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Abstract— With increasing life expectancy, particularly
in developed nations, the proportion of elderly individu-
als is rising rapidly, necessitating advanced systems for
continuous monitoring and timely intervention to sup-
port independent living and enhance safety in assisted
care environments. Falls are among the leading causes
of hospitalisations and deaths related to injuries in this
demographic, highlighting the urgent need for intelligent
fall detection systems. However, most existing solutions
struggle with real-world deployment due to incomplete
anomaly modelling and a lack of contextual location
awareness. This paper introduces a novel position-aware
indoor activity recognition and fall detection approach
that uses spatial and motion data to detect falls with high
accuracy and contextual relevance. The system integrates
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Ultra-Wideband (UWB) positioning technology with a Multilayer Perceptron (MLP) model to achieve indoor localisation.
Furthermore, accelerometer and gyroscope data are used for activity monitoring, which is processed using a hybrid deep
learning architecture that combines a Variational Autoencoder (VAE), Convolutional Neural Networks (CNN), and Long
Short-Term Memory (LSTM) networks. This architecture takes advantage of temporal and spatial feature extraction for
improved fall detection. The localisation module achieves over 96% accuracy. For activity recognition, the VAE CNN-LSTM
model achieving fall detection accuracy exceeding 97%. A late fusion decision layer combines spatial and activity-level
insights to enable precise detection and localisation of fall events within indoor environments. The proposed system is
validated in a real-world smart home setting and demonstrates strong performance in terms of accuracy, scalability, and

adaptability.

Index Terms— Fall Detection, Indoor Localisation, Ultra-Wideband, Machine Learning, Variational Autoencoder, CNN-

LSTM, Late Fusion Decision Layer

[. INTRODUCTION

Global life expectancy has risen steadily in recent decades,
leading to a significant increase in the elderly population,
particularly in developed countries where many individuals
live beyond 60 years [1]-[4]. Projections indicate that by 2030,
one in six people worldwide will be 60 years or older [1], [5],
[6]. This demographic change poses considerable challenges
for healthcare and care infrastructures, as a growing shortage
of caregivers leaves many elderly individuals without adequate
physical and emotional support [7]-[9].

Older adults, especially those living alone, face signif-
icant health and safety risks, with falls being a primary
concern [10]-[12]. Falls are a prevalent and serious threat,
often occurring during routine activities and causing injuries
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such as fractures and head trauma [13], [14]. These injuries
often require hospitalisation and extended recovery, severely
affecting quality of life [11]-[14]. Alarmingly, fall-related
mortality rates are increasing, with around one in four older
adults (approximately 14 million people) experiencing a fall
annually [13], [14]. About 20% of these falls result in
serious injuries, placing a substantial burden on healthcare
systems [14], [15]. Between 1999 and 2020, falls were the
leading cause of injury-related deaths among adults 65 and
older, accounting for more than 478,000 deaths [16], [17].
To mitigate such risks, several fall detection systems have
been developed to enable prompt intervention and support
independent living. Among these, sensor-based wearable tech-
nologies have shown considerable promise [18]-[20]. Devices
such as wristbands and smart belts equipped with accelerom-
eters and gyroscopes can monitor physical activity and detect
sudden deviations indicative of a fall. The integration of
multiple sensing modalities, including barometric, pressure,
and motion sensors, further improves the accuracy and reli-
ability of detection [19], [21], [22]. In addition, non-intrusive
ambient sensor systems have been proposed, which use mo-



tion, acoustic, and vibration data to identify falls within a
home setting [23], [24]. Despite their potential, environmental
sensors often fail in terms of accuracy, cost-efficiency, and
ease of deployment compared to wearable solutions [25].

Traditional fall detection methods rely on threshold-based
algorithms to interpret sensor signals. Although simple to
implement, these techniques often lack the flexibility and
adaptability required in dynamic real-world environments.
Recent advances have introduced Machine Learning (ML)
and Deep Learning (DL) approaches, significantly improving
classification accuracy by modelling complex activity patterns.
ML-based models typically depend on manual feature extrac-
tion and are implemented using classifiers such as Random
Forest (RF), Logistic Regression (LR), and Decision Trees
(DT) [22], [26], [27]. However, they require substantial do-
main knowledge for effective feature selection. In contrast,
DL models including Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), and Long Short-Term
Memory (LSTM) can automatically learn hierarchical repre-
sentations directly from raw sensor data, enhancing robustness
and scalability [28], [29]. Hybrid models that combine differ-
ent architectures, such as CNN-GRU [30], LSTM-CNN [28],
and CBLSTM [31], have been particularly effective in enhanc-
ing performance through the fusion of temporal and spatial
features.

Vision-based fall detection systems, which use cameras to
infer posture and motion, have also shown promising per-
formance [32]-[34]. However, these systems face significant
challenges, including privacy concerns, high computational
requirements, and reduced reliability under varying lighting
and occlusion conditions. Furthermore, many existing fall de-
tection systems are trained on datasets collected in controlled
laboratory environments. These conditions do not reflect the
variability and complexity of real-world scenarios, thereby
limiting the generalisation of the model. In addition, real fall
events are inherently rare and difficult to capture, contributing
to data scarcity and class imbalance problems in training.

A major limitation in existing fall detection solutions is the
lack of contextual awareness, specifically, knowledge of where
a fall occurs. This spatial information is critical for enabling
timely and effective intervention, particularly for individuals
living independently or in assisted living. To address this gap,
we propose a position-aware fall detection approach that inte-
grates indoor localisation using Ultra-Wideband (UWB) tech-
nology with anomaly-based activity recognition. The proposed
approach integrates real-time spatial tracking with activity
monitoring to enhance anomaly detection. It uses UWB-based
Time of Arrival (TOA) modelling and a Multilayer Perceptron
(MLP) classifier to perform precise, real-time localisation.
Beacons placed at fixed locations communicate with wearable
tags to continuously track the user’s location within the home.
Concurrently, a CNN-LSTM-based Variational Autoencoder
(VAE) model processes accelerometer and gyroscope signals
to detect falls with high accuracy. A late fusion decision
layer then combines outputs from both the localisation and
fall detection modules, enabling the system to report not only
the occurrence but also the precise location of a fall. This
multimodal integration significantly enhances reliability and
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facilitates actionable real-time monitoring in indoor environ-
ments. The contributions of this paper are threefold.

e We present a novel hybrid framework that tightly
integrates UWB-based indoor localisation with deep
learning-based fall detection.

o We introduce and validate a custom real-world dataset
consisting of daily activities and staged falls, improving
generalisability in practical settings.

