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Abstract

The aged phenotype shares several metabolic similarities with that of circulatory Key Words

glucocorticoid excess (Cushing's syndrome), including type 2 diabetes, obesity, glucocorticoids
hypertension, and myopathy. We hypothesise that local tissue generation of 11B-HSD1
glucocorticoids by 11p-hydroxysteroid dehydrogenase type 1 (118-HSD1), which ageing

converts 11-dehydrocorticosterone to active corticosterone in rodents (corticosterone

to cortisol in man), plays a role in driving age-related chronic disease. In this study, we
have examined the impact of ageing on glucocorticoid metabolism, insulin tolerance,
adiposity, muscle strength, and blood pressure in both wildtype (WT) and transgenic
male mice with a global deletion of 118-HSD1 (118-HSD1-/-) following 4 months high-fat
feeding. We found that high fat-fed 118-HSD1-/~ mice were protected from age-related
glucose intolerance and hyperinsulinemia when compared to age/diet-matched WTs.

By contrast, aged 118-HSD1-/- mice were not protected from the onset of sarcopenia
observed in the aged WTs. Young 118-HSD1-/- mice were partially protected from diet-
induced obesity; however, this partial protection was lost with age. Despite greater
overall obesity, the aged 118-HSD1-/- animals stored fat in more metabolically safer
adipose depots as compared to the aged WTs. Serum analysis revealed both WT and
11B-HSD1-/- mice had an age-related increase in morning corticosterone. Surprisingly,
118-HSD1 oxo-reductase activity in the liver and skeletal muscle was unchanged with age
in WT mice and decreased in gonadal adipose tissue. These data suggest that deletion of
118-HSD1 in high fat-fed, but not chow-fed, male mice protects from age-related insulin
resistance and supports a metabolically favourable fat distribution.
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Introduction

People are now living longer than ever before. Globally,
the proportion of people aged 60 years or over has
increased from 9.2% in 1990 to 11.7% in 2013 and is
predicted to reach 21.1% by 2050 (United Nations 2013).
However, 8 out of 10 older adults currently report at

least 1 chronic disease (Center for Technology and Aging
2009). As such, there is an urgent need to understand
the mechanisms underpinning the ageing process, not
only to increase life expectancy but also to improve
healthspan.
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Interestingly, the aged phenotype shares several
metabolic  similarities with that of circulatory
glucocorticoid (GC) (Cushing’s syndrome),
including insulin resistance, type 2 diabetes mellitus,
central obesity, hypertension, myopathy, osteoporosis,
and skin thinning (Fardet et al. 2007, Barzilai et al. 2012). As
such, itis plausible that GCs somehow play a central role in
the ageing process.

The active GC in rodents, corticosterone (equivalent of
cortisol in humans), is synthesised in the adrenal glands,
with secretion tightly controlled by the hypothalamic-
pituitary-adrenal (HPA) axis. Studies examining age-
associated changes in the HPA axis have had mixed results,
although some demonstrate blunting of cortisol diurnal
secretion along with increases in mean levels (Dodt et al.
1994, Van Cauter et al. 1996). GC availability and action
depend not only upon circulating levels but also on tissue-
specific intracellular metabolism by 11g-hydroxysteroid
dehydrogenases (118-HSDs) (Gathercole et al. 2013).
Key metabolic tissues including the liver, adipose
tissue, and skeletal muscle express 118-hydroxysteroid
dehydrogenase type 1 (118-HSD1), which converts inactive
11-dehydrocorticosterone (11DHC) to active corticosterone
(cortisone and cortisol in humans, respectively) (Morgan
etal. 2009).

Conversely, 11f-hydroxysteroid dehydrogenase type
2 (11p-HSD2) is predominately expressed in the kidney,
colon, and salivary gland and catalyses the inactivation
of corticosterone to 11DHC. This not only protects the
mineralocorticoid receptor from occupancy by cortisol but
also provides a substrate for reactivation by 118-HSD1 in
peripheral tissues (Ferrari & Krozowski 2000).

Interestingly, an age-related increased 118-HSD1
activity has been identified in human primary osteoblasts,
skin dermal fibroblasts, the hippocampus, and brown
adipose tissue (BAT). This, in turn, may result in increased
local GC availability in these tissues, potentially
contributing to age-related osteoporosis, skin thinning,
cognitive decline, and impaired metabolic BAT function,
respectively (Cooper et al. 2002, Holmes et al. 2010,
Tiganescu et al. 2011, Doig et al. 2017). However, the role
of local GC metabolism by 118-HSD1 in the liver, adipose
tissue, and skeletal muscle, in the context of ageing, is
unclear.

