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Abstract

An accurate description of the sulfur migration process and mechanism is helpful for
desulfurization in the coking process, to increase the amount of high—sulfur coking coal and
decrease the sulfur content in resultant coke. However, the identified sulfur transformation
mechanism in coal pyrolysis is not entirely applicable to the coking process due to variations in
atmosphere, temperature and pressure. This work used numerous characterisation techniques in
conjunction with experiments to quantitatively evaluate the transformation mechanism of both
organic and inorganic sulphur throughout the coking process. The bond-breaking order of
functional groups in sulfur during coking was obtained by the Two—Dimensional Correlation
Spectroscopy Analysis (2D—COS). The results show that desulfurization in the coking process
mainly occurs below 600 °C and 72.8% of sulfur in coal is retained in coke. Among them, FeS»
and sulfoxide are completely removed while sulfides are reduced by 67.9%. The content of sulfone
increases by 46.1% because of the transformation of sulfoxide. Thiophenes, and sulfates increase
by 32.5% and 33.9%, respectively, as a result of the inorganic sulfur transformation and secondary
reaction of sulfur-containing gases above 500 °C. Through Noda's theorem, the bond-breaking
difficulty of sulfur-containing functional groups in the coking process is ordered as follows: Fe—
S bond — thiol C—S bond — alkyl sulfide C—S bond — thiol -SH — aliphatic C—S bond — sulfide
C-S bond — sulfoxide S=O bond — sulfone, sulfoxide C-S bond. By clarifying the
desulfurization characteristics of different forms of sulfur, the desulfurization efficiency in the
coking process can be enhanced, which provides a theoretical basis for the extensive utilization of

high-sulfur coal.
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1. Introduction

Coke plays a fundamental part in the process of blast furnace ironmaking [, which is produced by
pyrolysis of coking coal resources at a high temperature of about 1050 °C ). Due to the large
output of pig iron in blast furnaces in China, a large amount of coke is consumed every year. With
the deficiency of low—sulfur coking coal resources and soaring prices, using cheap high—sulfur
coking coal for metallurgical coke production has been accepted and widely applied in some coke
ovens. Correspondingly, the coke’s residual sulfur increases. When coke with high sulfur is
charged into the blast furnace, some adverse effects will appear, such as a coke ratio rise ), an
increase in the sulfur content in pig iron ) and top gas °~7), et al. Therefore, it is very important to
reduce the sulfur content of coke produced in high—sulfur coal blending coking process. High-
sulfur coal contains multiple forms of sulfur-containing phases ], including both inorganic and
organic sulfur. Among them, inorganic sulfur primarily exists in the form of pyrite ), while organic
sulfur can be further divided into unstable and relatively stable organic sulfur groups. Sulphur
radicals serve as the essential intermediaries for sulphur migration in a two-step reaction
mechanism that encapsulates the transformation of sulphur in coal '), Specifically, during the coal
pyrolysis process, sulfur bonds are initially broken from pyrite or unstable organics, leading to the
formation of sulfur radicals. In the subsequent step, these sulfur radicals participate in reactions
with other radicals, such as hydrogen radicals generated during coal pyrolysis, and are ultimately

expelled as sulfur-containing gases ',
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As previously mentioned, the migration of inorganic sulfur during the coking process primarily
involves the transformation of pyrite ). During heating, pyrite continuously transforms towards
lower sulfur Fe—S phases such as Fe(1_x)S and FeS ['>"13], Setyawati analyzed the evolution of pyrite
in Australian coal using TG (Thermogravimetry) and a fixed—bed reactive chamber. The results
indicate that pyrite decomposes into pyrrhotite at approximately 927 °C, and beyond this
temperature, the pyrrhotite partially dissolves to form iron. [l Unlike the pyrite desulfurization
that occurs during coal pyrolysis in an inert atmosphere, the desulfurization of pyrite in the coking
process faces a more complex chemical environment, which may lead to the formation of phases
with various sizes, shapes, and compositions, as well as a difference in transition temperatures. In
Gornostayev's research, it was found that pyrite in the coking process almost completely
decomposes when the temperature reaches 700 °C 1], Further heating up to 1400 °C can achieve
significant desulfurization of the coke ['%). The desulfurization of pyrite has been proven to have a
negative impact on the quality of the produced coke [’]. Unfortunately, in coking process, the
interaction between pyrite desulfurization and the coke matrix during coking process has not been

clearly explained.

