

1 **Two-dimensional spectroscopic analysis of sulphur group
2 and pyrite transformations in coal coking**

3 Jingbo Chen^{1,2}, Lechi Zhang^{1,2}, Xianyou Huang^{3,4}, Yan Liu⁵, Shuxing Qiu^{1,3,4}, Jianming Wang⁵,
4 Sher Farooq⁶, Shengfu Zhang^{1,2*}

5 ¹*College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.*

6 ²*Chongqing Key Laboratory of Vanadium–Titanium Metallurgy & Advanced Materials,
7 Chongqing University, Chongqing 400044, China.*

8 ³*State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,
9 Panzhihua 617000, China.*

10 ⁴*Panzhihua Iron & Steel Research Institute, Panzhihua 617000, China.*

11 ⁵*Pangang Group Xichang Steel & Vanadium Co. Ltd., Xichang 615000, China.*

12 ⁶*Department of Engineering, Nottingham Trent University, Nottingham NG11 8NS, United
13 Kingdom*

14

15 **Corresponding author:**

16 Prof. Shengfu Zhang
17 College of Materials Science and Engineering, Chongqing University
18 Chongqing 400044
19 China
20 Chongqing Key Laboratory of Vanadium–Titanium Metallurgy and Advanced Materials,
21 Chongqing University,
22 Chongqing 400044
23 China
24 Email: zhangsf@cqu.edu.cn (S. Zhang)
25

26 **Abstract**

27 An accurate description of the sulfur migration process and mechanism is helpful for
28 desulfurization in the coking process, to increase the amount of high-sulfur coking coal and
29 decrease the sulfur content in resultant coke. However, the identified sulfur transformation
30 mechanism in coal pyrolysis is not entirely applicable to the coking process due to variations in
31 atmosphere, temperature and pressure. This work used numerous characterisation techniques in
32 conjunction with experiments to quantitatively evaluate the transformation mechanism of both
33 organic and inorganic sulphur throughout the coking process. The bond-breaking order of
34 functional groups in sulfur during coking was obtained by the Two-Dimensional Correlation
35 Spectroscopy Analysis (2D-COS). The results show that desulfurization in the coking process
36 mainly occurs below 600 °C and 72.8% of sulfur in coal is retained in coke. Among them, FeS₂
37 and sulfoxide are completely removed while sulfides are reduced by 67.9%. The content of sulfone
38 increases by 46.1% because of the transformation of sulfoxide. Thiophenes, and sulfates increase
39 by 32.5% and 33.9%, respectively, as a result of the inorganic sulfur transformation and secondary
40 reaction of sulfur-containing gases above 500 °C. Through Noda's theorem, the bond-breaking
41 difficulty of sulfur-containing functional groups in the coking process is ordered as follows: Fe–
42 S bond → thiol C–S bond → alkyl sulfide C–S bond → thiol –SH → aliphatic C–S bond → sulfide
43 C–S bond → sulfoxide S=O bond → sulfone, sulfoxide C–S bond. By clarifying the
44 desulfurization characteristics of different forms of sulfur, the desulfurization efficiency in the
45 coking process can be enhanced, which provides a theoretical basis for the extensive utilization of
46 high-sulfur coal.

47 **Keywords:** Sulfur transformation; Desulfurization; Coal coking; Pyrite conversion; Sustainable
48 energy; Pollution reduction; Spectroscopic analysis and Two-dimensional correlation
49 spectroscopy.

50 **1. Introduction**

51 Coke plays a fundamental part in the process of blast furnace ironmaking ^[1], which is produced by
52 pyrolysis of coking coal resources at a high temperature of about 1050 °C ^[2]. Due to the large
53 output of pig iron in blast furnaces in China, a large amount of coke is consumed every year. With
54 the deficiency of low-sulfur coking coal resources and soaring prices, using cheap high-sulfur
55 coking coal for metallurgical coke production has been accepted and widely applied in some coke
56 ovens. Correspondingly, the coke's residual sulfur increases. When coke with high sulfur is
57 charged into the blast furnace, some adverse effects will appear, such as a coke ratio rise ^[3], an
58 increase in the sulfur content in pig iron ^[4] and top gas ^[5-7], *et al.* Therefore, it is very important to
59 reduce the sulfur content of coke produced in high-sulfur coal blending coking process. High-
60 sulfur coal contains multiple forms of sulfur-containing phases ^[8], including both inorganic and
61 organic sulfur. Among them, inorganic sulfur primarily exists in the form of pyrite ^[9], while organic
62 sulfur can be further divided into unstable and relatively stable organic sulfur groups. Sulphur
63 radicals serve as the essential intermediaries for sulphur migration in a two-step reaction
64 mechanism that encapsulates the transformation of sulphur in coal ^[10]. Specifically, during the coal
65 pyrolysis process, sulfur bonds are initially broken from pyrite or unstable organics, leading to the
66 formation of sulfur radicals. In the subsequent step, these sulfur radicals participate in reactions
67 with other radicals, such as hydrogen radicals generated during coal pyrolysis, and are ultimately
68 expelled as sulfur-containing gases ^[11].

69

70 As previously mentioned, the migration of inorganic sulfur during the coking process primarily
71 involves the transformation of pyrite ^[9]. During heating, pyrite continuously transforms towards
72 lower sulfur Fe–S phases such as $Fe_{(1-x)}S$ and FeS ^[12–13]. Setyawati analyzed the evolution of pyrite
73 in Australian coal using TG (Thermogravimetry) and a fixed–bed reactive chamber. The results
74 indicate that pyrite decomposes into pyrrhotite at approximately 927 °C, and beyond this
75 temperature, the pyrrhotite partially dissolves to form iron. ^[14] Unlike the pyrite desulfurization
76 that occurs during coal pyrolysis in an inert atmosphere, the desulfurization of pyrite in the coking
77 process faces a more complex chemical environment, which may lead to the formation of phases
78 with various sizes, shapes, and compositions, as well as a difference in transition temperatures. In
79 Gornostayev's research, it was found that pyrite in the coking process almost completely
80 decomposes when the temperature reaches 700 °C ^[15]. Further heating up to 1400 °C can achieve
81 significant desulfurization of the coke ^[16]. The desulfurization of pyrite has been proven to have a
82 negative impact on the quality of the produced coke ^[17]. Unfortunately, in coking process, the
83 interaction between pyrite desulfurization and the coke matrix during coking process has not been
84 clearly explained.

85

86 The organic sulfur forms present in coking coal include thiophene, thiosulfate, sulfoxide,
87 mercaptan, and thioether ^[17]. At lower temperatures, mercaptans, sulfides and disulfides
88 decompose and react with the free hydrogen radicals in the coal, evolving into gaseous forms of
89 sulfur ^[18]. At the same time, some stable organic sulfur compounds remain in the coke, such as
90 thiophenes and their derivatives ^[19–20]. Tefera's coal pyrolysis tests in an inert atmosphere showed
91 that thiophene structures break down at temperatures above 900 °C, although thiols and sulphides
92 start to break down at about 200 °C and 350 °C, respectively ^[21]. Wang ^[22] discovered that during

93 the pyrolysis of inertinite-rich coals, thioethers and disulfides can be completely decomposed at
94 650 °C and 850 °C, respectively. Organic sulfur compounds are fully decomposed at 700 °C.
95 Notably, complex thiophenes do not decompose even at temperatures as high as 1000 °C during
96 pyrolysis. Furthermore, Xu ^[23] impregnated typical organic sulfur structures from coal onto
97 charcoal and subjected them to pyrolysis. It was found that at lower temperatures (150–350 °C),
98 aliphatic C–S bonds tend to break first, while aromatic C–S bonds are generally more stable. Free
99 radicals with aromatic C–S bonds tend to bind with the coke at lower temperatures instead of
100 producing volatile sulfur compounds. Based on the above studies, a reasonable explanation has
101 been established for the migration of organic sulfur in coal during pyrolysis. However, these results
102 are mostly obtained by the coal pyrolysis experiments in a tubular furnace under an inert
103 atmosphere, which differs from the complex physicochemical environment during the coking
104 process.

105

106 Unlike coal pyrolysis in ideal conditions, pretreatment methods employed before coking such as
107 humidification, tamping and crushing effects the migration of sulfur in coal. During the coking
108 process, coal undergoes a state of gas-solid–liquid coexistence in the thermoplastic zone at first ^[24]
109 and then participates in cross-linking, condensation, and–re-polymerisation reactions ^[25]. Under a
110 complex atmosphere combined with high temperatures exceeding 1000 °C and elevated pressure,
111 significant changes occur in the thermal transport of harmful sulfur elements. Yang ^[26] found that
112 the release of sulfur from coal can be enhanced under a coking gas atmosphere. Additionally,
113 moisture in coal has been shown to selectively enhance the breakage ability of C–S bonds,
114 contributing to the formation of sulfur radicals ^[27]. Chen ^[28] discovered that H₂S can regenerate
115 stable thiophene structures again by reacting with the organic compounds in the coke at

116 temperatures higher than 800 °C. According to Tefera's coal pyrolysis experiments conducted in
117 an inert atmosphere, thiophene structures decompose at temperatures exceeding 900 °C, while
118 thiols and sulphides begin to decompose at approximately 200 °C and 350 °C, respectively.
119 Therefore, a fundamental and thorough comprehension of sulfur migration in the coking process
120 is essential and will greatly contribute to improving the performance of coke.