In the present study, we use transgenic animal models
to test the hypothesis that age-related changes in body
composition (central adiposity and decreased muscle
mass) and resulting chronic disease (type 2 diabetes,
sarcopenia, and hypertension) are caused by excessive
GCs as a consequence of increased circulatory levels and/

excess

or increased local tissue generation by 118-HSD1. This
was addressed by characterising the impact of ageing
on circulating GC levels, pre-receptor GC metabolism,
adiposity, muscle strength and mass, blood pressure, and
insulin tolerance in both wildtype (WT) and transgenic
male mice with a global deletion of 113-HSD1.

Design and methods

Mouse ageing protocol

All animal procedures were approved by the Animals
(Scientific Procedures) Act 1986 of the United Kingdom
(Project Licences: 30/2764), as well as the University
of Birmingham’s Animal Welfare and Ethical Review
Body. Male C57BL/6 WT and 118-HSD1 knockout (KO)
(Semjonous et al. 2011) mice were maintained on a normal
chow diet (composition in kcal: fat: 12%, carbohydrate:
60% protein: 28%) for 24 months (‘aged’) and culled in
parallel with 12-week-old chow-fed animals of the same
genotype (‘young’). In a separate cohort, male C57BL/6 WT
and 118-HSD1 KO mice were maintained on normal chow
for 18 months prior to being transferred to a 45% high-fat
(HF) diet (composition in kcal: fat: 45%, carbohydrate:
35% protein: 20%) (Research Diets, New Brunswick, NJ,
USA). Young controls were transferred onto the HF diet
immediately following weaning. Both young and aged
animals were maintained on this diet for 12 weeks prior
to euthanasia. At the end of the experiment, animals
were culled by cervical dislocation and tissues excised,
weighed, and snap-frozen using liquid nitrogen for later
analyses. Tissue weights were normalised to kidney weight
(rather than body weight) due to the marked obesity of
the aged HF-fed 118-HSD1 KO mice in comparison to the
other groups. See Supplementary Figure 1A (see section on
supplementary materials given at the end of this article)
for the kidney weight data used for normalisation.

Metabolic parameters

Glucose tolerance was assessed 3 weeks prior to euthanasia
by fasting mice for 16 h before blood glucose was measured
from tail vein nicks using a glucometer (Accu-Chek, Roche)
at 0, 15, 30, 60, 90, and 120 min post glucose i.p. injection
(2 g/kg). A blood sample was taken at baseline for insulin
determination, measured using the Ultra Sensitive Mouse
Insulin ELISA kit (Crystal Chem, Inc., Downers Grove, IL,
USA). Ahomeostatic model assessment of insulin resistance
(HOMA-IR) score was calculated with the formula: fasting
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plasma glucose (mM) x fasting serum insulin (uU/L)
divided by 22.5. Low HOMA-IR values indicate high
insulin sensitivity, whereas high HOMA-IR values indicate
low insulin sensitivity (insulin resistance). Grip strength
was assessed 2 weeks prior to euthanasia using a digital
grip-strength metre (Linton Instrumentation, Leeds, UK).
Each mouse underwent four repeat readings before results
were averaged and normalized to body weight.

Analysis of urinary steroid metabolites

Urine was collected daily from each mouse on filter paper, at
09:00 h for 2 weeks prior to euthanasia. Steroid extraction
and analysis were carried out using gas chromatography-
mass spectrometry (GC/MS) as previously described
(Lavery et al. 2006).

Cortisone acetate challenge and cortisol generation
after gavage

Six weeks prior to euthanasia, animals were administered a
cortisone acetate suspension in water (0.25 mg in 200 uL)
by gavage. After 20 min, a 150 uL blood sample was taken
by tail venesection, and cortisol generated was assessed by
GC/MS analysis as described previously (Lavery et al. 2012).

Morning serum corticosterone quantification

Blood samples were taken at 08:00 h by tail venesection
and immediately centrifuged at 1000 g in heparin-coated
tubes. Serum was transferred to cryotubes and snap-frozen.
Corticosterone levels were measured by ELISA according to
the manufacturer’s instructions (Abcam).

Blood pressure assessment

Blood pressure and pulse rate were measured using tail-
cuff plethysmography according to the manufacturer’s
instructions (BP-2000 Blood Pressure Analysis System,
Visitech Systems, Apex, NC, USA). Briefly, mice were
restrained and tail cuffs with pneumatic pulse sensors
attached to tails. Mice were habituated to this procedure
for 10 days before measurements were recorded. Results
presentedareaveragedsystolicblood pressuremeasurements
taken over 10 days 4 weeks prior to euthanasia.

