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Abstract

Context: Idiopathic intracranial hypertension (IIH) is a disease of raised intracranial pressure (ICP) of unknown etiology.
Reductions in glucocorticoid metabolism are associated with improvements in IIH disease activity. The basal IIH
glucocorticoid metabolism is yet to be assessed.

Objective: The objective of this study was to determine the basal glucocorticoid phenotype in IIH and assess the effects
of weight loss on the IIH glucocorticoid phenotype.

Design: A retrospective case-control study and a separate exploratory analysis of a prospective randomized
intervention study were carried out.

Methods: The case-control study compared female IIH patients to BMI, age, and sex-matched controls. In the
randomized intervention study, different IIH patients were randomized to either a community weight management
intervention or bariatric surgery, with patients assessed at baseline and 12 months. Glucocorticoid levels were
determined utilizing 24-h urinary steroid profiles alongside the measurement of adipose tissue 118-HSD1 activity.
Results: Compared to control subjects, patients with active IIH had increased systemic 11p-hydroxysteroid
dehydrogenase (118-HSD1) and 5a-reductase activity. The intervention study demonstrated that weight loss following
bariatric surgery reduced systemic 118-HSD1 and 5a-reductase activity. Reductions in these were associated with
reduced ICP. Subcutaneous adipose tissue explants demonstrated elevated 118-HSD1 activity compared to samples
from matched controls.

Conclusion: The study demonstrates that in IIH, there is a phenotype of elevated systemic and adipose 118-HSD1
activity in excess to that mediated by obesity. Bariatric surgery to induce weight loss was associated with reductions in
118-HSD1 activity and decreased ICP. These data reflect new insights into the IIH phenotype and further point toward
metabolic dysregulation as a feature of IIH.
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Introduction

Idiopathic intracranial hypertension (IIH) is a disease
characterized by raised intracranial pressure (ICP),
papilledema, and disabling headaches (1, 2). IIH
predominantly affects obese women of the reproductive
age, and its incidence is increasing in parallel with the
obesity epidemic (3, 4). Disease modification of IIH is
through weight management, and the IIH weight trial
(IH:WT) provided evidence that weight loss through
bariatric surgery inferred long-term remission of ICP as
compared to a community weight management (CWM)
intervention (5, 6, 7).

Defining the pathophysiology of IIH and identifying
biomarkers to guide diagnosis and target management
were deemed top priorities for research by both healthcare
professionals and people with IIH in a priority-setting
partnership (8). IIH has long been thought to be a
disease isolated to the CNS; however, recent evidence
has demonstrated systemic metabolic features linked
to but in excess of those seen in simple obesity (9, 10,
11). IIH patients have truncal obesity, an increased risk
of cardiovascular disease and type 2 diabetes mellitus
in addition to being more insulin resistant and having
altered adipose tissue function with a greater magnitude
of derangement than that mediated by obesity (10, 12,
13). Additionally, ITH patients have a unique phenotype
of serum and cerebrospinal fluid (CSF) androgen excess,
highlighting altered steroid metabolism (9).

Glucocorticoids  (GC) and  11B-hydroxysteroid
dehydrogenase (118-HSD) are associated with disease
activity in IIH. Pre-receptor corticosteroid availability
is mediated by the bidirectional enzyme, 113-HSD (14).
This enzyme has two isoforms: 118-HSD1 which acts
predominantly as an oxoreductase and activates cortisol
from cortisone and 118-HSD2, which inactivates cortisol
to cortisone. 118-HSD1 is expressed in a wide variety of
tissues but its principal role in humans is mediating local
cortisol availability where, for example, in the adipose
tissue, it can promote adipocyte differentiation and drive
hepatic glucose output (15). In IIH, 118-HSD1 activity is
decreased in association with a reduction in ICP following
a therapeutic diet (16). Change in systemic 118-HSD1
activity correlates significantly with change in ICP. A
randomized controlled trial in IIH demonstrated that
specific therapeutic inhibition of 118-HSD1 (AZD4017)
reduces ICP (17). Cognitive impairment has been
associated with GC excess (18, 19). Cognitive dysfunction
is documented in patients with IIH and has been shown to
significantly correlate with serum cortisol levels, a known

driver of cognitive impairment (20, 21). Normalizing
serum cortisol through weight loss improves the cognitive
impairment in IIH (6, 20).