121
122 In this study, interruption experiments of coking experiments were carried out at final temperatures
123 ranging from 300 and 1000 °C to recognize the thermal conversion rules of sulfur-containing
124 phases during the coking process qualitatively and quantitatively. The coking products and
125 volatiles during coking processing were analyzed using a combination of techniques, including X-
126 ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscope
127 (SEM), Fourier Transform Infrared Spectroscopy (FTIR) combined with 2D-COS and
128 Thermogravimetry–Fourier Transform Infrared Spectroscopy–Mass Spectrometry (TG–FTIR–
129 MS). Through these, the desulfurization characteristics of inorganic and organic sulfur in the
130 coking process, the bond–breaking order of sulfur-containing functional groups, as well as their
131 correlation with sulfur-containing gas emission were described more clearly. This research will
132 offer a theoretical basis for future research on high-sulfur coal utilization and emission control.

133 2. Materials and methods

134 2.1 Material

135 A coking coal from Shanxi province (SX coal) was selected as the experimental coal sample. The
136 proximate and ultimate analysis of the SX coal sample is listed in **Table 1**. SX coal is a high–sulfur
137 coking coal, which has a trace quantity of inorganic sulfur, including pyrite, sulfate, and elevated
138 levels of organic sulfur. For coking experiments, SX coal sample was ground and dried at 110 °C

Commented [FS1]: Material and methods
This section should consist of the following information.
a)Support each method/technique adopted with literature/references.
b)Each equation, technique and mathematical expression should be backed by an authentic reference.

139 for 8 h and sieved into particle sizes ranging from 0.15 to 0.25 mm.

140 **2.2 Coking experiments**

141 To study the migration law of coal sulfur in the coking process, coking experiment and its
142 interruption experiment were carried out through crucible coking method. The density, moisture
143 and particle size of coal were controlled at 0.75 t/m³, 10% and 0.15–0.25 mm, respectively. Firstly,
144 40 g crushed coking coal was charged into a cylinder-shaped reactor. Then, an asbestos paper was
145 laid on the SX coal sample with a thickness of 0.5–1.0 mm. After that, coke powder with a
146 thickness of 5–10 mm was spread on the asbestos paper, and a metal block was placed on the coke
147 powder. The heating program was structured as follows: the heating rate was set at 5 °C/min before
148 300 °C, after which it was reduced to 3 °C/min between 300 to 750 °C. When the temperature
149 reached 750 °C, the rate was adjusted to 4.5 °C/min until 1050 °C. The SX coal samples were
150 heated from room temperature to a specific target temperature (300, 400, 500, 600, 700, 800, 900,
151 and 1000 °C, respectively), and then maintained for 2 h to ensure that the desulfurization reaction
152 was fully completed at these temperatures. After cooling, the semi-coke sample was taken out and
153 named SC-300, SC-400, SC-500, SC-600, SC-700, SC-800, SC-900, SC-1000.

154 **2.3 Analytical methods**

155 **2.3.1 XPS analysis**

156 The XPS instrumentation (ESCALAB250, America) was employed for the quantitative
157 determination of sulfur's thermal conversion in coal at different interruption temperatures. Before
158 XPS determination, the samples were pre-crushed and filtered to a size of less than 0.074 mm. Al-
159 K α radiation produced the X-ray source, with a power setting of 200 W. The internal standard
160 calibration was set at 284.6 eV, and the step was set to 0.1 eV. Using the Peakfit software, the
161 spectral characteristics of the sulphur 2p peak were acquired and divided into peaks that

162 corresponded to FeS₂, sulphides, sulphate, sulfoxides, sulfones, and thiophenes. Quantitative
163 analysis of XPS spectra was further carried out to obtain the total sulfur content and sulfur forms
164 distribution of different samples. Due to the mass loss of samples during coking experiments, **Eq.**
165 **(1)** is used to modify the quantitative data obtained by XPS.

166
$$S'_t = S_t \times \frac{m_1}{m_0} \quad (1)$$

167 where, S'_t represents the sulfur content of semi-coke after considering mass loss during the coking
168 process; S_t represents the sulfur content of samples calculated according to XPS spectra; m_0
169 represents the mass of the original coal sample; m_1 represents the mass of semi-coke after the
170 coking experiment.

171 **2.3.2 XRD and SEM analysis**

172 The samples used in the XRD and SEM analysis were the same as in the XPS analysis. The thermal
173 conversion of inorganic sulfurs was further studied by XRD analysis using a Bruker D8
174 diffractometer (Rigaku Ultma IV) with Cu- $K\alpha$ radiation. The angular scan commenced at a 15°
175 angle and progressed to 90°, moving at a speed of 4° per minute and incrementing at 0.02° per
176 step. The microscopic morphology and element occurrence characteristics of the samples were
177 analyzed by SEM-EDS (Hitachi Regulus 8100, Japan) analysis. Under high-vacuum conditions,
178 secondary electron mode at 30 kV electron beam acceleration voltage was selected for the
179 operation. An energy-dispersive spectrometer was employed to analyze the element content and
180 distribution on the surface of the samples.

181 **2.3.3 FTIR analysis and 2D-COS analysis technique**

182 FTIR measurements of coal and semi-coke samples were performed on an infrared spectrometer
183 (Thermo Scientific Nicolet iS5) to investigate the alteration in sulfur-containing functional groups.
184 Pulverized samples used in XPS analysis continued to be used in FTIR analysis. 32 times scans

were performed for each sample in FTIR sample chamber at ambient temperature. The range of the scanning spectrum was set to 400–4000 cm^{-1} with a spectral resolution of 4.0 cm^{-1} . To thoroughly analyze the transition paths of sulfur-containing functional groups, the FTIR spectrum was extended to two-dimensional domains using the 2D-COS technique. The generalized 2D-COS technique facilitates the analysis of subtle changes in the spectral which may remain concealed in a standard one-dimensional spectrum ^[29]. It is widely used to study the structural changes in complex systems under external disturbances ^[30], which has also been proven to be effective in coal pyrolysis researches ^[31–32]. In this study, 2D-COS transforms one-dimensional variations into two-dimensional domains, producing both a synchronous map and an asynchronous map. Two-dimensional spectra $y(v_i, t)$ and dynamic spectra $\tilde{y}(v_i, t)$ were defined as functions of infrared wave number (v_i) and external temperature (t). The FTIR datasets for the samples were uniformly distributed within the range from T_{\min} to T_{\max} , as detailed in **Eq. (2)** and **(3)** ^[33]. The synchronous (Φ) and asynchronous (Ψ) correlation spectra are presented as **Eq. (4)** and **(5)**, The two-dimensional spectral line is analyzed by Noda theorem ^[41]: When $\Phi(v_1, v_2)$ and $\Psi(v_1, v_2)$ have the same sign, the change of v_1 takes precedence over v_2 . Otherwise, the opposite.

$$\tilde{y}(v_i, T) = y(v_i, T) - \bar{y}(v_i) \text{ For } T_{\min} \leq T \leq T_{\max} \quad (2)$$

$$\bar{y}(v_i) = \frac{1}{T_{\max} - T_{\min}} \int_{T_{\min}}^{T_{\max}} y(v_i, T) dT \quad (3)$$

$$\Phi(v_1, v_2) = \frac{1}{T_{\max} - T_{\min}} \int_{T_{\min}}^{T_{\max}} \tilde{y}(v_1, T) \cdot \tilde{y}(v_2, T) dT \quad (4)$$

$$\Psi(v_1, v_2) = \frac{1}{T_{\max} - T_{\min}} \int_{T_{\min}}^{T_{\max}} \tilde{y}(v_1, T) \cdot \tilde{z}(v_2, T) dT \quad (5)$$

where, T_{\min} and T_{\max} are the highest and lowest interruption temperatures, respectively; $\bar{y}(v_i)$ signifies the average spectrum, serving as the reference spectrum as defined in **Eq. (2)**; v_1 and v_2 are the variables of abscissa and ordinate in two-dimensional maps, respectively; $\tilde{y}(v_2, t)$ is the

207 dynamic spectra, $\tilde{z}(\nu_2, t)$ is the Hilbert transform of $\tilde{y}(\nu_2, t)$.