Hepatic triglyceride quantification

Hepatic triglyceride content was measured using a
colourimetric assay according to the manufacturer’s

instructions (BioVision). Samples were prepared by
homogenizing 100 mg of liver tissue in 1 mL of 5%
Nonidet P-40 in water, samples were heated to 80-100°C in
a water bath for 2-5 min and then allowed to cool to room
temperature. The heating step was repeated to solubilize
all triglycerides, upon which samples were centrifuged
for 2 min to remove any insoluble material. Samples were
diluted 10-fold with dH,O before being subjected to a
triacylglycerol (TAG) assay.

118-HSD1 and 118-HSD2 enzyme assays in
tissue explants

118-HSD1 oxo-reductase activity (11DHC to corticosterone)
was assessed by incubating freshly dissected tissue explants
with 100 nm 11DHC diluted in 1 mL media (in glass
tubes) with tracer amounts of [3H]-11DHC (synthesized
in-house (Bujalska et al. 2002)) at 37°C for 2 h. 118-HSD2
dehydrogenase activity (corticosterone to 11DHC) was
assessed by incubating freshly dissected tissue explants
with 100 nm corticosterone diluted in 1 mL media (in
glass tubes) with tracer amounts of [3H]-corticosterone
(PerkinElmer) at 37°Cfor 2 h. Following incubation, steroids
were extracted from the medium with dichloromethane,
separated by thin-layer chromatography with chloroform/
ethanol (92:8), and the fractional conversion of the steroids
was calculated by scanning analysis with a Bioscan 2000
radioimaging detector (Bioscan, Washington, DC, USA).
Percentage conversion was normalized to tissue weight.

RNA extraction and real-time PCR

Total RNA was extracted from tissue using the Tri-Reagent
system. RNA integrity was assessed by electrophoresis
on 1% agarose gel. Concentration was determined
spectrophotometrically at OD,,. In a 50 uL volume, 500 ng
of total RNA was incubated with 250 uM random hexamers,
500 uM dNTPs, 20 U RNase inhibitor, 63 U Multiscribe
reverse transcriptase, 5.5 mM MgCl, and 1x reaction buffer.
The RT reaction was carried out at 25°C for 10 min, 48°C
for 30 min before the reaction was terminated by heating
to 95°C for 5 min. mRNA levels were determined using an
ABI 7500 sequence detection system (Applied Biosystems).
Reactions were performed in singleplex in 10 uL volumes
on 96-well plates in reaction buffer containing 2x TagMan
Universal PCR Master Mix (Applied Biosystems). Primers
and probes were supplied by Applied Biosystems as premade
‘assay on demands’. The specific assays used include: InsR
(MmO01211875_m1), insulin receptor substrate-1 (IRS1)
(MmO01278327_m1), phosphatidyl inositol-3 kinase (PI3K)
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(p85) (MmO01282781_m1), PI3K (p110) (MmO00435673_
m1), AKT1 (MmO01331626_m1), AKT2 (MmO00545827_m1),
PDK1 (MmO00554300_m1), AKT substrate-160 (AS160)
(MmO00557659_m1), glucose transporter type 4 (GLUT4)
(MmO00436615_m1), PTP1B (MmO00448427_m1), SHP2
(MmO00448434_m1), PP2A (Mm00479816_m1), and PTEN
(MmO00477208_m1). All reactions were normalized against
the housekeeping gene 18S rRNA, which was unaffected
by genotype, age, and diet. All target genes were labelled
with FAM, and the reference gene with VIC. The reaction
conditions were as follows: 95°C for 10 min, then 40 cycles
of 95°C for 15 s and 60°C for 1 min. Data were obtained
as Ct values (Ct=cycle number at which logarithmic
PCR plots cross a calculated threshold line) and used to
determine ACt values (ACt=(Ct of the target gene) — (Ct
of the reference gene)). Data were expressed as arbitrary
units using the following transformation (arbitrary units
(AU)=1000 x (2-Act)),

Statistical analysis

Statistical comparisons were performed using SPSS (IBM).
Data are presented as mean * S.E.M. with statistical
significance defined as P < 0.05. Shapiro-Wilk normality
test was used to confirm Gaussian distribution prior to
performing parametric tests. See figure legends for details
of which statistical tests were used. Two-way ANOVA
followed by Bonferroni’s multiple comparison post hoc
test was used to compare the effect of age and genotype.
Statistical analysis on real-time PCR data was performed on
ACtvalues and not A.U.

