A Multicore and Edge TPU-Accelerated Multimodal TinyML

System for Livestock Behavior Recognition

Qianxue Zhang, Eiman Kanjo

Abstract—The advancement of technology has revolutionized
the agricultural industry, transitioning it from labor-intensive
farming practices to automated, AI-powered management sys-
tems. In recent years, more intelligent livestock monitoring
solutions have been proposed to enhance farming efficiency and
productivity. This work presents a novel approach to animal
activity recognition and movement tracking, leveraging tiny
machine learning (TinyML) techniques, wireless communication
framework, and microcontroller platforms to develop an efficient,
cost-effective livestock sensing system. It collects and fuses
accelerometer data and vision inputs to build a multimodal
network for three tasks: image classification, object detection,
and behavior recognition. The system is deployed and evaluated
on commercial microcontrollers for real-time inference using
embedded applications, demonstrating up to 270x model size
reduction, less than 80ms response latency, and on-par perfor-
mance comparable to existing methods. The incorporation of
the wireless communication technique allows for seamless data
transmission between devices, benefiting use cases in remote
locations with poor Internet connectivity. This work delivers a
robust, scalable IoT-edge livestock monitoring solution adaptable
to diverse farming needs, offering flexibility for future extensions.

Index Terms—Tiny machine learning (TinyML), sensors, mi-
crocontroller unit (MCU), Internet of Things (IoT), livestock be-
havioral recognition, embedded systems, wireless communication.

I. INTRODUCTION

N the traditional livestock industry, constant human at-

tention is essential for animal activity observation and
condition assessment. In some cases, domain experts are also
required to secure product safety and quality. However, the
shortage of labor due to urbanization have increased opera-
tional cost, prompting farmers to explore more profitable al-
ternatives. The rapid development of IoT devices and machine
learning techniques has made it feasible for rural farms to
adopt intelligent farming practices at a lower cost [1], [2].
Therefore, edge Al applicationswith sensors and cameras are
integrated to automate agricultural processes through real-time
decisions, enabling efficient livestock monitoring with minimal
human intervention [3], [4].

Ranging from computer vision to natural language pro-
cessing, modern Al algorithms have become more powerful
and accurate, at the expense of increased size, computational

Qianxue Zhang is with Medical Al Lab, Hebei Provincial Engineering
Research Center for AI-Based Cancer Treatment Decision-Making, The First
Hospital of Hebei Medical University, Shijiazhuang 050000, China; and the
Computing Department, Imperial College London, London, UK.

Eiman Kanjo is with Professor Pervasive Sensing & TinyML and the Head
of the Smart Sensing Lab at Nottingham Trent University, Nottingham, UK
(email: eiman.kanjo@ntu.ac.uk); and Provost’s Visiting Professor in tinyML
at Imperial College London, London, UK (email: e.kanjo@imperial.ac.uk).

© 2025 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

requirements and carbon footprint. Dedicated hardware such
as GPU acts as the primary choice for training complex
large models, but with a price proportional to its processing
capability, making it barely affordable for most farms. While
cloud computing offers another possible solution, model per-
formance might be degraded due to unreliable Internet cover-
age in rural areas, resulting in high latency and low throughput.
Therefore, given the financial constraints and communication
restrictions in agricultural environments, relying on cloud
servers or high-end hardware is challenging [5]. To overcome
these difficulties, TinyML has emerged as a promising solution
to design an affordable and efficient system. It allows for
real-time data processing and on-device inference without
connecting to cloud services, thereby preserving data security.
With integrated sensors and embedded systems, TinyML can
achieve performance comparable to cloud and fog computing
on resource-constrained hardware, while reducing latency,
energy consumption and privacy risks [6]-[9].

To enhance livestock health, boost farming productivity, and
reduce operational cost in rural farms with minimal energy
consumption, we propose a low-budget, wireless-enabled, and
automated sensing system for reliable animal monitoring and
tracking, offering a novel IoT solution to smart livestock
management. The system features three key contributions:

1) TinyML model development and optimization: We de-
signed and fine-tuned several highly efficient TinyML
models tailored for complex vision and sensor-based
tasks, achieving up to 270x model size reduction in
model size while preserving comparable detection and
classification accuracy.

2) Multimodal behavior recognition framework: We devel-
oped a robust multimodal model that fuses image inputs
and accelerometer signals to produce accurate livestock
behavior recognition results under various farm condi-
tions. By incorporating both image classification model
and sensor-based behavior recognition model through
late fusion technique, the system achieves improved
robustness against sensor failure or occlusion.

3) Multicore embedded edge deployment on microcon-
trollers: The models were deployed and evaluated on
resource-constrained microcontrollers (dual-core Google
Coral Dev Board Micro). The M7 core accelerated with
Edge TPU (Tensor Processing Unit) enabled on-device
inference with <80ms end-to-end latency, supporting
real-time responsiveness with minimal power consump-
tion. The M4 core handled wireless communication to
broadcast messages, eliminating the reliance on constant
cloud connectivity.

II. BACKGROUND
A. State-of-the-Art TinyML Models

Common cloud deep learning models of today are evident
with their large size, which leads to excessively long comput-
ing time and extensive hardware requirements, making relevant
applications unfeasible for budget-restricted use cases such
as farming. To relieve the computation burden and enable
efficient algorithm execution, TinyML has been introduced
to compress large models for deployment on low-power and
resource-constrained platforms, such as microcontrollers and
IoT devices. In recent years, various model compression tech-
niques have been developed to improve efficiency and maintain
accuracy, including pruning [10], quantization [11], [12], neu-
ral architecture search (NAS) [13], and knowledge distillation
[14]. These fundamental methods are widely applicable for
optimizing all types of complex machine learning models to
fit diverse memory constraints. However, designing a viable
TinyML architecture from scratch is still computationally and
time-consuming, which raises the demand for models tailored
to MCUs and edge devices.

The lightweight MobileNet family [15]-[17] was designed
to run efficient CNN vision models on mobile devices. Its
architecture and classic building blocks were progressively
adopted in different TinyML models, serving as the basis
for TinyML development. Nevertheless, directly deploying
them on commercial MCUs typically does not function as
expected due to the strict memory limit. To address this,
researchers then proposed various neural network architectures
for running TinyML models on MCUs. ProxylessNAS [18]
introduced hardware-aware neural network specialization, op-
timizing model based on explicit hardware objectives such as
latency and memory restrictions. Another prominent model
is MCUNet [19], a system-algorithm co-design framework
that jointly performs two-stage neural architecture search
and memory-efficient inference scheduling, enabling large-
scale inference on strictly power-constrained MCU. Moreover,
MCUNetV2 [20] offered patch-based inference strategy to
further reduce the memory footprint in TinyML models. How-
ever, prior studies mainly focused on theoretical model design
while paying less attention to the actual deployment scenario.
In practice, executing models on the MCU often encounters
special obstacles given hardware constraints and inference li-
brary complexities [21]. Although MicroNets [22] successfully
deployed TinyML applications on commodity microcontrollers
(STM32 MCUs), reproducing this work on other edge devices
remains difficult due to compatibility issues.

B. Al Applications in Farm Sensing

Al applications have been embraced to advance farming
through sensor data accumulation, rapid data transmission and
remote monitoring. The integration of sensors and cameras
enables running optimized machine learning algorithms on
different devices based on farming demands, thereby reducing
human labor and improving the overall profit.