The organic sulfur forms present in coking coal include thiophene, thiosulfate, sulfoxide,
mercaptan, and thioether ['7). At lower temperatures, mercaptans, sulfides and disulfides
decompose and react with the free hydrogen radicals in the coal, evolving into gaseous forms of
sulfur 8], At the same time, some stable organic sulfur compounds remain in the coke, such as
thiophenes and their derivatives ['*2Y), Tefera's coal pyrolysis tests in an inert atmosphere showed
that thiophene structures break down at temperatures above 900 °C, although thiols and sulphides

start to break down at about 200 °C and 350 °C, respectively 2. Wang ?! discovered that during
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the pyrolysis of inertinite-rich coals, thioethers and disulfides can be completely decomposed at
650 °C and 850 °C, respectively. Organic sulfur compounds are fully decomposed at 700 °C.
Notably, complex thiophenes do not decompose even at temperatures as high as 1000 °C during
pyrolysis. Furthermore, Xu 3! impregnated typical organic sulfur structures from coal onto
charcoal and subjected them to pyrolysis. It was found that at lower temperatures (150-350 °C),
aliphatic C—S bonds tend to break first, while aromatic C—S bonds are generally more stable. Free
radicals with aromatic C—S bonds tend to bind with the coke at lower temperatures instead of
producing volatile sulfur compounds. Based on the above studies, a reasonable explanation has
been established for the migration of organic sulfur in coal during pyrolysis. However, these results
are mostly obtained by the coal pyrolysis experiments in a tubular furnace under an inert
atmosphere, which differs from the complex physicochemical environment during the coking

process.

Unlike coal pyrolysis in ideal conditions, pretreatment methods employed before coking such as
humidification, tamping and crushing effects the migration of sulfur in coal. During the coking
process, coal undergoes a state of gas-solid—liquid coexistence in the thermoplastic zone at first 24
and then participates in cross-linking, condensation, and-re-polymerisation reactions [?°1. Under a
complex atmosphere combined with high temperatures exceeding 1000 °C and elevated pressure,
significant changes occur in the thermal transport of harmful sulfur elements. Yang 2% found that
the release of sulfur from coal can be enhanced under a coking gas atmosphere. Additionally,
moisture in coal has been shown to selectively enhance the breakage ability of C—S bonds,

contributing to the formation of sulfur radicals >). Chen [?*! discovered that H>S can regenerate

stable thiophene structures again by reacting with the organic compounds in the coke at
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temperatures higher than 800 °C. According to Tefera's coal pyrolysis experiments conducted in
an inert atmosphere, thiophene structures decompose at temperatures exceeding 900 °C, while
thiols and sulphides begin to decompose at approximately 200 °C and 350 °C, respectively.
Therefore, a fundamental and thorough comprehension of sulfur migration in the coking process

is essential and will greatly contribute to improving the performance of coke.

In this study, interruption experiments of coking experiments were carried out at final temperatures
ranging from 300 and 1000 °C to recognize the thermal conversion rules of sulfur-containing
phases during the coking process qualitatively and quantitatively. The coking products and
volatiles during coking processing were analyzed using a combination of techniques, including X-
ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscope
(SEM), Fourier Transform Infrared Spectroscopy (FTIR) combined with 2D-COS and
Thermogravimetry—Fourier Transform Infrared Spectroscopy—Mass Spectrometry (TG-FTIR-
MS). Through these, the desulfurization characteristics of inorganic and organic sulfur in the
coking process, the bond—breaking order of sulfur-containing functional groups, as well as their
correlation with sulfur-containing gas emission were described more clearly. This research will

offer a theoretical basis for future research on high-sulfur coal utilization and emission control.

2. ]Materials and methods\

2.1 Material

A coking coal from Shanxi province (SX coal) was selected as the experimental coal sample. The
proximate and ultimate analysis of the SX coal sample is listed in Table 1. SX coal is a high—sulfur
coking coal, which has a trace quantity of inorganic sulfur, including pyrite, sulfate, and elevated

levels of organic sulfur. For coking experiments, SX coal sample was ground and dried at 110 °C
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for 8 h and sieved into particle sizes ranging from 0.15 to 0.25 mm.

