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ABSTRACT

Embedded silicone printing (ESP) enables the creation of complex soft structures by extruding
silicone inks into a gel support matrix. However, issues such as excess local ink deposition and
the staircase effect limit the quality of solid model prints, especially when the gel matrix is
immiscible with silicone ink. This work presents a multi-axis ESP framework for fabricating
volumetric silicone models with nearly solid infill and high surface quality. A field-based curved
slicing strategy is introduced to preserve critical surface features and optimise layer height
distribution, reducing height variation and ensuring model manufacturability. A boundary-
conformal staggered toolpath algorithm further promotes uniform ink deposition, while
adaptive toolpath width adjustment mitigates local overfilling and underfilling during curved
printing. The framework is validated on a multi-axis robotic platform by fabricating wearable
components, biomedical phantoms, and soft robotic structures. Characterization via surface
scanning and X-ray CT confirms an infill ratio of 99.47% and a surface error below 1.5 mm (1%
of the model size). The proposed framework greatly broadens the practical applications of ESP,
enabling the fabrication of customised and functionally integrated soft devices.
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1. Introduction

Silicone is a widely used soft material known for its excel-
lent heat resistance, bio-compatibility, and electrical
insulation properties [1]. With its outstanding durability,
silicone is commonly employed in soft actuators that can
safely interact with delicate objects and living tissues [2].
Its skin-like feel and biocompatibility also make silicone
an ideal material for medical devices [3] and artificial
tissues designed to replicate natural functions [4]. With
growing requirements for functionality and personalisa-
tion in soft devices (e.g. the customised socket for low-
limb prosthetics as shown in Figure 1), the fabrication
of free-form silicone objects with complex geometries
or topologies has become more critical and demanding.
Nevertheless, conventional methods like mold-based
casting struggle to produce such intricate designs due
to their reliance on free-form multi-part molds [5],
which lack the flexibility to adapt to other shapes for
mass customisation.

Recent advancements in 3D printing have signifi-
cantly expanded the possibilities for fabricating free-
form silicone models [6]. A common approach is direct
ink writing (DIW), where silicone is extruded and depos-
ited following programmed paths. However, even with
the development of in-situ curing [7], DIW generally
struggles with large-scale models or intricate structures
with long-span suspensions, as the low-stiffness of sili-
cone material can lead to deformation and collapse
under gravity. To address this, embedded silicone print-
ing (ESP) has emerged as a promising solution. As illus-
trated in Figure 1, the ESP process extrudes silicone ink
into a shear-thinning gel-like matrix, which stabilises
the structure and prevents collapse during printing.
With specially designed viscosity, the gel-based matrix
allows the nozzle moves freely inside to deposit silicone
layer by layer, and the matrix is removable or curable
afterward [8].
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Figure 1. (a) Proposed multi-axis embedded silicone printing (ESP) system for fabricating free-form volumetric silicone models within
a gel-like supporting matrix via robot-assisted spatial material deposition. The workflow of spatial toolpath generation includes (b)
field-based slicing optimised for uniform layer height and subsequently, (c) boundary-conformal toolpath planning with in-layer stag-
gered deposition. Here the toolpath density is controlled with extrusion constraint w.r.t., local layer height. (d) Compared with planar-
based solution (printing result shown on the right), the proposed multi-axis ESP effectively reduces the staircase effect, enhancing
surface finishing and geometric fidelity. (e) Fabrication results of a customised prosthetic socket with nearly solid infill (CT scan indi-

cates infill ratio at 99.47%).

While the gel-based support makes ESP an effective
solution for silicone printing with complex structures
to avoid collapse [9], the immiscibility between silicone
inks and the gel matrix inhibits filament fusion (details
discussed in Section 3). Therefore, significant overlap
between toolpaths is required to ensure adhesion,
even with fine-tuned rheological properties (e.g. shear-
thinning behaviour) of commonly used gel materials
like Carbomer, leading to localised over-deposition of
ink (as discussed in [10, 11] and also presented in
Figure 3). For thin-shell models, the excess silicone can
accumulate in surrounding directions without causing
significant issues with the final product. However, for
solid volumetric models, continuous ink accumulation
causes significant geometry errors and can even distort
the printed structure. As a result, the existing gel-
based ESP process is generally limited to fabricating
thin-wall structures or sparse infill models [11-13].

On the other hand, the usage of a support gel enables
spatial alignment of silicone material through three-
dimensional nozzle motion, which introduces greater
design freedom and enhances fabrication flexibility.
Especially for free-form models, employing a spatial tool-
path can significantly enhance surface finishing quality by
reducing the staircase effect (as highlighted in Figure
1(d)). Moreover, curved toolpaths can improve the conti-
nuity of material extrusion during ESP, mitigating issues
such as stringing between discontinuous regions behav-
iour [14, 15] and the dimensional fidelity of printed
models [16], its impact on deposition quality and material
distribution has not been systematically studied. Conse-
quently, strategies for spatial toolpath design and multi-

axis system integration that address these fabrication
constraints in the ESP process are still lacking.

Here, we present a systematic study on multi-axis ESP
for free-form volumetric models that extends the capabili-
ties of gel-based ESP. In particular, we investigate the
influence of nozzle orientation on printing quality in the
multi-axis printing process. A comprehensive compu-
tational framework is developed to generate toolpaths
that consider both design objectives and fabrication con-
straints in ESP for solid structures (as illustrated in Figure
1(b,c)). The framework integrates near-uniform-thickness
curved slicing and width-constrained toolpath generation
to address extrusion control challenges in free-form volu-
metric models. Additionally, the ink-volume control
mechanism further improves printing quality by prevent-
ing excess material deposition, as demonstrated on a
robot-assisted printing platform. The key contributions
of this work are summarised as follows:

¢ Introducing multi-axis embedded silicone printing
for free-form volumetric models, with solutions for
spatial toolpath generation and printing direction
optimisation to fabricate high-quality solid models.

» Investigating the influence of printing direction on
print quality, effectively eliminating the staircase
effect and maintaining printing continuity for multi-
axis ESP.

¢ Developing a curved slicing strategy based on an
iteratively optimised scalar field to preserve critical
surfaces and ensure near-uniform layer heights.

e Proposing a width-constrained toolpath generation
algorithm tailor-made for multi-axis ESP, which



efficiently enables uniform material distribution and
improves infill rates for complex models.

o Experimentally validating the proposed framework on
a robot-assisted multi-axis ESP platform by fabricating
various volumetric silicone models, including soft
robotic components, biomedical phantoms, and custo-
mised wearable devices, demonstrating its practicality
for rapid prototyping of functional soft systems.

To the best of our knowledge, this is the first work to
achieve multi-axis volumetric ESP with both study in
process optimisation and toolpath generation. The dem-
onstrations reveal the potential applications in the rapid
prototyping of soft robotics, medical devices, and tissue
engineering.

2. Related work

Here we review the recent progress made on ESP and
multi-axis 3D printing.