While these data suggest that cortisol secretion
and its metabolism by 118-HSD1 activity are relevant in
IIH etiology, it is unknown if IIH patients have altered
systemic 118-HSD1 activity compared to weight-matched
controls. Indeed, in there is no consensus on what simple
obesity does to systemic 113-HSD1 activity (15, 22, 23, 24).
Furthermore, it is unclear what may be driving altered 11-
HSD1 activity in ITH.

Here, the urinary GC phenotype in IIH is defined, the
role of bariatric surgery on the urinary GC phenotype is
assessed, and the contribution of adipose tissue to the IIH
GC phenotype is understood.

Methods

Study conduct

IIH subjects were identified from multiple UK centres,
and samples were collected following informed, written
consent. The trials received ethical approval for the IIH
and control cohorts from the York and Humber-Leeds West
Research Ethic committee (REC) (13/YH/0366), Dudley
local REC (06/Q2702/64), and the Black Country REC
(14/WM/0011) (collected as part of three separate ethical
applications).

Control patients were recruited via advertisement,
where sample collection occurred following informed
written consent. Sample collection was approved by the
South Birmingham Local REC and the Black Country
REC (14/WM/0011). Control patients for adipose tissue
experiments were recruited from elective National Health
Service bariatric surgery procedures following written
informed consent and was approved by the Black Country
REC (14/WM/0011).

Study population

Adult (18-55 years) female IIH patients with active IIH
(papilloedema >Frisén grade 1 and lumbar puncture
opening pressure (LP OP) > 25 centimeters of cerebrospinal
fluid (cmCSF) on the date of research assessment visit)
diagnosed in line with the International IIH Guideline
criteria were recruited (5). IIH patients at any stage of
their active disease were included. Control patients met
the same inclusion criteria as the IIH patients, with the
absence of an IIH diagnosis.
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Exclusion criteria

Exclusion criteria for all patients included receiving
hormone manipulating (including
contraceptives and those exposed to GC therapy in the
last 3 months), significant comorbidities including known
endocrinopathies, and the inability to give informed
consent. Additionally, ITH patients were excluded if they
were pregnant during the visit.

medication

Assessments

All participants underwent detailed medical history
and examination. Anthropometric data were recorded.
Lumbar punctures were carried out in all ITH patients and
conducted in the left lateral decubitus position with knees
bent at a 90° angle or more and (LP OP) recorded. Twenty-
four-hour urine samples for urinary steroid metabolite
profiling were also provided by patients in attendance at
the research facility. Urine samples were stored at —80°C
and analyzed after a maximum of one freeze--thaw cycle.
Patients were fasted overnight for all visits.

Case-control study

A case-control study comparing IIH with matched
controls was conducted to determine the urinary GC
metabolome. The control subject cohort was group
matched (retrospectively) to the IIH population for age,
gender, and BMI.

Weight loss study

This was a sub-study of the IIH:WT (a randomized
controlled trial comparing CWM intervention to bariatric
surgery in IIH), the full protocol and primary results have
been published elsewhere (NCT02124486) (6, 25). Patients
were randomized 1:1 to either a CWM intervention
(utilizing weight watchers) or a bariatric surgery program
(laparoscopic adjustable gastric banding, Roux-en-Y gastric
bypass or laparoscopic sleeve gastrectomy). Randomization
was done by a computer-generated randomization list via a
phone line at the Birmingham Clinical Trials Unit. Patient
visits occurred at baseline and 12 months after baseline as
per the previously published protocol (25). This sub-study
evaluated the steroid metabolome changes in 24-h urine
samples collected at baseline and 12 months after baseline,
following intervention. Patients randomized to surgery
had a median time from randomization to bariatric surgery
of 4.4 months (range, 2.2-10.3 months).