2.2 Coking experiments

To study the migration law of coal sulfur in the coking process, coking experiment and its
interruption experiment were carried out through crucible coking method. The density, moisture
and particle size of coal were controlled at 0.75 t/m>, 10% and 0.15-0.25 mm, respectively. Firstly,
40 g crushed coking coal was charged into a cylinder-shaped reactor. Then, an asbestos paper was
laid on the SX coal sample with a thickness of 0.5-1.0 mm. After that, coke powder with a
thickness of 5—10 mm was spread on the asbestos paper, and a metal block was placed on the coke
powder. The heating program was structured as follows: the heating rate was set at 5 °C /min before
300 °C, after which it was reduced to 3 °C /min between 300 to 750 °C. When the temperature
reached 750 °C, the rate was adjusted to 4.5 °C/min until 1050 °C. The SX coal samples were
heated from room temperature to a specific target temperature (300, 400, 500, 600, 700, 800, 900,
and 1000 °C, respectively), and then maintained for 2 h to ensure that the desulfurization reaction
was fully completed at these temperatures. After cooling, the semi-coke sample was taken out and

named SC-300, SC-400, SC-500, SC-600, SC-700, SC-800, SC-900, SC-1000.

2.3 Analytical methods

2.3.1 XPS analysis

The XPS instrumentation (ESCALAB250, America) was employed for the quantitative
determination of sulfur’s thermal conversion in coal at different interruption temperatures. Before
XPS determination, the samples were pre-crushed and filtered to a size of less than 0.074 mm. Al-
Ka radiation produced the X-ray source, with a power setting of 200 W. The internal standard
calibration was set at 284.6 eV, and the step was set to 0.1 eV. Using the Peakfit software, the

spectral characteristics of the sulphur 2p peak were acquired and divided into peaks that
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corresponded to FeS2, sulphides, sulphate, sulfoxides, sulfones, and thiophenes. Quantitative
analysis of XPS spectra was further carried out to obtain the total sulfur content and sulfur forms
distribution of different samples. Due to the mass loss of samples during coking experiments, Eq.
(1) is used to modify the quantitative data obtained by XPS.

Si =5, % :—; )
where, S{ represents the sulfur content of semi-coke after considering mass loss during the coking
process; S; represents the sulfur content of samples calculated according to XPS spectra; m,
represents the mass of the original coal sample; m; represents the mass of semi-coke after the
coking experiment.
2.3.2 XRD and SEM analysis
The samples used in the XRD and SEM analysis were the same as in the XPS analysis. The thermal
conversion of inorganic sulfurs was further studied by XRD analysis using a Bruker D8
diffractometer (Rigaku Ultma IV) with Cu—Ka radiation. The angular scan commenced at a 15°
angle and progressed to 90°, moving at a speed of 4° per minute and incrementing at 0.02° per
step. The microscopic morphology and element occurrence characteristics of the samples were
analyzed by SEM-EDS (Hitachi Regulus 8100, Japan) analysis. Under high—vacuum conditions,
secondary electron mode at 30 kV electron beam acceleration voltage was selected for the
operation. An energy-dispersive spectrometer was employed to analyze the element content and
distribution on the surface of the samples.
2.3.3 FTIR analysis and 2D-COS analysis technique
FTIR measurements of coal and semi—coke samples were performed on an infrared spectrometer
(Thermo Scientific Nicolet iS5) to investigate the alteration in sulfur-containing functional groups.

Pulverized samples used in XPS analysis continued to be used in FTIR analysis. 32 times scans
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were performed for each sample in FTIR sample chamber at ambient temperature. The range of
the scanning spectrum was set to 4004000 cm™' with a spectral resolution of 4.0 cm™. To
thoroughly analyze the transition paths of sulfur-containing functional groups, the FTIR spectrum
was extended to two—dimensional domains using the 2D—-COS technique. The generalized 2D—
COS technique facilitates the analysis of subtle changes in the spectral which may remain
concealed in a standard one—dimensional spectrum 1. It is widely used to study the structural
changes in complex systems under external disturbances %!, which has also been proven to be
effective in coal pyrolysis researches *'2. In this study, 2D-COS transforms one—dimensional
variations into two—dimensional domains, producing both a synchronous map and an
asynchronous map. Two—dimensional spectra y(v;, t) and dynamic spectra y(v;, t) were defined
as functions of infrared wave number (v;) and external temperature (t). The FTIR datasets for the
samples were uniformly distributed within the range from Tmin to Tmax, as detailed in Eq. (2) and
(3) 3. The synchronous (®) and asynchronous (W) correlation spectra are presented as Eq. (4)
and (5), The two—dimensional spectral line is analyzed by Noda theorem *!: When ®(v,, v,) and
Y(vy, v,) have the same sign, the change of v; takes precedence over v,. Otherwise, the opposite.
Y T) =y, T) —y(v;) For Tpin < T < Thax ?2)
1