2.1. Embedded silicone printing

With the help of gel-based support, the development of
embedded printing technology allows the fabrication of
free-form soft objects such as soft robot pneumatic
actuators [13]. Most existing studies on ESP focus on
material and process development, emphasising the
rheological and chemical properties of materials
between the ink and support matrix to ensure successful
printing. Notably, the effects of support matrix compo-
sition and rheology have been systematically examined
in [17, 18], and various materials such as Carbopol [19],
Laponite nanoclay [11], gelatin [20], and fumed silica
nanoparticles [21] are further broadening the appli-
cation scope of ESP. In this work, we adopt the widely
used Carbopol support matrix with platinum-catalysed,
silicone-based elastomer [8, 22] for physical validation,
with detailed material characterisation presented in
Section 3.

On the other hand, printing parameters and toolpath
design significantly influence the quality of embedded
printing [23]. Studies have thoroughly examined
filament morphology under varying needle diameters,
motion speeds, and extrusion pressures [11, 12]. For
thin-shell structures, commercial planar-based slicers
(e.g. Cura or Bambu Studio) are commonly used for tool-
path generation. These studies offer valuable guidance
for fine-tuning toolpath parameters such as line spacing
[23]. However, less attention has been given to printing
volumetric models with solid infill, where overlap
between layers to ensure good material adhesion [12]
can lead to over-extrusion (details also presented in
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Section 3.2). While specialised curable support media
[24-26] can help avoid such issues, they constrain
material selection. In this work, we propose a general
slicing and toolpath generation framework for solid ESP
with precise extrusion control, applicable to both planar
and spatial printing processes using general gel materials.

2.2. Multi-axis 3D printing and its application in
ESP

Multi-axis 3D printing has garnered significant attention
in recent years, as the ability to change the nozzle's
orientation enables functionalities that surpass those
of conventional planar-based printing [27, 28]. It has
been integrated into various 3D printing processes,
such as Digital Light Processing (DLP) to eliminate
support structures and enhance surface quality [29,
30], Fused Filament Fabrication (FFF) to align filaments
with stress tensors for model reinforcement [31], and
Directed Energy Deposition (DED) to reduce deposition
anisotropy and improve dimensional accuracy [32]. To
date, multi-axis 3D printing has also been explored in
diverse applications, including conformal electronics
printing [33], food printing [34], and bioprinting of
complex organs [35].

With the aid of a support matrix, ESP can naturally
take great advantage of spatial material alignment. Exist-
ing studies have demonstrated the potential of ESP for
printing 3D lattices [36] and vascular networks [37].
Additionally, with carefully designed spatial toolpaths,
it has the great potential to improve surface finishing
[38] and enhance extrusion continuity of ESP process
(similar to spatial toolpath in DIW [39], whereas that
method primarily targets parts with rotational features).
On the other hand, although the toolpath is spatially
optimised, its direct implementation on a conventional
3-axis ESP system remains challenging for achieving sat-
isfactory printing performance. One key reason is that, in
3-axis ESP, the printing angle (see Figure 2(a)) varies due
to the spatial nature of the toolpath and the fixed nozzle
orientation. This variation adversely affects the overall
printing quality of the ESP process. Sparrman et al. [13]
demonstrated that the nozzle orientation significantly
affects filament position accuracy, while Arun et al. [15]
showed that printing direction strongly impacts
filament morphology of ESP. These findings highlight
the critical role of orientation in ensuring consistent
and high-quality deposition. In this work, we systemati-
cally study the relationship between the multi-axis print-
ing process and filament morphology (Section 3.1), and
conduct a solution of a robot-arm-based system to
ensure good printing quality with controlled nozzle
orientation.
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Figure 2. Analysis of rheological properties and filament morphology. (a) lllustration for filament dimension parameters and the print-
ing angle. (b) Viscosity of ink and support matrix tested by rheometer (model: Haake Mars 40). (c) Storage modulus of ink and support
matrix at the frequency of 1 Hz — both exhibit shear-thinning property. The storage modulus of ink is one to two orders of magnitude
larger than the matrix material, which makes it ideal for ESP [17]. (d) Impact of the printing speed on filament morphology. (e) Impact
of the printing angle on filament morphology (data tested under printing speed of 3 mm/s). (f) Variation of the cross-sectional area
with printing speed, where polynomial fitting is used to fit the data for continuous calculation for extrusion constraint (Equation (2)).

Moreover, ESP differs fundamentally from conven-
tional 3D printing processes (e.g. FFF or DLP) due to its
unique filament morphology characteristics. Specifically,
in ESP, the ratio between toolpath height and width
dynamically changes with printing speed and is tightly
interdependent with each other (reported in [12] and
also demonstrated in Figure 2(d)). This dynamic behav-
iour makes it challenging to directly adapt existing
multi-axis slicing methods designed for other processes,
as they often assume fixed or predictable filament
dimensions [40]. Consequently, these limitations restrict
the flexibility and full potential of multi-axis ESP for
complex geometries. Building on these insights, we
propose a curved-layer slicing and width-constrained
toolpath generation method (Section 4) to enable suc-
cessful multi-axis ESP for free-form volumetric models.
Case studies showcasing various applications are pre-
sented in Section 5.

3. Morphology and fabrication limits of multi-
axis ESP

In this section, preliminary experiments on the filament
morphology with multi-axis ESP are presented, detailing
the materials used and the effects of printing speed and
angle, concluding with toolpath design objectives and

fabrication constraints for the subsequent spatial print-
ing toolpath generation.

3.1. Filament morphology with extrusion
parameters

We first study the morphology of a single spatial path in
multi-axis ESP where two primary printing parameters
govern material deposition: the nozzle’s moving speed
Ve and the printing direction a (angle between the
nozzle axis and the moving direction, see Figure 2(a)).
These parameters directly influence the local deposition
volume and material morphology. In our multi-axis ESP
setup (Figure 1(a)), the extruder employs two servo
motors to mix silicone components and maintain a con-
stant extrusion speed, ensuring a steady material flow
into the supporting gel over time. Consequently, adjust-
ing v, regulates the deposited volume locally, while
varying a allows control over directional deposition
behaviour.

The printing tests were conducted using Carbomer as
the support bath and three silicone oils with different
rheological properties as printing inks: Ecoflex 0030,
Dragon Skin 10, and Mold Star 30," with details provided
in Section 5.2. The extrusion parameters (v, and a) were
varied along different printing path to investigate the



morphology of the printed silicone, which was charac-
terised by the filament width wy and height hy of the
cross-sections. As shown in Figure 2(d), at low printing
speeds, the filament cross-sections were oval-shaped,
with both wr and hy decreasing as the speed increased.
At higher printing speed, the cross-sections became
nearly circular due to larger yield areas in the support
matrix, reducing confinement on the ink during extru-
sion [11]. These observations highlight the strong
influence of printing speed on filament morphology. In
multi-axis ESP, where local printing speeds vary dynami-
cally to achieve spatially controlled extrusion, such mor-
phological sensitivity becomes even more pronounced.
To maintain relatively uniform layer geometry under
these conditions, layer height (constrained with v,)
must be optimised in relation to the local printing-
speed distribution and this is implemented by the algor-
ithm described in Section 4.1.