Results

Ageing in WT mice leads to increased circulating
corticosterone levels and dysregulated pre-receptor
GC metabolism

Since the ageing phenotype shares several similarities
with that of Cushing’s syndrome, we assessed whether the
ageing processisassociated with an increase in GC exposure
(either systemically, through increased circulating levels,
or locally within key metabolic tissues, through increased
activity of 118-HSD1). This was investigated using both
young (12 weeks) and old (24 months) male chow-fed WT
and 118-HSD1 KO mice on the C57BL/6 background.
Consistent with a compensatory activation of the HPA
axis, increased circulating morning corticosterone levels
were identified in both young and old 113-HSD1 KO mice

(Fig. 1A), paralleled by adrenal hyperplasia in these animals
(Fig. 1B). Furthermore, the KOs had elevated urinary
excretion of 11DHC, confirming their attenuated ability
to activate 11DHC to corticosterone in peripheral tissues
(Fig. 1C). We also identified a 1.7-fold increase in plasma
corticosterone levels in WT mice with age (Fig. 1A). In
addition, a small but significant decrease in the percentage
of urinary 11DHC was identified in aged WT mice (Fig.
1C), suggestive of an age-related increase in peripheral GC
activation. However, hepatic 118-HSD1 activity in vivo, as
measured by a cortisone acetate challenge, was unchanged
with age (Fig. 1D), as was 113-HSD1 mRNA expression and
oxo-reductase activity (11DHC to corticosterone) in liver
explants (Fig. 1E and Table 1). Additionally, no age-related
changes in the mRNA expression or oxo-reductase activity
of 113-HSD1 were identified in skeletal muscle, s.c. adipose
tissue, or mesenteric adipose tissue of WT mice (Fig. 1E and
Table 1). Despite this, a significant decrease in 118-HSD1
oxo-reductase activity was identified in gonadal adipose
tissue from WT mice with age (Fig. 1E).

The dehydrogenase activity (corticosterone to 1DHC)
and mRNA expression of 118-HSD2 was decreased in
the kidneys of WT mice with age (Fig. 1F and Table 1).
This suggests that the ability of the kidneys to inactivate
circulating corticosterone declines in an age-dependent
manner.

The expression of glucocorticoid receptor-a (GRx)
mRNA was unchanged with age in the liver, quadriceps
muscle, soleus muscle, s.c. adipose tissue, and mesenteric
adipose tissue of WT mice. However, an age-associated
decrease was identified in gonadal adipose tissue of WT
animals, which may function as a protective mechanism
to limit the adverse detrimental effects of local GC
regeneration in this tissue (Table 1).

Aged 118-HSD1 KO mice have a metabolically
favourable fat distribution, despite greater
overall obesity

Since the ageing process is associated with increased
adiposity, we assessed the fat phenotype of both young
and old WT and 118-HSD1 KO male mice. In agreement
with previously published reports (Morton et al. 2004), we
have shown that young 118-HSD1 KO mice are partially
protected from diet-induced obesity when fed on a 45% HF
diet for 12-weeks - gaining ~8 g less than the young WTs
during this time (Fig. 2A and B). Surprisingly, this partial
protection was lost with age, with the aged 118-HSD1
KOs gaining a similar amount of weight as the aged WTs
during the 12-week HF diet intervention. Furthermore,
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genotypes. Morning serum corticosterone levels
were increased in WT mice with age (A). KO
animals displayed adrenal hypertrophy (B), in
agreement with a compensatory increased
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and elevated morning serum corticosterone
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excreted in the urine of aged WT mice was
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the aged 118-HSD1 KOs were more obese than their aged
WT controls, and this trend held true for both the chow
and 12-week HF-fed animals. In agreement with greater
overall obesity, the old HF-fed 118-HSD1 KO mice had
increased gonadal and s.c. adiposity in comparison to
aged HF-fed WTs (Fig. 2C). By contrast, the increased
mesenteric adiposity observed in the HF-fed WTs with
age was blunted in the aged HF-fed 118-HSD1 KO animals
(Fig. 2D), implying that the latter store lipids in a more
metabolically favourable manner with age despite greater
overall obesity. Although the old chow-fed 118-HSD1 KO
mice also had greater s.c. adiposity in comparison to aged
chow-fed WTs (Supplementary Fig. 1A), there was no
protection for increased mesenteric adiposity with age in
these animals (Supplementary Fig. 1B). Assessment of the

\8 _\(‘Q

the effects of age. An n of 8-9 animals was used in
each group. (*P<0.05; **P<0.01 vs young WT;
$$P <0.01 vs old WT; ns = not significant).

hepatic phenotype in these animals revealed an increase
in hepatic triglyceride content with age but genotype was
without effect (Fig. 2E).

