter-assay imprecision was 5.5%, 3.9%, and
3.8% at concentrations of 5.0, 50.0, and 150 nmol/L, respect-
ively. Mean recoveries ranged from —9% to 104% over concen-
trations of 63 to 500 nmol/L and ion suppression was found to
be negligible (<10%). The limit of quantitation was 2.5 nmol/L,
and the assay was free from analytical interferences.

Assessment of adipose tissue cortisol metabolism: adipose
tissue microdialysis

Adipose microdialysis was carried out, as described by
Tomlinson et al (16). After cleaning the skin with iodine solu-
tion, a CMA63® microdialysis catheter (CMA Microdialysis,
Stockholm) was inserted into the subcutaneous adipose tissue,
approximately 10 cm lateral and 5 cm inferior to the umbilicus.
As per the serum cortisol generation curves, participants were
given 25 mg of oral cortisone acetate (in a dexamethasone-
suppressed state) and after a flush sequence (15ul over
5 minutes), microdialysis was performed at a rate of 0.3 pL
per minute, with serial 30-minute microdialysis samples taken
for 240 minutes. Microdialysis vials were stored at —80 °C until
analysis. Each microdialysis sample was manually aspirated
and prepared and analyzed on the Ultradian LCMS/MS
Platform using a modified method as previously described
(19). The assay precision for cortisone was 3.3% to 5.0% rela-
tive standard deviations (RSD), and the accuracy ranged from
94% to 104%. The assay precision for cortisol was 2.8% to
5.8% RSD, and the accuracy ranged from 98% to 100%.
Lower limit of quantification was 69 pmol/L for both cortisol
and cortisone. Because of low volumes of dialysate in some mi-
crovial samples, levels below 69 pmol/L have been reported but
may have reduced accuracy and precision.
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Assessment of genes related to adipose tissue GC action:
adipose tissue biopsy

Subcutaneous adipose tissue biopsies were performed on the
patient study population at baseline (on IR-HC) and the end
of the 12-week treatment cycle with DR-HC. Subcutaneous
adipose tissue from the abdominal wall was taken at the level
of the umbilicus, approximately 4 to 7 cm lateral to the umbil-
icus. After local anaesthetic preparation of the area, a 14G bi-
opsy needle was inserted and suction applied to the syringe by
using a 4.5-mL vacutainer, to obtain a sufficient sample in the
syringe. The collected sample was immediately snap-frozen in
liquid nitrogen and stored at —80 °C until analysis.

Total RNA was extracted using the Tri-Reagent protocol.
RNA concentration and purity were assessed using
NanoDrop Spectrophotometer technology (ND1000, Thermo
Scientific, Wilmington, DE, USA). One microgram of total
RNA was used for reverse transcription and diluted to a final
concentration of 50 ng/pL. Reverse transcription was carried
out using TagMan Reverse Transcription Reagents (Applied
Biosystems Ltd). In this protocol, gRNA was reverse transcribed
following the manufacturer’s protocol. All reactions were incu-
bated in a thermal cycler using the recommended cycling param-
eter: 25 °C for 10 minutes, 37 °C for 30 minutes, 95 °C for §
minutes, and 4 °C indefinitely. The cDNA was stored at —20 °C
until PCR performed. For quantitative PCR amplification of
c¢DNA, all probes and primers were supplied by Applied
Biosystems/Life Technologies as expression assays (TagMan
gene expression assays, catalog number 4331182:11BHSD1,
Hs01547870_m1; 11BHSD2, Hs00388669_m1; NR3C1,
Hs00353740_m1) and used following the manufacturer’s proto-
col. All reactions were normalized against the housekeeping
genes, 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase,
and peptidylprolyl isomerase A (20). Expression levels were deter-
mined using the ABI PRISM 7900HT Sequence Detection System
(Thermo Fisher Scientific).