Wearable sensors are the main tool in animal behavior clas-
sification due to their affordable, energy-efficient, and reliable
nature [23]. The hybrid CNN-LSTM model outperformed pure

CNN networks in sensor-based activity recognition, as RNNs
are more effective in capturing the temporal dependencies in
time series inputs [24]. Due to the scarcity and inconsistent
quality of inertial sensor datasets, data augmentation is essen-
tial to improve model performance and generalization ability
[25]. Common methods include perturbation in the time and
frequency domain, such as time reversal, temporal flipping
[26], and Gaussian noise injection [27].

In terms of camera-integrated algorithms, most existing
studies leverage object detection models to track animals in
captured images. The classic R-CNN [28] model used a two-
stage region proposal network for classification, generating
more accurate results but with a longer runtime. To improve ef-
ficiency, subsequent research focused on single-stage detectors
to reduce inference time, such as SSD [29] and YOLO [30].
Their rapidity, scalability and flexibility make them suitable
for real-time applications on resource-restricted devices.

Additionally, various IoT applications for livestock moni-
toring have been developed to enhance farm productivity. The
infrastructure involves several modules to function, including
sensors or cameras to collect key parameters from the environ-
ment, microcontrollers to process inputs, and wireless com-
munication components to transmit information [31]. Some
advanced systems exploit machine learning algorithms such as
SVM and DNNs to classify animal activities and predict health
outcomes, further improving the accuracy and utility of these
IoT solutions [32]. For instance, Manikanta er al. presented
a holistic cloud IoT-based animal surveillance system using
sensors and Arduino UNO [33]. However, data analytics was
conducted on the cloud server rather than local device, as
the models were not optimized for MCU-based inference.
As a result, the effectiveness of the system hinges on cloud
computing capabilities offered by the service provider, making
it heavily dependent on stable internet connectivity.

C. Discussion

Although the literature makes evident the benefits of
TinyML models and farming-related Al applications, there
still exist cavities to be filled. For example, the majority
of applications rely on high-end hardware such as GPU or
personal computers, since they can offer strong computational
power to enhance system performance. Meanwhile, many IoT-
based solutions tend to involve cloud services, which can be
unreliable in rural areas with poor connectivity. In addition,
the optimized TinyML models are usually evaluated on the
cloud rather than deployed on the actual microcontrollers.
Therefore, this work places extra emphasis on optimizing
TinyML models and inferencing them on the MCU to evaluate
their performance using embedded processors (e.g. M4, M7
CPU and TPU). We aim to develop an integrated, MCU-
based smart livestock monitoring solution that does not require
constant Internet connectivity, contributing to an efficient
sensing system with minimal cost.

III. SYSTEM DESIGN

A. Structural Overview

We propose a novel design for monitoring and tracking
animals on the farm in Figure 1, which consists of two types

of devices that work collaboratively to track livestock behavior
and health condition across a wide area. Users can leverage
this system to manage a group of animals or individual ones
depending on specific needs.

The static Type 1 devices are positioned on the farm’s fence,
integrating Google Coral Dev Board Micro to run a multicore
application for real-time monitoring and communication. The
M7 core employs an object detection model to track a group
of animals through the built-in Himax color camera, lever-
aging the Edge TPU for efficient inference. Additionally, the
M4 core is responsible for wireless communication with a
wireless add-on module, which processes messages received
from M7 and Type 2 devices to determine a notification level
and transmit customized alerts to user mobile phone when
abnormal behavior is detected. The two cores communicate
through an inter-process communication (IPC) framework,
allowing synchronized data exchange for the object detection
and wireless communication tasks.

In the meantime, the Type 2 devices (Raspberry Pi Pico)
mounted on the animal’s neck employ the fused model to
generate detailed activity information. An Arducam Mini 2MP
Plus camera and ADXL345 accelerometer are attached to
collect data from the environment. By combining both vision
and accelerometer inputs, the system remains robust even
under restricted conditions such as partial occlusion or sensor
bias. Upon identifying any concerning patterns, the device
broadcasts messages to the nearby Type 1 unit to notify users
through the Bluetooth module, promoting the overall efficiency
and reliability.

In terms of the hardware cost, each Type 1 device com-
prises a Google Coral Dev Board Micro with an Edge TPU
accelerator and a wireless add-on board, at a unit price of
approximately $100. The Type 2 device utilizes the Rasp-
berry Pi Pico board, combined with Bluetooth, camera, and
accelerometer modules, costing around $25 — $30 per unit.
Therefore, for a large farm managing 100-200 animals, the
overall budget would range from $3000 — $6000, depending
on the deployment density and communication coverage.

B. Technical Details and Methodologies

Figure 2 provides an in-depth illustration of the TinyML
models utilized in system, outlining the expected inputs and
outputs of each network. Their results are then combined and
processed to generate real-time notifications through the wire-
less communication framework. All operations are deployed
on the microcontrollers to minimize power consumption and
enhance system efficiency, contributing to a reliable and cost-
effective design for modern livestock management. The system
comprises the following key components:

1) Movement Tracking: The system employs an efficient
object detection model to track animal movement, which is
responsible for identifying and locating livestock within the
camera frame. The MCUNet-YOLO network is optimized for
low-latency inference and detection on resource-constrained
devices. It outputs bounding box, class label, and confidence
score for each detected object in real time, enabling continuous
tracking and labeling of every animal in the frame. In addition,
the detailed animal activities identified by the fused model are

Type 1 Device (Installed on the Fence)

Google Dev Board Micro
p==cmscoses M7 Core+TPU }. ______________ .

‘Wirelss Communciation \)
Framework H

Object Detection Y
Model

/" Built-in Himax
1 Color Camera

! IPC |
>

., «(,,))u

\ Wireless Add-on

Raspberry Pi Pico

Fused Model

HC-05 Bluetooth
Module

Arducam Mini
2MP Plus

Accelerometer

Fig. 1: Structural overview of the monitoring system prototype
with two types of device.

Movement Tracking

Acﬁvia Recﬁniﬁon
Time Series Data from
Accelerometer

—_—
Images from Camera

Tmages from Camera

; ; : v _
Object Detection Model | Image Classification Model Behavior Recognition Model }

i MCUNet CNN-LSTM
MCUNet + YOLO : 1 ¢ |
""""""" l'““““" 1 : Fusion Layer : !
i | ;
Detected Objects g g
Sl iy Classifed Activities
Environments
Bounding — A — Stored on the
Box flash memory
¢ Wireless Communication ¢
#Detected Animals -::z:z:zzzzzszzzzzzzzzzzzzzzzzzzzz o Activity Details

Notification

Fig. 2: Detailed system architecture with movement tracking,
activity recognition and wireless communication function.

recorded in the device’s flash memory, providing a practical
solution for retrieving the livestock’s actions over time and
benefiting the movement tracking process. For example, the
system labels a tracked animal as confined to a specific area
if it feeds mostly in a stanchion without engaging in grazing
activity. Conversely, if the data shows frequent grazing and
moving behaviors, the animal is categorized as free-ranging.

2) Activity Recognition: The system integrates both sensor
and camera for animal behavior recognition. The sensor-
based approach serves as the primary method to classify
animal activities in real-world farm environments due to its
cost-effective, power-efficient and robust characteristics. A
hybrid CNN-LSTM model is designed and optimized as a
TinyML solution to process the time-series data collected by

the accelerometer, which leverages the strengths of CNN for
feature extraction and LSTM for capturing temporal depen-
dencies in sequential data. Meanwhile, a customized image
classification model, MCUNet, is employed to fully utilize
vision information from the surrounding environment. Finally,
the two modalities are fused at the decision level to generate
more detailed and accurate activity categorizations, enhancing
the overall performance and reliability of the system.