208 **2.3.4 TG–MS–FTIR joint analysis**

209 To further explore the release characteristics of sulfur-containing gases and organic volatiles in the
210 coking process, TG analyzer (SETARAM SETSYS Evolution 16/18, Germany) in conjunction
211 with FTIR (Bruker Tensor 27, Germany) and MS (Pfeiffer OMNI star, Germany) were used to
212 analyze the SX coal sample. To ensure the accuracy of the experiment, a series of stringent testing
213 conditions were implemented. Firstly, the sample mass was meticulously controlled at 10 mg with
214 a margin of error not exceeding 0.002 mg. Besides, an alumina container was chosen for its
215 stability under high temperatures. Then, a high-purity argon atmosphere was utilized to create an
216 inert environment, reducing chemical interference during the heating process. To achieve this, 50
217 ml/min of argon gas was injected into the system one hour before the experiment. To simulate the
218 coal heating process in real coking environments, the heating range for the experiment was set
219 from 25 to 1000 °C with a heating rate of 10 °C/min, covering a broad spectrum of temperature
220 conditions. Furthermore, the FTIR online monitoring mode was utilized to capture in real-time the
221 spectral features of the volatile fractions released during the decomposition of SX coal. These
222 spectra, spanning a wide range from 4500 to 650 cm^{-1} , provided a wealth of chemical information
223 regarding the migration characteristics of sulfur functional groups.

224 **3. Results and discussion**

225 **3.1 Surface chemistry elemental analysis**

226 To understand the migration characteristics at different stages of the coking process ^[34], Sulfur
227 forms in samples at varying temperatures were examined using XPS. **Fig. 1** displays the fitted
228 curve of the XPS–S_{2p} spectra for six sulfur species in SX coal and semi-coke produced at various
229 temperatures based on the binding energy signals of sulfur compounds ^[35]. The half-peak breadth

Commented [FS2]: Results and discussion

The results and discussion section is the main part of a research paper, therefore, must need special attention!

- a)The main and subheadings in each section should be professional/compressive, don't write the technique name as a heading. Instead, write the output/outcome or main finding out of that technique.
- b)Describe the reasons behind the observed trends and discuss your results critically in comparison with the latest published literature wherever it is possible.
- c)Each paragraph should consist of 10 to 15 lines and information in each paragraph **MUST be** supported by some key **Numeric Values** from the results and should be critically discussed with the literature.
- d)Do not just describe only trends without any reference to experimental values. Make, a critical comparison with each other previous studies. Make sure to state values/numbers/percentages and digits etc.
- e)If you are mentioning author name then reference/s [Sher et al.,] should be right after the author's name/s not at the end of the sentence or in the paragraph.
- f)Do not end a paragraph with any captions such as **Fig. 1 (a), Table 1** or **Eq. (1)** etc. instead cross-reference in the middle of the paragraph.

230 and peak height related to sulphide sulphur, FeS_2 , and sulfoxide drop dramatically as the semi-
231 coke's ultimate temperature rises, and they eventually totally vanish at 700 °C. The modified sulfur
232 content and distribution of sulfur morphology are shown in **Fig. 2**. During the coking process, the
233 absolute sulfur content in the semi-coke samples decrease continuously until 600 °C, after which
234 it changes minimally. Organic sulfur is the predominant sulfur form in SX coal, with sulfide sulfur
235 comprising the highest content (45.1%) and sulfone the lowest (4.0%). Ultimately, 72.8% of the
236 sulfur from the raw coal is retained in the final product, with organic sulfur remaining the primary
237 form, particularly thiophene sulfur (60.8%).

238 As the temperature increases, sulfur form in different samples undergo significant changes. The
239 levels of sulfides, sulfoxide and pyrite show a continuous declining trend. Ultimately, pyrite and
240 sulfoxide completely vanish. The sulfide content in the product 67.9% lower than that of raw coal.
241 This decrease can be ascribed to the breakdown of mercaptans, sulfides and other volatile organic
242 sulfur compounds. In contrast, the content of sulfone initially increased before declining, showing
243 an increase of 68.42% compared with the coal. The peak of sulfone content appears at 600 °C,
244 which is twice that of raw coal. This increase is due to the conversion of sulfoxide to more heat-
245 stable sulfone, facilitated by oxygen-containing groups in coke within this temperature range.
246 Once the temperature exceeds 600 °C, sulfone begins to decompose gradually, eventually
247 decreasing to 73.54% of its peak content. Additionally, the contents of sulfate and thiophene
248 during this process both initially decrease and then increase, with increases of 32.5% and 33.9%
249 respectively compared to their levels in the raw coal. From 400 to 1000 °C, oxygen-containing
250 groups react with inorganic sulfides in the coke, leading to a continuous increase in sulfate content
251 [36]. Thiophene sulfur slightly decreases before 500 °C, as the thiophene groups at the end of the
252 branched chain separate into free organic fragments due to the breakage of unstable C–S bond. In

254 the high-temperature environment above 500 °C, the sulfur gases released will engage in
255 secondary reactions with the coke matrix, resulting in the formation of new thiophene phases^[37].
256 This process contributes to the overall increase in sulfur content in the coking process.

257 **3.2 Crystalline structure and surface topography analysis**

258 It's difficult to definitively analyze the migration of inorganic sulfur in the coking process solely
259 based on XPS data. Thus, XRD analysis coupled with SEM analysis was used to further study the
260 conversion rules of inorganic sulfur in coal coking process. In addition, its impact on coke
261 production was also further explored. **Fig. 3** displays the XRD patterns of coal and semi-coke
262 samples subjected to pyrolysis at various temperatures. Native inorganic sulfur in SX coal consists
263 of FeS₂ and Fe₂(SO₄)₃. Among them, FeS₂ starts to decompose at temperatures above 300 °C. At
264 pyrolysis temperatures exceeding 700 °C, Fe_(1-x)S, FeS₂ and Fe₂(SO₄)₃ disappear completely. FeS
265 begins to form when the coking temperature rises to 1000 °C. Unlike the thermal decomposition
266 pattern of FeS₂ in coal reported by Zhou^[38] and Zhao^[39], the appearance temperature of FeS in
267 coking process is significantly higher. The discrepancy is attributed to the insufficient presence of
268 hydrogen and oxygen free radicals in the coking process, which limits the reaction with FeS₂ and
269 results in a lower sulfur removal rate.

270
271 SEM was employed to further investigate sulfur-containing minerals in coal and semi-coke
272 samples. As shown in **Fig. 4(a)**, the results indicate that the FeS₂ aggregates in SX coal are mainly
273 embedded within the coal particles or spherically agglomerated around the coal particle boundaries.
274 **Fig. 4(b)** shows the overlapping distribution of sulfur and iron elements in SC-500, indicating that
275 Fe-S phase minerals still exist as aggregates within the coke matrix during the coking process.
276 The SEM image of SC-700 presented in **Fig. 4(c)** reveals that the Fe-S phase in the coke is

277 gradually desulfurizing. As this process occurs, the Fe–S phase continuously transitions to a low
278 sulfur phase, accompanied by the formation of new Fe–O–S phases. Further, as shown in **Fig. 4(d)**,
279 when the temperature rises to 1000 °C, some aggregates of the Fe–S phase completely disappear.
280 Based on the aforementioned analysis, the desulfurization of FeS₂ under coking conditions can be
281 summarized in the following steps. Initially, in the thermoplastic process, Fe–S phase minerals
282 bind with the coke matrix. At the same time, FeS₂ starts desulfurization, transitioning towards Fe_{(1–}
283 _x) S. During the heating process, desulfurization initiates from the fringe of the coke matrix and
284 proceeds inward. The Fe–S phase transitions from Fe_(1–x) S to low sulfur Fe–S phases (FeS).
285 Following the completion of the coking process, some of the Fe–S phases are fully desulfurized,
286 resulting in the formation of spherical iron elemental. Additionally, the desulfurization process
287 introduces pores and defects into the coke, which may lead to a reduction in its mechanical
288 properties ^[40].

289 **3.3 Chemical composition and dynamic molecular interactions analysis**

290 To gain a deeper understanding of which sulfur-containing compounds are easily removed during
291 the coking process, a study was conducted to investigate the decomposition order of trace sulfur-
292 containing functional groups in semi-coke during heating. To analyze these changes more
293 intuitively, 2D–COS was used to enhance the FTIR spectra as shown in **Fig. 5(a)**. As shown in **Fig.**
294 **5(b)–(h)**, since both synchronous and asynchronous maps have the characteristic of diagonal-
295 centred symmetry, the measurement above the diagonal of the synchronous spectrum is flipped
296 diagonally and covers the part below the diagonal of the asynchronous spectrum. Referring to the
297 peaks observed in the synchronous and asynchronous spectrum shown in **Fig. 5(b)–(h)**, the
298 identification and designation of each cross-peak as detailed in **Table 2** can be derived. From **Fig.**
299 **5(b)**, the sequential change order of the peaks can be determined by Noda theorem as follows:

300 425→475→535→800→750→870 cm⁻¹ during the heating interval from room temperature up to
301 400 °C. Correspondingly, the sequence of changes in sulfur-containing functional groups^[38], from
302 first to last, is as follows: FeS₂ → Thiol –SH bond → thioether C–S bond → Thiol C–S bond →
303 Thiol S–S bond → aliphatic C–S bond. It can be observed that the sulfur from FeS₂ is the first to
304 be removed, followed by an alternating decomposition of thiol and thioether functional groups.
305 This suggests that the transformation temperatures of unstable sulfur-containing functional groups
306 are very close below 400 °C.