Statistical Analysis

The normality of quantitative variables was tested with the
Shapiro-Wilk test. The baseline characteristics of the groups
were presented as mean (SD) or median (interquartile range
[IQR]) as appropriate. The differences between the posttreat-
ment and baseline data were evaluated with paired #-tests in a
single group for quantitative variables and ¢ for categorical
variables or the appropriate nonparametric test. Subgroup
analysis was done to report the significance of treatment-
by-subgroup interaction.

Real-time PCR data were obtained as Ct values (Ct = cycle
number at which logarithmic PCR plots cross a calculated
threshold line) and used to determine ACt values [ACt= (Ct
of the target gen—) — (Ct of the reference gene)]. All statistical
analysis of real-time PCR data was performed on mean ACt
values between different treatment groups.

Significance was defined for P values less than 0.05.
Statistical analysis was performed using GraphPad Prism ver-
sion 8.2.0 for Windows, GraphPad Software, San Diego,
California, USA.

Results

The baseline characteristics of the study population and the
impact of DR-HC on blood pressure, body composition,
and QoL have been previously published (9). The study

population comprised 21 patients with PAI and 30 patients
with SAI who completed both visit 1 and visit 2 (after 12
weeks of DR-HC). There were more female patients in the
PAI group (n=12, 57%) and more males in the SAI group
(n=22, 73%). The study patients were on a median daily
dose of 20 mg (IQR 15-20 mg) of IR-HC at study entry.

Global Corticosteroid Metabolism: Urinary Steroid
Excretion

Patients on IR-HC vs controls

We investigated urinary steroid excretion in a subcohort of
our patient population and compared this with a healthy
age-, gender-, and BMI-matched control population. A sum-
mary of patient and control characteristics with available
24-hour and diurnal (8-hourly interval) urinary steroid excre-
tion is provided in Table 1. We observed significantly lower
24-hour excretion of androgen metabolites and all classes of
steroid precursor metabolites; androgen, mineralocorticoid,
and glucocorticoids, in patients with Al requiring GC replace-
ment therapy compared with healthy controls (Fig. 2).

Patients with Al receiving IR-HC (median, 20 mg [IQR,
16.25-20 mg]) had a higher median 24-hour excretion of urin-
ary cortisol compared with healthy controls (72.1 pg/24 hour
[IQR 43.6-124.2] vs 51.9 pg/24 hour [35.5-72.3], P=.02),
Fig. 3A. Additionally, we observed a significant correlation be-
tween the hydrocortisone dose and total 24-hour urinary GC
metabolite excretion in the patient population (r*=0.27,
P <.001), Fig. 3B.

Within the diurnal urine excretion profiles, we observed a
significant increase in the urinary excretion of the cortisol me-
tabolite Sa-THF (median, 403.4 [IQR, 129.6-603.6] ng/8
hours vs 196.5 [IQR, 113.7-254.1] pg/8 hours, P =.04) in
the morning urine collection, but there was no significant in-
crease in total urinary cortisol (F) excretion or total GC excre-
tion across the diurnal collections in patients receiving IR-HC
compared with controls. We observed a significantly lower
median urinary cortisol (F) excretion (3.4 [IQR, 1.5-13.0]
pg/8 hours vs 23.1 [IQR, 3.3-33.6] pg/8 hours, P=.02) com-
pared with healthy controls in the nighttime collection.

When investigating the activity of key enzymes involved in
steroid metabolism, we observed a significant increase in the
ratio of 24-hour urinary cortisol/cortisone excretion in
patients with AI compared with control population (ratio,
0.78 [IQR, 0.6-0.86] vs 0.58 [IQR, 0.5-0.64], P <.0001);
however, there was no difference in the activity of
11B-HSD1 as indicated by lack of significant change in the ra-
tio of THF + 5a-THF/THE. We also observed a significant in-
crease in the ratio of S5a-THF/THF in the patient population
(ratio 0.57 [IQR, 0.36-0.76] vs 0.43 [IQR, 0.32-0.54],
P =.02), reflecting an increase in 5aR activity in patients re-
ceiving IR-HC therapy (Fig. 4).