Ty (1, TYAT ©)

Tmax— Tmin ¥ Tmin

yw) =

vy, 1) = ———— [ " §(v,,T) - (v, T)AT “)

Tmax~ Tmin ¥ Tmin

1 Tmax ~ 5
Y, v) =——7 . Y1, T) Z(v,, T)dT Q)

Tmax~ Tmin
where, Tmin and Tmax are the highest and lowest interruption temperatures, respectively; y(v;)
signifies the average spectrum, serving as the reference spectrum as defined in Eq. (2); vi and v

are the variables of abscissa and ordinate in two-dimensional maps, respectively; ¥(v,, t) is the
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dynamic spectra, Z(v,, t) is the Hilbert transform of 5 (v, t).

2.3.4 TG-MS-FTIR joint analysis

To further explore the release characteristics of sulfur-containing gases and organic volatiles in the
coking process, TG analyzer (SETARAM SETSYS Evolution 16/18, Germany) in conjunction
with FTIR (Bruker Tensor 27, Germany) and MS (Pfeiffer OMNI star, Germany) were used to
analyze the SX coal sample. To ensure the accuracy of the experiment, a series of stringent testing
conditions were implemented. Firstly, the sample mass was meticulously controlled at 10 mg with
a margin of error not exceeding 0.002 mg. Besides, an alumina container was chosen for its
stability under high temperatures. Then, a high—purity argon atmosphere was utilized to create an
inert environment, reducing chemical interference during the heating process. To achieve this, 50
ml/min of argon gas was injected into the system one hour before the experiment. To simulate the
coal heating process in real coking environments, the heating range for the experiment was set
from 25 to 1000 °C with a heating rate of 10 °C/min, covering a broad spectrum of temperature
conditions. Furthermore, the FTIR online monitoring mode was utilized to capture in real-time the
spectral features of the volatile fractions released during the decomposition of SX coal. These
spectra, spanning a wide range from 4500 to 650 cm™', provided a wealth of chemical information

regarding the migration characteristics of sulfur functional groups.

3. Results and discussion

3.1 Surface chemistry elemental analysis

To understand the migration characteristics at different stages of the coking process 4, Sulfur
forms in samples at varying temperatures were examined using XPS. Fig. 1 displays the fitted
curve of the XPS-S;, spectra for six sulfur species in SX coal and semi—coke produced at various

temperatures based on the binding energy signals of sulfur compounds 1. The half-peak breadth
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and peak height related to sulphide sulphur, FeS, and sulfoxide drop dramatically as the semi-
coke's ultimate temperature rises, and they eventually totally vanish at 700 °C. The modified sulfur
content and distribution of sulfur morphology are shown in Fig. 2. During the coking process, the
absolute sulfur content in the semi—coke samples decrease continuously until 600 °C, after which
it changes minimally. Organic sulfur is the predominant sulfur form in SX coal, with sulfide sulfur
comprising the highest content (45.1%) and sulfone the lowest (4.0%). Ultimately, 72.8% of the
sulfur from the raw coal is retained in the final product, with organic sulfur remaining the primary

form, particularly thiophene sulfur (60.8%).

As the temperature increases, sulfur form in different samples undergo significant changes. The
levels of sulfides, sulfoxide and pyrite show a continuous declining trend. Ultimately, pyrite and
sulfoxide completely vanish. The sulfide content in the product 67.9% lower than that of raw coal.
This decrease can be ascribed to the breakdown of mercaptans, sulfides and other volatile organic
sulfur compounds. In contrast, the content of sulfone initially increased before declining, showing
an increase of 68.42% compared with the coal. The peak of sulfone content appears at 600 °C,
which is twice that of raw coal. This increase is due to the conversion of sulfoxide to more heat—
stable sulfone, facilitated by oxygen-containing groups in coke within this temperature range.
Once the temperature exceeds 600 °C, sulfone begins to decompose gradually, eventually
decreasing to 73.54% of its peak content. Additionally, the contents of sulfate and thiophene
during this process both initially decrease and then increase, with increases of 32.5% and 33.9%
respectively compared to their levels in the raw coal. From 400 to 1000 °C, oxygen-containing
groups react with inorganic sulfides in the coke, leading to a continuous increase in sulfate content
1361, Thiophene sulfur slightly decreases before 500 °C, as the thiophene groups at the end of the

branched chain separate into free organic fragments due to the breakage of unstable C—S bond. In