Urinary steroid profiling

Systemic steroid metabolism in 24-h urine samples was
profiled using gas chromatography-mass spectrometry
and liquid chromatography-mass spectrometry (LC-MS) as
previously described (26). 113-HSD1 activity was assessed
using the ratio of the tetrahydrometabolites of cortisol
(5a-THF+THF) to tetrahydrocortisone (THE). 118-HSD2
activitywasassessed viathefreeurinary cortisol to cortisone
ratio (23). Total GC metabolite excretion was assessed as the
sum of S5a-THF + THF + THE + cortolones + cortols + cortisol +
cortisone and provided an accurate marker of 24-h cortisol
secretion rate (23).

HOMAZ2-IR assessment

Fasting insulin was measured using commercially available
assays (Mercodia), according to the manufacturer’s
instructions. Homeostatic model assessment (HOMAZ2)-IR
was calculated using the program HOMA calculator v2.2.3
(https://www.dtu.ox.ac.uk/homacalculator/).

Leptin ELISA

Leptin was quantified in serum using the human leptin
DuoSet ELISA (DY-398, Bio-Techne, Minneapolis,
MN, USA). The ELISA was carried out according to the
manufacturer’s instructions using the recommended
ancillary kit (Bio-Techne, DY008). Serum was diluted 1:100
in reagent diluent. Samples were run in duplicate.

Interleukin 6 ELISA

Interleukin 6 (IL-6) was quantified in serum by ELISA as per
manufacturer's instructions using the Human IL-6 DuoSet
ELISA (R&D Systems, Cat no. DY206, UK). The ELISA was
carried out according to the manufacturer’s instructions
using the recommended ancillary kit (Bio-Techne, DY008).
Samples were run in duplicate.

Adipose tissue collection

At baseline, subcutaneous adipose tissue was collected
from IIH and control subjects following an overnight
fast (from midnight). Subcutaneous adipose tissue was
biopsied and either placed immediately in RNA later or
into phenol-free DMEM/F12 (Thermofisher), with no
antibiotics.
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Ex vivo adipose 118-hydroxysteroid
dehydrogenase activity

Subcutaneous abdominal adipose tissue explants (~100 mg,
tested in triplicate) were incubated in phenol-free DMEM/
F12 containing 100 nM cortisone for 24 h in glass tubes.
Control experiments were also conducted with identical
conditions but no adipose tissue. Steroid conversion
was quantified using LC-MS as previously described and
normalized to explant mass (27, 28).

Statistical analysis

Statistical analysis was performed using Graphpad Prism 9
(Graphpad Software Inc). Data are presented as mean + S.D.
unless otherwise stated. Data normality was assessed by a
Shapiro-Wilk normality test. Where data were normally
distributed, unpaired two-tailed f-tests (equal variance) or
Welch’s test (unequal variance) were employed, whereas
non-parametric data were assessed via Mann-Whitney
U-test. For multigroup comparisons, two-way repeated-
measures ANOVA followed by Sidak’s multiple comparisons
test were utilized. Spearman’s rank correlation coefficient
(p) and Pearson’s correlation coefficient (r) were used for
assessing correlations in the IIH cohorts. Where data points
are missing, data were not imputed. We did not correct for
multiple comparisons as this would have increased the
likelihood of type II errors. Results were judged significant
at P <0.05.

Results

Patient characteristics

Controls (n=17) and IIH (n=27) patients (all female) were
matched for age (41.7 + 4.2 vs 39.4 + 5.9 years, P=0.18) and
BMI (34.9 + 3.8 vs 38.4 + 8.4 kg/m?, P =0.1). [IH patients
had amean ICP of 35.1 + 4.6 cmCSF (Table 1). There was no
difference in the degree of insulin resistance between the
groups (HOMAZ2-IR: 1.7 + 1.1 vs 1.8 + 2.0, P=0.8) (Table 1).

Basal glucocorticoid metabolome in IIH

We sought to investigate the systemic steroid metabolome
in I[IH patients using 24-h wurine collections. Mass
spectrometry analysis revealed a significant increase in
systemic 118-HSD1 activity in IIH (IIH 1.131 + 0.34 vs
control 0.91 + 0.21 THF+THFa/THE; P = 0.019, Fig. 1A).
Linked to this, IIH patients had increased urinary cortisol
levels (71.2 + 36.8 vs 46.5 + 20.1 pg/24 h, P = 0.0069,

Table 1 Urinary steroid profiling characteristics in control vs
IIH. Data are presented as mean + s.D.