307

308 It can be deduced from **Fig. 5(c)** that the corresponding sequence of changes in sulfur-containing
309 functional groups within the temperature range of 300–500 °C is: FeS₂ → Thiol –SH bond →
310 Thiol C–S bond → Thiol S–S bond → aliphatic C–S bond → thioether C–S bond. Notably, there
311 are significant changes in aliphatic sulfur at 870 cm⁻¹, while the corresponding absorption band of
312 aromatic sulfur (630–700 cm⁻¹) undergoes virtually no changes. This observation aligns with the
313 pattern discovered by Xu L^[23], indicating that aromatic C–S bonds have higher decomposition
314 temperatures compared to aliphatic C–S bonds. The higher stability of aromatic C–S bonds can be
315 attributed to the electron delocalization in aromatic systems, which reinforces the C–S bond and
316 thus necessitates more energy (higher temperature) to break. From **Fig. 5(d)**, the change order of
317 sulfur-containing functional group in the temperature range of 400–600 °C is as follows:
318 FeS₂→Thioether C–S bond →S=O bond →sulfoxide C–S bond. It can be found that the peak
319 position changes corresponding to Thiol S–S bond, –SH bond and C–S bond basically disappear
320 above 500 °C. This indicates that the thiol, as the most unstable organic sulfide, has been
321 completely removed before 500 °C. In combination with the spectral feature in **Fig. 5(e)**, it is
322 apparent that the principal transformation occurring at 500–600 °C is related to sulfoxide and

323 sulfone functional groups. The synchronous and asynchronous spectra exhibited in **Fig. 5(f)–(h)**
324 all display analogous patterns, with changes occurring in the following sequence: $\text{FeS}_2 \rightarrow \text{S}=\text{O}$ bond
325 \rightarrow sulfoxide C–S bond. Due to the influence of the changes of C–O–C and –OH of phenols, alcohols,
326 ethers, and lipids in the 860–1040 cm^{-1} band, the peak intensity has a high presence on the diagonal
327 of the synchronous line, and the relative intensity of changes in sulfur-containing functional groups
328 within this temperature range cannot be accurately estimated.

329

330 In the coking experiment, to mimic the prolonged heating duration experienced in the coke oven,
331 isothermal conditions were maintained at the final temperature for 2 h. Hence, the decomposition
332 of sulfur-containing phases is almost completely over in all temperature ranges. The intensity of
333 the functional groups corresponding to each peak position affected by temperature can be
334 determined by the value of the intersection point of the diagonal line of the synchronous correlation
335 line. As shown in **Table 2**, thiol and thioether are the majority of organic sulfur compounds in SX
336 coal. By comparing the intensities of the synchronous spectrum peaks in the ranges of RT–400 °C,
337 300–500 °C and 400–600 °C, it becomes evident that there are prominent variations in the distinct
338 peaks of organic sulfur compounds in the ranges of RT–400 °C, while these peak values vary little
339 in the ranges of 300–500 °C and 400–600 °C, indicating that the decomposition of organic sulfur
340 compounds in the coking process is predominantly concentrated before 300 °C. In addition, FeS_2
341 sulfur continues to be continuously removed before 600 °C, which aligns with the patterns
342 discovered in **section 3.2**, corroborating that the removal of FeS_2 sulfur in the coking process is a
343 slow and continuous procedure^[42].

344 **3.4 Thermal decomposition and volatiles evolution curves**

345 The removal of sulfur in the coking process basically depends on the emission of sulfur-containing

346 gases and low-molecule compounds^[44-45]. TG-DTG analysis presented in **Fig. 6(a)** shows that
347 the weight loss rate fluctuated with temperature, leading to two distinct peaks in the DTG curves.
348 The first peak in weight loss for SX coal is attributed to the removal of water, while the second
349 peak corresponds to the rapid escape of volatile matter. **Fig. 6(b)** summarizes the time-evolved
350 flow flowrates of five selected products during the pyrolysis process of the SX coal sample. The
351 mass-to-charge ratios for the different gases are as follows: CS₂ (m/z=76), H₂S(m/z=34),
352 SO₂(m/z=64), C₄H₄S(m/z=84), COS(m/z=60). In the coking process, SO₂ begins to be emitted at
353 110 °C., peaks at 535 °C, and continues to be generated during subsequent heating. H₂S generation
354 occurs at higher temperature, exhibiting two obvious emission peaks at 500 °C and 1000 °C. CS₂
355 and C₄H₄S show similar emission ranges (300–540 °C), with maximum emission temperatures
356 both at 480 °C. The release of COS starts at 480 °C and concludes at 550 °C, peaking at 515 °C.
357 Similar to other volatiles, sulfur-containing petrol emissions are concentrated in the thermoplastic
358 stage of the coking process, as evidenced by the temperature range for these emissions matching
359 the time of rapid weight loss seen during coal pyrolysis. **Fig. 7** illustrates the three-dimensional
360 FTIR diagrams of volatile products produced from the pyrolysis of SX coal. The acquired
361 wavenumber, absorbance and temperature data facilitate the identification of evolved volatiles
362 through their distinctive absorption bands. The stretching vibration peak of S=O is located at 1300
363 cm⁻¹^[46] between 400 and 600 °C, which represents the release of SO₂^[47]. This observation aligns
364 with the temperature range in which sulfoxide sulfur content decreases as observed in Section 3.3.
365 It is evident that most of the sulfoxide sulphur in the SX coal is oxidised to sulfone during the
366 coking process, with a tiny amount escaping as minute chemical molecules^[48]. The peaks
367 observed before 650 cm⁻¹ correspond to the C–S stretching vibrations of thiols. The peaks near
368 1400 cm⁻¹ correspond to the release of –OH in the coke matrix.

369

370 A clear linear correlation exists between the intensity of C–S and –OH release and the pyrolysis
371 temperature, indicating that coke releases more hydrogen and oxygen free radicals at high
372 temperatures. In the coking process, the desulfurization of organic sulfur occurs continuously and
373 synchronously with the release of –OH groups, which have a strong affinity for sulfur radicals^[49].
374 This suggests that the continued decomposition of hydrogen-containing functional groups can
375 provide hydrogen radicals for the desulfurization in the coking process. Additionally, it also shows
376 that coals with a higher content of –OH groups will exhibit enhanced desulfurization performance
377 in the coking process. The information obtained from the above analysis can be summarized in
378 **Fig. 8**. The sulfur sources of SO₂ and H₂S released at temperatures below 300 °C primarily
379 originate from the sulfur-containing groups in thiols. The subsequent increase in SO₂ and H₂S
380 emission above 300 °C results from (1) the reaction of sulfur in FeS₂ with hydrogen-containing
381 groups and oxygen-containing groups, (2) the breakage of aromatic C–S bonds, (3) the
382 decomposition of sulfates, specifically CaSO₄ and Fe₂(SO₄)₃. Equally important, the emission
383 ranges of CS₂ and C₄H₄S coincide with the decomposition ranges of aliphatic sulfur and thioether
384 sulfur. The massive breakage of unstable S–S and C–S bonds leads to the concentrated emission
385 of CS₂ and C₄H₄S, which is barely related to the sulfur free radicals produced by the inorganic
386 sulfur.

387 **4. Conclusion**

388 The migration patterns and characteristics of sulfur forms during the coking process of coal were
389 investigated using XPS, XRD and SEM-EDS technologies. The FTIR spectra were analysed using
390 the 2D–COS approach, which yielded a more precise evaluation of the alterations in the functional
391 groups in coal that contain trace sulphur. Furthermore, the combined TG–FTIR–MS approach was

392 applied to investigate the volatile matter in coal's emission properties. The following conclusions
393 were drawn:

394 • During the coking process, sulfoxides continue to oxidize to sulfone until complete oxidation
395 at 700 °C. Sulfides continue to decompose below 600 °C. Thiophene decreases below 500 °C
396 and rises again above 500 °C due to the transformation of inorganic sulfur. Due to the
397 secondary reaction of sulfur-containing gases, the sulfate content increases above 500 °C.

398 • The FeS_2 in coking coal distributed on coal surface and within the gaps binds with the coke
399 matrix after the thermoplastic process. As the heating goes on, the Fe–S phase transitions from
400 $\text{Fe}_{(1-x)}\text{S}$ to low sulfur Fe–S phases (FeS). Ultimately, part of the FeS_2 transforms into elemental
401 iron, creating pores in coke. The decomposition of FeS_2 is more difficult in the coking process
402 due to the lack of hydrogen and oxygen free radicals.