« We implement a late fusion decision layer that enhances
accuracy by combining spatial and activity-level predic-
tions, enabling real-time, context-aware monitoring.

The remainder of this paper is structured as follows: Section
reviews relevant literature; Section [[II| describes the proposed
methodology; Section presents experimental results; Sec-
tion discussion and Section outlines future work and
concludes the paper.

[l. RELATED WORK
Indoor Localisation with Ultra-Wideband (UWB)

UWB technology has gained significant traction for indoor
localisation due to its high temporal resolution and robustness
against multipath interference [35]-[37]. Traditional UWB
localisation methods typically use signal characteristics like
TOA, Time Difference of Arrival (TDoA), Time of Flight
(ToF), or Angle of Arrival (AoA) [38]-[40]. While effective
in controlled settings, these methods often perform poorly in
Non-Line-of-Sight (NLOS) conditions where signal obstruc-
tion and multipath propagation are common [40].

To improve localisation performance, numerous studies
have explored machine learning (ML)-based models that ex-
ploit statistical patterns within UWB Channel Impulse Re-
sponse (CIR) data. For example, [41] introduced a grid search-
optimised support vector machine (SVM) combined with Prin-
cipal Component Analysis (PCA) for CIR-based localisation.
This approach demonstrated superior performance compared
to traditional k-Nearest Neighbour (k-NN) and Backpropaga-
tion Neural Network (BPNN) methods by reducing dimension-
ality and enhancing kernel selection. Similarly, an SVM-based
localisation classifier in [42] achieved approximately 92%
precision, proving to be adaptable to multipath interference
in nonlinear sight (NLOS) settings. Further refining this, a
two-stage SVM framework proposed in [43] reached 93.7%
accuracy in distinguishing between Line-of-Sight (LOS) and
NLOS conditions.

Despite these advancements, SVM-based approaches are
inherently sensitive to kernel choice and hyperparameter set-
tings. This sensitivity limits their adaptability to dynamic
environments, and grid-based tuning significantly increases
computational overhead. To mitigate these issues, regression-
based models have been investigated. For example, a logistic
regression model introduced in [44] for TDoA topologies
effectively suppressed NLOS-induced errors by up to 80%.
However, these classical ML approaches remain constrained
by the high variability of indoor radio environments and often
struggle with generalisation across diverse room geometries
and materials.
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More recently, deep learning models have emerged as a
promising alternative for UWB localisation, offering end-to-
end learning directly from raw CIR data. For example, [45]
proposed a CNN that extracts TOA features directly from CIR
profiles, achieving a mean absolute localisation error of 17.3
cm in NLOS environments. However, such architectures often
introduce challenges related to overfitting, interpretability, and
high computational load, making them impractical for real-
time deployment on resource-constrained devices. A recent
study [46] further emphasises that most DL models struggle to
generalise without extensive environmental-specific training.

Although a wide range of models have explored UWB
localisation using signal processing, machine learning, and
deep learning techniques, key challenges remain in achieving
a consistent trade-off between accuracy, computational effi-
ciency, and robustness in diverse real-world settings. To extend
and build on these, we introduce a position-aware approach
integrating environmental context into the localisation process
while maintaining a lightweight architecture suitable for de-
ployment on resource-constrained platforms.

In addition to UWB-based techniques, several studies have
explored multimodal sensing for indoor localisation, particu-
larly within ambient assisted living environments. [47] demon-
strated that combining BLE beacons, inertial sensing, and
behavioural interaction data can improve zone-level localisa-
tion accuracy in activity-rich settings. Similarly, [48] provides
a standardised benchmark for evaluating diverse localisation
technologies, including BLE, Wi-Fi, and hybrid systems, under
realistic conditions. These works highlight the strengths of
multimodal approaches for broad-coverage indoor positioning.
However, many such systems prioritise coverage over preci-
sion, typically achieving room or zone-level granularity. In
contrast, our study focuses on UWB and inertial measurements
because these modalities deliver the high temporal resolution
and centimetre-level accuracy required for fine-grained fall
localisation in home environments, thus positioning our work
within the class of precision-oriented localisation systems.

Fall Detection: Challenges and Approaches

The development of reliable fall detection systems is lim-
ited by several recurring challenges. One of the most sig-
nificant issues is the lack of representative datasets. Fall
events, especially among elderly populations, are infrequent,
unpredictable, and ethically complex to simulate [49], [50].
Consequently, many studies rely on publicly available datasets,
such as SisFall [28], which are typically collected in controlled
laboratory settings with young participants performing scripted
falls. Although these data sets facilitate benchmarking, they
fail to capture the variability, spontaneity, and subtlety of real-
world fall events.

Another significant challenge in developing fall detection
models is data imbalance. Falls occur much less frequently
than Activities of Daily Living (ADL), which creates highly
imbalanced datasets that can bias model training. Although
data balancing techniques such as oversampling and under-
sampling [51] are commonly used to address class-level imbal-
ance, they often overlook intraclass variability. For example,

in the SisFall dataset, which includes 15 distinct fall types
and 19 ADL categories, the number of samples between
subclasses is unevenly distributed, introducing further bias and
potentially degrading model performance. Furthermore, many
of these data sets lack essential contextual metadata such as the
age of the participant, physical condition, and environmental
characteristics, all of which are needed to build generalisable
fall detection systems.

To address the limitations associated with fall data scarcity,
researchers have increasingly turned to unsupervised and semi-
supervised learning approaches. VAEs and other autoencoder-
based anomaly detection approaches have demonstrated con-
siderable potential to model normal patterns of ADL) and
identifying deviations indicative of falls without requiring
large amounts of annotated fall data [52], [53]. These methods
are particularly well-suited to real-world deployments, where
the collection of authentic fall events is both ethically and prac-
tically constrained. However, the effectiveness of such models
depends heavily on careful architectural design and training
strategies to balance sensitivity and specificity, especially in
noisy or heterogeneous sensor environments.