3) Wireless Communication: To transmit and receive mes-
sages between devices, a wireless communication framework
is established by leveraging the capabilities of the existing
hardware. Currently, Bluetooth Low Energy (BLE) supported
by most commercial MCUs is adopted. It offers a communica-
tion range of up to 200m outdoors and is specifically optimized
for low power consumption, enabling operation for months to
years with a small battery.

4) Embedded System Development: Embedded applications
are developed to deploy the TinyML models on the MCU,
supporting on-device inference and other additional features
such as results visualization and history storage. Since the
Google Coral Dev Board Micro encompasses two CPUs (M7
& M4), single-core and multicore designs are constructed to
execute complex tasks by fully utilizing its computational
capability. Google also provides the coralmicro APIs for
FreeRTOS project development, enabling TPU acceleration
and TensorFlow Lite for Microcontrollers (TFLM) usage on
the MCU. Overall, the development process requires exten-
sive C++ programming, CMake configuration for building
and compilation, and TensorFlow Lite (TFLite) interpretation,
integrating both hardware resources and software frameworks
into a complete embedded solution.

IV. TINYML MODELS DEVELOPMENT

The essential part of the project is TinyML model explo-
ration and optimization, aiming to train efficient and accurate
models with minimal memory consumption to fit in the
constrained memory of existing hardware. The primary work
focuses on building and optimizing individual deep learning
models for three distinct tasks.

A. Image Classification

In the context of pasture-based farming, accurately recog-
nizing various livestock species and their surrounding envi-
ronment is critical for effective livestock management. This
involves constructing a robust multi-class classification model
to properly categorize images captured through on-site cam-
eras. Additionally, depending on the location of the micro-
controllers and cameras, different networks are available to
provide context-aware information and enhance the system’s
ability. For instance, with a static camera installation on the
fence, the model primarily focuses on animal identification. In
contrast, when the camera is mounted on moving animals, the
task shifts toward classifying the surrounding environments.

1) Model Design: The open-source MCUNet [19] is se-
lected as the backbone of the multi-class classification model,
which is designed to enable large-scale image classification
jobs on resource-constrained microcontrollers. Compared to

traditional lightweight model such as MobileNetV2 or Prox-
ylessNAS, MCUNet provides a superior trade-off between
accuracy, memory footprint, and inference latency due to its
hardware-aware NAS and highly optimized inference engine,
making it suitable for real-time deployment on the MCU.

As shown in Figure 3 and Figure 4, the main architecture
of the model originates from the core building blocks in
MobileNetV2 [16]. To reduce the computational load, the
input images were preprocessed to a resolution of 176x176
for feature extraction. A series of expansion ratios and kernel
sizes was selected in the structure based on the widely-used
mobile search space [18] and optimization results. The size of
the two models is parameterized by the number of FLOPs and
trainable parameters, as shown in Table 1.

MB5 3x3
MBS5 7x7
MB5 5x5
MB5 7x7
MB5 3x3

MB5 5x5

MB5 3x3
MB4 5x5

176x 176

44x44

>

22x22 6x6

Legend: MB{expansion}_{k_size}x{k_size}

Fig. 3: Architecture of the MCUNet model with MB block
details.
Pointwise Linear Block

Depthwise Conv Block Inverted Bottleneck Block

| Depthwise Conv | Pointwise Conv (1x1)

| Conv Ix1 |

¥ ¥ v
| BN | BN | B BN |
¥ ¥ ¥

| ReLU6 | | Linear | |

(a) MobileNet core blocks.

Expansion ratio = 1 Expansion ratio > 1

Inverted Bottleneck Block|

Depthwise Conv Block
Pointwise Linear Block

1

Depthwise Conv Block

Pointwise Linear Block

pLusfi

if stride
)i =

(b) MCUNet MB blocks.
Fig. 4: Details of the operations in MCUNet MB blocks.

TABLE I: Image classification models size.

Models #FLOPs #Params
MCUNet (Mini-ImageNet) 81.64M 0.5925M
MCUNet (Custom Dataset) 81.64M 0.5769M

The MCUNet model was optimized by leveraging the two-
stage NAS method (TinyNAS [19]), which involves automated
search space optimization and resource-constrained model
specialization. First, based on the microcontroller resources,
a broad range of width multipliers (') and input resolutions
(R) were selected as the possible search space (S). The best
configurations S* for different SRAM and Flash combinations
(Figure 5) can be efficiently retrieved by estimating the Cu-
mulative Distribution Function (CDF) of FLOPs, since higher
FLOPs generally indicate greater model capacity and accuracy

[34]. In order to fit into most commercial microcontrollers
while considering the performance trade-off, W* = 0.5 and
R* = 176 were chosen as the primary design space. Second,
within S*, we employed a one-shot NAS [35] to train one
supernet that represents all possible sub-architectures through
weight sharing. The optimal model was then determined by
evolutionary search to satisfy the memory constraints while
maximizing accuracy.

4104 05 05 05

104 05 05 05

104 04 05 05 05 0.5

SRAM (kB)
512 448 384 320

104 05 05 05|05 05 05

T T T T T T T
640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 20
Flash (kB)

(a) Best W™,

144 144 144 112 112 112 112 96 96

PCLABCONNCORBEIERGIY 112 112 112 112

ANV VIRRVIRRYN 128 128 128 128 128
176 176 | 176 | 176 BEES 144 144

SRAM (kB)
512 448 384 320

192 | 176 | 192

640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048
Flash (kB)

(b) Best R*.

Fig. 5: Best search space configurations S* under various
SRAM and Flash settings.

2) Datasets & Training: There are two datasets used for
training and evaluation based on the position of the MCU. First
is the mini-ImageNet dataset with fewer categories compared
to the complete ImageNet dataset [36] , which contains 60000
images and 100 classes including common animals. The other
one involves a custom dataset gathered online to identify
the surrounding environment of animals, where 3 frequent
scenarios are considered based on the livestock’s daily routine:
animal (surrounded by livestock), grass (grazing), and fence
(near the farm boundary). There are 640 samples in total,
which are evenly distributed among each category to ensure
balance. Representative examples of each class are shown in
Figure 6. To promote the robustness and generalization ability
of the model, every image was carefully selected through
the accumulation of varying hues, species, and photographic
perspectives.

(b) Grass.

Fig. 6: Example images for the custom dataset.

(a) Animal. “ (c) Fence.

B. Object Detection

In contrast to image classification tasks that only categorize
an entire image into a single class, object detection identifies
and locates multiple instances within one frame, thus being
more appropriate for complex farming environments.

1) Model Design: The hybrid ResNet-YOLO network in
paper [37] incorporates ResNet [38] into the feature extraction
part of the YOLO architecture, which is proven to be highly
effective in multi-object recognition with complicated natural
scenes. Inspired by this research, the MCUNet-YOLO model
is designed as a TinyML solution for the object detection
task. The same MCUNet continues to act as the backbone for
feature extraction, and the single-stage YOLOv1 detector is
employed to locate the object, resulting in a fast and memory-
efficient model for real-time detection on edge devices. The
input resolution was changed to 224 x224 based on the tuning
results. Besides, the final fully connected layer was stripped
off from the original MCUNet network and replaced with the
corresponding YOLOvV1 detector in Figure 7. The YOLOv1
classifier encompasses two convolutional layers and one lin-
ear layer to improve performance [39], which converts the
extracted feature map from MCUNet into a raw YOLO-style
tensor. The comparison of the models in terms of the number
of trainable parameters and FLOPs is displayed in Table II,
where the MCUNet-YOLO model is much more efficient.