We also observed that the printing angle had a sig-
nificant influence on the morphology of the extruded
silicone filament. As shown in Figure 2(e), when the
nozzle orientation deviated from being perpendicular
to the printing direction (i.e. a # 90°), both the
filament width w; and height h; were markedly
affected. Moreover, as previously reported in [13], the
positional accuracy of the filament is reduced under
non-perpendicular extrusion and requires compen-
sation. In this study, to eliminate the influence of a on
filament morphology and ensure precise deposition,
we leveraged the multi-axis robotic setup to maintain
perpendicular extrusion whenever possible. For regions
with steep surface slopes or potential collision risks,
the nozzle orientation is allowed to vary within
a € [70°, 110°] to minimise adverse effects (detailed in
Section 5.2). Consequently, this approach enables
more consistent control over filament morphology com-
pared with conventional three-axis systems that employ
a fixed nozzle orientation.

3.2. Objectives of toolpath design for volumetric
ESP

Building on the investigation of single-filament mor-
phology, we now present the following study to estab-
lish a suitable toolpath strategy for printing solid
silicone structures, which can also be generalised to
multi-axis ESP with dynamically changing printing
speed. In printing solid models, three key aspects must
be considered: ensuring sufficient fusion with the under-
lying filaments, achieving uniform ink spreading, and
ensuring appropriate ink extrusion. To address these
challenges, we employ a deliberate interlayer overlap
to promote reliable bonding, a staggered toolpath
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pattern to enhance ink uniformity, and a volume-preser-
ving staggered strategy to mitigate over/under ink
deposition.

For planar-based ESP printing of thin-walled models,
the strategy for extrusion control and toolpath design is
relatively straightforward: a constant printing speed can
be applied to achieve wy ~ h¢ (i.e. regular filament cross-
section realised by high printing speeds) [11, 41].
Additionally, due to the immiscibility between silicone
inks and the gel matrix, it is common to set the layer
height H and toolpath width W smaller than the
filament height h; and width wf, as expressed by
H=pB-hf and W= B-w; where B <1 reflects the
overlap ratio between filaments. Here, the selection of
a smaller B indicates larger inter-path overlap and
better filaments merging [12, 13]. However, this
approach is not suitable for printing volumetric
models. As illustrated in Figure 3(a,b) with the example
of printing a solid cube, selecting a higher f results in
poor inter-filament fusion, while a lower 8 (a strategy
effective for thin-shell structures) causes severe over-
extrusion and geometric distortion.

To address this limitation, we adopt a volume-preser-
vation strategy, in which the toolpath width is intention-
ally set larger than the filament width to ensure
consistent material deposition (illustrated in Figure 3(c,
d)). Under this approach, W is determined by satisfying
the constraint of volume preservation, where the total
silicone volume Vioa used for printing is calculated
w.r.t, printing speed v, and cross-section area As as:

t
Viotal = j VeAr(ve) dt = C - Tiotal (M
0

N
~ Y P =Pl Hp) - W) (p EP). (2
i=1

Here, Equation (1) quantifies the actual material extru-
sion governed by the extruder’s capability, where Ty
represents the total printing time. The parameter C
denotes the unit extrusion volume per time step. It
remains constant throughout the printing process,
which is calibrated to be 6.57 mm3/s. Equation (2) is
the designed extrusion by toolpath parameter includes
layer height H(p) and toolpath width W(p) at each
waypoint. In this work, proper extrusion control is
enabled for each time sequence (i.e. time
At = ||p; — Pi_1ll/ve(p), the time taken to move
between two neighbouring waypoints), where we prior-
itise H(p) to be first computed by curve-layer decompo-
sition of the printed model (see details in Section 4.1)
and the volume-preserving ensures:

o Ipi—pil

velP) p; — Pi—q Il - H(p) - W(p)  (3)
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Figure 3. Printing results of a solid cube fabricated under different toolpath generation strategies. (a) A toolpath with minor overlap
(e.g. large B = 0.9) in both width and height leads to insufficient fusion due to immiscibility between silicones and matrix materials.
(b) In contrast, a large overlap (small 8 = 0.5) causes over-extrusion and results in geometric distortion. (c) A non-staggered toolpath
with large inter-layer overlap and a volume-preserving width constraint enables stable extrusion, but produces vertically aligned voids
due to the repetitive stacking direction. (d) When both the volume-preserving constraint and the staggered-toolpath strategy are
applied, a dense and uniform structure is achieved, effectively minimising internal pores and geometric deviation.

In this way, the designed proper toolpath width W(p) for
waypoint p is constrained to
C C

O = e v He e
which is determined by the local layer height. Here, f(-) is
a function calibrated from physical data presented
in Figure 2(d), representing the relationship between
printing speed and the morphology of the filament
cross-section. When choosing local printing speed for
multi-axis ESP by v.(p) = f(h¢(p)) = f(H(p)/B), we need
first to determine the parameter . Although a smaller
B means better interlayer fusion and improved surface
quality [13], it also results in sparser in-layer toolpath
(as described in Equation (4)), which increases the risk
of entrapping the supporting matrix and forming
larger infill defects. Considering the trade-offs between
surface quality and infill performance, we selected
B =0.5 for all experiments as filaments printed at
different velocities merged reliably under this condition
while also maintaining good infill quality (the result can
be found in Section 5.3).

With the toolpath-width constraint, the extrusion
compensates for the ‘gap’ regions between adjacent
filaments by slightly over-extruding in height, ensuring
that the total extruded volume aligns with the design
requirements. As illustrated in Figure 3(c), although
this compensation improves inter-layer bonding and
prevents over-extrusion, uniformity remains limited
when successive layers shared the same toolpath direc-
tion, resulting in the formation of vertical voids along the
stacking direction. To overcome this limitation, a stag-
gered toolpath strategy is employed, in which the print-
ing direction of each successive layer is arranged
perpendicular to that of the previous one, as shown in
Figure 3(d). This interlaced deposition pattern signifi-
cantly reduced internal pores, as confirmed by the CT
analysis, which revealed a pore ratio of 0.1% of the
total volume.

It is worth mentioning that the proposed volume-
preservation and staggered-toolpath strategies can be
generalised to multi-axis printing scenarios with variable
printing speeds or non-uniform extrusion rates, and the
objectives for toolpath design contain:



e With computed variable layer height, local toolpath
width needs to be constrained (computed by Equation
(4)) at each waypoint to ensure adequate infill.

e The toolpath between neighbouring curved layers
should stagger with each other to ensure proper
fusion;

Existing algorithms for spatial toolpath generation do
not account for these requirements in embedded print-
ing. In the following section, we present a computational
framework specifically designed for toolpath generation
in multi-axis ESP of volumetric models.

4. Width-constrained spatial toolpath for
multi-axis ESP

With a given volumetric model with free-form surfaces
(represented as a tetrahedral mesh M), our compu-
tational pipeline starts from generating a set of curved
working surfaces {Si}k=1,..n to decompose M. As illus-
trated in Figure 4, these curved printing layers define the
local layer thickness, which is controlled within the capa-
bility of the physical extruder setup (as discussed in
Section 3). In the framework and as previously discussed,
the critical region is preserved to ensure the best print-
ing quality and the continuity of the print (e.g. top
curved surface of the prosthetic socket model high-
lighted in green on Figure 4(b-d)).