Beyond data challenges, the deployment of fall detection
systems on embedded platforms presents unique hurdles.
Wearable and edge devices have strict limitations on memory,
power, and processing capabilities. For example, the Emo-
tionNet model [54], despite being designed for embedded
deployment, requires 761 MB of storage for a five-layer CNN.
Such requirements are prohibitive for continuous monitoring
systems intended for older adults or low-power environments.
Efficient architectures such as pruning, quantised models, or
hybrid CNN-LSTM approaches [28], [29] are necessary to
ensure real-time responsiveness without compromising accu-
racy. Given these constraints, recent studies have explored hy-
brid approaches that combine convolutional layers for spatial
feature extraction, recurrent layers for temporal modelling,
and attention mechanisms for context awareness [30], [31].
However, these models are still largely evaluated on synthetic
datasets. Our work contributes a more holistic approach by
combining localisation data with fall detection to improve
situational awareness.

In contrast to previous studies, we propose a position-aware
fall detection approach that integrates a lightweight UWB-
based localisation module with a deep anomaly detection
pipeline using CNNs, LSTMs, and VAEs. Our model is
optimised for edge deployment and trained on a custom dataset
collected in a realistic indoor environment with carefully bal-
anced fall and ADL data. This approach not only addresses the
limitations of existing datasets and models, but also enhances
robustness and contextual awareness, key requirements for
practical ambient-assisted living systems.

1. PROPOSED APPROACH

Falls are abnormal activities that deviate significantly from
the routine patterns of daily activities. Detecting these anoma-
lies requires models capable of learning normal behavioural
patterns and identifying deviations that indicate fall events.
Since the occurrence of such events is often closely tied to
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Fig. 1. Overview of the proposed position-aware fall detection approach, which integrates sensor data from a home environment with cloud-based
storage and processing to combine indoor localisation and deep learning-based VAE-based fall detection, with results fused at a late fusion decision

layer to accurately identify and localise fall events.

their spatial context, the proposed approach integrates indoor
positioning with fall detection, extracting both location and
motion features from multiple sensors. The proposed approach
achieves fall detection and precise localisation, enabling real-
time, context-aware monitoring by fusing these features. Fig-
ure [1] illustrates the architecture of the proposed approach,
which integrates a late fusion layer to combine spatial and
activity data, allowing the model to communicate fall events
alongside their spatial locations within an indoor environment.

————

IMU Device - MPU6050
MCU/UWB - DW3000

Fig. 2. Hardware setup consisting of an MCU with integrated UWB
(DW3000) for communication, interfaced with an IMU device (MPU6050)
for motion sensing, and connected to cloud-based data storage.

The architecture consists of two modules: one for indoor
localisation and the other for fall detection, both of which
operate independently before combining their outputs at a
late fusion decision layer. The indoor location module utilises

UWB signals for accurate positioning. A tag attached to an
individual transmits a signal to beacons, and the response time
of these signals is processed using trilateration and Time of
Flight (TOF) techniques to estimate the precise location of
the individual within the environment. The hardware setup
supporting this system, shown in Figure [2] includes an MCU
with UWB capabilities and an IMU sensor to collect real-
time motion data. For fall detection, data collected from the
gyroscope and accelerometer sensors are analysed to extract
motion features of activities. A VAE-based CNN-LSTM model
is utilised to reconstruct normal activities, while fall events
produce significant reconstruction errors due to their anoma-
lous nature. The late fusion layer integrates the spatial and
motion data into a unified and cohesive system to detect not
only the occurrence of a fall but also the precise location where
it took place. This multimodal fusion enhances the system’s
reliability and provides actionable insights for real-time mon-
itoring. The subsequent sections detail the components of the
proposed approach.

A. Indoor Location Tracking Module

To effectively detect a person’s location within a home
environment, the Indoor Location Tracking Module utilises
UWB. Unlike traditional indoor positioning techniques such
as Bluetooth and ZigBee, which suffer from limited accuracy,
interference issues, and vulnerability to multipath effects,
UWB technology offers precision and reliability [35], [55].
The ability of UWB to transmit short pulses with high
bandwidth minimises multipath errors and enables accurate
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distance estimation in indoor spaces [36], [37]. This makes it
ideal for real-time positioning in complex environments such
as homes.

“\7_ . Bedroom S
\
{ i s’ ||
acon®. JQ3.0c@y] /
@y
ll . % -
@aacmé&amiw’
& Kitchen @

Beacond: 37 0cm, _

Beacon3: 1cm

Living Room

Fig. 3. Floor plan of the experimental environment with beacons (green
dots) in fixed locations and a tag (red dot) emitting pulses for localisation
in the living room and bedroom.

Localisation is achieved by strategically deploying multiple
beacons within the home environment. A tag attached to
the individual communicates with these beacons using UWB
signals. The TOA of these signals is used to estimate the
distances between the tag and each beacon. These distance
measurements are critical for determining precise positions
[36], [37].

Figure [3] illustrates the layout of the experimental environ-
ment, where beacons (denoted by green dots) are placed at
known fixed coordinates across different rooms. The tag (red
dot) worn by the individual emits UWB pulses, which are
received by the beacons. Six beacons are deployed, three in the
living room and three in the bedroom, allowing independent
localisation within each space. When the tag is within range
of a set of beacons, only those beacons actively calculate
the TOA, while others are ignored. This selective activation
minimises interference and computational complexity. The
distance between the tag and each beacon is determined by
calculating the TOA of each signal.

The beacon-tag communication process begins with the tag
periodically sending UWB pulses. Each beacon calculates the
time difference of signal arrival and estimates its distance

from the tag. These distances are then passed to a localisation
algorithm. The localisation algorithm relies on the trilateration
technique, which computes the tag’s position based on the
distances from multiple beacons. For instance, in the proposed
setup, separate beacon networks are deployed for different
rooms, allowing each network to operate independently. When
the tag (individual) enters a room, the corresponding beacon
set actively calculates its position, while the others remain
inactive. To minimise localisation error, signal processing
techniques ensure that the TOA model accounts for environ-
mental factors, including potential non-Line-of-Sight (NLOS)
conditions caused by obstructions such as furniture or walls.