403 • The changes order of sulfur-containing functional groups in the coking process is as follows:
404 $\text{Fe-S bond} \rightarrow \text{thiol C-S bond} \rightarrow \text{alkyl sulfide C-S bond} \rightarrow \text{thiol -SH} \rightarrow \text{aliphatic C-S bond}$
405 $\rightarrow \text{thioether C-S bond} \rightarrow \text{sulfoxide S=O bond} \rightarrow \text{sulfone, sulfoxide C-S bond}$.

406 • The decomposition of most sulfur-containing functional groups around 500 °C leads to the
407 release of H_2S , CS_2 , SO_2 , $\text{C}_4\text{H}_4\text{S}$, COS and low-molecular sulfur-containing organic
408 compounds. The continuous emission of H_2S and SO_2 can primarily be attributed to the
409 pyrolysis of FeS_2 and sulfates. The emission ranges of CS_2 and $\text{C}_4\text{H}_4\text{S}$ coincide with the
410 decomposition ranges of aliphatic and thioether.

411

412 **Acknowledgement**

413 The work is supported by the National Natural Science Foundation of China (Project No.
414 52074055 & 52104323), and the Chongqing Talent Program (Project No. cstc2021ycjhbgzxm0108

415 & CQYC201905039). The authors are also grateful to the International Society of Engineering
416 Science and Technology (ISEST), UK.

417 **Abbreviations**

418 2D-COS, Two-Dimensional Correlation Spectroscopy Analysis; TG, Thermogravimetric; XPS,
419 X-ray Photoelectron Spectroscopy; XRD, X-ray Diffraction; SEM, Scanning Electron
420 Microscope; FTIR, Fourier Transform Infrared Spectroscopy; TG-FTIR-MS, Thermogravimetry
421 – Fourier Transform Infrared Spectroscopy – Mass Spectrometry; SX coal, A coking coal from
422 Shanxi province.

423

424 **References**

425 [1] Zhang, H.; Bai, J.; Li, W.; Cheng, F. Comprehensive evaluation of inherent mineral
426 composition and carbon structure parameters on CO₂ reactivity of metallurgical coke. *Fuel*
427 2019, 235: 647–657.

428 [2] Li, K.; Khanna, R.; Zhang, J.; Liu, Z.; Sahajwalla, V.; Yang, T.; Kong, D. The evolution of
429 structural order, microstructure and mineral matter of metallurgical coke in a blast furnace:
430 A review. *Fuel* 2014, 133: 194–215.

431 [3] Shen, Y.; Wang, M.; Wu, Y.; Hu, Y.; Kong, J.; Duan, X.; Wang, Y.; Chang, L.; Bao, W.
432 Role of Gas Coal in Directional Regulation of Sulfur during Coal-Blending Coking of High
433 Organic-Sulfur Coking Coal. *Energy & Fuels* 2020, 34(3): 2757–2764.

434 [4] Shen, Y.; Hu, Y.; Wang, M.; Bao, W.; Chang, L.; Xie, K. Speciation and thermal
435 transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking
436 process: A review. *Chinese J Chem Eng* 2021, 35: 70–82.

437 [5] Cui, L.; Liu, M.; Yuan, X.; Wang, Q.; Ma, Q.; Wang, P.; Hong, J.; Liu, H. Environmental
438 and economic impact assessment of three sintering flue gas treatment technologies in the
439 iron and steel industry. *J Clean Prod* 2021, 311: 127703.

440 [6] Zeng, B.; Li, H.; Huang, T.; Liu, C.; Yue, H.; Liang, B. Kinetic study on the sulfidation and
441 regeneration of manganese-based regenerable sorbent for high temperature H₂S removal.
442 *Ind Eng Chem Res* 2015, 54(4): 1179–1188.

443 [7] Lee, W.; Lee, Y. Internal gas pressure characteristics generated during coal carbonization in
444 a coke oven. *Energy & Fuels* 2001, 15(3): 618–623.

445 [8] Liu, J.; Yang, X.; Jiang, Y.; Zhang, H.; Jiang, X.; Jiang, X. Chemical Properties of Superfine
446 Pulverized Coal Particles. Part 4. Sulfur Speciation by X-ray Absorption Near-Edge
447 Structure Spectroscopy. *Energy & Fuels* 2020, 34(11): 13686–13697.

448 [9] Zhang, Z.; Wei, X.; Yan, G.; Guo, J.; Zhao, P.; Yang, F.; Zhao, H.; Zhang, B. Formation of
449 pyrite in the process of fine coal desulfurization by microwave enhanced magnetic
450 separation. *Int J Coal Prep Util* 2023, 43(3): 484–501.

451 [10] Cai, S.; Zhang, S.; Wei, Y.; Sher, F.; Wen, L.; Xu, J.; Dang, J.; Hu, L. A novel method for
452 removing organic sulfur from high-sulfur coal: Migration of organic sulfur during
453 microwave treatment with NaOH–H₂O₂. *Fuel* 2021, 289: 119800.

454 [11] Tang, Y.; Sun, Y.; Wang, X.; Yan, L.; Shi, Q.; Ni, H.; Li, W.; Li, X.; Finkelman, R.; Pang,
455 X. Composition and Structure of the Sulfur-Containing Compounds in the Extracts from the
456 Chinese High-Organic-Sulfur Coals. *Energy & Fuels* 2020, 34(9): 10666–10675.

457 [12] Kuang, Y.; Cai, S.; Zhang, L.; Zhang, S. Transformation behavior of FeS₂ during microwave
458 desulfurization from coal: Phase and structural change of Fe–S compounds. *Fuel* 2022, 316:
459 123284.

460 [13] Wu, Y.; Zhang, S.; Cai, S.; Xiao, X.; Yin, C.; Xu, J.; Qiu, S.; Yu, W.; Hu, M.; Wen, L.
461 Transformation of organic sulfur and its functional groups in nantong and laigang coal under
462 microwave irradiation. *J Comput Chem* 2019, 40(31): 2749–2760.

463 [14] Yani, S.; Zhang, D. An experimental study into pyrite transformation during pyrolysis of
464 Australian lignite samples. *Fuel* 2010, 89(7): 1700–1708.

465 [15] Gornostayev, S.; Heikkinen, E.; Heino, J.; Fabritius, T. Occurrence and behavior of sulfur -
466 bearing minerals in metallurgical coke. *Steel Res Int* 2018, 89(4): 1700470.

467 [16] Gornostayev, S.; Härkki, J.; Kerkonen, O. Transformations of pyrite during formation of
468 metallurgical coke. *Fuel* 2009, 88(10): 2032–2036.

469 [17] Huang, F.; Xin, S.; Mi, T.; Zhang, L. Study of pyrite transformation during coal samples
470 heated in CO₂ atmosphere. *Fuel* 2021, 292: 120269.

471 [18] Xiao, J.; Deng, S.; Zhong, Q.; Ye, Shao. Effect of sulfur impurity on coke reactivity and its
472 mechanism. *Transactions of Nonferrous Metals Society of China* 2014, 24: 3702–3709.

473 [19] Yin, C.; Zhang, S.; Wang, J.; Sher, F.; Cai, S.; Xu, J.; Hu, M.; Wen, L. Chemical
474 thermodynamics and kinetics of thiophenic sulfur removed from coal by microwave: a
475 density functional theory study. *J Sustain Metall* 2021, 7(3): 1379–1392.

476 [20] Meng, N.; Jiang, D.; Liu, Y.; Gao, Z.; Cao, Y.; Zhang, J.; Gu, J.; Han, Y. Sulfur
477 transformation in coal during supercritical water gasification. *Fuel* 2016, 186: 394–404.

478 [21] Telfer, M.; Zhang, D. The influence of water-soluble and acid-soluble inorganic matter on
479 sulfur transformations during pyrolysis of low-rank coals. *Fuel* 2001, 80(14): 2085–2098.

480 [22] Wang, M.; Hu, Y.; Wang, J.; Chang, L.; Wang, H. Transformation of sulfur during pyrolysis
481 of inertinite-rich coals and correlation with their characteristics. *J Anal Appl Pyrol* 2013,
482 104: 585–592.

483 [23] Xu, L.; Yang, J.; Li, Y.; Liu, Z. Behavior of organic sulfur model compounds in pyrolysis
484 under coal-like environment. *Fuel Processing Technology* 2004, 85(8): 1013–1024.

485 [24] Wu, J.; Liu, J.; Yuan, S.; Zhang, X.; Liu, Y.; Wang, Z.; Zhou, J. Sulfur Transformation
486 during Hydrothermal Dewatering of Low Rank Coal. *Energy & Fuels* 2015, 29(10): 6586–
487 6592.

488 [25] Lee, S.; Brooks, B.; Chen, Y.; Hockings, K.; Yu, J.; Tahmasebi, A. Mechanistic study of
489 plastic layer permeability during coking of Australian metallurgical coals. *Fuel* 2023, 331:
490 125739.