Characteristics Control (n=17) IIH (n=27)
Age (years) 417 +4.2 39.5+6.0
BMI (kg/m?) 34.8 +3.8 38.4+84
ICP (cm CSF) N/A 40.6 + 3.7
Sex (female, %) 100% 100%
Fasting insulin (mIU/L) 13.5+9.6 13.39+ 7.6
HOMA2-IR 1.7+1.1 1.8+2.0
Urine (ug/24 h)
S5a-THF 1177 + 681 1421 + 954
THF 1472 + 817 1331 + 597
THE 2960 + 1581 2662 + 1418
Cortisol (F) 46 + 20 71 + 36%*
Cortisone (E) 85+ 32 107 + 60
Total GC metabolites 8532 + 4068 8039 + 3807
Derivative measurements
(5a-THF+THF/THE) 0.91 +0.1 1.13 £ 0.34*
F/E 0.50+0.16 0.53+0.14
S5a-THF/THF 0.84 +0.33 1.20 + 0.69*

*P < 0.05, **P < 0.01.

c¢cmCSF, centimetres of cerebrospinal fluid; GC, glucocorticoid; HOMA,
homeostatic model assessment; ICP, intracranial pressure; THE,
tetrahydrocortisone; THF, tetrahydrocortisol; 5a-THF,
Sa-tetrahydrocortisol.

Fig. 1D). Markers of 118-HSD2 activity (Fig. 1B) and total
GCexcretion were not altered (Fig. 1C). Asinferred from the
urinary Sa-THF/THF ratio, we also demonstrated increased
activity of the cortisol and testosterone metabolizing
enzyme Sa-reductase in IIH (0.84 + 0.33 vs 1.20 + 0.69,
P =0.03) (Fig. 1E). All other measured steroids were found
to be unchanged, with the exception of pregnanediol
which was increased in IIH patients (391.1 + 290.2 vs
155.5 + 108.9 pg/24 h, P = 0.0018) (Supplementary Table
1, see section on supplementary materials given at the end
of this article).

Markers of 118-HSD1 activity (r=-0.13, P = 0.4) and
Sa-reductase activity (r=-0.11, P = 0.59) did not correlate
with ICP at baseline. Additionally, we demonstrated no
correlation between 113-HSD1 activity and BMI (p=-0.1,
P = 0.6), fasting insulin (p=0.29, P = 0.16) or HOMA2-IR
(p=0.22, P = 0.29). We observed no correlation between
Sa-reductase activity and BMI (p=-0.25, P = 0.2), fasting
insulin (p=0.06, P = 0.77), and HOMA2-IR (p=0.02,
P=0.87).

Weight loss study

The ITH:WT established that weight loss following bariatric
surgery led to significant sustained reduction in ICP in IIH
(6). In this sub-study, 24-h urine samples were collected at
baseline and at 12 months (16 from the CWM intervention
and 13 from the bariatric surgery arm). Among these
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Figure 1

Altered glucocorticoid metabolism in patients with I1H.
Twenty-four-hour urine steroid metabolomic assessment in
control (17) and IIH patients (27). (A) 118-HSD1 activity was
denoted by 5a-THF+THF/THE. (B) 118-HSD2 activity was
denoted by urinary free cortisol/cortisone (F/E). (C) Total
glucocorticoid metabolite excretion. (D) Cortisol secretion. (E)
Sa-reductase activity. Data are presented as mean + s.D.,
Mann-Whitney U-test for A and B, t-test for (C) and t-test with
Welch’s correction for (D) and (E). *P < 0.05, **P < 0.01. lIH,
idiopathic intracranial hypertension; 11p-HSD1,
11B-hydroxysteroid dehydrogenase; 5a-THF+THF/THE, 5a-tetra
hydocortisol+tetrahydrocortisol/tetrahydrocortisone. A full
color version of this figure is available at https://doi.
org/10.1530/EJE-22-0108.

participants at baseline, both IIH cohorts were well
matched for gender (100% female), BMI (44.7 + 8.2 vs
44.0 + 7.3 kg/m?, P = 0.79), age (31.9 + 7.9 vs 32.0 + 7.5
years, P = 0.79), and ICP (32.6 + 4.8 vs 35.0 + 5.1 cmCSE,
P=0.18).