High fat-fed 118-HSD1 KO mice are protected from
age-related insulin resistance

Since the ageing process is associated with reduced insulin
sensitivity and type 2 diabetes mellitus, we assessed aspects
of glucose metabolism in both young and old male WT and
118-HSD1 KO mice. Since the C57BL/6 genetic background
are susceptible to developing features of metabolic
syndrome (including insulin resistance), we assessed
glucose control in not only chow-fed mice but also animals
fed on a 45% HF diet for 12 weeks prior to euthanasia. In
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Figure 2

Total body weight analysis of wildtype (WT) and 118-HSD1 knockout (KO) mice fed on chow with or without a 12-week 45% high-fat (HF) diet intervention
(A). Young KO mice were partially protected from diet-induced obesity, whereas this partial protection was lost with age (B). In agreement with greater
overall obesity, the aged HF-fed 113-HSD1 KO mice had increased gonadal and s.c. adiposity in comparison to aged HF-fed WTs (C). However, the aged
HF-fed 118-HSD1 KO mice were partially protected from increased fat accumulation in the metabolically detrimental mesenteric adipose depot in
comparison to aged HF-fed WTs (D). Hepatic triglyceride (TAG) content was increased with age but unaffected by genotype in HF-fed mice (E). Statistical
analysis was done using three-way ANOVA followed by Bonferroni's multiple comparison post hoc test for A to compare the effect of age, genotypes, and
diet, whereas two-way ANOVA followed by Bonferroni's multiple comparison post hoc test was used for B-E to compare the effect of age and genotypes.
An n of 7-9 animals was used in each group. (*P <0.05, **P <0.001; ns = not significant, HFD, high-fat diet).

the chow-fed mice, although ageing was associated with
a worsening in glucose tolerance, genotype had no effect
(Fig. 3A, B and C). Similarly, an age-related increase in
fasting insulin levels was observed in both chow-fed WT
and 118-HSD1 KO animals (Fig. 3D), and although the
latter appeared less hyperinsulinemic compared to the
aged WTs, this did not reach statistical significance.

Both the aged HF-fed WT and KO mice were more
glucose intolerant (Fig. 3E, F and G), had elevated fasting
insulin levels (Fig. 3H), and had a worse HOMA-IR index
(Fig. 3I) in comparison to the young HF-fed animals of
the same genotype. These findings are consistent with the
onset of insulin resistance in both WT and KO mice with
age. However, the aged HF-fed KOs had improved glucose
tolerance (Fig. 3E, F and G), lower fasting insulin levels (Fig.
3H), and a superior HOMA-IR index (Fig. 3I) in comparison
to aged HF-fed WTs.

Gene expression analysis of key components of the
insulin signalling cascade in quadriceps muscle of HF-fed
mice is shown in Table 2. Corroborating the glucose
tolerance data (Fig. 3E, F G, H and I), we have identified
several genes dysregulated with age in HF-fed WT mice.
These include a decrease in the mRNA expression of IRS1,
altered subunit stoichiometry of PI3K (increased expression
of the regulatory subunit (p85) with respect to the catalytic
subunit (p110)), increased AS160 expression, and increased
expression of the GLUT4 (Table 2). Consistent with their
protection from age-related insulin resistance, aged HF-fed
118-HSD1 KO mice had similar mRNA expression levels of
both IRS1 and PI3K-p85 to that of young HF-fed controls
(Table 2). However, both AS160 and GLUT4 expression
remained elevated in the aged HF-fed KO mice suggesting
insulin-mediated glucose uptake is still impaired in these
animals.
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Since the ageing process is associated with a gradual
reduction in both muscle mass and strength, we assessed
the muscle phenotype as part of the present study.
Consistent with the onset of sarcopenia, WT mice
displayed reduced grip strength with age, paralleled by loss
of mixed fibre muscle bed mass (quadriceps). However, no
protection from these age-related changes was evident in
118-HSD1 KO mice (Fig. 4A and B).

Blood pressure is well established to increase with
age. As such, this parameter was assessed using pneumatic
tail cuffs. Although no difference in pulse rate (Fig. 4C) or
diastolic blood pressure (Fig. 4D) was observed with age
or genotype in the HF-fed animals, we did detect an age-
related increase in systolic blood pressure in both HF-fed

Young Old

compared to the young WT controls, whereas
these parameters were lower in the aged HF-fed
KOs compared to aged HF-fed WTs. Statistical
analysis was done using two-way ANOVA followed
by Bonferroni's multiple comparison post hoc test
to compare the effects of age and genotype. An n
of 7-9 animals was used in each group.
(**P<0.001, P <0.05 vs old-WT; HFD, high-fat
diet; ns, not significant).