1) Localisation by Trilateration: Indoor localisation is per-
formed using UWB communication, which transmits short-
duration pulses across a broad frequency range (3.1 to 10.6
GHz), providing resistance to interference. The distance be-
tween the wearable tag and each fixed anchor beacon is
calculated using Two-Way Ranging (TWR), which determines
the ToF of the radio waves travelling at the speed of light,
c =~ 3 x 108 m/s. The distance is calculated as:
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Fig. 4. Trilateration for tag position estimation using distance mea-
surements from three fixed beacons, the intersection of the circles
determines the tag’s position.
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To estimate the tag’s position, trilateration is applied using
distance measurements from a minimum of three fixed bea-
cons, as illustrated in Figure 4] The tag’s coordinates (z,y)
are determined by the intersection of the circles defined by the
distance d; from each anchor (z;,y;):

Distance =

a7 = (z—z:)° + (y — y;)? )

To solve for the unknown coordinates (z,y), the non-linear
distance equations are transformed into a solvable system
of linear equations. By expanding the squared terms and
subtracting the equation for one reference anchor (Anchor
N) from the equations for the others, the squared coordinates
(2+?) are eliminated. This algebraic operation simplifies the
system into the linear matrix form A-x = b, where x = [z, y]
is the vector of the unknown coordinates.

The final linear system derived from these algebraic steps
can be expressed as:

Ax=b 3)



The least-squares solution for the coordinates x is then calcu-
lated as: x = (AT A)~1ATb. This method effectively trans-
forms the complex non-linear problem into a computationally
efficient linear solution, essential for real-time tracking.

2) ML Models for Position Prediction: To implement accurate
position prediction, ML models are used to process the highly
non-linear data obtained from UWB sensors. The aim is to
predict an individual’s position within a defined space by
modelling the problem as a classification task, dividing the
space into distinct segments. For example, in a home environ-
ment, as shown in Figure |3| the space is divided into segments
such as the kitchen, living room, bed, and couch areas. Each
segment is mapped to its corresponding UWB profile, ensuring
that the distance ranges from the anchors remain consistent
as the tag moves within the space. Using N beacons i,
i €1,2,3..., N the distance measurements received from the
tag can be expressed as a series D;_1, D;_a, ..., D;_pr,, where
M; represents the distance between the tag and anchor ¢. These
distance measurements, derived from the TOA distance model,
are converted into a profile map for the space [56]. The profile
map for a location (x,y) is represented as:

Di_1,Dy_2,...,D1_pnp,
Dy = Ds_1,Ds_3,...,D2_pp,, )
Dy_1,Dn—2,....,Dn_my

At a specific time ¢, the distance data, denoted as D; =
[dy,da,...,dy,], serves as the input feature vector to the ML
model. The model predicts the user’s position, and its output is
expressed as the coordinates of the predicted position at time
t:

(24, y¢) = argmax;, ) fmodel (Dt)

where argmax, ) selects the segment or region with the
highest probability, and (x,y) represents the centre coordi-
nates of that segment. The choice of ML models focuses
on their ability to learn spatial relationships and non-linear
patterns from the input data, while balancing computational
efficiency and predictive performance. Four algorithms - K-
Nearest Neighbors (kNN), Support Vector Machine (SVM),
RF, and MLP were evaluated for their suitability in the context
of position prediction. kNN served as a simple, instance-based
baseline [57], SVM exploited the kernel trick to handle non-
linear separation of data points [58] and the RF enhanced ro-
bustness against noisy UWB measurements [59]. The MLP is
deployed to utilise its deep learning capabilities for modelling
the complex non-linear relationships inherent in the UWB data
[60]. Each model was evaluated based on predictive accuracy
and generalisability.

B. Fall Detection Module

The Fall Detection module is designed to accurately detect
falls by analysing motion patterns derived from wearable sen-
sors. It relies on acceleration data {A4,, A,, A,} and angular
velocity data {G,,G,, G} obtained from the accelerometer
and gyroscope, which are collected through a wearable node
typically worn on the waist. The ability to detect such rapid
changes in motion is critical for distinguishing between normal
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activities and potential falls, enabling timely intervention and
support. To extract meaningful features from this data, feature
extraction is implemented to analyse the temporal character-
istics of the acceleration and angular velocity signals. This
ensures that the system remains sensitive to the subtle yet
critical motion patterns that define a fall.

1) Feature Extraction: The feature extraction process trans-
forms raw sensor data into a set of informative descriptors,
enabling the model to effectively analyse motion patterns
associated with falls. A sliding window approach is em-
ployed, dividing the continuous time-series data into fixed-
size overlapping segments, with a specified window size and
shift. This segmentation facilitates the analysis of temporal
variations within each segment, capturing patterns and trends
essential for distinguishing between normal activities and falls.
From the raw accelerometer and gyroscope data, a total of 17
statistical features are extracted within each window. These
features include both basic and advanced statistical metrics
to comprehensively describe the characteristics of the motion
data. Basic statistical features include measures of central
tendency and variability, such as mean, median, minimum,
maximum, and standard deviation. These features provide
foundational insights into the distribution and spread of sensor
readings. Advanced statistical features, including kurtosis and
skewness, are computed. These metrics help analyse the shape
of the data, identifying sharp peaks or asymmetries that may
indicate abrupt movements or changes in orientation. Mean
absolute deviation and interquartile range are also derived to
capture the variability of motion patterns. Table |I| provides a
summary of the extracted features.

2) Fall Detection Model: The proposed fall detection model
integrates a CNN-LSTM VAE enhanced with an attention
mechanism, as illustrated in Figure E} This architecture is tai-
lored to differentiate falls from normal activities by prioritising
critical segments of time-series sensor data. It combines con-
volutional layers for spatial feature extraction, LSTM layers
for sequence modelling, and an attention mechanism to focus
on essential temporal regions, see [61], [62] for more details.

The convolutional layers extract spatial patterns from the
sensor data, capturing localised variations effectively. These
layers apply transformations using filters and kernel sizes with
padding to preserve input dimensions. After each convolu-
tional layer, max pooling is applied to reduce dimensionality
and retain significant features, pooling over a window of size
2. This combination of operations ensures that spatial features
relevant to fall detection are extracted while reducing com-
putational complexity. The VAE architecture also incorporates
LSTM layers optimised to model temporal dependencies and
capture sequential patterns in the data. Each LSTM cell uses a
gating mechanism, where the hidden state h, is updated based
on the output gate o; and the candidate cell state C, resulting
in the following equation:

ht = Ot * tanh(C’t)

This operation allows the model to effectively process time-
series dependencies and learn from the sequential structure
of the data. The encoder generates a latent representation
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TABLE |

EXTRACTED FEATURES FOR

FALL DETECTION MODULE

Feature

[

Description

Central Tendency and Disper-
sion

Shape of Distribution
Variability Metrics

Dynamic Changes

consecutive values, capturing var
Magnitude of Movement

movements.