Twelve months following enrollment, the participants
randomized to surgery had a lower BMI (44.1 + 8.8 vs
34.8 +8.0kg/m?, P=0.007) and had alower ICP (30.4 + 5.6 vs
23.5+6.6,P=0.008) compared to participants randomized
to the CWM intervention (Table 2).

In the bariatric surgery cohort, 118-HSD1 activity was
significantly reduced at 12 months compared to baseline
(0.93 £ 0.2 vs 0.66 + 0.1, P < 0.0001, Fig. 2A) while there
was no significant reduction in the CWM arm. At 12
months, the change (A) in 118-HSD1 activity from baseline
was significantly greater in the bariatric surgery cohort
compared to those in the CWM arm (-0.1 + 0.15 vs
—0.27 £ 0.19 A118-HSD1 activity, P = 0.013, Supplementary
Table 2). The change in 118-HSD1 activity was significantly

associated with change in ICP in all groups (r=0.43,
P=0.02, Fig. 2B). 118-HSD2 activity was reduced following
bariatric surgery (0.82 + 0.2 vs 0.68 + 0.2, P = 0.013) and
within the CWM arm (0.81 + 0.2 vs 0.56 + 0.1, P < 0.0001,
Fig. 2C) with no difference between arms at 12 months
(=0.25 = 0.12 vs —0.13 + 0.21 A118-HSD2, P = 0.09,
Supplementary Table 2). Sa-reductase activity remained
unchanged at 12 months in the bariatric surgery group
(0.18 + 0.1 vs 0.22 + 0.1, P = 0.39); however, the activity
was noted to be increased in the CWM arm (0.23 + 0.1 vs
0.32 +0.13, P=0.0012, Fig. 2D) but there was no difference
in the change at 12 months (0.09 + 0.1 vs 0.03 + 0.08 ASa-
reductase activity, P=0.1, Supplementary Table 2). Change
in Sa-reductase activity was correlated positively with
change in ICP (r=0.39, P=0.03, Fig. 2E). Changes in other
analyzed steroids can be found in Supplementary Table 2.

The relationship of 118-HSD1 and Sa-reductase
activity to other markers of metabolic dysregulation and
inflammation was then evaluated. The change in systemic
118-HSD1 activity had a trend to correlation with change
in fasting leptin (0 =0.37, P=0.05), fasting insulin (p =0.38,
P = 0.085) and HOMAZ2-IR (p=0.404, P = 0.07), with no
correlation with change in the inflammation marker IL-6
(p=-0.004, P =0.98). The change in Sa-reductase activity
was not associated with changes in leptin, fasting insulin,
HOMAZ2-IR, or IL-6.

Subcutaneous adipose 118-HSD1 activity

We have shown increased systemic 113-HSD1 activity in
IIH reduced in parallel with decreased ICP in the context
of weight loss. Next, we assessed the ability of 118-HSD1
to generate cortisol in subcutaneous adipose tissue from
IIH patients. We demonstrated a 2.2-fold increase in 114-
HSD1 activity in IIH subcutaneous adipose explants when
compared to control participants (IIH 593.8 + 79.3 vs
control 261.9 + 37.6 pg cortisol/h/100 mg; P = 0.015, Fig. 3).

Discussion

IIH has traditionally been regarded as a disease of the
neuro-ophthalmic axis (29). The link to obesity is long
established but data are emerging identifying systemic
metabolic perturbations in excess to that driven by simple
obesity alone (7, 10, 11). Inhibition of 118-HSD1 in IIH has
been demonstrated to have therapeutic benefits including
reduction of ICP, improved lipid profiles (decreased
cholesterol, increased HDL, and cholesterol/HDL ratio),
decreased markers of hepatic dysfunction, and increased
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Table 2 Urinary steroid profiling characteristics table following intervention. Data are presented as mean + s.0.. There was no
statistical significance between CWM and surgery at baseline.