Effect post-dual-release hydrocortisone

Following the switch from IR-HC to DR-HC therapy, there
was a significant reduction in urinary cortisol excretion com-
pared to baseline (median, 72.1 [IQR, 43.6-124.2] ng/24
hours vs 37.4 [IQR, 22.2-75.3] ug/24 hours, P < .001), in add-
ition to a reduction in total GC metabolite excretion (visit 1:
median, 6659 [IQR, 3358-11151] pg/24 hours; visit 2: me-
dian, 5438 [IQR, 3515-7562] pg/24 hours, P=.015),
Fig. SA-B.
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Table 1. Demographic data for patients with adrenal insufficiency receiving IR-HC (visit 1) who underwent 24-hour urinary steroid profiling and
diurnal urinary steroid profiling, and available age- and BMI- matched control data

Characteristic

Patients with Al on
IR-HC (visit 1)

Control cohort with
24-h urine collections

Control cohort with diurnal
urine collections

Male/female (n/n)
Age (mean, SD) (y)
Al phenotype
Primary Al (n)
Secondary Al (n)
HC dosage mg/d (median, IQR)

BMI kg/m?
(median, IQR)

20/20
46 +12

21

19

20 (16.25-20)
26.6 (24.4-30.6)

30/30
48+12

NA

NA
26.9 (25.1-29)

10/8
449+ 11

NA

NA
27.0 (24-30)

Abbreviations: Al, adrenal insufficiency; BMI, body mass index; IQR, interquartile range; IR-HC, immediate release hydrocortisone.

10000

24-hour urinary steroid profile

7500

5000+

Hg/24hr

2500+

Healthy Controls, n=60

E
THE

17-HP
PT

THS
b-cortolone
THF

5aTHF

11bOHEtio

Al patients, n=40
(Visit 1: on conventional HC)

3

11bOHAN

11bOHEtio
E

THE

THS
b-cortolone

THF

Figure 2. Steroid metabolite excretion (ug/24 hours) assessed by LC-MS/MS in healthy controls (n =60) and patients with adrenal insufficiency
receiving IR-HC (n = 40). The metabolites were divided into metabolites of androgens and precursors (blue), mineralocorticoids and precursors (green),
glucocorticoid precursors (yellow), and glucocorticoids (orange). Box-and-whisker plots represent mean steroid excretion concentration and 5th and
95th percentiles. Significance = P value < .05 compared with healthy controls; *P<.05; **P<.01; ***P<.001; ****P<.0001.
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Figure 4. Twenty-four-hour urinary steroid excretion ratios in patients
with adrenal insufficiency at baseline receiving IR-HC (n = 40) and
healthy age- and BMI-matched controls (n =60). (A) (THF + 50-THF)/
THE (measure of global 11p-HSD1), (B) urinary F/E (cortisol/cortisone)
excretion (measure of 113-HSD2), and (C) 50-THF/THF (measure of 5a
reductase activity). Box-and-whisker plots represent mean steroid
excretion concentration and 5th and 95th percentiles. Significance =
*Pvalue < .05, **Pvalue <.01.

After 12 weeks of DR-HC therapy, patients had significant-
ly lower urinary cortisol excretion in the morning (22.0 [IQR,
12.13-43.9] pg/8 hour vs 40.6 [IQR, 20.1-69.9] pg/8 hour,
P=.002) and evening (4.3 [IQR, 2.6-20.4] pg/8 hour vs
16.4 [IQR, 5.4-38.2] pg/8 hour, P=.0016) compared with
IR-HC therapy but not significantly lower than the healthy
control population, Fig. 5D. There was no significant change
in urinary cortisol excretion overnight after 12 weeks of

DR-HC compared with baseline, however, urinary cortisol
excretion was significantly lower than controls.