WTs and KOs (Fig. 4E). Interestingly, although this effect
appeared blunted in the aged HF-fed KOs, this did not
reach statistical significance (P=0.053). Assessment of
these blood pressure parameters in the chow-fed mice
mirrored those of HF-fed animals (data not shown). For
all figures in this manuscript, all outlier data points were
included in the analysis.

Discussion

Currently, the molecular mechanisms underpinning the
ageing process are not completely understood. Since the
ageing phenotype shares many metabolic similarities with
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Table 2 Gene expression analysis of key components of the insulin signalling cascade in quadriceps muscles from both young
(12 weeks) and old (24 months) HF-fed wildtype and 118-HSD1 knockout (KO) mice.

mRNA expression (arbitrary units) + s.e.

Young Oold Fold change in expression with age

Gene Wildtype 118-HSD1 KO Wildtype 118-HSD1 KO Wildtype 118-HSD1 KO
InsR 0.01071 £ 0.0009 0.0095 + 0.0005 0.0122 + 0.0003 0.0115 £ 0.0008 1.14 1.21
IRS1 0.0101 £ 0.0016 0.0091 £ 0.0012 0.0054 + 0.00101 0.0083 + 0.0009¢ 0.531 0.91
PI3K (p85) 0.0081 + 0.0012 0.0080 + 0.0031 0.0182 £ 0.003199  0.0101 £ 0.0020% 2.25% 1.26
PI3K (p110) 0.0011 + 0.0002 0.0011 £ 0.0003 0.0010 + 0.0002 0.0011 £ 0.0003 0.91 1.00
AKT1 0.0071 + 0.0002 0.0068 + 0.0002 0.0079 + 0.0003 0.0076 + 0.0004 1.1 1.12
AKT2 0.0033 + 0.0006 0.0036 + 0.0007 0.0030 + 0.0006 0.0035 + 0.0005 0.91 0.97
PDK1 0.0081 +0.0010 0.0080 + 0.0008 0.0084 + 0.0012 0.0089 + 0.0007 1.04 1.1
AS160 0.0036 +0.0010 0.0039 £ 0.0012 0.0072 £ 0.00111 0.0063 £ 0.00091 2.00" 1.621
GLUT4 0.0569 + 0.0091 0.0523+0.0112 0.0921 £0.01194 0.0929 + 0.00991 1.6299 1.78
PTP1b 0.0022 + 0.0002 0.0008 + 0.0001199 0.0024 + 0.0003 0.0007 £+ 0.0001# 1.09 0.88
SHP2 0.0115 + 0.0042 0.0114 + 0.0066 0.0100 £ 0.0031 0.0093 + 0.0054 0.87 0.82
PP2A 0.0265 + 0.0015 0.0127 £ 0.00211 0.0262 + 0.0025 0.0177 £ 0.0032# 0.99 1.39
PTEN 0.0101 + 0.0063 0.0133 £ 0.0053 0.0142 + 0.0059 0.0144 £ 0.0072 1.41 1.08

Statistical analysis was done using two-way ANOVA followed by Bonferroni's multiple comparison post hoc test to compare the effects of age and

genotype. An n of 7-9 animals was used in each group.
9P <0.05; 1P < 0.01 vs young WT; #P < 0.05, #P < 0.01vs old WT.

that of circulatory GC excess, it is plausible that GCs are in
some way involved in driving the aged phenotype. In the
present study, we have characterised the impact of ageing
on circulating GC levels, pre-receptor GC metabolism,
adiposity, muscle strength and mass, blood pressure, and
insulin sensitivity in both WT and transgenic male mice
with a global deletion of 113-HSD1.

In agreement with previously published rodent and
human studies (Van Cauter et al. 1996, Ferrari et al. 2001,
Giordano et al. 2005, Yau et al. 2007), we have shown
circulating corticosterone levels to increase with age in
both WTand 118-HSD1 KO mice - likely driven by increased
HPA axis activation. Ideally, this would be confirmed by
measuring the serum adrenocorticotrophic hormone
(ACTH) levels. However, since secretion of this hormone
increases rapidly in response to stress (e.g. collecting blood
samples), obtaining accurate measurements for ACTH was
not possible in our hands. Despite this, others have shown
a small age-related increase in the area under the curve for
ACTH secretion in humans (Giordano et al. 2005).