Baseline 12 Months
CWM (16) Surgery (13) CWM (16) Surgery (13)

Age (years) 31.8+79 326+7.4
BMI (kg/m?) 447 + 8.1 440+ 7.6 441 + 8.8 34.0 + 8.0**####
ICP (cmCSF) 326 +4.8 35.2+5.1 30.3+5.6 23.6 + 6.6F*H####
Sex (female, %) 100% 100%
Fasting insulin (mIU/L) 174+7.6 10.7 +3.8 14.7 + 6.1%% 4.3 + 4 3*HH#
HOMA2-IR 1.9+0.8 1.5+0.6 1.1+0.4°% 0.4 + 0.4% ###
Leptin (ng/mL) 89.3 +37.0 76.8 +32.2 79.3 +38.8 31.9 + 24.0%** ####
IL-6 (pg/mL) 58+27 6.3+ 2.1 54+1.9 5.0+ 2.1
Urine (pg/24 h)

Sa-THF 518 + 537 324 + 304 897 + 641*% 403 + 304*

THF 2305 + 1708 2058 + 1406 2640 + 1309 1967 + 899

THE 3435 + 2121 2666 + 1741 5055 + 2231% 3780 + 1836

Cortisol (F) 69 + 51 63 +47 65 + 27 66 + 25

Cortisone (E) 90+ 70 73+ 41 118 £ 52 106 + 55

Total GC metabolites 10057 + 5881 7502 + 4806 14138 + 6597 12195 + 6026
Derivative measurements

S5a-THF+THF/THE 0.799 + 0.14 0.933 +0.22 0.699 + 0.13 0.660 + 0.16####

F/E 0.812 + 0.56 0.816 + 0.24 0.563 + 0.11%%%% 0.683 + 0.22#

Sa-THF/THF 0.231 +£0.10 0.188 + 0.14 0.32 +0.13% 0.22 + 0.09

*Statistical comparisons between CWM and surgery at 12 months; #Statistical comparison between surgery baseline and surgery 12 months; *Statistical

comparison between CWM baseline and surgery 12 months; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

c¢mCSF, centimeters of cerebrospinal fluid; GC, glucocorticoid; HOMA, homeostatic model assessment; ICP, intracranial pressure; IL-6, interleukin 6; THE,
tetrahydrocortisone; THF, tetrahydrocortisol; 5a-THF, 5a-tetrahydrocortisol.
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Figure 2

[IH urinary steroid metabolome following

weight loss. Twenty-four-hour urine
steroid metabolome profiling at baseline
and 12 months in diet (16) and surgical

(13) IIH patients. (A) Change in 113-HSD1,
(B), scatter graph of change in 113-HSD1
activity vs change in intracranial pressure
(ICP), (C) change in 11p-HSD2 activity, (D)
change in 5a-reductase activity, and (E)
scatter graph of change in 118-HSD1
activity vs change in ICP. Two-way
repeated measures ANOVA followed by
Sidak’s multiple comparisons test for (A),
(B), and (D). Pearson'’s correlation for (B)
and (E). Data are presented as mean +
s.0. *P < 0.05. cmCSF, centimetres of
cerebrospinal fluid; IIH, idiopathic
intracranial hypertension; 118-HSD1,
11B-hydroxysteroid dehydrogenase. A full
color version of this figure is available at
https://doi.org/10.1530/EJE-22-0108.
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Figure 3

Increased 11B-HSD1 activity in subcutaneous adipose tissue
explants from patients with IIH and controls. 118-HSD1 activity
as measured by cortisol production in control (4) and IIH (7)
subcutaneous adipose explants (unpaired t-test). Data is
presented as mean + s.n.. *P < 0.05. IIH, idiopathic intracranial
hypertension; 118-HSD1, 11g-hydroxysteroid dehydrogenase.
A full color version of this figure is available at https://doi.
org/10.1530/EJE-22-0108.

lean muscle mass (17, 30). However, it is unknown if IIH
patients have deranged GC metabolism. In this study, we
conducted GC phenotyping in patients with IIH and then
evaluated the impact of therapeutic weight loss on GC
metabolism in IIH.