Subsequently, the spatial toolpath 7 (discretized as a
set of waypoints P) is computed for each curved
working surface, taking into account width constraints.
Specifically, as discussed in Section 3.2, crossing-based
toolpaths with two different patterns (contour-parallel
and staggered zig-zag pattern) are employed to ensure
proper infill during the ESP process.

In the following, we first demonstrate the method to
optimise for layer height with iterative-based optimis-
ation, then present the technique of width-constraint
toolpath computing.

4.1. Iteration-based curved slicing with layer
height control

To compute curved working surfaces for multi-axis ESP,
we follow a field-based computing strategy [42], in
which a scalar field G is defined and each vertex of the
model is assigned a scalar value g(x). The field G is
then optimised, and the curved layers are extracted as
iso-surfaces of the input model, expressed as
S=x|V,x € R?, g(x) = ¢, where c is the iso-value and
S is represented by a triangular mesh. Note that the
material accumulation direction in this way is controlled
by the gradient of G, which is installed at the center of
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each element Vg(e). The local layer height is also
defined as the norm of this gradient, i.e. H(e) = || Vg(e)||.

With the need to protect surface quallty and ensure
that the printing angle a and layer height H do not
exceed the capability of the printing setup, as discussed
in Section 3, we encode the objective of (i) critical-
surface preservation, (ii) target layer height, and (iii)
printing direction smoothness via:

arg min g ZHg — Go| +a Z (IVg(e)ll — H?

xEQ eeEM
+on Y. |Vale) - Vgle)|’

feM, e,ﬂej:f

’

(5)

where the first term preserves the surface quality of the
critical region Q and ensures continuous printing, with
Gq representing the average guidance value of Q. The
second term optimises for layer height with the target
H; set to the unit height for numerical computation,
while the third term evaluates gradient compatibility
(w.rt. printing direction). Here, e; and e; are neighbouring
elements that share the same face f; optimising gradient
compatibility prevents the formation of highly curved sur-
faces that require large local printing angles. w,, @, and
wy are corresponding weighting for each objective.

However, directly solving the optimisation in Equation
(5) by gradient-based optimisation will lead to a local
minimum solution as the layer thickness objective con-
tains a nonlinear evaluation of ||Vg||. Additionally, G is
also an unknown variable in the first place in the optimis-
ation [42]. As a result, the layer height cannot be con-
trolled within a small range to satisfies extrusion ability
(see the illustration in Figure 4(e) iteration 1).

Tackling this issue, and considering the objectives in
Equation (5) are mostly related with Vg, which naturally
formulates a gradient vector field, we adopt an iterative
optimisation approach with vector-scalar field convert-
ing to find a better solution for curve layer slicing. As
demonstrated in Figure 4(b,c), each element has been
assigned with vector v(e), which formulates a vector
field , and the optimisation problem in Equation (5)
can be convert into find an optimal vector field as

2
. gle)
arg min )
9% ’Q;A H ||Vg ol ‘
ton Y |ver—vig)  ©
fEM,e,ﬂe,-:f
s.t. vi(e) =nsle) (Ve € ())

where the layer height objective is enforced by setting the
initial vector close to the normalised gradient (i.e. to
achieve uniform layer height). Additionally, critical region
protection is formulated as a Neumann boundary
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Figure 4. Diagram for showing the pipeline of our field-based curved slicing method. (a) Input Solid model 7 for slicing. (b) The
process of scalar field optimisation. Left top: initially computed scalar field; Right bottom: update vector field by solving Equation
(6), the green vectors highlight user-defined anchor vectors in critical regions and cyan vectors are obtained via interpolation. (c)
The final gradient field and scalar field lead to optimised layer height variation. (d) The curved working surfaces are extracted as a
set of iso-surfaces. (e) Error convergence of the objective function Ojjg, in Equation (7) w.rt, iteration count, which is well
reflected in (f) the layer-height distribution after different numbers of iterations. The results show that the layer height is effectively
controlled, ensuring improved extrusion stability in the ESP process.

condition in the constraints, ensuring that in these regions,
the material growth direction aligns with the normal n¢ of
the boundary face f. All objectives in Equation (6) are quad-
ratic, so a linear system can be used to directly find the
optimal vector field V, and the corresponding scalar field
can then be computed by minimising

argmin Oaiign(G, V) = Z Vg(e) — v(e)|?,
g eEM (7)
st. gx)=Gq (vxe€ ()

which is equivalent to solving the Poisson’s equation (also a
linear system) [43] as

AG=V.V (8)

Here A is the Laplacian operator, and the right side com-
putes the divergence of the vector field. Experimentally,
Ouiign also implicitly reflects the variation of layer height
(refer to Ref. [43] and Figure 4(e)), and we invite an iter-
ation-based process to find a smooth scalar field with con-
trolled distribution of layer height by the following steps:

e Step 1: compute initial scalar field Gy by solving
Equation (5).

e Step 2: take Gy as input and find optimised vector
field V that satisfies fabrication objectives defines in
Equation (6).

e Step 3: compute the Poisson’s equation Equation (8)
to find corresponding Gew, evaluate Ouiign(Gnew, V)
with Equation (7).

Steps 2 and 3 are run iteratively by taking Gpenw = Go
back into step 2 at each iteration. The iteration terminates
when Ogjgn is converge (i.e. change less than 1072 times
last iteration). It is worth noting that, due to the boundary
protection requirement (i.e. Neumann boundary in
Equation (6)), it is mathematically proven that the field
cannot be optimised into a unit field with constant layer
height everywhere. However, using the iteration-based
solver introduced in this work, the layer height is opti-
mised to be as uniform as possible, as shown in Figure
4(f). For each vertex on the printing surface, the layer
height H(x) is computed from the final gradient length
of the scalar field, which serves as input for the width-con-
strained toolpath optimisation to determine W(p).

4.2. Width-constrained toolpath design with
staggered pattern

With the curved printing layers generated (Section 4.1),
the next step is to develop a toolpath generation algor-
ithm on each individual layer. As previously discussed,
generating toolpaths for multi-axis ESP to achieve



good extrusion in volumetric models requires addres-
sing two key objectives: (1) toolpaths are to be stag-
gered between layers to fill gap regions effectively,
and (2) local toolpath width must be controlled based
on the defined W(p), which is computed from the layer
height.

Here, we present a solution that employs a staggered
pattern combining boundary-conformal and perpen-
dicular zig-zag patterns. We first demonstrate this
approach on a printing layer with uniform layer height,
where both patterns are controlled by frequency par-
ameters to ensure an equally spaced stripe arrangement.
Subsequently, a deformation-driven parameterisation
method is introduced to incorporate non-uniform layer
heights as a scalar field # into the toolpath generation,
ensuring all fabrication requirements are met.

As demonstrated in Figure 5, for all the printing layer
{S} generated as iso-layer of M, the pattern is defined by
the index. For even layers, the nozzle moves along the
contour shape to form a boundary-conformal pattern,
while in odd layers, the nozzle’s movement trajectory
is orthogonal to the contour shape. This approach
ensures a more uniform distribution of ink in both the
circumferential and radial directions, even within iso-
layers with complex geometry (more result can be
seen in the result Section 5).