We observed a significant reduction in the urinary cortisol/cor-
tisone ratio, indicating increased 11B-HSD2 activity, after 12
weeks of DR-HC compared with baseline (0.61 [IQR,
0.49-0.74] vs 0.78 [IQR, 0.6-0.86], P <.001), Fig. 5C. There
was no significant difference in the global activity of 118-HSD1
or global 5aR activity in patients after 12 weeks of DR-HC.

Hepatic corticosteroid metabolism (cortisol generation
profile)

Serum cortisol generation profiles (serum cortisol and corti-
sone after 1 mg of dexamethasone ingestion) measured via
LC-MS/MS were available in 22 patients (11 males) on
IR-HC (visit 1) and post 12 weeks of DR-HC (visit 2) and
11 controls (5 males), who were matched by age and BMIL
Given the limited number of control data available for this
analysis, we did not subdivide the cohort by gender because
this would reduce the power of the analysis. All patients
(n=22) and healthy controls (n =11) suppressed their morn-
ing fasting cortisol levels to <50 nmol/L following 1 mg dexa-
methasone ingestion the previous night. As expected (because
of the preexisting Al), the mean fasting cortisol concentration
level after dexamethasone suppression was significantly lower
in patients with Al at baseline compared with the healthy con-
trol population (3.3 +7.4 vs 20.0 +4.9 nmol/L, P <.0001).
Patients with Al on IR-HC reached a higher peak mean corti-
sol level following oral cortisone (531 + 183 nmol/L vs 480 +
138 nmol/L, P =.42) at an earlier timepoint of 60 minutes vs
120 minutes in the control population; however, this was not
statistically significant, Fig. 6A. Interestingly, the healthy con-
trol patients had higher serum cortisone concentrations than
patients with Al at 240 minutes after cortisone ingestion
(49 + 16 nmol/L vs 61 + 14 nmol/L, P =.04), Fig. 6B.

After 12 weeks of DR-HC, there was no significant difference
in the mean fasting cortisol concentrations after dexamethasone
suppression (6.3 + 9.6 nmol/L vs 3.3 +7.4 nmol/L, P=.15).
The peak mean cortisol levels generated following cortisone acet-
ate were similar at baseline and after DR-HC (531 + 183 nmol/L
vs 532+ 189 nmol/L, P=.9). We assessed the ratio of serum
cortisol to cortisone, a measure of hepatic 118-HSD1 activity,
in the patient population and the controls. There was no statis-
tical difference in the ratio of serum cortisol/cortisone observed
at any timepoint after 12 weeks of DR-HC, Fig. 6C.

Adipose Tissue Corticosteroid Metabolism

Subcutaneous adipose tissue microdialysis

Adipose tissue microdialysis samples were analyzed in 27 study
patients with adrenal insufficiency (18 SAI, 9 PAI; 15 male,12
female). Cortisol generation profiles (measurement of cortisol
and cortisone after 1 mg of dexamethasone ingestion) were
measured via LC-MS/MS on IR-HC (visit 1) and after 12 weeks
of DR-HC (visit 2). There was a reduction in cortisol concentra-
tions in the subcutaneous adipose tissue dialysate after 12
weeks’ of DR-HC, with a significant reduction between time-
point 120 to 240 minutes after oral cortisone ingestion (17.1
+ 9.1 nmol/L vs 11.4 + 3.0 nmol/L, P =.007), Fig. 7C.