Ouput Post-Process
Box
M|

Score

‘YOLOV1 Detector

Raw Output
Tensor

Flatten

=

MCUNet
Conv Layer
Conv Layer
Linear Layer

Feature Extraction’
Output

B x # classes

Fig. 7: Architecture of the MCUNet-YOLO object detection
model with YOLO detector and output post-processing steps.

TABLE II: Object detection models size.

Models #FLOPs #Params
ResNet-YOLO 16978.7M 26.73M
MCUNet-YOLO 152.4M 0.73M

2) Datasets & Training: The Pascal VOC dataset [40]
includes images from a wide variety of real-world scenes. It
contains 20 classes in total, covering common objects such as
animals, people, and household items. The dataset is generally
clear and concise, where the annotated elements are of moder-
ate size and well-centered, occupying a significant portion of
the image without complex background. The 2007 and 2012
published datasets were used to refine and evaluate the model.
Since the system primarily targets the livestock use case, the
number of classes was reduced to 4, consisting of cow, horse,
person, and sheep only to save training time. To improve
the model’s robustness and generalization ability, customized
data augmentations were applied to both input images and
bounding boxes to update them collectively. The pre-trained
ImageNet MCUNet backbone from the image classification
task was integrated into this model.

The training loss function was implemented by following
the original YOLOv1 paper [30], where the network divides
the image into an S x S grid, and each cell predicts B
candidate bounding boxes with associated confidence scores
and class probabilities. The loss consists of three parts: the
bounding box regression loss that penalizes the squared error
between the predicted and true bounding box center position
and size, confidence loss calculated from intersection-over-

union (IoU) and whether an object is present, and class
prediction loss based on classification results.

L=)\coord Z Z]lobj i — Iz) + (yz - :gz)2]
i= Oj 0
P31 [ViE® + (Vi - iy
1=0 =0

+ZZWC Cy) +/\noobJZZ]1"°°bJC’ Ci)°

i=0 j=0 =0 j=0

+Zn°bl > i) = pie)* ()

cEclasses

where:

e S xS is the grid size,

¢ B is the number of bounding boxes per grid cell,

o (zi,yi,w;, h;) are the predicted bounding box coordi-

nates and dimensions,

o (&4,9s,W;, hy) are the ground truth bounding box param-

eters,

e C; and C’Z represent the confidence scores,

e Acoord and Anoobj are scaling factors for localization and

confidence losses, where Acoorda = 5 and Apgonj = 0.5,

e p;(c) and p;(c) are the predicted and actual class proba-

bilities.

The input resolution can significantly affect the model
performance. In the meantime, the grid size S varies with
the change in resolution. As summarized in Table III, a larger
resolution tends to generate higher mean Average Precision
(mAP) at the expense of increased computational complexity
and energy consumption. Eventually, a resolution size of
224 x 224 was chosen based on the hyperparameter tuning
results and computational efficiency trade-offs.

TABLE III: MCUNet-YOLO resolution & S tuning results.

Resolution mAP #FLOPs
14 448 0.55 526.1M

224 0.49 152.4M
8 176 0.42 90.37M

C. Behavior Recognition

Aside from vision tasks, environmental data collected from
sensors is also leveraged to classify various animal activities.
Accelerometer is considered the primary choice due to its
affordability and ability to accurately capture livestock’s be-
havior during movement. Besides, it is small and lightweight,
which can be attached to animals with minimal impact on their
natural behaviors.

1) Model Design: The hybrid CNN-LSTM model is in-
corporated due to its reliability, efficiency and high perfor-
mance since it combines the strengths of both architectures
to generate a stronger network [23], [24]. It was compressed
to fit into the constrained memory of edge devices, with the
corresponding size in Table IV. In this architecture, CNN
layers are responsible for local feature extraction, generat-
ing feature maps that represent high-level patterns through
dimensionality reduction. To enhance the robustness of the

model and prevent overfitting, a dropout layer is incorporated
after each CNN block for regularization. LSTMs then perform
sequence learning over long-term dependencies and sequential
relationships in the extracted features, which is particularly
useful for handling time-series data. The network structure is
shown in Figure 8, where the LSTM outputs is passed to the
linear layer for final classification.

TABLE IV: Behavior classification models size.

Models #FLOPs #Params
Original CNN 79.0TM 0.662M
Iteratively Pruned CNN 25.67TM 0.1055M
Original CNN-LSTM 56.28M 0.437M
Iteratively Pruned CNN-LSTM 12.52M 0.1858M

A grid search was performed within a range of CNN layers
of {1,2,3,4,5} and LSTM cells of {3,4,5,6,7}, and the
3-layer CNN and 4-layer LSTM configuration was selected
to balance the accuracy and memory footprint. As illustrated
in Table V, although more convolutional blocks are likely
to generate better classification performance, the added layer
contributes to less than 1% accuracy gain while increasing
model size by over 10%. Meanwhile, 3 CNN blocks provide
sufficient extracted features for the LSTM module to analyze
without overfitting the memory use. This model was then
optimized with iterative pruning to compress its size for future
deployment steps.

CNN

Ouput Post-Process

Conv 1D Block

Conv 1D Block

Conv 1D Block
Avg Pooling

]
)
]
z
2
=
2
°
E
=

Fig. 8: Architecture of the CNN-LSTM model with 3 CNN
layers and 4 LSTM layers.

TABLE V: CNN-LSTM grid search results with accuracy and
total number of parameters.

CNN
1 2 3 4 5

3 95.96% | 97.51% | 98.34% | 98.61% | 98.82%
0.095M | 0.120M | 0.152M | 0.185M | 0.218M

4 96.01% | 97.61% | 98.95% | 98.44% | 98.51%

L 0.128M | 0.153M | 0.186M | 0.219M | 0.252M
S 5 95.52% | 97.29% | 97.90% | 98.40% | 98.17%
T 0.161IM | 0.186M | 0.219M | 0.252M | 0.285M
M 6 96.24% | 97.12% | 97.84% | 97.84% | 98.62%
0.195M | 0.219M | 0.252M | 0.285M | 0.318M

7 95.74% | 96.85% | 97.35% | 98.17% | 97.23%
0.228M | 0.253M | 0.286M | 0.319M | 0.352M

2) Dataset & Training: A publicly available the Japanese
Cow behavior dataset [41] was leveraged for model training
and evaluation. There are thirteen annotated behaviors in total,
including common activities such as resting, moving, and
drinking, efc. The data are gathered using tri-axial accelerom-
eters attached to the neck of six different cows over the course
of one day, at a sampling frequency of 25Hz. There are five
actions to be detected, which are resting in standing position
(RES), moving (MOV), attacking (ATT), feeding in stanchion
(FES), and grazing (GRZ), covering animals’ daily routine and

behaviors that potentially requires human attention. The raw
time stamps were filtered and preprocessed into 10-s sliding
windows [26] with a step size of 25, where each window
was labeled according to the majority class. To examine the
effect of window length, model accuracy was evaluated across
window sizes from 2 to 15 seconds. The results demonstrated
that accuracy increased steadily from 2 to 10 seconds, but
saturated at around 99% for window sizes >10s. Therefore,
the 10-s configuration was selected. The dataset is noticeably
unbalanced, so several data augmentation strategies were ex-
ploited to perturb time positions in the training data for better
generalization ability [25], such as randomly reversing the
time series and looping the existing period to compensate for
information loss.