Assessment of insulin sensitivity revealed that chow-
fed 118-HSD1 KO mice were not protected from the
development of glucose intolerance, hyperinsulinaemia,
or a worsening HOMA-IR index with age. Therefore, we
‘stressed the system’ by implementing a 12-week HF diet
intervention. Importantly, the mice used in this study were
bred on the C57BL/6 background, which is susceptible to
developing features of the metabolic syndrome (including
insulin resistance). As anticipated, aged HF-fed WTs
became fully glucose intolerant, insulin resistant, and

hyperinsulinemic, in comparison to young HF-fed controls,
suggesting age rendered these animals more susceptible to
dysregulated glucose control. Crucially, the aged HF-fed
KO mice were not as glucose-intolerant, peripherally
insulin resistant or hyperinsulinemic, implying that 118-
HSD1 regulates glucose homeostasis with age under HF
feeding conditions. These findings were endorsed at a
molecular level where the suppressed IRS1 expression and
dysregulated PI3K subunit stoichiometry observed in the
skeletal muscle of the aged HF-fed WT animals were not
present in the aged HF-fed KOs. Importantly, GCs have
been shown to directly induce insulin resistance in skeletal
muscle by modulating the expression of IRS1 and PI3K in
a similar manner to that reported here in WT mice with
age (Morgan et al. 2009) - further supporting the premise
that these age-dependent molecular changes are GC
dependent. Despite this, there was evidence of impaired
insulin-mediated glucose uptake in the skeletal muscle of
the aged HF-fed KOs as indicated by elevated AS160 and
GLUT4 expression. However, it should be noted that we did
not evaluate total protein levels as part of the current study,
as such the reported mRNA changes may not necessarily
translate to total protein levels.

Itis well documented that 113-HSD1 deletion in young
mice offers some protection from diet-induced obesity
(Morton et al. 2004), and the findings presented in this
study support this. However, our results also indicate that
the partial protection from weight gain seen in the HF-fed
young animals is lost with age - with the aged 118-HSD1
KOs gaining a similar amount of weight during the HF diet
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Figure 4

Both grip strength (A) and quadriceps muscle bed weights (B) were decreased with age in both chow-fed WT and KO mice. Pulse rate (C) and diastolic
blood pressure (D) were unaffected by age or genotype, whereas systolic blood pressure (E) was increased with age in WT and KO animals. Statistical
analysis was done using two-way ANOVA followed by Bonferroni’'s multiple comparison post hoc test to compare the effects of age and genotype. An n of

7-9 animals was used in each group. (**P <0.001; ns, not significant).

intervention as the aged WTs. Furthermore, the aged KO
animals were significantly more obese compared to their
aged WT counterparts. However, post-mortem analysis
revealed that, in contrast to the WTs, the aged HF-fed KOs
stored lipids in a more metabolically favourable manner,
despite greater overall obesity, mesenteric adipose tissue
is thought to play a central role in the development of
metabolic dysfunction (Yang et al. 2008). As such, the
reduced mesenteric adiposity of the aged HF-fed KOs may
contribute to the improved glucose control seen in these
animals compared to the aged HF-fed WTs. This finding
is consistent with the known depot-specific effects of GCs
on adipose tissue (Lundgren et al. 2004, Hazlehurst et al.
2013) and may be underpinned by the relatively higher GR
expression in the mesenteric compared to s.c. and gonadal
depots.

Ectopic lipid deposition in peripheral tissues is a
hallmark of metabolic dysfunction (Trouwborst et al.
2018). While we did not observe any differences in
hepatic triglyceride contentment with genotype in the
present study, we cannot discount the possibility that the
protective metabolic phenotype observed in the aged 1143-

HSD1 KO mice could be underpinned (at least in part) by
reduced age-associated ectopic triglyceride accumulation
in skeletal muscle or protection from an accumulation of
lipotoxic lipid intermediates such as diacylglycerides and
ceramides in the liver or muscle.