Subcutaneous adipose tissue gene expression

Subcutaneous adipose tissue biopsies were available for ana-
lysis in 10 patients before and after 12 weeks of DR-HC.
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Figure 5. The 24-hour urinary excretion of (A) cortisol (F), (B) total glucocorticoid (GC) metabolites, (C) urinary cortisol/cortisone (F/E) ratio, and (D)

diurnal 8-hour urinary excretion of cortisol, in patients with Al on IR-HC (visit 1), 12 weeks after DR-HC (visit 2), and healthy age- and BMI- matched
controls. 5a-THF, 5 allo tetrahydrocortisol; DR-HC, dual-release hydrocortisone; E, cortisone; F, cortisol; GC, glucocorticoids; THE, tetrahydrocortisone.
Box-and-whisker plots represent mean steroid excretion concentration and 5th and 95th percentiles. Significance = P value < .05; ns, not significant;

*P<.05; **P<.01; ***P<.001.

We did not have subcutaneous adipose tissue available in the
control population. Expression of 11-HSD1 (HSD11B1) was
significantly lower in subcutaneous adipose tissue after
DR-HC compared with IR-HC (mean ACt before and after
DR-HC, 5.8 + 1.0 vs 4.4 + 1.8, respectively, P =.03), whereas
there was a significant increase in the expression of the gluco-
corticoid receptor (GR) gene, NRC31 (mean ACt before and
after DR-HC, 5.9+ 1.0 vs 7.1 + 1.1, respectively, P =.02),
Fig. 8.

Discussion

This prospective study characterizes, for the first time, global,
liver, and adipose tissue-specific corticosteroid metabolism in
patients with primary and secondary adrenal insufficiency. We
also report the differential impact of immediate-release hydro-
cortisone therapy and treatment with dual-release HC
(Plenadren®) on steroid metabolism in Al

There is a paucity of data investigating tissue corticosteroid
metabolism in patients with Al receiving GC replacement
therapy. In a cross-sectional study of patients with SAI,
Sherlock et al demonstrated significant abnormalities in
markers of corticosteroid metabolism in patients receiving

IR-HC (21). A recently published study by Espiard and col-
leagues (22) focused on patients with primary adrenal insuffi-
ciency receiving DR-HC and observed significant alterations
in the urinary steroid metabolome during DR-HC therapy
compared with a 3-times-daily regimen of IR-HC. However,
to our knowledge, no previous study has concurrently as-
sessed both global and tissue-specific glucocorticoid metabol-
ism as this study has done.

In our study, there was a significant difference in
the 24-hour urinary steroid profile in patients with Al
receiving IR-HC compared with healthy gender-, age-, and
BMI-matched controls. We observed a significant difference
in the 24-hour excretion of urinary cortisol in patients receiv-
ing IR-HC compared with controls, supporting data pub-
lished in patients with SAI (21); however, there was no
significant difference between total GC metabolite excretion
between patients with Al and the control group. Espiard
et al, using gas chromatography-MS measurement of
24-hour urinary steroids, reported significantly increased
urinary GC metabolites compared with a healthy matched
control population (22). This is in contrast to the findings in
our study, which is potentially explained by the physiological
daily dose of HC our study population received (median,
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Figure 6. Cortisol generation time curves. Analysis of serum (A) cortisol, (B) cortisone, and (C) cortisol/cortisone (F/E) ratio after 25 mg of cortisone
acetate, in patients with adrenal insufficiency receiving IR-HC (visit 1, n =22) and after 12 weeks of DR-HC (visit 2, n =22) and in healthy matched

controls (n=11). Data are expressed in mean (standard error of the mean).

20 mg [IQR, 16.25-20]) compared with the study by Espiard
et al where the study population received a clearly supraphy-
siologic mean daily HC dose of 30.1 mg (+£5.5) (23). We did
observe a significant positive correlation between HC dose
and total urinary GC metabolite excretion in our patients,
highlighting the importance of the daily HC dose in patients
with Al with regard to overall tissue exposure to GC.
Following 12 weeks of dual-release hydrocortisone, we ob-
served a significant reduction in 24-hour urinary cortisol and
total GC metabolite excretion compared with patients receiv-
ing IR-HC; by the end of 12 weeks, this excretion rate was not
different from healthy controls. A reduction in urinary corti-
sol after 12 weeks of DR-HC suggests reduced global
corticosteroid exposure. This is likely to result in metabolic
benefits, given the observation in the study by Sherlock et al
that urinary cortisol metabolites correlate positively with
central-to-thigh fat ratio, as assessed by dual energy X-ray ab-
sorptiometry in patients receiving HC (21). This reduction
may account for the favorable changes in metabolic and
QoL outcomes we observed in our study population (9).
Immediate-release HC results in peaks and troughs in serum
cortisol over the day (14), which may not be reflected in a
24-hour urine collection because this provides a global assess-
ment of urinary steroid excretion. Therefore, we assessed
diurnal variation in urinary steroid excretion by urine