The training procedure is straightforward, involving hyper-
parameter tuning to achieve an optimal model. Aside from
the standard parameters such as learning rates and optimizers,
input window size is also a crucial factor that affects the
model performance. A longer input sequence can preserve
more long-term relationships in the data, making the network
less sensitive to unexpected noise and more powerful in cap-
turing detailed information, but at a cost of increased energy
consumption and model complexity. In contrast, a smaller
window size focuses on localized patterns, which reduces
computation load and results in faster inference. Due to LSTM
cells’ ability to capture temporal dependencies, the CNN-
LSTM network demonstrates relatively stable results across
different window sizes. Therefore, to balance the trade-off
between computational requirements and system performance,
the 10-s window was selected for effective animal behavior
classification.

D. TFLite Model Generation and Optimization

TensorFlow Lite (TFLite) is designed for efficient on-device
inference, optimized for low-power edge devices and MCUs,
whose cross-platform compatibility enables deployment across
various hardware architectures. To generate a TFLite model
while preserving performance, the original PyTorch model was
converted to TensorFlow format, followed by transformation
into TFLite with specific optimizations.

First, we manually re-implemented the complex and highly
customized PyTorch models (e.g. MCUNet) in TensorFlow
format. The entire network was rebuilt properly with Keras or
TensorFlow operations, while ensuring proper weight transfer
through tensor permutation to address framework discrepan-
cies. The tf.function decorator was further employed
to generate static computation graphs, enabling framework-
specific optimizations based on hardware requirements. Al-
though this involves extensive programming work, it reduces
the total number of operations and allows the flexibility of
adjusting every aspect of the model to suit the target platform
compared to straightforward approaches such as ONNX (Open
Neural Network Exchange).

Additionally, the TFLite model was generated using the
TFLiteConverter, incorporating optimizations to reduce
model size and inference latency. We employed quantization to
reduce the precision of parameters from 32-bit floating-point

to 8-bit integers, making the model more suitable for memory-
constrained MCUs. This is achieved using the equation:

Q. = round (%) +7Z)

where:

e (), is the quantized integer value,

e z is the original floating-point value,

o S is the scale factor,

e Z is the zero-point offset.

This transformation guarantees efficient storage and com-
putation while maintaining accuracy. A representative dataset
was involved to calibrate activations during quantization, en-
suring minimal loss in performance. The full integer quan-
tization process significantly enhances model efficiency, par-
ticularly on hardware optimized for integer tensor operations,
such as TPUs. Moreover, to fully extend the model’s func-
tionality, we developed custom operators in TensorFlow, then
implemented and registered the corresponding C++ kernels via
OpResolver for proper TFLite interpretation.

V. SYSTEM IMPLEMENTATION

The system can be assembled after the completion of the
individual TinyML models, comprising three main aspects: a
multimodal network to combine both sensor (accelerometer)
and camera inputs for more accurate classification, the embed-
ded system development to support on-board inference with
additional functions, and a wireless communication module to
facilitate information transmission between devices.

A. Multimodal Fusion

Based on the system design outlined in Figure 2, a fused
model is employed in the Type 2 devices to support the animal
monitoring process with different modalities. It leverages time-
series data from the embedded sensor and images captured
from the real-time camera to interpret more accurate classifi-
cation results tailored to agricultural demands. In this system,
two TinyML models are combined using the decision-level
fusion to build a multimodal network for farm management,
which consists of:

« An image classification model pre-trained on the custom

dataset for surrounding environment categorization.

o A behavior recognition model based on accelerometer

inputs for livestock activity recognition.

This late fusion approach is selected due to its modu-
larity, flexibility, and robustness, achieving 97.6% accuracy
with 0.68M parameters. Each modality can be developed and
optimized independently, making it easier to incorporate new
modalities or update existing ones even if conflicts occur.
In contrast, early fusion combines data at the feature level,
where features from each modality are extracted and integrated
before being fed into a single prediction model. Despite
the closer relationships between modalities with early fusion
approach, the model size is increased by the integration of an
extra model. In addition, intermediate fusion aligns modality
features using a shared Transformer model and integrates
them through attention mechanisms. Empirical results indi-
cated that at least four linear layers were required, leading

to approximately 13% parameter increase but less than 1%
accuracy improvement. Since the internal features must be
jointly processed, the previously converted TFLite models
for image classification and behavior recognition cannot be
reused, making deployment on the MCU more challenging.
Similarly, hybrid fusion that combines the above techniques
attained similar accuracy of around 98% but with much higher
complexity. In contrast, latter fusion solution can achieve
comparable performance while remaining a compact and ex-
tendable architecture, making it more suitable for resource-
constrained environments.

Figure 9 illustrates the structure of the multimodal system,
where each classification model is analyzed separately with
its own specialized algorithms. The individual predictions
are then concatenated and fed into a small linear layer to
produce a final decision, represented by formula (3). The
fusion weights were learned through a linear layer during
training based on labeled multimodal data, which allows the
system to automatically determine the importance of each
modality in the final prediction. Finally, the fused model is
converted to TFLite format with INT8 quantization for on-
board deployment, ensuring efficient storage and computation
on memory-constrained microcontrollers.

=Y P, 3)
i=1

where:

e F'1is the final fused decision score,
o w; is the weight assigned to each model’s prediction,
o P; is the probability output of the ¢-th model.

Multimodal Network

«i

{,ﬂ

Image Classification Model Behaviour Recognition Model

Concatenation

ty

Linear Layer

Detailed Animal Activities

Fig. 9: Architecture of the multimodal network with late fusion
strategy.

1) Label Mapping: As shown in Table VI, the mapping
of the fused labels is generated based on the classification
outcomes of the two models. The first row (RES, MOV, ATT,
FES, GRZ) represents the five possible livestock behaviors,
while the first column (Animal, Grass, Fence) indicates the
detected surrounding scenes. There are eight classes in Table
VII, corresponding to the detailed activity information and the
animal’s conditions. These classes describe not only the live-
stock’s actions but also the level of human attention required,
which is color-coded into three categories. Green denotes a
safe state without immediate intervention, yellow signifies that

the animal is near the fence that may need closer monitoring,
and red highlights abnormal or concerning behaviors that
require prompt action. For instance, the animal is considered
safe when it is surrounded by animals (Animal) and resting
(RES), which is labeled with 0. However, if aggressive actions
are identified (ATT), or animals are moving (MOV) toward
the farm’s border (Fence), the manager should be notified for
closer supervision. When yellow or red behaviors are detected,
the system sends a message to the Type 1 device for further
processing.

TABLE VI: Label mapping based on the animal behavior and
its surrounding environment.

RES(0) | MOV() | ATT(2) | FES(3) | GRZ®4)
Animal(0) | 0 1 6 2 3
Grass(1) 0 1 6 2 3
Fence(2) 4 7 7 2 5

TABLE VII: Detailed animal activities with labels and defini-
tions.

Label Class Meaning

resting in safe condition

moving in safe condition

feeding in stanchion in safe condition
grazing in safe condition

resting near fence

grazing near fence

attacking animals

potential escaping

N\ | R RN =D

B. Embedded System Development

This section demonstrates the firmware development to flash
the TFLite models on the MCU for inference, especially
targeting the Google Coral Dev Board Micro. As the primary
processor is a microcontroller, it is designed to execute tiny
applications without a general-purpose operating system like
Linux. Instead, all platforms and APIs are built with FreeRTOS
in C++. By using the TFLM framework, on-board inference as
well as other additional functions can be implemented to re-
alize the livestock monitoring system on resource-constrained
devices.