Mean, median, minimum, maximum, and standard deviation of acceleration {Az, Ay, Az} and
angular velocity {Gy, Gy, Gz}
Kurtosis and Skewness, capturing the symmetry and peakedness of the sensor data distribution.
Mean absolute deviation, interquartile range, and variance to quantify data dispersion.

Mean and median of absolute differences, as well as the sum of absolute differences between

iations in motion.

Root mean square (RMS) of acceleration and angular velocity signals, representing the intensity of

Encoder

Input Layer
(timesteps, features

Conv1D (32)
Conv1D (64)
Dropout (0.3)

s

Layer

Kernel Size = 3
Activation = ReLU

Fig. 5. Proposed CNN-LSTM VAE Architecture with Attention Layer

characterised by two parameters: Zmeqn and Z2iog par, T€P-
resenting the mean and log variance of the latent variable
distribution, respectively. The reparameterisation trick enables
differentiable sampling:

Z = Zmean t eXp(O~5 . Zlog:uar) - €

where € ~ N(0,1). This latent representation enhances the
model’s ability to detect anomalies, such as fall events, by
distinguishing them from normal activities. An attention mech-
anism is incorporated after the encoding stage to dynamically
assign weights to each timestep, highlighting crucial portions
of the sequence. The attention score e; for a given timestep is
computed as:
e = tanh(W - hy +b)

where W and b are the attention layer’s weights and biases.
These scores are then normalised using the softmax function:

_exp(er)
= ="
2 expler)
The context vector ¢ is computed as the weighted sum of the
LSTM outputs:
Cc = Z Qi - ht
t

This weighted context vector emphasises the most relevant
parts of the time series for fall detection. The VAE loss
function combines two components: the reconstruction loss
and the Kullback-Leibler divergence. The reconstruction loss
evaluates the decoder’s ability to reconstruct the input:
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The KL divergence penalises deviations of the latent distribu-
tion from a standard Gaussian:
d
2

Lgr=-05» (1+log(o?) — 13

)

The total VAE loss is the sum of the reconstruction loss and
the KL divergence:

_Jj

Jj=1

LVAE = Lreconstruction + Lkt

The outputs are passed through a late fusion layer, which
integrates positional predictions with the extracted temporal
and spatial features.

3) Late Fusion: In the proposed approach, late fusion is im-
plemented at the decision level by combining classifier outputs
from the fall detection model and the UWB-based positioning
system. Each modality is first processed independently: the
fall detection model provides binary outputs (F' € {0,1}),
indicating ”No Fall” or “Fall,” while the UWB localisation
system assigns positional data (L € Locations, e.g., Bedroom,
Living Room). The fusion process integrates these results into
a unified decision, enabling simultaneous activity recognition
and spatial identification.

The fusion operation is formulated as a weighted sum of
classifier scores:

Stusion = Stail + B Siocation (5)

where Sgy and Sjocaion represent the normalised scores from
the fall detection and localisation models, respectively, and
«, B are weighting coefficients chosen to balance their con-
tributions. The fused feature representation is then passed
through a linear layer to transform the combined scores into



a unified decision. The final output maps the detection status
and spatial location, expressed as:

Fall in BR
No Fall in LR
Unknown Location

if F=1and L = BR,
if F =0and L =LR, (6)
if location unavailable.

Output =

where BR and LR represent Bedroom and Living Room loca-
tions, respectively. The decision layer is designed to address
two primary challenges to ensure accurate synchronisation of
multimodal data and provide interpretable outputs for real-time
monitoring. Synchronisation ensures that temporal alignment
between activity detection and location data is maintained.
Errors in localisation, such as missing or invalid data, are
handled by defaulting to ”Unknown Location,” thus avoiding
false outputs.

The fusion system enhances contextual understanding by
associating detected activities with spatial locations, enabling
precise identification of fall events and their occurrence zones.
This approach improves practical utility in real-world scenar-
ios, such as assisted living, where rapid and location-specific
responses are critical.

IV. EXPERIMENT AND PERFORMANCE EVALUATION
A. Data and Dataset Collection

A custom dataset was collected to meet the dual objectives
of localisation and fall detection. Data collection occurred in
a simulated home environment, where participants performed
ADL. The data collection phase involved recording ADL
in a simulated home environment, using accelerometer and
gyroscope sensors to capture six degrees of freedom (6DOF)
motion data. The dataset comprised over 33,273 instances,
primarily featuring normal activities with staged fall events
injected to introduce anomaly patterns. A range of activity
types, timings, and participant behaviours ensured data diver-
sity, enhancing model generalisation. The dataset was recorded
over 10 days, with normal activities such as walking, sitting,
standing, and position transitions, along with staged falls.
These falls were varied (forward, backwards, sideward, and
collapsing to a seated position) to avoid identifiable patterns,
ensuring robust anomaly detection. For localisation, beacon-
based tags, combined with accelerometer and gyroscope data,
were processed using sensor fusion algorithms to achieve
accurate indoor positioning and activity tracking. Table
provides an overview of the dataset, including activity types,
data collection durations, and recorded features:

B. Performance Evaluation and Results

The experiments conducted aimed to validate the proposed
localisation and fall detection phases, focusing on their ability
to accurately track user positions and identify fall events. The
focus was on integrating indoor localisation with fall detection
using late fusion techniques, with experiments designed to
test various configurations and evaluate their impact on model
performance. Feature extraction included statistical metrics
such as central tendency, dispersion, and shape of distribution,
variability metrics, as detailed in Table 1. The evaluation
focused on precision, recall, accuracy, and F1 score, given their
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relevance in assessing anomaly detection and classification
tasks. Precision measured the proportion of correctly identified
falls out of all predicted falls, while recall captured the ability
to detect actual falls from the dataset. Accuracy reflected
the overall classification performance, and F1 score balanced
precision and recall to account for imbalanced data. To ensure
that the reported performance metrics were not dependent on
a specific train-test split, all models were evaluated using k-
fold cross-validation. The mean performance across folds is
reported for both localisation and fall detection. The following
experiments evaluate the performance of the proposed ap-
proach. The first experiment assessed indoor location tracking
and fall detection, evaluating the system’s ability to accurately
track user positions and detect falls. The second experiment
investigated the effect of window size and training dataset
size on model performance. The final experiment focused on
threshold calculation for reconstruction errors in fall detection,
examining how adjustments to the threshold impacted fall
classification accuracy.