collections performed in 8-hour intervals. In patients receiving
DR-HC, there was a significant reduction in urinary cortisol in
the morning and evening compared with IR-HC, to concen-
trations like those seen in the control group. Several studies
have explored different HC regimes in patients with Al to
identify the best strategy to replicate the distinct diurnal
rhythm of cortisol secretion; however, those regimes inevit-
ably result in steroid overreplacement or underreplacement
across the 24-hour period (14, 24-27). Furthermore, even in
healthy populations, high evening cortisol levels are associ-
ated with an increased risk of future glucose disturbance
(28-30), a higher prevalence of vertebral fracture (31), and ad-
verse effects on recognition memory (32). Plat et al showed
that in a group of healthy males, administration of 50 mg of
hydrocortisone at 5 PM produced a more pronounced eleva-
tion in glucose levels and serum insulin and reduced insulin
clearance, than when given at 5 aM (ie, near the peak of the
normal circadian rhythm of the hypothalamic—pituitary—ad-
renal axis) (33). An elevation in nadir evening cortisol concen-
trations, as can occur in patients on thrice daily HC regimes,
could be associated with disturbances in glucose tolerance
(34). DR-HC therapy aims to avoid the peaks and troughs as-
sociated with immediate-release HC, potentially accounting
for the favorable metabolic outcomes seen in our study pa-
tients and previous studies (9, 34).
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Figure 7. Microdialysis subcutaneous adipose tissue analysis in patients with Al receiving IR-HC (visit 1) and after 12 weeks of DR-HC (visit 2). (A)
Microdialysis subcutaneous adipose tissue generation of cortisol after ingestion of 25 mg oral cortisone acetate. (B) Area under the curve (AUC)
analysis of subcutaneous adipose tissue cortisol generation at time 0 to 90 minutes after cortisone acetate. (C) Time 120-240 minutes after cortisone
acetate. Data are expressed in mean (standard error of the mean). Significance = Pvalue < .05; ns, not significant; *P<.05; **P<.01; ***P<.001. No
statistically significant difference between individual cortisol concentrations at each timepoint from visit 1 and visit 2 (A); however, there was a
difference in AUC cortisol 120-240 minutes after ingestion of cortisone acetate (C).

11B-HSD isozymes modify the local action of glucocorti-
coids, whereas the A-ring reductases (5o- and 5p-reductase)
inactivate cortisol (in conjunction with 3B-hydroxysteroid de-
hydrogenase) to its tetrahydro-metabolites (So-THF and
THE) (35). We observed a significant elevation in the ratio
of 24-hour urinary cortisol/cortisone excretion in patients re-
ceiving immediate-release HC compared with controls, sug-
gesting reduced 11B-HSD2 activity. After 12 weeks of
DR-HC, there was a significant reduction in urinary corti-
sol/cortisone excretion, reflecting increased 113-HSD2 activ-
ity, and thereby a reduction in tissue exposure to cortisol by
inactivation to cortisone. Within the diurnal urine collections,
we observed increased 11B-HSD2 activity (decreased urinary
cortisol/cortisone ratio) across all collections, most significant
in the evening collection (4:00 pM-midnight) potentially offer-
ing a protective effect for the tissue, at a time at which physio-
logical cortisol exposure is at its lowest (36).