491 [26] Yang, N.; Guo, H.; Liu, F.; Zhang, H.; Hu, Y.; Hu, R. Effects of atmospheres on sulfur
492 release and its transformation behavior during coal thermolysis. *Fuel* 2018, 215(1): 446–453.

493 [27] Yu, J.; Tahmasebi, A.; Han, Y.; Yin, F.; Li, X. A review on water in low rank coals: The
494 existence, interaction with coal structure and effects on coal utilization. *Fuel Processing
495 Technology* 2013, 106: 9–20.

496 [28] Chen, L.; Bhattacharya, S. Sulfur Emission from Victorian Brown Coal Under Pyrolysis,
497 Oxy–Fuel Combustion and Gasification Conditions. *Environmental Science & Technology*
498 2013, 47(3): 1729–1734.

499 [29] Ni, Z.; Song, Z.; Bi, H.; Jiang, C.; Sun, H.; Qiu, Z.; He, L.; Lin, Q. The effect of cellulose
500 on the combustion characteristics of coal slime: TG–FTIR, principal component analysis,
501 and 2D–COS. *Fuel* 2023, 333: 126310.

502 [30] Peng, S.; Wang, F.; Wei, D.; Wang, C.; Ma, H.; Du, Y. Application of FTIR two–
503 dimensional correlation spectroscopy (2D–COS) analysis in characterizing environmental
504 behaviors of microplastics: A systematic review. *Journal of Environmental Sciences* 2025,
505 147: 200–216.

506 [31] Bodappa, N.; Stepan, S.; Smith, R. Analysis of solid–state reaction mechanisms with two–
507 dimensional fourier transform infrared correlation spectroscopy. *Inorganic Chemistry* 2021,
508 60: 2304–2314.

509 [32] Fudge, A.; Wilkinson, K.; Ristic R; Cozzolino, D. Synchronous two-dimensional MIR
510 correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine.
511 Food chemistry 2013, 139(1): 115–119.

512 [33] Li, T.; Song, F.; Bai, Y.; Wu, F.; Ruan, M.; Cao, Y.; Zhou, L.; Sun, F. Real-Time Emission,
513 Chemical Properties, and Dynamic Evolution Mechanism of Volatile Organic Compounds
514 during Co-Pyrolysis of Rice Straw and Semi-Bituminous Coal. ACS ES & T Engineering
515 2023, 3(5): 690–705.

516 [34] Lee, S.; Yu, J.; Mahoney, M.; Tahmasebi, A.; Stanger, R.; Wall, T.; Lucas, J. In-situ study
517 of plastic layers during coking of six Australian coking coals using a lab-scale coke oven.
518 Fuel Processing Technology 2019, 188: 51–59.

519 [35] Liu, F.; Li, W.; Chen, H.; Li, B. Uneven distribution of sulfurs and their transformation
520 during coal pyrolysis. Fuel 2007, 86(3): 360–366.

521 [36] Yankovsky, S.; Tolokol, A.; Misukova, A.; Kuznetsov, G. On the Effect of the distances
522 between coal and wood particles during Their Joint Pyrolysis on Sulfur Oxides Formation.
523 Energies 2021, 14(24): 8321.

524 [37] Hou, J.; Ma, Y.; Li, S.; Shi, J.; He, L.; Li, J. Transformation of sulfur and nitrogen during
525 Shenmu coal pyrolysis. Fuel 2018, 231: 134–144.

526 [38] Wang, M.; Gao, J.; Xu, J.; Du, Q.; Zhang, Y. Effect of H₂O on the Transformation of Sulfur
527 during Demineralized Coal Pyrolysis: Molecular Dynamics Simulation Using ReaxFF.
528 Energy & Fuels 2021, 35(3): 2379–2390.

529 [39] Zhao, H.; Bai, Z.; Bai, J.; Guo, Z.; Kong, L.; Li, W. Effect of coal particle size on distribution
530 and thermal behavior of pyrite during pyrolysis. Fuel 2015, 148: 145–151.

531 [40] Zou, C.; Yu, N.; Ma, C.; Li, B.; Liu, S. Effects of pyrolysis temperature and atmosphere on
532 grinding properties of semicoke prepared from Shenmu low-rank coal. *J Anal Appl Pyrol*
533 2023, 173: 106059.

534 [41] Hur, J.; Jung, K.; Jung, Y. Characterization of spectral responses of humic substances upon
535 UV irradiation using two-dimensional correlation spectroscopy. *Water Research* 2011,
536 45(9): 2965–2974.

537 [42] Zheng, Z.; You, Y.; Guo, J.; Li, G.; You, Z.; Lv, X. Pyrolysis Behavior of Pyrite under a
538 CO–H₂ Atmosphere. *ACS omega* 2022, 7(33): 29116–29124.

539 [43] Yang, Y.; Tao, X.; Kang, X.; He, H.; Xu, N.; Tang, L.; Luo, L. Effects of microwave/HAc–
540 H₂O₂ desulfurization on properties of Gedui high-sulfur coal. *Fuel Processing Technology*
541 2016, 143: 176–184.

542 [44] Yu, X.; Yu, D.; Yu, G.; Liu, F.; Han, J.; Wu, J.; Xu, M. Temperature–resolved evolution and
543 speciation of sulfur during pyrolysis of a high-sulfur petroleum coke. *Fuel* 2021, 295:
544 120609.

545 [45] Irfan, M.; Usman, M.; Kusakabe K. Coal gasification in CO₂ atmosphere and its kinetics
546 since 1948: A brief review. *Energy* 2011, 36(1): 12–40.

547 [46] Chen, C.; Tang, Y.; Guo, X. Comparison of structural characteristics of high-organic-sulfur
548 and low-organic-sulfur coal of various ranks based on FTIR and Raman spectroscopy. *Fuel*
549 2022, 310: 122362.

550 [47] Tang, L.; Chen, S.; Gui, D.; Zhu, X.; He, H.; Tao, X. Effect of removal organic sulfur from
551 coal macromolecular on the properties of high organic sulfur coal. *Fuel* 2020, 259: 116264.

552 [48] Wang, Q.; Xuan, Y.; Liu, H.; Li, X.; Chi, M. Gaseous emission and thermal analysis during
553 co-combustion of oil shale semi-coke and sawdust using TG-FTIR. *Oil Shale* 2015, 32(4):
554 356.

555 [49] Oudghiri, F.; Allali, N.; Quiroga, J.; Rodriguez, M. TG-FTIR analysis on pyrolysis and
556 combustion of marine sediment. *Infrared Physics & Technology* 2016, 78: 268–274.

557

558

List of Tables

559

560

Table 1. Proximate and ultimate analysis of coking coal.

Sample	Proximate analysis (%)			Ultimate analysis (%)				Sulfur forms in total sulfur (%)			
	M_{ad}	A_{ad}	V_{ad}	FC_{ad}	C_d	H_d	N_d	S_d	S_s	S_p	S_o
SX coal	1.72	9.88	21.9 0	66.50	78.5 0	3.78	1.35	1.95	6.21	8.00 9	85.7

561

562 M : Moisture; A : Ash; V : Volatile; FC : Fixed carbon; S_s : Sulfate sulfur; S_p : Pyritic sulfur; S_o : Organic sulfur; ad: Air

563 dry basis; d: Dry basis.

564

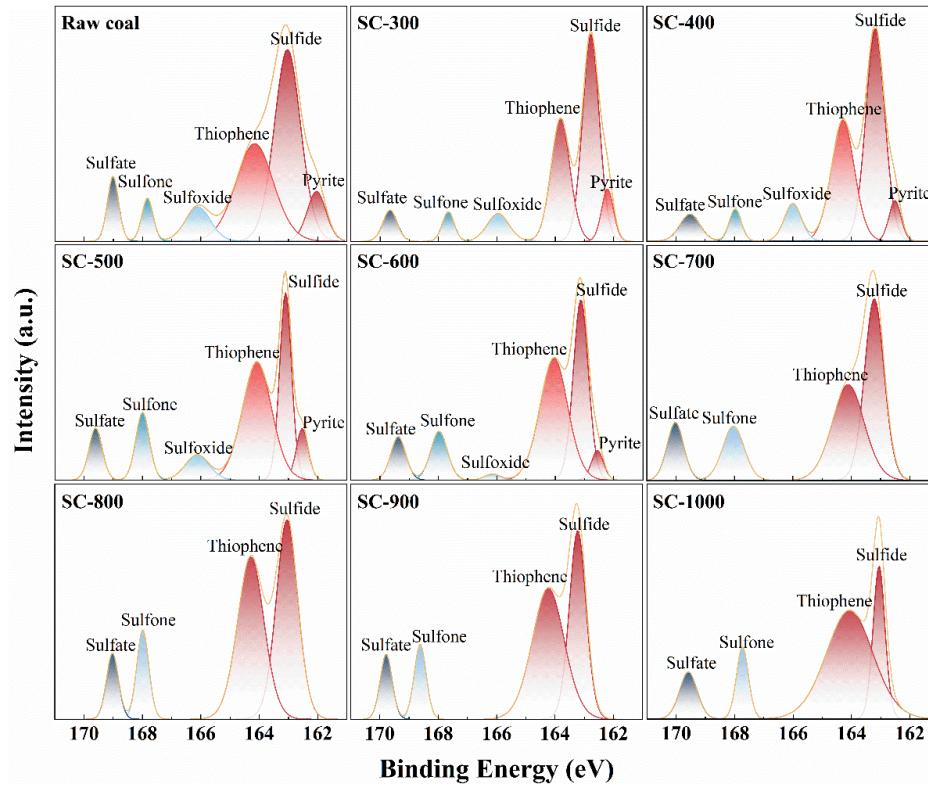
566 **Table 2.** Sign of each cross-peak in synchronous (outside brackets) and asynchronous maps
 567 (inside brackets) of coal and semi-coke at different temperature ranges.