1) Location Experiment and Results: Evaluation of Differ-
ent Window Sizes: This experiment evaluated the impact of
varying window sizes on indoor positioning accuracy using
four ML models MLP, SVM, RF and kNN. Window sizes
of 3, 5, and 10 with a fixed overlap of 0.2 were tested to
determine optimal configurations for accurate position classi-
fication. Table [V] summarises the performance of each model
under different windowing configurations. MLP consistently
outperformed other models with all window sizes. Smaller
window sizes showed moderate performance improvements.
At a window size of 3, MLP achieved an F1 score of 0.61 and
an accuracy of 0.67, outperforming other models. Increasing
the window size to 5 resulted in a slight drop in performance
across all models, with MLP achieving 0.65 accuracy. At a
window size of 10, performance degraded further; for instance,
SVM and MLP recorded accuracy scores of 0.53 and 0.61,
respectively. Larger windows reduced sensitivity to temporal
variations, limiting the ability to capture dynamic positioning
patterns effectively. To address the observed limitations, the
models were tested without applying any window size or
overlap, using all data instances directly. This configuration
yielded significant performance gains, with MLP achieving
0.94 accuracy, with RF and SVM as 0.91 and 0.88, respec-
tively. The results suggest that while windowing can enhance
performance in some cases, removing temporal segmentation
may be more effective for datasets characterised by dense,
high-resolution temporal data.

Impact of Training Dataset Composition on Indoor
Localisation Performance: Following the optimisation of
window size in the previous experiment, this investigation
examines the influence of training dataset size and com-
position on model performance for indoor localisation. For
this experiment, two distinct datasets were constructed to
assess the effect of training data selection on classification
accuracy across multiple machine learning models. The first
dataset, referred to as ”All Positions,” includes the complete
set of positional instances captured during data collection.
While comprehensive, this dataset risks redundancy due to
overlapping or closely spaced position samples. The second
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TABLE Il
DATASET OVERVIEW
Activity type [ Instances [ Duration(s) | Features Collected [ Notes
Normal ADL 29,002 10 - 60 Accelerometer, Ipc}udes walking,
Gyroscope sitting etc.
Staged Falls 4271 10 - 20 gccelerometer, Slmulz?ted various fall
yroscope scenarios.
Localization Points N/A Continuous Beacon-based Cap turf:d! locatlop data
tags for activity tracking.
0.94
] 0.91
0.88
g 08| o8
5
2
< 067 65 0.65
k=1 0.61 0.61
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Fig. 6. Validation Accuracy of Different Models Across Window Sizes - This should be for the different rooms/segments

TABLE Il
PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS ACROSS
DIFFERENT WINDOW SIZES FOR INDOOR POSITIONING ACCURACY.

Window sizes MLP SVM RF KNN
3 0.67 0.61 0.65 0.60
5 0.65 0.58 0.51 0.54
10 0.61 0.49 0.42 0.57
No Window 0.94 0.88 0.91 0.80

dataset, “Selected Positions,” comprises a balanced subset
of representative position instances, minimising redundancy
while retaining sufficient variability to capture spatial patterns
effectively. This approach allows investigation into whether
a more curated dataset enhances generalisation and reduces
model overfitting.

0.96
0.94
0o 0.91
0.9 : —
o 0.88
S
Q
@ 0.85
=
0.8
0.8 ]
0.77
T T T T T T T T T
MLP MLP SVM SVM RF RF KNN KNN KNN

0o All Positions [ 0 Selected Positions ‘

Fig. 7. Validation Accuracy of Different Models Across Window Sizes

Experimental results demonstrate that dataset composition
significantly affects model performance. For instance, the Mul-
tilayer Perceptron (MLP) model trained on the ”All Positions”
dataset achieved an accuracy of 0.94 and an F1 score of 0.93.
However, when trained on the Selected Positions” dataset,
MLP performance improved, achieving an accuracy of 0.96
and an F1 score of 0.98, reflecting the performance in both
precision and recall. Similarly, the Support Vector Machine
(SVM) model improved from an accuracy of 0.88 on the "All
Positions” dataset to over 0.90 when trained on the balanced
dataset. This performance were consistent across other models,
underscoring the effectiveness of selective training data in
boosting performance.

The findings reinforce the importance of optimising not
only pre-processing techniques, such as windowing but also
the structure and distribution of training data. The balanced
samples enhance a model’s ability to generalise spatial pat-
terns while mitigating issues related to redundant information.
Furthermore, MLP outperformed other models across dataset
configurations, demonstrating sensitivity to positional varia-
tions.

2) Fall Detection Experiment and Results: We evaluated
five unsupervised fall detection models designed to enhance
generalisation and anomaly detection, all trained exclusively
on normal activity data, identifying falls via reconstruction
error. These architectures combined CNNs, LSTM, BiLSTMs,
VAEs, and attention mechanisms to explore their influence
on learning temporal patterns and detecting fall deviations.
The baseline architecture, a CNN-LSTM Autoencoder, used
convolutional layers for spatial feature extraction and LSTM
layers for temporal dependencies, though it showed limited
precision and sensitivity. We implemented a CNN-BiLSTM



Autoencoder with an attention layer to improve temporal con-
text learning. The idea was to leverage BiLSTM network for
both forward and backwards dependencies, while the attention
mechanism focused on critical moments in the sequence.

We also implemented a VAE integrated into a CNN-LSTM
architecture to learn a latent distribution for normal activi-
ties, improving reconstruction fidelity and fall differentiation.
Furthermore, an attention mechanism was added to the VAE
CNN-LSTM architecture to boost its performance. Experi-
ments were conducted on these architectures evaluate the
impact of sequential modelling, latent space encoding, and
attention-based weighting on fall anomaly detection.

Effect of Window Sizes: This experiment examined the
impact of sliding window sizes 3, 5, and 10 on the performance
of five fall detection architectures, each trained with a fixed
overlap of 0.2. The models evaluated included both standard
and variational autoencoders with attention configurations,
using combinations of CNN, LSTM, and BiLSTM Ilayers.
Model evaluation was based on accuracy, precision, recall,
and F1 score. As shown in Table window size had
a clear impact on performance. Across all architectures, a
window size of 5 consistently yielded the best results. Most
notably, the VAE CNN + LSTM with attention achieved the
highest overall performance at this setting, with an accuracy
of 0.98, precision of 0.95, recall of 1.00, and F1 score of
0.97. These results indicate a strong ability to generalise
normal activity patterns and detect anomalies accurately. In
contrast, performance declined at window sizes 3 and 10.
With a smaller window (size 3), the models lacked sufficient
temporal context, limiting their ability to capture complex
activity dynamics. Conversely, with a larger window (size 10),
performance degradation was attributed to the inclusion of
redundant or noisy data, which likely diluted the reconstruction
error signal used for fall detection. Performance trends are
further illustrated in Figure [I0] which visualises the precision,
recall, F1 score, and precision of the best performing model
VAE CNN + LSTM with attention, in the three window sizes.
The peak at window size 5 reinforces its suitability as the
optimal configuration for this task.