The activity of the 11B-HSD2 in the kidney, protecting the
mineralocorticoid receptor from inappropriate activation by
cortisol, plays an important role in the maintenance of blood
pressure control. The clinical importance of 118-HSD2 is
highlighted by congenital or acquired deficiencies in
11B-HSD2, which result in the syndrome of apparent min-
eralocorticoid excess presenting with classical features of hy-
peraldosteronism, including salt retention, potassium
wasting, and hypertension (37-41). It has also been proposed
that reduced activity of 11B-HSD2 could contribute to the
pathogenesis of human essential hypertension, especially in
its salt-sensitive form (42, 43). Previous clinical studies have
shown increased urinary free cortisol/urinary free cortisone

ratios, consistent with reduced 11B-HSD2 activity, in hyper-
tensive patients (42, 44-46). The observation of decreased
urinary cortisol/cortisone ratio in our study population may,
therefore, in part explain the observed reduction in blood
pressure after 12 weeks of DR-HC in our study population
(9). The alteration in the urinary free cortisol/urinary free
cortisone ratio may also reflect the reduction in substrate (cor-
tisol) delivery to 11B-HSD2, which would result in a reduction
in its activity; however, delineating these 2 hypotheses is be-
yond the scope of this study.

We also observed a significant increase in the ratio of
50-THF/THEF in the patient population at baseline, which in-
fers an increase in SoR activity. Studies have shown enhanced
S0R activity to be associated with obesity (47) and type 2 dia-
betes (48), with weight loss resulting in reduced 5aR activity
and improvement in insulin sensitivity (49). Patients with
polycystic ovary syndrome also exhibit alteration in 5aR,
with increased S5aR activity correlating positively with
markers of insulin resistance (50). Therefore, the observed al-
teration in cortisol A-ring reduction results in increased corti-
sol tissue exposure with potentially negative implications in
the development of an adverse metabolic phenotype in pa-
tients receiving hydrocortisone replacement therapy.

The liver is the site of highest 11p-HSD1 expression, and
immunohistochemistry studies have revealed that 11p-HSD1
expression in the human liver is localized centripetally with
maximum expression around the central vein (13). Previous
clinical studies have shown that after an oral dose of cortisone
acetate, cortisol appears rapidly in the peripheral circulation
(51, 52), in keeping with first-pass hepatic metabolism and
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Figure 8. mRNA expression of HSD11B1 and glucocorticoid receptor (GR, NR3C1) from subcutaneous adipose tissue in patients receiving IR-HC (visit
1) and after 12 weeks of DR-HC (visit 2). Data expressed in arbitrary units (AUs) and as mean ACt + standard error of the mean, significance = P<.05.

localization of the oxoreductase isozyme, 11B-HSD1, to hep-
atocytes around the central vein (13). In our study, patients
with Al receiving IR-HC had higher peak cortisol concentra-
tions generated at an earlier timepoint compared with the con-
trol population after cortisone ingestion. This observation
may reflect a difference in hepatic 113-HSD1 activity between
patients receiving chronic daily GC therapy and controls.
However, we did not observe a significant difference in the ra-
tio of serum cortisol/cortisone, reflective of hepatic 113-HSD1
activity.