RT–400 °C		sign ^a					
Position (cm ⁻¹) ¹⁾	assignment	425	475	535	750	800	870
425	FeS ₂	17.85					
475	–SH bond bending vibration	+(+)	56.96				
535	thioether C–S bond stretching vibration	+(+)	+(+)	101.6			
750	S–S bond bending vibration	+(+)	+(+)	+(+)	88.77		
800	Thiol C–S bond stretching vibration	+(+)	+(+)	+(+)	+(-)	73.23	
870	Aliphatic C–S bond stretching vibration	+(+)	+(+)	+(+)	+(+)	+(+)	72.31
300–500 °C		sign ^a					
Position(cm ⁻¹)	Assignment	425	475	535	750	800	870
425	FeS ₂	7.21					
475	–SH bond bending vibration	+(+)	11.28				
535	thioether C–S bond stretching vibration	+(+)	+(+)	21.81			
750	S–S bond bending vibration	+(+)	+(+)	+(-)	23.18		
800	Thiol C–S bond stretching vibration	+(+)	+(+)	+(-)	+(-)	19.45	
870	Aliphatic C–S bond stretching vibration	+(+)	+(+)	+(-)	+(+)	+(+)	19.94
400–600 °C		sign ^a					
Position(cm ⁻¹)	Assignment	425	535	735	780	950	
425	FeS ₂	4.21					
535	thioether C–S bond stretching vibration	+(+)	13.15				
735	Substituted aromatics–CH stretching vibration at each position	+(+)	+(+)	14.30			
780	Sulfoxide, sulfone C–S bond stretching vibration	+(+)	+(+)	+(+)	11.85		
950	S = O bond stretching vibration	+(+)	+(+)	+(-)	+(-)	8.89	

Position(cm ⁻¹)	Assignment	500–1000 °C			sign ^a
		425	820	950	
425	FeS ₂				
820	Sulfoxide, sulfone C–S bond stretching vibration		–(–)		
950	S=O bond stretching vibration	–(–)		+(-)	

568

569 sign^a were obtained in the lower-right corner of maps: +, positive; –, negative.

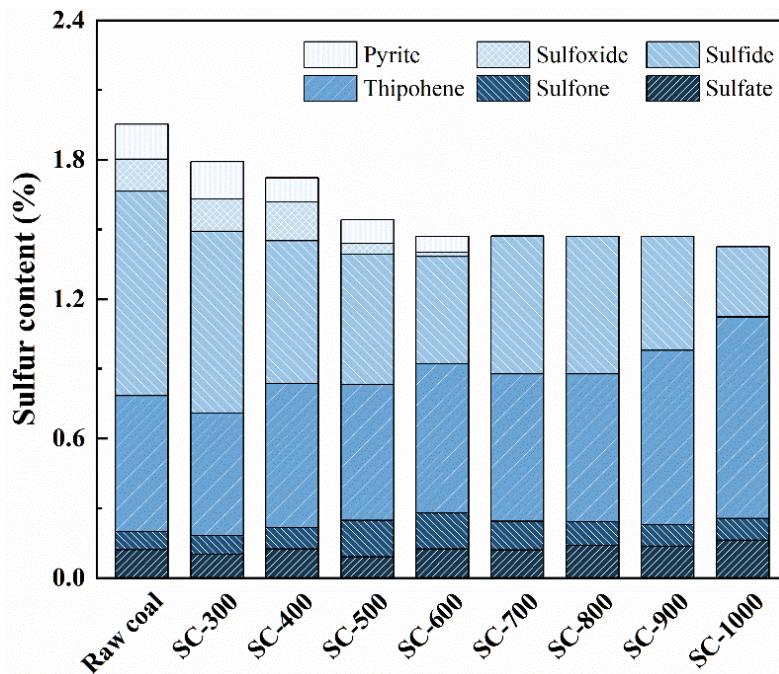

570

List of Figures

571

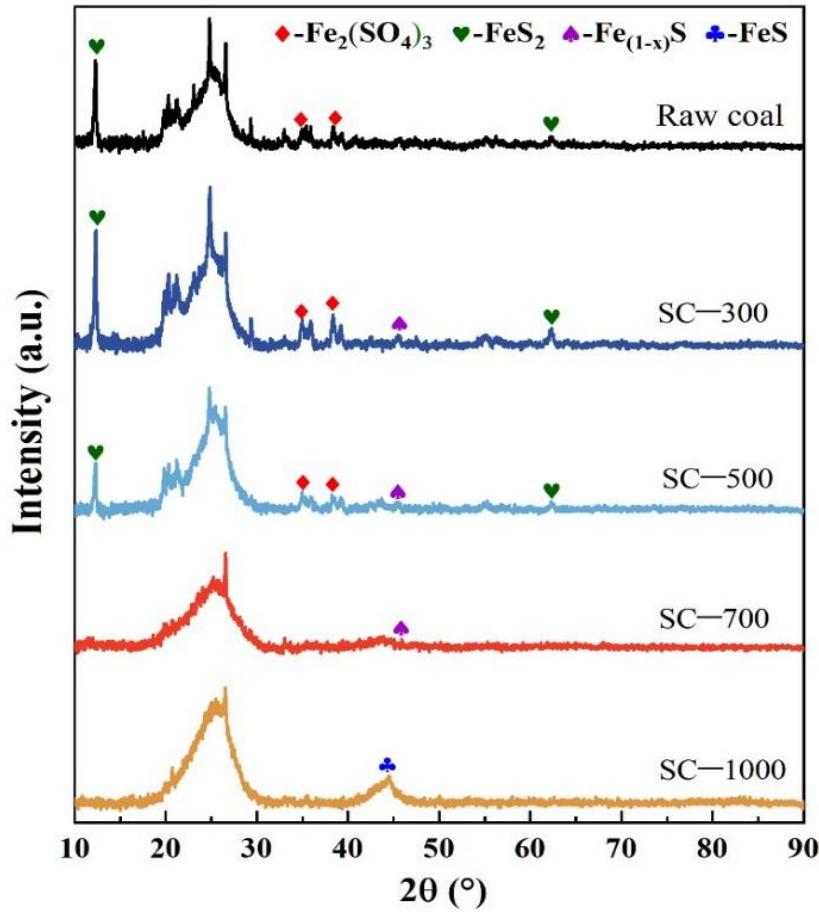
572

573

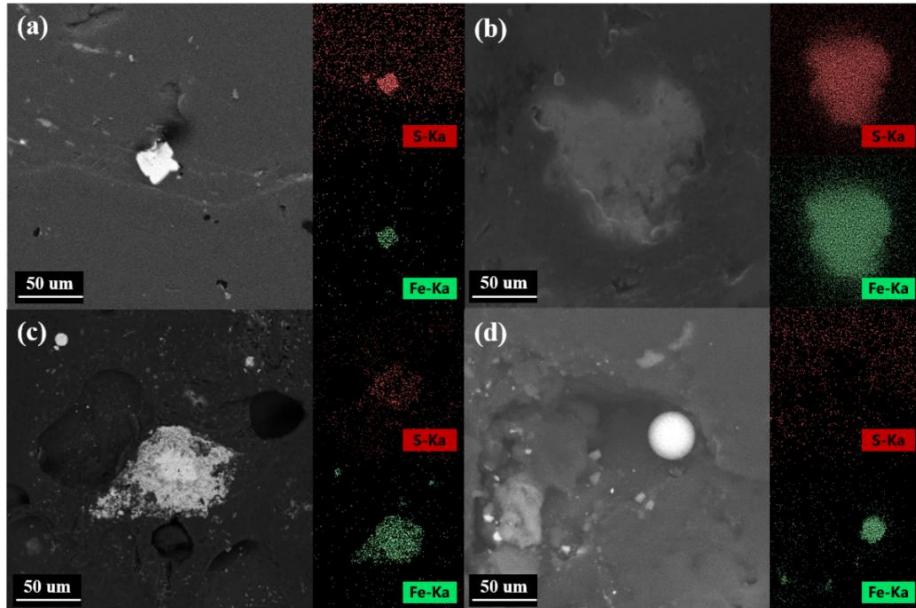

574

575

576 **Fig. 1.** XPS-S_{2p} spectra of sulfur form in the produced semi-coke at different interruption
577 temperatures during cooking.