11
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the high—temperature environment above 500 °C, the sulfur gases released will engage in
secondary reactions with the coke matrix, resulting in the formation of new thiophene phases 571,

This process contributes to the overall increase in sulfur content in the coking process.

3.2 Crystalline structure and surface topography analysis

It's difficult to definitively analyze the migration of inorganic sulfur in the coking process solely
based on XPS data. Thus, XRD analysis coupled with SEM analysis was used to further study the
conversion rules of inorganic sulfur in coal coking process. In addition, its impact on coke
production was also further explored. Fig. 3 displays the XRD patterns of coal and semi—coke
samples subjected to pyrolysis at various temperatures. Native inorganic sulfur in SX coal consists
of FeS; and Fez(SO4)3. Among them, FeS; starts to decompose at temperatures above 300 °C. At
pyrolysis temperatures exceeding 700 °C, Fe( xS, FeS» and Fex(SO4); disappear completely. FeS
begins to form when the coking temperature rises to 1000 °C. Unlike the thermal decomposition
pattern of FeS; in coal reported by Zhou % and Zhao P, the appearance temperature of FeS in
coking process is significantly higher. The discrepancy is attributed to the insufficient presence of
hydrogen and oxygen free radicals in the coking process, which limits the reaction with FeS; and

results in a lower sulfur removal rate.

SEM was employed to further investigate sulfur-containing minerals in coal and semi—coke
samples. As shown in Fig. 4(a), the results indicate that the FeS> aggregates in SX coal are mainly
embedded within the coal particles or spherically agglomerated around the coal particle boundaries.
Fig. 4(b) shows the overlapping distribution of sulfur and iron elements in SC-500, indicating that
Fe—S phase minerals still exist as aggregates within the coke matrix during the coking process.

The SEM image of SC-700 presented in Fig. 4(c) reveals that the Fe—S phase in the coke is
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gradually desulfurizing. As this process occurs, the Fe—S phase continuously transitions to a low
sulfur phase, accompanied by the formation of new Fe—O—S phases. Further, as shown in Fig. 4(d),
when the temperature rises to 1000 °C, some aggregates of the Fe—S phase completely disappear.
Based on the aforementioned analysis, the desulfurization of FeS; under coking conditions can be
summarized in the following steps. Initially, in the thermoplastic process, Fe—S phase minerals
bind with the coke matrix. At the same time, FeS; starts desulfurization, transitioning towards Fe(i-
x S. During the heating process, desulfurization initiates from the fringe of the coke matrix and
proceeds inward. The Fe—S phase transitions from Feu x) S to low sulfur Fe-S phases (FeS).
Following the completion of the coking process, some of the Fe—S phases are fully desulfurized,
resulting in the formation of spherical iron elemental. Additionally, the desulfurization process
introduces pores and defects into the coke, which may lead to a reduction in its mechanical

properties (%),

3.3 Chemical composition and dynamic molecular interactions analysis

To gain a deeper understanding of which sulfur-containing compounds are easily removed during
the coking process, a study was conducted to investigate the decomposition order of trace sulfur-
containing functional groups in semi-coke during heating. To analyze these changes more
intuitively, 2D—COS was used to enhance the FTIR spectra as shown in Fig. 5(a). As shown in Fig.
5(b)—(h), since both synchronous and asynchronous maps have the characteristic of diagonal—
centred symmetry, the measurement above the diagonal of the synchronous spectrum is flipped
diagonally and covers the part below the diagonal of the asynchronous spectrum. Referring to the
peaks observed in the synchronous and asynchronous spectrum shown in Fig. 5(b)—(h), the
identification and designation of each cross—peak as detailed in Table 2 can be derived. From Fig.