We have demonstrated increased urinary cortisol
and urinary systemic 118-HSD1 activity in I[IH compared
to matched controls with obesity. 118-HSD1 activity has
been previously shown to be modified in the context of
obesity. There is no clear consensus on what happens to
systemic 118-HSD1 activity, where multiple studies report
differing direction of change or no change at all (15, 22,
23, 24). However, it is clear that hepatic 118-HSD1 activity
is reduced in the context of obesity, where it is the main
contributor to systemic 118-HSD1 activity (31, 32, 33, 34,
35). In contrast, subcutaneous adipose 118-HSD1 activity
is increased in the context of obesity (22, 24). Our data
suggest that systemic 118-HSD1 activity in IIH is greater

than in obesity alone. Thus, irrespective of the change of
systemic 118-HSD1 in simple obesity, ITH likely represents a
novel 113-HSD1 phenotype distinct to obesity. We did not
compare IIH patients to lean controls, as such this could be
an avenue of future investigation.

A number of historical case reports have linked ITH
to GC therapy but GCs have in the past been prescribed
to ameliorate IIH (36). Hence, the interrelationship
between IIH and iatrogenic GCs is unclear but 118-HSD1
maybe relevant (15). The regulation of 113-HSD1 activity
is known to be tissue-, gender-, and species-specific (35).
Importantly, GCs themselves can regulate 118-HSD1
activity (35). Cortisol, dexamethasone, and prednisolone
have been noted to both activate and suppress 118-HSD1
activity depending on the tissue studied (33, 37). The role
of GCs in regulating 118-HSD1 activity in the choroid
plexus, the tissue that regulates ICP through CSF secretion,
hasnot been evaluated. GCs are no longer routinely used in
the management of IIH due to lack of evidence of efficacy
and the significant risk of weight gain exacerbating the
underlying disease (5, 38).

These data have also demonstrated increased systemic
Sa-reductase activity in IIH. Sa-reductase is a pivotal
enzyme involved in the breakdown of cortisol and
conversion of testosterone to dihydrotestosterone with
established sexual dimorphism (higher levels in females)
demonstrated in rodents (39). Sa-reductase activity
is enhanced in obesity and specifically in the adipose
tissue (31). Here, we have illustrated increased systemic
Sa-reductase activity in I[IH compared to gender and BMI-
matched controls. We have previously identified increased
systemic and CSF testosterone in IIH (9). In this setting, the
elevated Sa-reductase activity may reflect a compensatory
mechanism to breakdown the excess cortisol in IIH. This
may consequently increase the activation of testosterone
to dihydrotestosterone, where androgens are potentially
linked to the raised ICP in ITH (9).

To investigate whether weight loss improves the GC
phenotype in ITH, the effects of bariatric surgery vs CWM
were compared. The [IH:WT demonstrated that surgically
mediated weight loss reduced systemic 113-HSD1 activity;
these results being similar to a previous very low-calorie
diet study (16). This is, however, in contrast to a study on
non-IIH obese individuals where bariatric surgery did not
alter systemic 118-HSD1 activity, despite weight loss (40).
This could be potentially explained by the differential
baseline hormonal and metabolic phenotype seenin IIH, as
compared to those with obesity (but without IIH). Further
evidence was provided when the 118-HSD1 inhibitor
AZDA4017 was evaluated in a randomized control trial
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which reported a reduction in ICP in those with active I[IH
(17). Invivo studies have demonstrated that hydrocortisone
increases CSF secretion in obese rats, suggesting a direct
effect of active GCs on ICP dynamics (41). Indeed, we report
that change in 118-HSD1 activity correlates with change in
ICP, further linking GCs to ICP levels. Together, our data
and that of others suggest that 113-HSD1 activity is likely
linked to the raised ICP in IIH, although the potential
mechanism underlying this requires further investigation.

Our findings of increased systemic 113-HSD1 activity
and the subsequent reduction in 118-HSD1 activity with
weightloss could belinked to the findings that patients with
ITH have cognitive deficits that improve with weight loss
(20). Within the CNS, 118-HSD1 is involved in mediating
mood and memory. An increase in cortisol exposure has
been linked to cognitive decline and Alzheimer’s disease
(42). Thus, it is interesting that in patients with IIH,
cognitive improvement has been previously associated
with decreased systemic 118-HSD1 activity (20).