1) Single-Core Applications: To execute a TinyML model
on the MCU, single-core applications need to be constructed
based on the running processor. Since the Google Coral Dev
Board Micro possesses two MCU cores, M4 and M7 with the
Edge TPU accelerator, each is tested separately to measure
performance. The general procedure for initiating the TFLite
model inference on the Google Coral Dev Board Micro is de-
fined in Algorithm 1 by leveraging the TensorFlow interpreter
provided in TFLM. Eventually, the fused model is deployed
using the single-core algorithm with TPU acceleration.

2) Multicore Applications: The Google Coral Dev Board
Micro encompasses a dual-core MCU with an M7 and an
M4 processor, providing the opportunity to run a variety
of multicore applications. To fulfill the functionality of the
system, we run different algorithms on the two processors
and leverage the IPC feature to facilitate data sharing between
them. Due to the limited computational power of the M4 core,
the larger model is executed on the M7 processor, where it can
use the Edge TPU for enhanced system efficiency.

Algorithm 1 General Single-Core Algorithm

Initialization:
/I Power on the Edge TPU or M4 core
TPU: EdgeTpuManager — OpenDevice()
M4: IpcM'T — StartM4()
/I Define the TF ops
resolver. AddCustom(kCustomOp, Register CustomOp())
resolver.AddConv2D(), resolver. AddFullyConnected(), ...
/I Load TFLite model
coral_micro :: LfsReadFile(fusedmodel)

Main Loop:

while TRUE do
/I Calculate the inference time
dtime < t_current - t_prev
// Prepare input tensor
input_tensor < quantized_input
// Invoke inference
interpreter.Invoke()
// Output post-processing
output_tensor < dequantized_output

end while

The M7 core runs an object detection model (MCUNet-
YOLO) accelerated by the Edge TPU to locate animals in
real-time camera frames, displaying the instant results on a
web interface via the local host and sending the information to
the M4 core for further processing steps. The program details
are shown in Algorithm 2.

Algorithm 2 M7 Algorithm (Object Detection with TPU)

Initialization:
/I Set up HTTP server with URI handler
hitp_server. AddUriHandler(UriHandler)
/I Create synchronization primitives
img_mutex < xSemaphoreCreate Mutex()
bbox_mutex < xSemaphoreCreate Mutex()
// Initialize camera in streaming mode
CameraTask — Enable(CameraMode :: kStreaming)
/I Start coprocessor
IpcM'7 — StartM4()

Main Loop:

while TRUE do
/I Capture frame
CameraTask — GetFrame(fmt)
/I Run inference
interpreter.Invoke()
/I Process results
return id, score, T_min,y_min, x_max, y_max
// TPC communication
ipc — SendMessage(msg)

end while

When it receives activity information from the Type 2 device
and detects any animal with the M7 core, a notification level
N is calculated in M4 following the equation below. The
higher number represents a more serious situation, where O
indicates there is no alert to send but 3 requires immediate
human intervention.

A—4 B
N = max(3, | ——

—1+150) @
where:

o A is the severity score from the Type 2 device (animal
activity analysis in Table VII),

e B is the number of detected animals from the M7 core
(object detection output).

If N > 1, a BLE Beacon is set up to broadcast the
customized message towards nearby mobile devices to notify
users, as shown in Algorithm 3.

Algorithm 3 M4 Algorithm (Handle msg from M7 and Type
2 Device and broadcast)

Message Handling:
/I Receive M7 message and send ACK back
MT7_msg = reinterpret_cast < const Message* > (data)
IpcM4 — SendMessage(ack_msg)

Data Processing:
/I Process for notification with Type 2 Device inputs
processed_msg < MT_msg, activity_msg
notification < processed_msg

Bluetooth Broadcast:
/I Set up a Bluetooth Beacon for advertising information
InitEdge fastBluetooth(bt_ready)
Bluetooth Advertise(bt_le_ext_adv * notification)

3) Small On-board Database: The Coral board boasts
more than 1GB of flash memory and supports local file
storage through Filesystem APIs. Leveraging this capability,
a lightweight on-board database is developed to store recent
activity history of the monitored livestock. The database
occupies <10KB of flash memory to store compressed activity
summaries, with new messages added every 5 minutes and up
to 100 entries retained using a FIFO strategy. Additionally,
since the memory bottleneck on MCU typically arises from
the peak activation size in SRAM rather than the flash storage
[42], the presence of this database should not compromise the
runtime performance.

This capability allows farmers and customers to access
verifiable information about the animals’ product history,
such as whether they were free-ranging or restricted to a
certain area, encouraging more informed and proactive product
control. This approach provides an efficient offline method of
monitoring and logging data on resource-constrained devices,
significantly reducing operational latency while enhancing
privacy and security through controlled access. In contrast to
cloud-based solutions, the data always remains on the device,
eliminating the risk of interception or unauthorized access
during network transmission.

C. System Construction

The system is constructed by integrating all components
developed in the preceding stages, as outlined in Figure 10.
The implementation of the livestock sensing system mainly
centers on developing the two types of devices in Figure 1.
The Type 1 device operates a multicore application, which
leverages the M7 processor and Edge TPU to perform ob-
ject detection using the MCUNet-YOLO model. Meanwhile,
the M4 processor handles incoming messages from the M7
processor and the Type 2 device through IPC and wireless
communication, generating notifications to inform farmers
about the animals’ status. On the other hand, the Type 2 device
utilizes a multimodal network to monitor animal behavior with
data from both camera and accelerometer. The fused model is
then deployed on the MCU using a single-core application.
Additionally, the device also contains an on-board database
that stores the animal activity history, providing a reference
for the movement tracking and behavior analysis.

Type 1 Device

Multicore Application \
M4
Object Detection Model Wireless Communication i
H[TPY MCUNet + YOLO 1PC | [#DetAnimals | [Animal Activity |
| ‘Web visualization | | # Det Animals |
imreless Communication
Twe 2 Device
""""""""""""""""" Multimodal Model
Image Classification Model: Behaviour Recognition Model: H
MCUNet CNN-LSTM :
'
- — Stored in on- E
Animal Activity ----- |
L board database

Fig. 10: Architecture of the constructed system with multicore
application and multimodal network.

VI. EVALUATION
A. Evaluation Metrics and Requirements

The assessment of the individual TinyML models and the
complete system was carried out separately on the cloud GPUs
and MCU platforms, following metrics in Table VIII.

TABLE VIII: Evaluation metrics summary.

Accuracy (classification model): Accurac =
Performance TP&T(N ifi) Y

TP+TN+FP+FN
mAP (object detection model): mAP =

% Efil AP; where TP is determined by
the ToU = % and threshold.

#FLOPs: Total number of arithmetic (floating point)
operations to make a prediction on a single input, a
measure of computational complexity.

#Params: Total number of trainable parameters,
corresponds to the model size stored on the flash
memory based on the variable format (32-bit float,
8-bit integer, efc.).

Peak Activation Size: Maximum amount of dynamic
memory usage based on the sum of input and output
activations for a layer, constrained by the SRAM size
in MCUs.

End-to-end latency when running one loop of infer-
ence, including input data preprocessing stage, model
forward pass and output post-processing steps. This
is measured on different processors separately with
fully-quantized INT8 models.