Without the loss of generality, we first present our
toolpath computing algorithm on a curved surface
with a constant toolpath width W. For boundary-confor-
mal pattern, we follow field-based strategy where the
computation starts with the generation of a geodesic
distance field using the boundary as source [44] (see
Figure 5(b,c)). With computed distance as a scalar field
D, each vertex of x € S is assigned with a scalar value
d(x) and the k-th toolpaths £¥ on the even layer can
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be generated by extract from S as iso-contour

Leven =LK} =1{p|Vp E RS, dp) = 7- kW, k € Z™}.
9)

Since D is a geodesic distance field, a constant width of
W can be maintained between neighbouring toolpaths.
The factor 1 (ranging from 0.98 to 1.02 based on our
tests) is introduced to adjust the total length computed
in Equation (9), ensuring it matches the required
material volume for silicone (computed by Equation (1)).

On the other hand, computing odd layers with an
orthogonal pattern to the boundary-conformal toolpath
is non-trivial. Mathematically, there is no guarantee of
finding another scalar field ¢(x) such that its gradient
is perpendicular to Vd(x) everywhere in the mesh
while keeping a constant toolpath width. Specifically,
the toolpath objectives of staggering and width
constraint, expressed as V¢(x) - Vd(x) =0 and
IVo(X)| = c (VX € S), respectively, may conflict with
each other in layers with complex geometries.

We propose a periodic scalar field with frequency
control to address the challenge of generating toolpaths
within a width constraint. As shown in Figure 5(d), at
each vertex the periodic scalar valued is defined w.r.t,,
complex-number form as

P(x) = "™ = cos (Y(x)) + i sin ((x)), (10)

where (x) is the angle (or phase) at the vertex as
another parameterisation of the periodic scalar field.
With this periodic scalar field, the printing toolpath is
extracted with initial phrase, and the toolpath width is
controlled by the frequency (w.r.t, the phrase change
V). In this way, the objective of toolpath generation

I Poisson equation
[ Stripe pattern

60

N
=

3=
(=}

Waypoint number

1.6 1.8 2.0 2.2
h
(h) Path Width (mm)

Figure 5. An overview of our algorithm for boundary-conformal staggered toolpath generation. (a) Curved Printing layer. (b) Bound-
ary distance field D. (c) Boundary conformal toolpath computed for odd layer. (d) lllustration of toolpath generation using a periodic
function on a triangle element. (e) Control vector field z(x). (f) The periodic scalar field ¢, which gradient Vi perpendicular with z(x).
(g) the stripe pattern toolpath generated for even layers. (h) Comparison on toolpath widths distribution generated by different

methods.
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with scalar field computing is formulated as

arg min Ophrase = Z ”\Ir/ - eiA"meinz
v VEES
s.t. Alﬁi,j = ’T-ZWﬂ" l((Zi, e) + (z;, ei,j))
v &S
(1)
Here in the constraint, the vector

z(x) = (Vd(x)/||Vd(x)||)l presents the normalised gradi-
ent rotated by 90 degree (denoted as 1), which both
enforces the orthogonality condition and ensures
uniform toolpath width, as the gradient of the scalar
field is aligned with the rotated gradient of the distance
field, and to have constant norm. The target phrase
change Ayj;; between vertex v; to v; along the edge
&ij is computed by projection with dot product (-, -).
The constrained optimisation Equation (11) is in a quad-
ratic form and can be effectively solved by a linear
system with conversion from the complex variable into
real-valued vectors (details can be found in [45]).

With the optimised periodic field, the printing path
for odd layer is extracted as crest lines of the periodic
function (see Figure 5(d)), which can be written as

Lodd ={PIVPp ER?, Yip) =2Nm, NEZ}.  (12)

Note that the frequency is controlled by the variable 7
and is determined iteratively using a binary search
method to match the required material volume. Both
toolpath Leyen and Lygq are then connected into a con-
tinuous path using the A* (shortest-path-search) algor-
ithm [46]. As illustrated in Figures 5(h) and 8(c),
compared with the real-number-based toolpath with
¢(x) obtained using the Poisson-equation solver
(similar to Equation (8) - matching A¢ = V- 2), the
stripe-like pattern proposed in our framework signifi-
cantly optimises the path width to better match the
target value, thereby improving extrusion quality.

4.3. Spatial toolpath generation with variable-
width control

This subsection focuses on computing the final physical
printing parameters for multi-axis ESP, considering
volume preservation in the printing case with variable
layer height H(x) where corresponding changes on tool-
path width W(x) (computed with Equation (4)) are
necessary to ensure consistent material deposition.
This is computationally infeasible to be directly enforced
in the aforementioned constant-width-based toolpath
generation method.

Here, we propose a deformation-driven method
to solve this fabrication constraint. As illustrated in
Figure 6, the original printing surface S is first mapped

into a deformed shape S% The purpose of this defor-
mation-based mapping is to enforce a uniform target
toolpath width on S? (i.e. W(x) is a constant everywhere
in the surface). This allows the methods described in
Equations (9) and (12) to be directly applied to Sd, with
the final printing toolpath computed with inverse
mapping to the original surface, naturally satisfying the
original width requirements. The deformation-driven
mapping is determined by solving the following optimis-
ation problem:

argmin = Opap = Z IN-V{ —Re-S¢- (N- V)17
S={vd} VfES

(13)

Here f represents a triangular element of the surface, with
its vertices position x; = [x;, ¥;, z;] organised into the
matrix Vr = [X;, X, x3]" € R3>3. The scaling matrix,
S¢ = diag(sy, s, sf), encodes the local scaling factor s¢
which adjusts the width to match the target value. The
scaling factor is computed as:

W)
YL W)

where W(x;) is the target toolpath width at vertex x;, and
the term W(S) represents the average toolpath width over
the entire surface. The  translation  matrix
N = I3,3 —%13X3 ensures evaluations are translation-
invariant, while the rotation matrix R; eliminates the
effect of affine transformations. The optimisation in
Equation (13) solves for both deformed vertex positions
V;j and R¢ using a local-global solver, which converges
efficiently in a few iterations [47].

The field-based width-constrained toolpath gener-
ation method is then applied in &9, where Equations
(9) and (12) define toolpath and are discretised into way-
points {p9}, ensuring the local width W(p“) remains con-
stant. For each waypoint p?, the barycentric coordinates
(v1, v, ¥3) are computed with respect to the corre-
sponding triangle f € S? as:

Sf (14)

Alp, x5, x9) Alp, x{, x9)

"ETAN T T A )
V3=1—m—"
where A(-) evaluates the area of a given triangle.
The final waypoint p used in multi-axis ESP, which con-
tains both positional and directional information, is

mapped from the offset surface S¢ back onto the original
surface S using the computed barycentric coordinates:

P = [¥X1 + 12X + ¥3X3, 0] € R (16)

where x; € S denotes the vertex positions of the corre-
sponding triangle on the original surface. As shown in
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Figure 6. An overview of our width-constrained toolpath algor-
ithm (a) Original isolayer with path-width field. (b) Isolayer after
width-based deformation with constant path-width field. (c)
Equal-width toolpath generated on deformed isolayer(d)
Width-constrained toolpath extracted on original isolayer. (e)
Cumulative distribution of path-width error with and without
width-based deformation.