Effect of Training Data Composition: Following the
identification of window size 5 as optimal in Experiment 1, this
experiment investigates the impact of training dataset compo-
sition on fall detection performance. Using the fixed optimal
window size, we evaluate how the size and selection of training
data influence model effectiveness across five architectures,
including both standard and variational autoencoders, with
and without attention layers. Two distinct training datasets
were constructed. The first, All Normal Activities, includes
the entire pool of available normal activity sequences, while
the second, Selected Normal Activities, comprises a balanced
and representative subset designed to avoid redundancy and
overfitting. This setup enables us to assess whether a curated
dataset improves the model’s ability to differentiate between
normal and fall events.

As illustrated in Figure models trained on the Selected
Normal Activities dataset consistently outperformed those
trained on the full dataset. For example, the Autoencoder
CNN-LSTM model without attention achieved a low F1 score
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TABLE IV
PERFORMANCE METRICS OF VARIOUS FALL DETECTION
ARCHITECTURES ACROSS WINDOW SIZES. VAE + CNN + LSTM WITH
A WINDOW SIZE OF 5 ACHIEVED THE BEST OVERALL PERFORMANCE.

Model Window Sizes Ace Prec Rec F1
3 0.81 0.78 0.85  0.81
AE CNN + LSTM 5 0.84  0.82 0.88  0.85
10 0.79 0.76 082 0.79
3 0.83 0.80 0.87 0.83
AE CNN + BIiLSTM (A) 5 0.86 0.84 0.89  0.86
10 0.81 0.79 085 0.82
3 0.78 0.74 079  0.76
VAE CNN + LSTM 5 0.83 0.80 085 0.82
10 0.76  0.72 0.78  0.75
3 094 091 097 094
VAE CNN + LSTM (A) 5 098 095 1.00 097
10 0.83 0.86 0.80 0.81
3 090 0.88 092 090
VAE CNN + BIiLSTM (A) 5 096 094 098  0.96
10 0.88 0.86 091 0.88

of 0.24 when trained on the full set, indicating poor recall
and overfitting to normal patterns. However, when trained on
the selected subset, its F1 score improved significantly to
0.87, with perfect recall, demonstrating enhanced fall sensi-
tivity through balanced data representation. The most notable
improvement was observed in the VAE + CNN + LSTM
model with an attention layer. When trained on the selected
dataset, it achieved an accuracy of 97.8%. In contrast, the same
model trained on the full dataset showed a noticeable drop in
performance, reinforcing the value of data curation.

These results clearly demonstrate that training data compo-
sition is as critical as architectural design. Even with optimal
window sizing, using a well-balanced, representative training
set significantly enhances model generalisation and anomaly
detection performance. Together with findings from Exper-
iment 1, this experiment confirms that the best-performing
configuration for practical fall detection is a VAE + CNN +
LSTM with attention, trained on a carefully selected subset of
normal activity data.

Effect of Threshold Selection on Reconstruction Errors
In this experiment, we investigate how varying the anomaly
detection thresholds based on reconstruction error percentiles
impacts fall detection performance. Specifically, we consider
three threshold levels 90", 95", and 99'" percentiles tested
across the five model architectures to evaluate sensitivity and
specificity trade-offs using F1 score as the primary metric.
As shown in Table [V] and visualised in Figure [I0] model
performance was highly sensitive to the chosen threshold.
At the 90th percentile, most models demonstrated balanced
precision and recall. The VAE + CNN + LSTM with attention
achieved the highest F1 score of 0.98, with a perfect recall of
1.00, indicating robust fall detection without missing critical
events. The summary in Table [VI] supports this interpretation,
showing that models with both variational and attention mech-
anisms are more resilient to moderate threshold changes but
still suffer at extreme values. Similarly, other attention-based
models, including the VAE + CNN + BiLSTM, also performed
well at this threshold. The 95th percentile provided a strong
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Fig. 8. Performance Metrics of Best Model Across Window Sizes
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Fig. 9. Validation Accuracy of Different Models Across Window Sizes
where a = AE CNN-LSTM; b = AE CNN-BIiLSTM (A); ¢ = VAE CNN-
LSTM; d = VAE CNN-LSTM (A); e = VAE CNN-BILSTM (A)

compromise for models prioritising higher precision. For ex-
ample, the AE + CNN + LSTM model, which struggled at
lower thresholds, improved significantly, reaching an F1 score
of 0.95, with both precision and recall near optimal. Notably,
the VAE + CNN + BiLSTM model achieved its highest F1
score (0.96) at this threshold, suggesting enhanced control
over false positives while maintaining detection sensitivity.
However, performance declined sharply at the 99th percentile
for all models. The VAE + CNN + LSTM with attention,
which had performed best at lower thresholds, dropped to an
F1 score of 0.18, with recall falling below 0.08. This pattern
was consistent across architectures, indicating that an overly
restrictive threshold reduces the model’s ability to detect falls,
resulting in high false negatives—unacceptable in real-world
applications where missed detections are critical.