By contrast, we observed a reduction in the expression of
11B-HSD1 in subcutaneous adipose tissue after 12 weeks of
DR-HC. Furthermore, we have shown using adipose tissue
microdialysis that adipose tissue 113-HSD1 activity was re-
duced after 12 weeks of DR-HC. Bujalska et al (53). first pro-
posed that excessive activity of 11B-HSD1 within visceral
adipose tissue could lead to increased adipose tissue concen-
trations of GCs and “Cushing disease of the omentum.”
Subsequently, many studies have investigated whether
11B-HSD1 expression and activity in human adipose tissue
are associated with obesity and insulin resistance (54-59).
Most cross-sectional studies have suggested that adipose tis-
sue 11B-HSD1 expression is increased in obesity and dysglyce-
mia in parallel with decreased hepatic activity (17, 60).
Furthermore, studies investigating the effects of endogenous
GC excess or Cushing syndrome have shown that
adipose-specific 11B-HSD1 knock-out mice were protected
from hepatic steatosis and circulating fatty acid excess (10).
Therefore, cortisol can increase expression of 11BHSD1 con-
tributing to a “feed-forward loop” that might fuel adverse
metabolic features (ie, cortisol increasing 11B-HSD1 expres-
sion generating more cortisol that further increases expression
within the tissue). The reduction in 11p-HSD1 expression in
subcutaneous adipose tissue, as seen in our study population,
may potentially disrupt the feed-forward loop. Additionally,
the observation of reduced urinary cortisol excretion after
DR-HC may have an additional impact to lower 11BHSD1
expression, as observed in our adipose tissue biopsies.

We observed a significant increase in the expression of the
NRC31 gene encoding the GR in subcutaneous adipose tissue
after DR-HC. Cortisol regenerated by 113-HSD1 binds to the
GR within the cytoplasm and is then translocated to the nu-
cleus, where it regulates the transcription of target genes, in-
cluding those involved in inflammation (61). The GR has

also been shown to transcriptionally activate 11B-HSD1, fur-
ther amplifying GC action (62). Therefore, the observation of
increased GR expression in adipose tissue in our patients after
12 weeks of DR-HC may be compensatory to the reduction in
the expression and activity of 11p-HSD1. Several human stud-
ies have examined the association between adipose tissue GR
mRNA levels and features of the metabolic syndrome and
have shown no association (63) or, in fact, a negative correl-
ation with the level of adiposity (55, 64, 65) and insulin resist-
ance (535, 635, 66).

Our study is not without limitations. The study patients
were not blinded to the treatment (for safety purposes). Our
study population was switched from their IR-HC regime to
the daily dose equivalent of DR-HC. Pharmacokinetic studies
of DR-HC have shown that there may be an overall 24-hour
reduction in cortisol exposure of approximately 20%, com-
pared with an equivalent daily dose of thrice daily
immediate-release hydrocortisone (23, 67). The lower GC ex-
posure over 12 weeks could be a factor in altering expression
of key enzymes in cortisol metabolism but these changes may
also be related to the more physiological cortisol concentra-
tion throughout the day (see Fig. 5). Furthermore, our previ-
ous study reported improved QoL in the patient population
with DR-HGC; therefore, our study patients were not clinically
hypoadrenal (9). It is difficult to decipher the relative contri-
bution of weight loss and improved metabolic health on the
outcomes reported in this study because it is well-recognized
that weight loss does have an impact on both hepatic and adi-
pose tissue cortisol metabolism and 11B-HSD1 activity (17,
49). However, this is the first study to comprehensively assess
the effect of DR-HC on tissue cortisol metabolism (in multiple
tissues), and this potential confounder needs to be further elu-
cidated in future studies. Because of the intensive nature of the
in vivo study protocol, a healthy control population was chal-
lenging to recruit; therefore, the size and clinical characteris-
tics of the control groups for each experiment did differ.
However a primary focus of the study was to assess the effect
of DR-HC in the individual patient with the same genetic and
physiological profile (ie, the patients themselves acting as a
control group). Finally, we did not address racial differences
in cortisol metabolism within our dataset as our study popu-
lation were all Irish Caucasian.

In conclusion, this study demonstrates abnormalities in cor-
ticosteroid metabolism in patients with primary and
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secondary adrenal insufficiency receiving IR-HC, resulting in
increased adipose tissue GC exposure. This dysregulation is
ameliorated after 12 weeks of DR-HC treatment. These alter-
nations represent a potential mechanism underlying beneficial
metabolic effects of more physiologic GC replacement
regimens.
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