Memory Profile

Inference Time

B. TinyML Model Evaluation

1) Image Classification: The performance of the image
classification models is displayed in Table IX. Despite the
minor accuracy drops with full integer quantization (around
0.5%), it can significantly improve the inference efficiency
and save extensive computational resources by reducing the
size of a model, contributing to a network that is highly
suitable for MCU deployment. The MCUNet models for
both datasets share the same runtime time in Table X, with
a very fast inference speed (60ms) when accelerated with
the Edge TPU. Overall, MCUNet demonstrates competitive
performance across different datasets with notably lower op-
erations and trainable parameters (4.8 lower) compared to
the MobileNetV2 [16] model.

TABLE IX: Image classification models performance with
input resolution = 176.

Acc (%)

Model Dataset (tp32/int8) #FLOPs #Params Peak Acts
ImageNet(1k) 68.2/67.5 0.7421M
MCUNet Mini-ImageNet 86.8/86.2 81.64M 0.5925M 341K
Custom Dataset | 97.7/97.6 0.5769M
MobileNetV2 [16] | ImageNet(1k) 71.8/71.0 195.5M 3.50M 743K

TABLE X: Image classification models inference time.

Avg Inference Time
Model M4 M7 TPU
MCUNet | 16316ms 2645ms 60ms

2) Object Detection: For performance with the Pascal VOC
dataset, the optimized MCUNet-YOLO model is compared
against the previous research work, ResNet-YOLO [37] and
the Darknet-YOLOv1 [30] networks. As illustrated in Table
XI, Darknet-YOLOV1 achieves the highest mAP of 0.63 but
at the expense of substantial computational demands and the
largest model size. The other deep network, ResNet-YOLOvI,
delivers a similar mAP to MCUNet-YOLO but at a much
higher memory and parameter cost. In contrast, MCUNet-
YOLO is the most efficient model with minimal FLOPs and
the smallest size. Given the Darknet version is nearly 270x
larger than the MCUNet network, a performance loss of 0.14
is generally acceptable.

The MCUNet-YOLO was eventually deployed and evalu-
ated on the Google Coral Dev Board Micro. As shown in
Table XII, running with the M4 processor is highly inefficient,
resulting in a latency exceeding 20 seconds due to the model’s
complexity. Therefore, TPU acceleration is recommended for
faster inference (77ms).

TABLE XI: Object detection models performance.

Model Res. mAP | #FLOPs #Params Peak Acts
MCUNet-YOLO 224 0.49 152.4M 0.73M 0.55M
ResNet-YOLO [37] 448 0.49 16.98G 26.73M 12.830M
Darknet-YOLO [30] | 448 0.63 20.21G 194.23M 2.81M

TABLE XII: Object detection model inference time.

Avg Inference Time
M4 M7 TPU
20s+ 3871ms 77ms

Model
MCUNet-YOLO

C. Behavior Classification

The evaluation of the CNN-LSTM model is presented in
Table XIII. It demonstrates strong efficiency in categorizing
animal behavior based on accelerometer inputs, and achieves
a very high accuracy over 98% with a small number of
operations and trainable parameters. Compared to other tasks,
running this model on the MCU is much faster, making it
suitable for resource-constrained environments.

TABLE XIII: Behavior recognition model performance.

Acc (%) Avg Inference Time
Model (ip32int8) #FLOPs #Params Peak Acts M4 M7 TPU
CNN-LSTM | 98.95/98.94 12.52M 0.1858M 31.7K 2500ms 495ms 16ms

D. System Evaluation

The system was assessed on the Google Coral Dev Board
Micro, which includes two main applications. The first one
is the multimodal network that fuses the image classification
and behavior recognition model for comprehensive activity
monitoring. The other one focuses on the multicore design,
which uses M7 to run the object detection model for animal
tracking and M4 for handling wireless communication.

1) Multimodal System: The fused network demonstrates a
strong ability to capture animal behaviors by leveraging the
multimodal inputs from both sensors and cameras, achieving
an average accuracy of over 97% in Table XIV. Since the late
fusion technique was employed to combine the two individual
networks, the total size of this application is approximately
equal to the sum of these smaller models. Moreover, this
system provides an additional function to store animal activity
history, which can be retrieved through the on-board flash

memory.
" TABLE XIV: Fused model performance.

Acc (%) Avg Inference Time
(ip32int8) #FLOPs #Params Peak Acts M4 M7 TPU

97.56/96.87 | 107.3M 0.6825M 341K 19s 2970ms ~ 75ms

Model
Fused Model

2) Multicore Applications: The multicore design fully uti-
lizes the processing power of the two available processors
by executing algorithms on both. The total inference time
increased by around 20ms compared to running a single object
detection network, which is expected since both cores are
actively involved.

3) Comparison with Existing Livestock Monitoring Sys-
tems: To firmly demonstrate the performance of the system,
we compared it against several livestock monitoring appli-
cations including sensor-based, vision-based and cloud-based
solutions. The multimodal system provides distinctive bene-
fits over single-modality approaches prevalent in the existing
applications. Wearable sensor systems [23], [24] demonstrate
lower power consumption and cost but are confined to ac-
celerometer data, achieving around 90% accuracy versus our
98% fused model performance. By incorporating visual inputs
from the embedded camera, our system addresses a critical
limitation in pure sensor-based solutions where alerts cannot
be visually verified.

Similarly, compared to fixed vision-based monitoring meth-
ods [3], [4], our hybrid architecture combining both stationary
(Type 1) and mobile (Type 2) devices that can collectively
monitor a group of animals within a wider area, overcoming
environmental vulnerabilities while reducing execution latency
and power requirements. Although cloud applications can
generally achieve better accuracy through dedicated computa-
tional resources, our TinyML solution maintains comparable
performance of 0.49 mAP through model optimization, while
saving hardware cost and improving efficiency. In addition,
our approach eliminates the dependency on constant Internet
connectivity, benefiting rural areas in contrast to cloud-based
systems [33] that heavily rely on reliable coverage.

This combination of TPU-accelerated multimodal inference
with microcontroller efficiency creates new possibilities for
intelligent livestock management in resource-constrained en-
vironments where traditional solutions prove impractical.

VII. CONCLUSION

In summary, we propose a novel and efficient solution for
livestock tracking and management in the agriculture sector.
With the power of TinyML techniques and comprehensive
embedded system development, the entire sensing system
is deployed on commercial microcontrollers with minimal
latency, enabling on-board inference of various multicore and
multimodal Al applications to analyze animal behaviors with
TPU acceleration. Since rural areas typically suffer from
limited Internet coverage, the system integrates wireless com-
munication frameworks to notify farmers of abnormal activ-
ities, ensuring reliable operation in the farm and improving
management efficiency.

Although the system demonstrates highly efficient results,
some limitations should be acknowledged. First, the system
was only evaluated under a controlled environment rather
than real farming settings due to financial constraints, its
performance could be affected by the sensor placement and un-
predictable animal behaviors in practical deployments. Second,
the custom dataset and sensor data are limited by the lack of
open-source data, which may fail to cover edge cases in real-
world circumstances. In the future, larger and more diverse
datasets will be incorporated through field deployments across
farms of different scales, and longer temporal windows will
be explored to optimize animal behavior recognition. These
efforts can help validate sensor placement strategies, improve
data capture reliability, and refine the system to enhance its
robustness. In conclusion, compared with existing algorithms
in livestock farming that utilize cloud-based IoT platforms or
specialized hardware to run complex deep learning models,
this approach offers a cost-effective and reliable system built
on commercial microcontrollers and sensors. This design
optimizes farming productivity and efficiency by providing a
scalable and non-invasive monitoring solution tailored to the
constraints of agricultural environments.