V. DISCUSSION

The experimental results validate the effectiveness of our
proposed hybrid system for indoor localisation and fall de-
tection. The modular architecture allows for independent op-
timisation of both localisation and fall detection components.
Integrating these via a decision-level fusion strategy signif-
icantly enhances the system’s ability to detect falls while

simultaneously identifying their precise location within an
indoor environment. A demonstration of the proposed indoor
localisation and fall detection system is provided in online
videos. |I| For localisation, the MLP model performed best,
particularly when trained on the full-resolution dataset without
window segmentation. Further improvements in generalisation
and reduced overfitting were observed by training on a care-
fully curated subset of positional instances. The result suggests
the significance of high-resolution and balanced datasets for
accurately representing user movement across distinct spatial
zones, which is essential for precise location mapping. Gener-
alising UWB localisation across different rooms and buildings
typically requires environment-aware calibration. Emerging
techniques such as environmental fingerprinting, model-based
compensation, and domain adaptation offer promising foun-
dations for extending localisation models to unseen indoor
layouts. Incorporating these strategies in future work will en-
hance the scalability and cross-environment robustness of the
proposed system beyond the current testbed. In fall detection,
the VAE + CNN + LSTM model with an attention mechanism
consistently performed best. This combination of probabilistic
encoding (VAE) and temporal weighting (attention) enabled
robust reconstruction of normal activity patterns while accu-
rately identifying anomalies, such as falls. The attention mech-
anism enhanced temporal focus, and the VAE’s latent encoding
improved generalisation. Our results also showed that training
on a representative subset of normal activities, rather than the
entire dataset, further boosted the model’s precision and recall.
Threshold tuning critically influenced detection reliability. A
lower threshold of 90th percentile maximised sensitivity, but
higher thresholds up to 99th percentile led to increased false
negatives. This highlights the necessity of careful calibration
to balance detection sensitivity and specificity, especially in
safety-critical applications where minimising false negatives
is paramount.

The decision-level fall detection

fusion integrates

'Video demonstrations of the system are available online at:
https://www.youtube.com/watch?v=yMouJz2BcMU&list=
PLxQnOSnSGFrmhxxujs30D_T_2T-phWmsQ&index=3 and
https://www.youtube.com/watch?v=DAhLQok13YM&list=
PLxQnOSnSGFrmhxxujs30D_T_2T-phWmsQ&index=1.
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Threshold AE CNN-LSTM AE CNN-BiLSTM (A) VAE CNN-LSTM VAE CNN-LSTM (A) VAE CNN-BiLSTM (A)
90 0.87 0.85 0.97 0.98 0.88
95 0.95 0.94 0.88 0.85 0.96
99 0.88 0.89 0.14 0.18 0.12
TABLE V
MODELS F1 SCORE ACROSS DIFFERENT THRESHOLD
| |
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Fig. 10. Performance Metrics of Best Model Across Window Sizes

TABLE VI
PERFORMANCE COMPARISONS

Architecture Attention Layer ~ Accuracy  Recall F1 Score  Performance Comments

AE CNN + LSTM No Low Low 0.87 Struggles to capture complex patterns in fall sequences

AE CNN + BIiLSTM Yes Moderate ~ Moderate  0.85 Attention layer improved performance but was insufficient
VAE + CNN + LSTM No High High 0.97 Variational layer improved pattern recognition

VAE + CNN + LSTM Yes Highest 1.00 0.98 Attention layer enhanced temporal pattern detection

VAE + CNN + BiLSTM  Yes Moderate ~ Moderate ~ 0.88 Using Bi-LSTM Layers with VAE yielded lower performance

outputs (F' € {0,1}) with localisation predictions (L €

{LivingRoom, Kitchen, BedArea, CouchArea, Floor Area}).

This is achieved through a weighted score formulation:
Stusion = Stai1 + BS1ocation

Where, o« and 3 control the influence of each module on
the final decision. The system’s output not only confirms if a
fall has occurred but also pinpoints its exact location, enabling
spatially contextualised alerts. As depicted in Figure [T1] fall
events were detected across various zones and times of day.
This spatial-temporal distribution demonstrates the system’s
capability to track and characterise high-risk areas, providing
valuable insights for caregivers and automated monitoring
systems.

This level of granularity facilitates proactive risk manage-
ment, such as reinforcing safety measures in specific high-
risk zones, for example, activities in the kitchen in the early
morning, and the couch area in the evening. Furthermore,
by maintaining a decoupled architecture for detection and
localisation, the system ensures modularity. This allows for in-
dependent updates or improvements to either module, thereby
enhancing scalability and long-term applicability in real-world
settings.

Time (24-hour format)
12:00

0:00 8:00 16:00 20:00 24:00

— FallEvent

Normal, 1 = Fall)

Fall Events (0

Kitchen Bed Area

Locations

-02
Living Room Couch Area Floor Area

Fig. 11. Late fusion output showing spatial-temporal fall event detection
across locations in a 24-hour format. Red lines represent fall events.

VI. CONCLUSION

In this work, we proposed a position-aware fall detection
approach that combines indoor localisation with anomaly-
based activity recognition to enable real-time monitoring of
elderly individuals within home environments. By fusing spa-
tial and motion data at the decision level, the system not only
detects the occurrence of a fall but also identifies its precise
location, addressing a key limitation in existing fall detection
approaches.

We evaluated several architectural configurations for fall
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detection, including standard CNN-LSTM autoencoders and
enhanced variants incorporating BiLSTMs, variational encod-
ing, and attention mechanisms. Among these, the VAE + CNN
+ LSTM model with attention achieved the highest perfor-
mance in terms of precision, recall, and F1 score when trained
on curated normal activity sequences and optimised window
parameters. For indoor localisation, UWB-based trilateration
combined with machine learning models proved effective,
with the MLP outperforming other classifiers in accuracy and
generalisation.

The proposed approach was validated in a realistic, home-
like environment using a custom dataset capturing a wide
range of daily activities and staged falls. While the results
demonstrate strong accuracy and robustness, several limita-
tions remain. First, the UWB localisation framework was
evaluated within a single controlled environment, and its gen-
eralisability to different residential layouts, building materials,
and furniture configurations is not yet established. Future
work will therefore explore environment-specific calibration,
domain adaptation, and multi-room modelling to improve
cross-environment robustness. Second, the fall detection model
was trained on staged falls collected over a short period.
Real-world fall events among older adults are rare, highly
variable, and ethically challenging to capture, limiting the
ecological validity of staged datasets. Longitudinal daily-
living data and semi-supervised refinement will be essential
to strengthen real-world applicability. Third, the hybrid VAE
+ CNN + LSTM Attention architecture introduces some
computational footprint. Although evaluated offline on high-
performance hardware, practical deployment on edge or wear-
able platforms will require quantifying model complexity and
applying optimisation techniques to ensure low-latency, on-
device operation.

The spatial-temporal mapping of fall events generated by the
system provides actionable insights that can support caregivers
in prioritising interventions and adapting home environments
to reduce risk. Looking forward, we plan to extend the
framework to multi-occupant scenarios, enhance localisation
precision through additional sensing modalities, and investi-
gate real-time edge deployment to reduce latency and improve
scalability. Long-term in-home studies will further evaluate
sustained system performance, user adaptation, and overall
usability in ambient assisted living contexts.
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