Figure 6(e), with the help of this mapping-based
approach, the precision of the toolpath width has been
significantly improved and the error required to achieve
90% cumulative probability reduced from 24.3% to
6.9%. It is worth mentioning that the local printing direc-
tion ny is assigned as the unit normal of the face f € S to
always keep local printing angle « = 90° ensuring
smooth orientation transitions and geometric consistency
in the printing process.

5. Result and discussion

We evaluated the performance of the proposed toolpath
generation framework for multi-axis ESP on various volu-
metric models, including applications in soft robotics,
medical phantoms, and wearable devices. This section
provides a detailed description of the robot-assisted
ESP setup, along with both computational and exper-
imental fabrication results. Additional details can also
be found in the supplemental video. 2

5.1. Computational details and test cases

The computational framework, including curved slicing
with optimised layer height (Section 4.1) and width-
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constrained spatial toolpath generation (Section 4.2),
was implemented in C++ using Visual Studio. High-
quality isotropic tetrahedral meshes, required as input
for the computation, were generated using a particle-
based method [49]. All linear equation solvers and
matrix computations were accelerated with the Eigen
library [50].

With the ability to handle volumetric models with
arbitrary internal geometry, the first test case of the
proposed ESP method is pneumatic-driven soft
robots. As shown in Figure 7(a), these robots are
designed with various internal structures (e.g. place-
ment of solid regions highlighted in yellow), enabling
them to deform into different shapes. Conventional
modelling is challenging to fabricate these design
due to irregular internal channels requiring complex,
hard-to-remove molds. Existing ESP solutions proposed
for thin-wall structures [11, 41] also cannot handle
these models, as large overlaps in x-y and z directions
cause geometry distortion when printing solid regions
(as previously discussed in Section 3.1). Our toolpath
generation overcomes this by using staggered toolpath
with boundary-conformal and zig-zag patterns for odd
and even layers, respectively, ensuring geometry adap-
tation of toolpath, width-constrained toolpath distri-
bution, and robust filament fusion (see Figure 7(c)).
This achieves precise extrusion control for leak-free fab-
rication (see Figure 11 and Section 5.3 for results).
Notably, our slicing algorithm presented in Section
4.1 degenerates into a planar-based one for this case,
with critical surfaces Q selected as the top and
bottom layers and generating a constant scalar field
gradient Vg = [0, 0, 1] throughout the model (Figure
7(b)).

The second model tested is a vascular phantom with
obstructive solid regions. As shown in Figure 8(a), the
aortic atheroma is located on the inner curvature of
the aortic arch and the proximal descending aorta,
areas with a high clinical incidence of atherosclerosis
due to hemodynamic properties (highlighted in
purple). This model combines both thin-shell and solid
regions, with five critical regions selected as boundary
conditions for protection, which present challenges
that existing methods designed for thin-wall structures
[8, 51] are unable to address. The slicing result and tool-
path for the critical curved working surface using the
proposed method are shown in Figure 8(b,d), respect-
ively. Compared to planar-based slicing, multi-axis print-
ing significantly ensures continuous extrusion, as
highlighted in the zoom-in view of the aortic atheroma
region (near ()3). Quantitatively, our iteration-based
curved-layer slicing method yields more uniform layer
heights, with their variation reduced by approximately
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Figure 7. (a) Computational results for three soft robot models with various solid internal cavities (solid regions shown in yellow, with
thin-wall parts rendered in semi-transparent gray). (b) With the top and bottom layers selected as the ROI, constant layer heights are
generated, and the planar surfaces are computed. (c) Toolpath generation for various layers: odd layers use boundary-conformal pat-
terns, and even layers use perpendicular zig-zag patterns, both optimised for leak-free soft robot fabrication via ESP.

70% compared with that computed using harmonic con-
straint [42], as shown in Figure 8(c).

We further evaluated the performance of our tool-
path algorithm on a model with free-form volumetric
parts and an integrated internal cavity, as shown in
Figure 9. The deformable membrane consists of two
parts (base and top membrane), and can be actuated
pneumatically to mimic various human body shapes
[52]. Conventional molding methods for such designs
are time-consuming and can fail to ensure airtightness
due to the gluing between parts [48]. In contrast,
multi-axis ESP allows it to be fabricated in one piece
with the optimised spatial toolpath, where the base
and top region with variable thickness are fabricated
together with an overlapping interface (as shown in
Figure 9(b)), ensuring robust interfacial bonding and
air-tightness. As can be seen from Figure 9(c), our

iteration-based curved-layer slicing with surface-preser-
ving capability maintains extrusion continuity on critical
surfaces (denoted as ; — {)4). The computed bound-
ary-conformal and perpendicular zig-zag toolpath is
illustrated in Figure 9(d), demonstrating the effective-
ness of our deformation-driven variable-width control
algorithm (presented in Section 4.3). Without width
control, large variations in layer height result in over-
and under-deposition (Figure 9(e), left). Our algorithm
distributes ink effectively across the curved surface,
ensuring that approximately 90 % waypoints are well
adjusted according to layer height (Figure 9(f)), reducing
extrusion errors by 82%.

The final model is a customised lower-limb prosthetic
socket (see Figure 1), with its shape captured via CT scan
and designed to perfectly fit the patient [53]. The con-
ventional mold-based fabrication method is expensive
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Figure 8. (a) Computational results of the customised vascular phantom containing both thin-shell and solid regions. (b) Compared
with the planar-based solution, the multi-axis ESP approach preserves the geometric fidelity and printing quality of critical regions
through the computation of curved layers. (c) Our iterative curved-slicing algorithm effectively controls the distribution of layer
height, ensuring better material deposition and smooth surface transitions. (d) Staggered toolpaths computed on odd and even

layers ensure stable extrusion and leak-free solid printing.

and labour-intensive, making rapid, low-cost personal
customisation difficult. Furthermore, existing planar-
based ESP cannot ensure continuous material extrusion,
resulting in poor surface finishing on highly curved
regions (highlighted in the zoom-in view of Figure
1(d)). As previously discussed, our curve-layer slicing
and spatial toolpath design for ESP demonstrates
superior computational results. Through iterative pro-
cessing, the variation in layer height is reduced by 60%
(the standard deviation decreases from 0.0852 mm to
0.0327 mm), as shown in Figure 4. Meanwhile, the defor-
mation-based algorithm ensures that 95% of spatial
waypoints are precisely controlled, achieving consistent
extrusion and substantially improving performance
compared with direct computation (see Figure 6).
Notably, the proposed toolpath generation algorithm
demonstrates scalable computational performance,
further accelerated through CPU-based parallel

processing using the Intel MKL library [54]. Table 1 sum-
marises the computational cost for all tested models,
showing that computation times remain manageable
even for final spatial toolpaths containing over 496.8 k
waypoints, with an input tetrahedral mesh of 255.8 k
elements. In our implementation, the mesh density is
determined according to the model size and was set
to make average edge length at 1.2mm to balance
between computational efficiency and toolpath
accuracy.