578

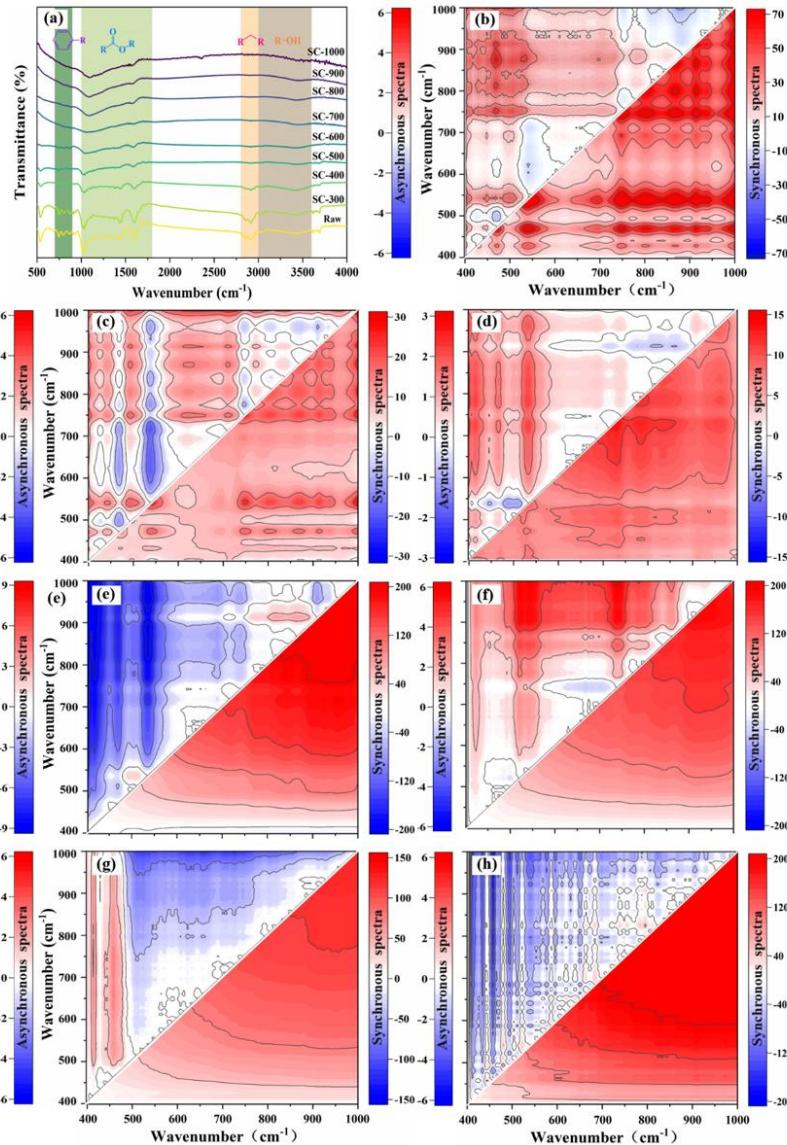
579
580
581
582
583


584
585 **Fig. 2.** Distributions of sulfur forms in the produced semi-coke at different interruption
586 temperatures during cooking.
587

588
589
590
591

592
593 **Fig. 3.** XRD spectra of inorganic sulfur in the produced semi-coke at different interruption
594 temperatures during cooking.
595

596

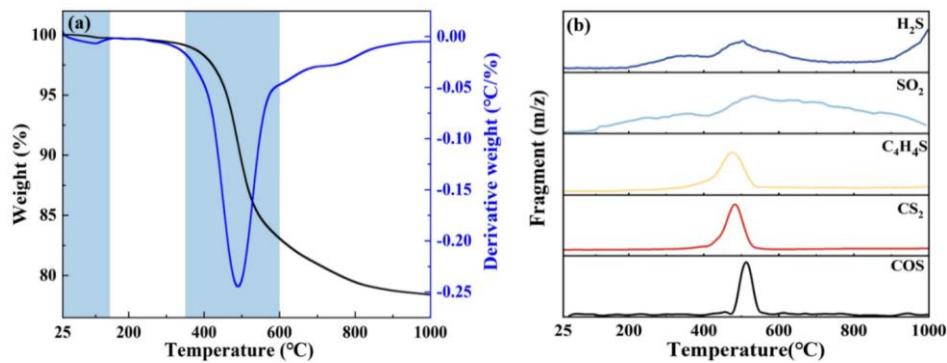


597

598

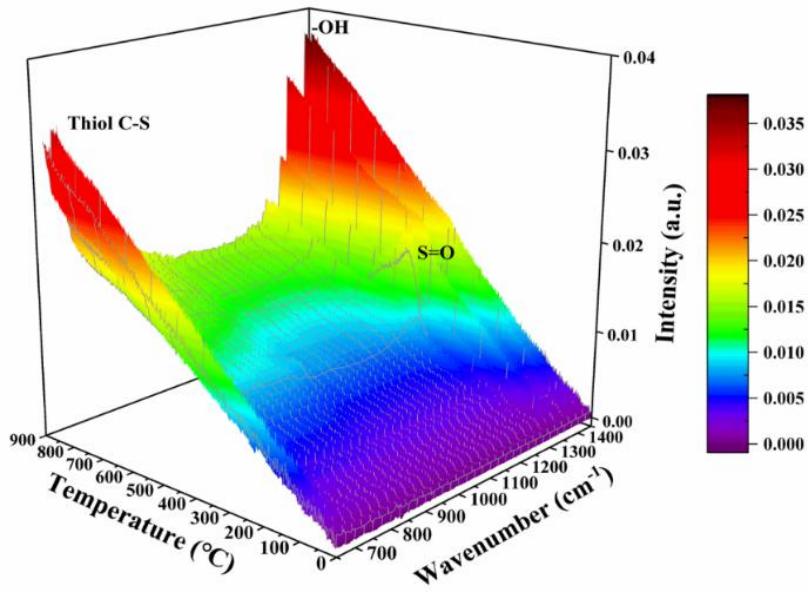
599 **Fig. 4.** SEM images of Fe–S phase distribution in the produced semi-coke at different interruption
600 temperatures during coking; (a) Raw coal, (b) 500 °C, (c) 700 °C and (d) 1000 °C.

601



602

603 **Fig. 5.** FTIR spectra and generalized 2D-FTIR-COS synchronous and asynchronous maps of samples at
 604 different interruption temperatures during the coking process; (a) FTIR spectra, (b) RT-400 °C, (c) 300-
 605 500 °C, (d) 400-600 °C, (e) 500-700 °C, (f) 600-800 °C, (g) 700-900 °C and (h) 800-1000 °C.


606

607
608
609

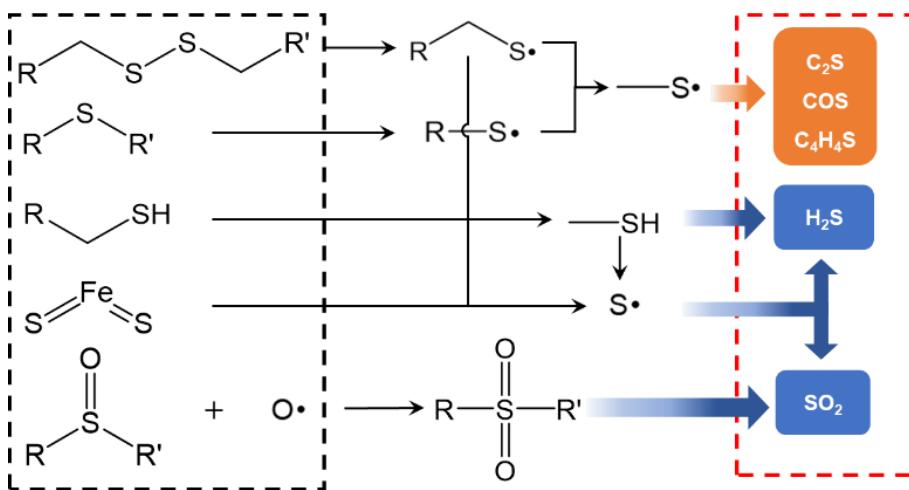

610
611
612
613

Fig. 6. (a) TG/DTG curves of coal at a heating rate of 10 $^{\circ}\text{C}/\text{min}$ and (b) Evolution curves of H_2S , SO_2 , $\text{C}_4\text{H}_4\text{S}$, CS_2 and COS during coal pyrolysis.

617 **Fig. 7.** Three-dimensional FTIR ($1500\text{--}650\text{ cm}^{-1}$) spectra of volatile results from coal pyrolysis.

619

SULFUR IN RAW COAL

620

621

622 **Fig. 8.** Mechanisms of sulfur-containing gas escape resulting from pyrolysis of sulfur phase in the
623 coking process.

624

625

626

627