5(b), the sequential change order of the peaks can be determined by Noda theorem as follows:
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425—475—535—-800—750—870 cm™ during the heating interval from room temperature up to
400 °C. Correspondingly, the sequence of changes in sulfur-containing functional groups %, from
first to last, is as follows: FeS2 — Thiol —SH bond — thioether C—S bond — Thiol C—S bond —
Thiol S-S bond — aliphatic C—S bond. It can be observed that the sulfur from FeS: is the first to
be removed, followed by an alternating decomposition of thiol and thioether functional groups.
This suggests that the transformation temperatures of unstable sulfur-containing functional groups

are very close below 400 °C.

It can be deduced from Fig. 5(c) that the corresponding sequence of changes in sulfur-containing
functional groups within the temperature range of 300-500 °C is: FeS» — Thiol —SH bond —
Thiol C-S bond — Thiol S-S bond — aliphatic C—S bond — thioether C—S bond. Notably, there
are significant changes in aliphatic sulfur at 870 cm™, while the corresponding absorption band of
aromatic sulfur (630700 cm™!) undergoes virtually no changes. This observation aligns with the
pattern discovered by Xu L 23] indicating that aromatic C—S bonds have higher decomposition
temperatures compared to aliphatic C—S bonds. The higher stability of aromatic C—S bonds can be
attributed to the electron delocalization in aromatic systems, which reinforces the C—S bond and
thus necessitates more energy (higher temperature) to break. From Fig. 5(d), the change order of
sulfur-containing functional group in the temperature range of 400-600 °C is as follows:
FeS>—Thioether C—S bond —S=0 bond —sulfoxide C-S bond. It can be found that the peak
position changes corresponding to Thiol S—S bond, —SH bond and C-S bond basically disappear
above 500 °C. This indicates that the thiol, as the most unstable organic sulfide, has been
completely removed before 500 °C. In combination with the spectral feature in Fig. 5(e), it is

apparent that the principal transformation occurring at 500-600 °C is related to sulfoxide and
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sulfone functional groups. The synchronous and asynchronous spectra exhibited in Fig. 5(f)—(h)
all display analogous patterns, with changes occurring in the following sequence: FeS;—S=0 bond
—sulfoxide C—S bond. Due to the influence of the changes of C—O—C and—OH of phenols, alcohols,
ethers, and lipids in the 860-1040 cm™! band, the peak intensity has a high presence on the diagonal
of the synchronous line, and the relative intensity of changes in sulfur-containing functional groups

within this temperature range cannot be accurately estimated.

In the coking experiment, to mimic the prolonged heating duration experienced in the coke oven,
isothermal conditions were maintained at the final temperature for 2 h. Hence, the decomposition
of sulfur-containing phases is almost completely over in all temperature ranges. The intensity of
the functional groups corresponding to each peak position affected by temperature can be
determined by the value of the intersection point of the diagonal line of the synchronous correlation
line. As shown in Table 2, thiol and thioether are the majority of organic sulfur compounds in SX
coal. By comparing the intensities of the synchronous spectrum peaks in the ranges of RT—400 °C,
300-500 °C and 400—600 °C, it becomes evident that there are prominent variations in the distinct
peaks of organic sulfur compounds in the ranges of RT—400 °C, while these peak values vary little
in the ranges of 300-500 °C and 400-600 °C, indicating that the decomposition of organic sulfur
compounds in the coking process is predominantly concentrated before 300 °C. In addition, FeS»
sulfur continues to be continuously removed before 600 °C, which aligns with the patterns
discovered in section 3.2, corroborating that the removal of FeS; sulfur in the coking process is a