ACKNOWLEDGMENTS

I would like to thanks to my supervisor Prof. Kanjo Eiman,
for her insightful suggestions and continuous help throughout
every stage of the project at Imperial College London. Her
expertise and assistance have been instrumental in the com-
pletion of this project. I would also like to express my sincere
gratitude to Brad Patrick for his time and technical support.

REFERENCES

[1] R. Kumar Kasera, S. Gour, and T. Acharjee, “A comprehensive survey on
iot and ai based applications in different pre-harvest, during-harvest and
post-harvest activities of smart agriculture,” Computers and Electronics
in Agriculture, vol. 216, p. 108522, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168169923009109

[2] B. Patrick, E. Johnson, Thomas, and E. Kanjo, “Internetless low-cost
sensing system for real-time livestock monitoring,” IEEE Sensors, 2024.

[3] M. Farhan, G. S. Wijaya Thaha, E. Alvito Kristiadi, and K. Mutijarsa,
“Cattle anomaly behavior detection system based on iot and computer
vision in precision livestock farming,” in 2024 International Conference
on Information Technology Systems and Innovation (ICITSI), 2024, pp.
342-347.

[4] L. Chitra, P. Poornima, A. S. L, and J. A. A, “A remote surveillance
system based on artificial intelligence for animal tracking near railway
track,” in 2024 IEEE International Conference for Women in Innovation,
Technology & Entrepreneurship (ICWITE), 2024, pp. 659-664.

[5]

[6

=

[7]
[8

[t}

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

G. Idoje, T. Dagiuklas, and M. Igbal, “Survey for smart farming
technologies: Challenges and issues,” Computers & Electrical
Engineering, vol. 92, p. 107104, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790621001117
Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and
A. S. Hafid, “A comprehensive survey on tinyml,” IEEE Access, vol. 11,
pp- 96 892-96 922, 2023.

K. Woodward and E. Kanjo, “Parallel feature fusion for multi-modal
scene recognition on dual-core mcus,” IEEE Pervasive Computing, 2024.
M. Gibbs, K. Woodward, and E. Kanjo, “Multiple tinyml models for
multimodal context-aware stress recognition on constrained microcon-
trollers,” IEEE Macro Journal, 2024.

Z. Bao, E. Kanjo, S. Banerjee, H. A. Rashid, and T. Mohsenin, “De-
centralised resource sharing in tinyml: Wireless bilayer gossip parallel
sgd for collaborative learning,” arXiv preprint arXiv:2501.04817, 2025.
S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proceedings of the 29th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, p.
1135-1143.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, ser. NIPS’16.
Red Hook, NY, USA: Curran Associates Inc., 2016, p. 4114-4122.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

P. Ren, Y. Xiao, X. Chang, P-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1-34,
2021.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015. [Online]. Available: https://arxiv.org/abs/1503.02531
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510-4520.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for
mobilenetv3,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019.

H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” CoRR, vol. abs/1812.00332, 2018.
[Online]. Available: http://arxiv.org/abs/1812.00332

J. Lin, W.-M. Chen, Y. Lin, j. cohn, C. Gan, and S. Han, “Mcunet:
Tiny deep learning on iot devices,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 11711-
11722. [Online]. Available: https://proceedings.neurips.cc/paper._files/
paper/2020/file/86¢51678350f656dcc7f490a43946ee5- Paper.pdf

J. Lin, W-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-
efficient patch-based inference for tiny deep learning,” in
Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 2346-2358.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2021/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf

N. Schizas, A. Karras, C. Karras, and S. Sioutas, “Tinyml for
ultra-low power ai and large scale iot deployments: A systematic
review,” Future Internet, vol. 14, no. 12, 2022. [Online]. Available:
https://www.mdpi.com/1999-5903/14/12/363

C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “Micronets: Neural
network architectures for deploying tinyml applications on commodity
microcontrollers,” in Proceedings of Machine Learning and Systems,
A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3, 2021, pp.
517-532. [Online]. Available: https://proceedings.mlsys.org/paper_files/
paper/2021/file/c4d41d9619462c534b7b61d1£772385e-Paper.pdf

A. Mao, E. Huang, X. Wang, and K. Liu, “Deep learning-
based animal activity recognition with wearable sensors: Overview,
challenges, and future directions,” Computers and Electronics in

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Agriculture, vol. 211, p. 108043, 2023. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0168169923004313

A. Liseune, D. V. den Poel, P. R. Hut, F. J. van Eerdenburg, and
M. Hostens, “Leveraging sequential information from multivariate

behavioral sensor data to predict the moment of calving in
dairy cattle using deep learning,” Computers and Electronics
in Agriculture, vol. 191, p. 106566, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0168169921005834
Q. Wen, L. Sun, X. Song, J. Gao, X. Wang, and H. Xu, “Time series data
augmentation for deep learning: A survey,” CoRR, vol. abs/2002.12478,
2020. [Online]. Available: https://arxiv.org/abs/2002.12478

C. Li, K. K. Tokgoz, M. Fukawa, J. Bartels, T. Ohashi, K.-i. Takeda,
and H. Ito, “Data augmentation for inertial sensor data in cnns for cattle
behavior classification,” IEEE Sensors Letters, vol. 5, no. 11, pp. 1-4,
2021.

J. Gao, X. Song, Q. Wen, P. Wang, L. Sun, and H. Xu,
“Robusttad: Robust time series anomaly detection via decomposition
and convolutional neural networks,” 2021. [Online]. Available:
https://arxiv.org/abs/2002.09545

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision —
ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham:
Springer International Publishing, 2016, pp. 21-37.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

M. S. Farooq, O. O. Sohail, A. Abid, and S. Rasheed, “A survey on
the role of iot in agriculture for the implementation of smart livestock
environment,” [EEE Access, vol. 10, pp. 9483-9505, 2022.

A. A. Chaudhry, R. Mumtaz, S. M. Hassan Zaidi, M. A. Tahir, and
S. H. Muzammil School, “Internet of things (iot) and machine learning
(ml) enabled livestock monitoring,” in 2020 IEEE 17th International
Conference on Smart Communities: Improving Quality of Life Using
ICT, IoT and Al (HONET), 2020, pp. 151-155.

A. N. Manikanta, A. F. Baba, D. S. Vyshnavi, D. K. Paul, and S. S.
Sreedhar P, “Cloud iot based surveillance system for tracking and
monitoring of domestic animals,” in 2024 International Conference on
Integrated Circuits and Communication Systems (ICICACS), 2024, pp.
1-5.

Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp. 784—
800.

Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single
path one-shot neural architecture search with uniform sampling,” in
European conference on computer vision. Springer, 2020, pp. 544—
560.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

Z. Lu, J. Lu, Q. Ge, and T. Zhan, “Multi-object detection method based
on yolo and resnet hybrid networks,” in 2019 IEEE 4th International
Conference on Advanced Robotics and Mechatronics (ICARM), 2019,
pp. 827-832.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object detection
networks on convolutional feature maps,” IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 7, pp. 1476-1481, 2016.
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Jjournal of computer vision, vol. 88, pp. 303-338, 2010.

H. Ito, K. ichi Takeda, K. K. Tokgoz, L. Minati, M. Fukawa,
L. Chao, J. Bartels, I. Rachi, and S. A, “Japanese black beef cow
behavior classification dataset,” Zenodo, Jan 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.5849025

J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, and S. Han, “Tiny machine
learning: Progress and futures [feature],” IEEE Circuits and Systems
Magazine, vol. 23, no. 3, pp. 8-34, 2023.