5.2. Materials and robot-assisted ESP setup

The robot-assisted multi-axis embedded silicone print-
ing platform used in this study is shown in Figure 10.
The system integrates a six degrees-of-freedoms
(DOFs) UR5e robotic arm, a mechanical screw-driven
extrusion module, and a support bath to enable
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Figure 9. (a) The conventional molding process for fabricating deformable membranes requires substantial manual labour (figure
reproduced from [48], ©IEEE). (b) The mannequin chest model with inner free-form cavity represented by a two-layer tetrahedral
mesh. (c) Slicing result with preservation of critical surfaces 1; — (4. (d) Staggered toolpath computed on odd and even layers.
(e) Left: distribution of local layer heights within a single layer. Right: with deformation-based width control, issues of over- and
under-extrusion are eliminated. For visualisation purposes, the toolpath cross-section is computed from the waypoint speed following
Figure 2, where the cross-sectional height corresponds to the local layer height. (f) Cumulative distribution of path-width error with/

without width-based deformation.

precise free-form fabrication. The support bath is pre-
pared by dissolving 0.5wt% Carbomer ETD2020 in
deionised water, followed by pH neutralisation with
NaOH and vacuum degassing. The two-component sili-
cone inks consists of: Part A mixed with 1.5wt% THI-
VEX (3wt% for Ecoflex-0030) as a thickening agent,
and Part B mixed with 1wt% Slo-Jo as a retarder. All
silicone components are provided by SmoothOn but
with different mechanical characteristics. Specifically,
Ecoflex 0030 exhibits a Shore 00 hardness of 30 and
a tensile strength of 200 psi. In contrast, Dragon Skin
10 shows a Shore A hardness of 10 with a tensile
strength of 471 psi, whereas Dragon Skin 30 exhibits
a Shore A hardness of 30 and a tensile strength of
420 psi.

Prior to printing, both components are pre-loaded
into individual syringes and driven by compressed air
into a dual-liquid screw extruder (Model 600,
Company Xinhui Automation Technology Co., Ltd.),
which ensures continuous and precisely metered

Table 1. Statistics of tested models and computing time.

mixing. The extrusion rate is regulated by a dedicated
extruder controller interfaced with the host computer
via an Ethernet connection. As discussed in Section
3.2, the extrusion rate is kept constant along the print-
ing at 6.57 mm?/s.

To achieve coordinated robot-extruder motion, we
provide a motion-planning method that synchronises
material extrusion with nozzle kinematics. The robot'’s
trajectory is generated from a series of waypoints (as
defined in Equation (16)), where the desired end-
effector velocity is computed and mapped into joint
space by solving the differential kinematics using the
manipulator Jacobian [55]. The solution is executed in
real time through RoboDK [56] software (as shown on
the PC monitor in Figure 10), which communicates vel-
ocity and position commands to the UR5e controller.
This closed control loop ensures smooth multi-axis
movement and stable material flow, allowing accurate
spatial deposition and reliable control of the local
material distribution.

Models Figure Model size (mm) Tet # Computing time of (Sec.) Layer # Total time (Sec.)
Curved slicing Spatial toolpath Comp.

Prosthetic socket Figure 1 137 x 125 x 212 255.8k 57.2 198.5 340 255.7

Soft robot Figure 7 40 x 40 x 200 207.3k 37.2 29.6 400 66.8

Aorta phantom Figure 8 90 x 24 x 200 115.5k 15.1 20.8 300 35.9

Mannequin chest Figure 9 82 x 100 x 28 197.5k 11.9 64.2 24 76.1
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Figure 10. (a) Physical experiment setup of multi-axis ESP, where a 6-DOF robot arm is used to provide spatial material extrusion with
synchronised motion along the extruder. (b) Fabrication process of the prosthetic socket model.

5.3. Fabrication result and characterisation

With the assistance of multi-axis motion from the robotic
arm and precise synchronisation of micro-motor-driven
extrusion, the computed spatial toolpaths for the
models are fabricated, achieving accurate geometry and
fulfilling their intended functions as free-from solid struc-
tures. All details of the physical printing process and phys-
ical validation can be found in the supplemental video.
Notably, the spatial toolpaths with staggered patterns
exceptionally ensure air-tightness for models designed
for pneumatic actuation. The results for the soft robots
are shown in Figure 11, where the cross-section demon-
strates that our method prevents local accumulation of
excessive ink in solid areas. The thin-wall sections
exhibit relatively uniform wall thickness, while the solid
sections are fully dense and void-free, indicating that
the staggered toolpath effectively provides infill. As
shown in Figure 11(b-d), these soft robots were fabri-
cated with Ecoflex 0030 exhibit distinct deformation

behaviours under low pressure, where the thin-wall
regions expand under inflation, enabling the robots to
exhibit different deformation patterns, such as bending
and twisting under pressures of 6.5kPa, 5kPa, and 7
kPa, respectively. Importantly, the proposed method is
compatible with multiple silicone materials possessing
different rheological and mechanical properties (as dis-
cussed in Section 3.1). Shown in Figure 11(e/f), S-shaped
robots printed using Mold Star 30 and Dragon Skin 10
also maintained stable morphology and air-tightness.
Under the same pressure of 18 kPa, the softer one dis-
plays a larger bending curvature. These observations
demonstrate that the proposed method enables reliable
fabrication of comples soft devices from a wide range
of materials, thereby offering strong versatility and scal-
ability for different functional and mechanical design
requirements.

The successful fabrication of free-form soft mem-
branes is demonstrated in Figure 12, where the
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Figure 11. Printing results of soft robot models with various silicone materials. (a) printing process with robot-assisted ESP; (b) Longi-
tudinal cross-section of S-shaped soft robot and its inflated shape; (c) inflated twisting-type and (d) L-shaped soft robots; all three
robots were fabricated from Ecoflex 0030 but with different internal designs. (e) Deformation of the S-shaped soft robot made
from Mold Star 30 under different pressures; and (f) Deformation of S-shaped soft robots made from Dragon Skin 10 (left) and

Mold Star 30 (right) under the same pressure.

multi-axis printing process is showcased. As shown in
Figure 12(a2) and (a3), the top layer of the base and
the bottom layer of the top membrane successfully
form a free-form chamber. The caved support gel is
removed after printing when the air supply tube is
extracted. The printed model is then placed on a solid
PLA base, and when inflated with 10 kPa pressure, the

constant-thickness model expand into an approximately
spherical shape (Figure 12(b1)). In contrast, the variable-
thickness model inflates into a morphology more closely
resembling the human chest (Figure 12(b2)). Before and
after inflation, the model can replicate chest mor-
phologies corresponding to different body types, as
shown in Figure 12(c), and the surface shapes before

Outline of scanned — — — Outline of uninflated chest model

human's chest  — — — Outline of inflated chest model

Figure 12. (a) Multi-axis ESP process of a two-layer chest model with variable thickness where (a2) highlights the process formulation
enclosed pneumatic chamber (detail can also be found in supplemental video). (b) The chest models present different shapes after
inflation. Left: chest model with constant thickness; Right: chest model with variable thickness design (i.e. computational result shown
in Figure 9) can better mimic the human chest shape and it allows the shape change from (c) human chest shape 1 (left) to human

chest shape (right).



and after deformation were validated using a 3D
scanner. This confirms that our proposed multi-axis
ESP method significantly enhances design freedom for
free-form surfaces.