slow and continuous procedure 2!,

3.4 Thermal decomposition and volatiles evolution curves

The removal of sulfur in the coking process basically depends on the emission of sulfur-containing
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gases and low—molecule compounds [*+*3, TG-DTG analysis presented in Fig. 6(a) shows that
the weight loss rate fluctuated with temperature, leading to two distinct peaks in the DTG curves.
The first peak in weight loss for SX coal is attributed to the removal of water, while the second
peak corresponds to the rapid escape of volatile matter. Fig. 6(b) summarizes the time—evolved
flow flowrates of five selected products during the pyrolysis process of the SX coal sample. The
mass—to—charge ratios for the different gases are as follows: CS; (m/z=76), H2S(m/z=34),
SO2(m/z=64), C4H4S(m/z=84), COS(m/z=60). In the coking process, SO begins to be emitted at
110 °C., peaks at 535 °C, and continues to be generated during subsequent heating. H>S generation
occurs at higher temperature, exhibiting two obvious emission peaks at 500 °C and 1000 °C. CS>
and C4H4S show similar emission ranges (300-540 °C), with maximum emission temperatures
both at 480 °C. The release of COS starts at 480 °C and concludes at 550 °C, peaking at 515 °C.
Similar to other volatiles, sulfur-containing petrol emissions are concentrated in the thermoplastic
stage of the coking process, as evidenced by the temperature range for these emissions matching
the time of rapid weight loss seen during coal pyrolysis. Fig. 7 illustrates the three—dimensional
FTIR diagrams of volatile products produced from the pyrolysis of SX coal. The acquired
wavenumber, absorbance and temperature data facilitate the identification of evolved volatiles
through their distinctive absorption bands. The stretching vibration peak of S=O is located at 1300
cm™! 46 between 400 and 600 °C, which represents the release of SO» 7. This observation aligns
with the temperature range in which sulfoxide sulfur content decreases as observed in Section 3.3.
It is evident that most of the sulfoxide sulphur in the SX coal is oxidised to sulfone during the
coking process, with a tiny amount escaping as minute chemical molecules ™3, The peaks
observed before 650 cm™! correspond to the C—S stretching vibrations of thiols. The peaks near

1400 cm™' correspond to the release of —OH in the coke matrix.
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A clear linear correlation exists between the intensity of C—S and —OH release and the pyrolysis
temperature, indicating that coke releases more hydrogen and oxygen free radicals at high
temperatures. In the coking process, the desulfurization of organic sulfur occurs continuously and
synchronously with the release of —OH groups, which have a strong affinity for sulfur radicals [*°],
This suggests that the continued decomposition of hydrogen-containing functional groups can
provide hydrogen radicals for the desulfurization in the coking process. Additionally, it also shows
that coals with a higher content of ~OH groups will exhibit enhanced desulfurization performance
in the coking process. The information obtained from the above analysis can be summarized in
Fig. 8. The sulfur sources of SO2 and H»S released at temperatures below 300 °C primarily
originate from the sulfur-containing groups in thiols. The subsequent increase in SOz and H>S
emission above 300 °C results from (1) the reaction of sulfur in FeS; with hydrogen—containing
groups and oxygen-containing groups, (2) the breakage of aromatic C—S bonds, (3) the
decomposition of sulfates, specifically CaSO4 and Fe2(SO4)3. Equally important, the emission
ranges of CS; and C4H4S coincide with the decomposition ranges of aliphatic sulfur and thioether
sulfur. The massive breakage of unstable S—S and C—S bonds leads to the concentrated emission
of CSy and C4H4S, which is barely related to the sulfur free radicals produced by the inorganic

sulfur.

4. Conclusion

The migration patterns and characteristics of sulfur forms during the coking process of coal were
investigated using XPS, XRD and SEM-EDS technologies. The FTIR spectra were analysed using
the 2D—COS approach, which yielded a more precise evaluation of the alterations in the functional

groups in coal that contain trace sulphur. Furthermore, the combined TG-FTIR-MS approach was
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applied to investigate the volatile matter in coal's emission properties. The following conclusions

were drawn:

During the coking process, sulfoxides continue to oxidize to sulfone until complete oxidation
at 700 °C. Sulfides continue to decompose below 600 °C. Thiophene decreases below 500 °C
and rises again above 500 °C due to the transformation of inorganic sulfur. Due to the
secondary reaction of sulfur-containing gases, the sulfate content increases above 500 °C.
The FeS; in coking coal distributed on coal surface and within the gaps binds with the coke
matrix after the thermoplastic process. As the heating goes on, the Fe—S phase transitions from
Fe(1-x) S to low sulfur Fe—S phases (FeS). Ultimately, part of the FeS; transforms into elemental
iron, creating pores in coke. The decomposition of FeS» is more difficult in the coking process
due to the lack of hydrogen and oxygen free radicals.

The changes order of sulfur-containing functional groups in the coking process is as follows:
Fe—S bond — thiol C—S bond — alkyl sulfide C—S bond — thiol -SH — aliphatic C—S bond
— thioether C—S bond — sulfoxide S=0O bond — sulfone, sulfoxide C-S bond.