The association between weight loss and reduction
in systemic 118-HSD1 activity suggests that adipose tissue
could be contributing to the increased 113-HSD1 activity.
Here, we demonstrated a doubling of subcutaneous adipose
tissue 118-HSD1 activity in IIH. Given that obesity confers
an increase in adipose 113-HSD1 activity, this increase in
ITH is in excess to that driven by obesity alone (24). IIH
adipose tissue has been previously demonstrated to have
phenotypic features of GC excess, including depletion
of ribosomal subunits, increased leptin secretion, and
increased lipid turnover (10). Consequently, the current
findings increased adipose 113-HSD1 activity provides an
explanation for the IIH adipose phenotype. It is already
known that people with IIH have increased abdominal
obesity, and with our demonstration of increased
subcutaneous adipose 118-HSD1 activity, it is therefore
possible that subcutaneous adipose in IIH is directly
contributing to the increased systemic measurement
of 118-HSD1 activity due to the compounding effects
of increased 118-HSD1 activity in a tissue that is more
abundant in ITH (10, 13). This may also explain why other
markers of GC metabolism remain unaltered in IIH. This
is similar to rheumatoid arthritis, where tissue level 11§-
HSD1 activity increases contribute to increased systemic
118-HSD1 activity (43, 44). However, it is likely that there
are other tissues contributing to increased systemic 113-
HSD1 that were not assessed in the present study. Indeed,
although the contribution of subcutaneous adipose tissue
to systemic 118-HSD1 is unknown, visceral adipose is a
major contributor and thus could be a focus of further
research (45).

Ithaspreviously been demonstrated thatinflammation
increases 118-HSD1 activity and thus could be a factor in
ITH 11B-HSD1 increases. Previous studies demonstrated
that ITH patients have unaltered circulating level of the pro-
inflammatory cytokine IL-6 compared to obese controls
(20, 46). Moreover, we demonstrate the IL-6 is unaltered
following weight loss in this study. However, other pro-
inflammatory cytokines which also can increase 113-HSD1
activity such as IL-1B, IL-8, and TNF-a are increased in
ITH suggesting that inflammation could play a role (46).
However, this has not been assessed in the adipose of IIH
patients. Consequently, the mechanisms underlying the
increased subcutaneous adipose 118-HSD1 activity remain
unelucidated and should be a focus of further research.

ITH is a rare disease, and consequently modest numbers
of IIH patients were utilized in the present study (3, 4, 12).
However, our IIH patients were meticulously phenotyped,
thus this cohortis representative of female IIH patients with
active disease. We also acknowledge that the control cohort
was small due to finding an obesity-matched population
with no comorbidities was challenging; however, the
controls recruited to this study were valuable as they
enabled us to infer biological insights into IIH. Adipose
samples were not sought following weightloss due to ethical
considerations. Therefore, we were not able determine if
weight loss reduced the 118-HSD1 activity of the adipose;
however, this study represents the first demonstration of
118-HSD1 activity in ITH adipose tissue (17).

Patients randomized to surgery had different surgical
interventions based on clinical need (25). Each surgical
type has been suggested to have subtle difference in their
effect on the hypothalamic-pituitary-adrenal axis and
thus on potential GC phenotype (47). However, this study
was not powered to determine the effect of a particular
surgical intervention on the GC phenotype. We did
not assess the hepatic 118-HSD1 activity in this study,
although this has been evaluated previously in IIH, where
hepatic 118-HSD1 activity did not correlate with ICP (17).
Future studies assessing hepatic 118-HSD1 in IIH patients
vs controls are warranted.

Conclusions

In summary, this study provides evidence that GC
metabolism is dysregulated in IIH with 118-HSD1 activity
increased both systemically and within the subcutaneous
adipose tissue. Therapeutic weightlossin ITH led to systemic
reduction in the cortisol-metabolizing enzymes, 114-
HSD1 and Sa-reductase. The reduction in both 118-HSD1
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and Sa-reductase activity was associated with falling ICP
levels suggesting a potential link to disease pathogenesis.
It remains unclear if the altered GC phenotype in IIH is
directly driving ICP dysregulation or a marker of systemic
metabolic dysregulation.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
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