Consistent with the known effects of ageing in
humans, we observed the onset of systolic hypertension
in the aged WT and KO mice compared to their
younger counterparts. This may be partly driven by the
concomitant age-associated increased circulating morning
corticosterone levels in these animals. Furthermore, we
observed a decreased renal 118-HSD2 expression/activity
in the aged WT mice. Normally the function of 118-HSD2
is to inactivate corticosterone locally in the kidneys for the
purpose of protecting the non-selective mineralocorticoid
receptor from occupancy by this metabolite, which would
otherwise lead to increased sodium retention and elevated
blood pressure. Thus, a reduction in its activity may also
contribute to the observed systolic hypertension in these
animals. Interestingly, deletion of 118-HSD1 did not
ameliorate age-associated systolic hypertension when
compared to the young mice.
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Our data underscore a potentially critical role
for pre-receptor GC metabolism in contributing to
age-associated chronic disease, but raises an important
question: ‘Precisely how does 118-HSD1 drive age-related
metabolic dysfunction?” Previous studies have shown
118-HSD1 to increase with age in the skin, osteoblasts,
hippocampus, and skeletal muscle (in females but not
males), which in turn is thought to contribute to age-
related skin thinning, osteoporosis, cognitive decline,
and sarcopenia, respectively (Cooper et al. 2002, Holmes
et al. 2010, Tiganescu et al. 2011, Hassan-Smith et al. 2015).
Furthermore, our analysis of the BAT from the same cohort
of mice used in the current study, which formed part of a
previous publication, also reveals an age-related increase
in 118-HSD1 expression, which in turn may contribute
to impaired metabolic BAT function with age (Doig et al.
2017). As such, an age-associated increase in local GC
availability driven by increased 118-HSD1 activity may
play an important role in driving features of the ageing
phenotype in certain tissues such as the skin, brain, bone,
and BAT. In support of this, we identified a small but
significant decrease in the percentage of urinary excretion
of 11DHC in aged WT mice, suggestive of an age-related
increase in peripheral GC activation. However, we did not
identify age-associated increases in 113-HSD1 expression/
activity in the liver, adipose tissue, or skeletal muscle
suggesting the mechanism by which 118-HSD1 contributes
to features of the ageing phenotype in these tissues is not
explained by a simple increase in its expression/activity
with age. Previously, we demonstrated that 118-HSD1
governs intracellular access to circulating corticosterone
in mice, and in turn plays a central role in driving the
metabolic complications associated with circulatory
GC excess (Tomlinson et al. 2002, Morgan et al. 2014).
Mechanistically, this stems from the fact that a proportion
of circulating corticosterone is inactivated by 118-HSD2,
predominantly in the kidneys, and the resultant 11DHC
acts as a substrate for 118-HSD1 and is subsequently
reactivated to corticosterone within key metabolic tissues
in the vicinity of the GR (Lin et al. 1997, Cooper et al. 2002).
Since circulating corticosterone levels increase with age in
WT mice, potentially so could the proportion inactivated
to 11DHC in the kidneys. This increased substrate
availability for 118-HSD1 could, in turn, result in enhanced
local corticosterone reactivation within peripheral tissues,
contributing to age-associated metabolic dysfunction
observed in the WT mice. This could potentially explain
how 118-HSD1 contributes to age-related metabolic
dysfunction regardless of whether its expression/activity
increases with age (skin, brain, bone, and BAT) or remains

unchanged (liver, adipose, and skeletal muscle). However,
this remains to be fully tested in this context.

A limitation of the current study is that the role of
118-HSD1 in driving aspects of the ageing phenotype was
only investigated in male mice. As such, we can discount
the possibility of sexual dimorphism with respect to our
findings. Indeed, there is evidence of sexually dimorphic
expression of hepatic 113-HSD1 in rats, underpinned by
sex-specific changes in growth hormone secretion patterns
(Low etal. 1994, Albiston et al. 1995). Furthermore, Hassan-
Smith et al. have shown 118-HSD1 increases with age
in the skeletal muscle of women, but not men, and this
increase correlates with features of the ageing phenotype
including sarcopenia and insulin resistance (Hassan-Smith
et al. 2015). In agreement, we also did not observe an age-
related increase in skeletal muscle 118-HSD1 expression/
activity in aged male WT mice, nor did we see protection
from age-related sarcopenia in these animals. Although,
we cannot confirm whether the opposite is true in female
animals. Therefore, it is important that future studies focus
on both sexes to identify whether any apparent 113-HSD1-
dependent age-related changes are universal or gender-
specific.

The present study raises the intriguing possibility
of selectively targeting 118-HSD1 as a novel therapeutic
strategy to improve health in old age. To date, pre-clinical
and clinical studies have shown selective 118-HSD1
inhibitors to modestly improve insulin sensitivity, reduce
dyslipidemia and reverse central obesity in patients
with type 2 diabetes, and improve cognitive function in
aged mice (Rosenstock et al. 2010, Feig et al. 2011, Sooy
et al. 2015). Although their efficacy in ameliorating the
adverse metabolic complication associated with the
ageing process has not yet been fully tested, Hardy et al.
have recently demonstrated a beneficial effect of selective
118-HSD1 inhibition on lean mass in obese female
patients with intracranial hypertension (age range: 18-55
years), highlighting potential utility for the treatment of
sarcopenia (Hardy et al. 2021).

In conclusion, we have demonstrated that 118-HSD1
plays a critical role in driving age-related insulin resistance
and a metabolically harmful fat distribution in HF-fed,
but not chow-fed male mice, underscoring the potential
for the use of a selective 118-HSD1 inhibitor to increase
healthspan.
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