The decomposition of most sulfur-containing functional groups around 500 °C leads to the
release of HaS, CSi, SO, CsHsS, COS and low—molecular sulfur-containing organic
compounds. The continuous emission of H>S and SO> can primarily be attributed to the
pyrolysis of FeS, and sulfates. The emission ranges of CS> and C4H4S coincide with the

decomposition ranges of aliphatic and thioether.
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Table 1. Proximate and ultimate analysis of coking coal.

Sulfur forms in

Proximate analysis Ultimate analysis
Sample (%) (%) total sulfur
(%)
My Aad Vad  FCua  Ca Hy Ng Sa S Sp So
SXcoal 172 988 207 6650 07 378 135 195 621 800 )7

M: Moisture; A: Ash; V: Volatile; FC: Fixed carbon; Sq: Sulfate sulfur; S,: Pyritic sulfur; S,: Organic sulfur; ad: Air
dry basis; d: Dry basis.
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565

566  Table 2. Sign of each cross—peak in synchronous (outside brackets) and asynchronous maps

567  (inside brackets) of coal and semi—coke at different temperature ranges.

RT—400 °C sign”
Position (cm™ assignment 425 475 535 750 800 870
)
425 FeS» 17.85
475 —SH bond bending vibration +(+)  56.96
thioether C-S bond stretching
535 o ++)  +(+)  101.6
vibration
750 S-S bond bending vibration +H+)  +HH+) +H(+)  88.77
800 Thiol C-S bond stretching vibration ++) A+ A ) 7323
Aliphatic C-S bond stretching
870 Lo HH)  HH HH ) HH 7231
vibration
300-500 °C sign”
Position(cm™) Assignment 425 475 535 750 800 870
425 FeS; 7.21
475 —SH bond bending vibration +(+)  11.28
thioether C—S bond stretching
535 o HH) ) 2181
vibration
750 S-S bond bending vibration ++) +HH+) +H(-)  23.18
800 Thiol C-S bond stretching vibration ++) A+ ) =) 1945
Aliphatic C-S bond stretching
870 o +H+) ) ) ) () 1994
vibration
400-600 °C sign”
Position(cm™) Assignment 425 535 735 780 950
425 FeS; 4.21
thioether C—S bond stretching
535 o +(+) 13.15
vibration

Substituted aromatics—CH stretching
735 o . +(+) ++) 14.30
vibration at each position
Sulfoxide, sulfone C-S bond
780 ) o +(+) +(+) +(+) 11.85
stretching vibration

950 S = O bond stretching vibration +(+) +(+) +(-) +(-) 8.89
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500-1000 °C sign“

Position(cm™) Assignment 425 820 950
425 FeS»
Sulfoxide, sulfone C—S bond
820 -

stretching vibration

950 S=0 bond stretching vibration - +(-)

568
569 sign” were obtained in the lower—right corner of maps: +, positive; —, negative.

570
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576  Fig. 1. XPS—Sy, spectra of sulfur form in the produced semi—coke at different interruption
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593  Fig. 3. XRD spectra of inorganic sulfur in the produced semi—coke at different interruption
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597

598

599  Fig. 4. SEM images of Fe—S phase distribution in the produced semi—coke at different interruption
600 temperatures during coking; (a) Raw coal, (b) 500 °C, (c) 700 °C and (d) 1000 °C.

601

33



Wavenumber (cm™)
%
g 8

Transmittance (%)
g

700 800 900
Wavenumber (em™)

. . . . v .
500 1000 1500 2000 2500 3000 3500 4000
Wavenumber (cm™)

g

-
| E
<
£

£ 700
=

g

>

Gl

=

g

o

g

Wavenumber (cm™)
g 3

L

g

“

Wavenumber (em™)

&
:

40 00 60 700 800 900 40 S0 60 700 800 900 1000
602 Wavenumber (em™) Wavenumber (em™)
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611  Fig. 6. (a) TG/DTG curves of coal at a heating rate of 10 °C/min and (b) Evolution curves of H»S,
612 SO2, C4H4S, CS;z and COS during coal pyrolysis.
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Fig. 7. Three—dimensional FTIR (1500-650 cm™) spectra of volatile results from coal pyrolysis.
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622 Fig. 8. Mechanisms of sulfur-containing gas escape resulting from pyrolysis of sulfur phase in the

623  coking process.
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