The physical fabrication of the aorta model is
demonstrated in Figure 13. It can be seen that critical
regions with large printing angles are protected with
high surface finishing with the help of multi-axis
motion, which ensures good material fusion and
proper silicone extrusion using the computed spatial
toolpath. We validated the fabricated models using
both 3D scanner (for outer surface) and CT imaging
(for internal porosity analyses). As shown in Figure
13(c2), the 3D scanner results reveal a high degree
of geometric conformity between the printed model
and the original design, with the surface error less
than 1.5mm (1 % of the model size). Additionally,
the CT scans provide detailed cross-sectional imaging
and porosity analyses (Figure 13(c3)), demonstrating
the ability of the designed toolpath to achieve excel-
lent infill performance with minimal voids (pore ratio:
0.25%). These results confirm that the proposed
multi-axis motion and toolpath planning method can
successfully produce complex geometries with high
precision and structural integrity.

Size error (mm) F=
1.00

0.25

(b1) Planar-based (b2) ™

(el) Multi-axis ESP (4]
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We also demonstrate the effectiveness of the pro-
posed method compared with the planar-based sol-
ution, where the toolpath is generated by commercial
software (e.g. Cura [57]). As shown in Figure 13(b), the
conventional ESP toolpath resulted in inferior printing
quality. As can be seen in the zoom-in region, for the
top part, distinct over- and under-deposition defects
are observed due to the absence of a volume-preser-
vation strategy. In addition, noticeable staircase effect
and stringing defects appear on the printed surface
due to the discontinuity of the toolpath. By comparing
the dimensional error maps shown in Figure 13(b2)
and (c2), it can be observed that the proposed multi-
axis ESP method achieves markedly higher printing
accuracy than conventional ESP, with the average error
reduced from 0.49 mm to 0.2 mm, corresponding to a
59 % improvement in dimensional accuracy.

The stability and reproducibility of the proposed
printing process were evaluated by repeatedly fabricat-
ing the aorta model over multiple cycles. As shown in
Figure 13(d), the error distributions from multiple print
cycles are highly consistent, confirming the stable per-
formance of our method for complex silicone structures.
These results demonstrate that the proposed multi-axis
motion and toolpath-planning strategy can reliably

Model with Planar-based Toolpath
Model 1 with Multi-axis ESP
Model 2 with Multi-axis ESP
I Model 3 with Multi-axis ESP

o

IS

w

[N)

00 01 02 03 04
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Surface Error (mm)
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Pore volume (mm?)
16.00 #
12.00

Size error (mm)
1.00

0.75

0.50

025
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CHIE

Figure 13. (a) Multi-axis ESP process of the aorta model, where the spatial motion of the robot enables conformal printing to protect
critical regions. (b) Printed result of conventional planar-based ESP shows improper ink deposition and obvious stringing defects in
the critical region, which results in a larger dimensional error. (c) Printed result of our method showing good surface finishing, high
geometry accuracy, and good infill performance — as evidenced by the CT scanning result in (c3). (d) Error distributions from multiple
printing cycles. The three multi-axis printing cycles demonstrate excellent consistency and repeatability. Compared with conventional
planar ESP, the multi-axis printing achieves higher dimensional accuracy, reducing the average error from 0.49 mm to 0.20 mm.
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achieve high precision and structural integrity in complex
geometries. This stability highlights the potential of our
approach to support mass production of silicone phan-
toms for biomedical applications. Furthermore, the MRI
signal characteristics of different tissues can be replicated
by tuning the infill density during printing [58]. Although
ESP may introduce more infill defects than conventional
DIW when fabricating solid volumetric parts, it offers a
distinct advantage: the ability to print tall, free-form,
and anatomically accurate structures without distortion
or collapse, making it particularly suitable for advanced
MRI phantom fabrication.

5.4. Discussion

With the support of experiment result, we have demon-
strated that the width-constrained staggered toolpath
can effectively promote more uniform ink distribution
on curved layers with variable layer heights. However,
due to the inherent characteristics of ESP, local ink
over-deposition and pores caused by residual matrix
material cannot be completely avoided, particularly in
regions with complex geometry with sharp changes in
local volume. Moreover, compared with thin-wall struc-
ture printing, volumetric printing using ESP requires
more extensive nozzle movements, and the frequent
motion of the nozzle may pull or disturb the surrounding
matrix in three-dimensional space, potentially affecting
the printed features and leading to manufacturing
defects. A potential solution is the introduction of an
in-situ monitoring system (e.g. the one reported for
DIW [59]) to evaluate the printing process in real time
and dynamically adjust printing parameters to compen-
sate for these inconsistencies, which represents an
important direction for future exploration.

Another challenge arises from potential collisions
between the printing nozzle and the material tank,
especially when fabricating surfaces with large slopes
or steep curvature. In this work, we employed a 6-DOF
robotic arm to maintain a constant printing angle and
ensure uniform filament morphology. However, when
printing large-scale objects, collision avoidance and
nozzle-orientation constraints together restrict the
achievable printing size. A straightforward approach is
to adjust the nozzle geometry based on the local
surface orientation. For example, switching between
different nozzle configurations, such as the 45° or 90°
nozzle designs introduced in [12], can help prevent
interference by maintaining an optimal approach angle
relative to the surface. On the other hand, advanced
computational tool need to be developed to better
place the model accordingly to the robotic position,
reduce the potential of collision for this case.

Future work will extend the proposed framework to
more diverse support matrix material and structures
with greater geometric complexity [60, 61]. By integrat-
ing enhanced material compatibility with advanced
spatial toolpath planning, the framework can broaden
its range of applications. These capabilities will further
enable the fabrication of complex functional soft
devices, such as perceptive robots and biological
tissues, thereby advancing the design freedom and
overall performance of soft robotic and biomedical
systems. Additionally, incorporating multi-material ESP
[10, 41] together with the spatial printing proposed in
this work would further enhance printing flexibility
and reliability, particularly for fabricating functional
and geometrically complex soft devices.

6. Conclusion

In this work, we presented a robot-assisted multi-axis
embedded silicone printing platform capable of fabri-
cating high-fidelity volumetric models with minimised
geometric distortion and eliminating staircase artifacts
on curved surfaces. The proposed computational
framework couples curved-layer slicing, printing-direc-
tion planning, and width-constrained toolpath gener-
ation to ensure uniform material distribution and
continuous filament deposition across complex geo-
metries. Through the integration of high-DOF robotic
motion and an ink-volume control mechanism, stable
extrusion and accurate layer formation were achieved
within a gel-based support medium. Experimental vali-
dation demonstrated that the printed structures
closely matched their target designs, confirming the
system'’s ability to achieve solid infill, smooth surfaces,
and consistent material fusion. This work greatly
broadens the applicability of ESP toward fully volu-
metric free-form manufacturing and demonstrates its
effectiveness in producing customised functional soft
systems.

Notes

1. Their material properties are shown in Figure 2.
2. Available at https://doi.org/10.5281/zenodo.17596817.
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