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Estimation of Hitting Time by Hitting Probability
for Elitist Evolutionary Algorithms
Jun He Senior Member, IEEE, Siang Yew Chong and Xin Yao Fellow, IEEE

Abstract—Drift analysis is one of the main tools for analyzing
the time complexity of evolutionary algorithms. However, it
requires manual construction of drift functions to bound hitting
time for each specific algorithm and problem. To address this
limitation, linear drift functions were introduced for elitist evolu-
tionary algorithms. But calculating good linear bound coefficients
remains a problem. This paper proposes a new method called
drift analysis of hitting probability to compute these coefficients.
Each coefficient is interpreted as a bound on the hitting proba-
bility of a fitness level, transforming the task of estimating hitting
time into estimating hitting probability. A new drift analysis
method is then developed to estimate hitting probability, where
paths are introduced to handle multimodal fitness landscapes. Ex-
plicit expressions are constructed to compute hitting probability,
significantly simplifying the estimation process. An advantage of
the proposed method is its ability to estimate both the lower and
upper bounds of hitting time and to compare the performance
of two algorithms in terms of hitting time. To demonstrate
this application, two algorithms for the knapsack problem, each
incorporating feasibility rules and greedy repair respectively, are
compared. The analysis indicates that neither constraint handling
technique consistently outperforms the other.

Index Terms—evolutionary algorithms, hitting time, hitting
probability, drift analysis, fitness levels

I. INTRODUCTION

H ITTING time is an important metric to evaluate the
performance of evolutionary algorithms (EAs), referring

to the minimum number of generations required for an EA to
find the optimal solution. Drift analysis is one of the strongest
tools used to analyze the hitting time of EAs [1], [2] and
different drift analysis methods have been developed over the
past two decades [3]–[9]. In drift analysis, a drift function
is constructed to bound the hitting time, but it is manually
tailored for each specific problem [5].

To overcome this limitation, the linear drift function for
elitist EAs was proposed [10], which combines the strength of
drift analysis with the convenience of fitness level partitioning.
Given fitness levels (S0, . . . , SK) from high to low, a lower
bound on the hitting time from Sk to S0 (where 1 ≤ k ≤ K)
is expressed as the following linear function.

1

max
X∈Sk

p(X,∪k−1
j=0Sj)

+

k−1∑
ℓ=1

ck,ℓ

max
X∈Sℓ

p(X,∪ℓ−1
j=0Sj)

, (1)
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where the term p(X,∪ℓ−1
j=0Sj) represents the transition proba-

bility from X ∈ Sℓ to levels S0∪· · ·∪Sℓ−1 and ck,ℓ ∈ [0, 1] is a
linear coefficient. Similarly, an upper bound on the hitting time
from Sk to S0 is expressed as the following linear function.

1

min
X∈Sk

p(X,∪k−1
j=0Sj)

+

k−1∑
ℓ=1

ck,ℓ

min
X∈Sℓ

p(X,∪ℓ−1
j=0Sj)

. (2)

The above drift functions are a family of linear functions
used to bound the hitting time for elitist EAs. Although the
calculation of transition probabilities is straightforward, deter-
mining the coefficients is more complex. The primary research
question is how to effectively calculate the coefficients for tight
linear bounds. Several methods for computing these coeffi-
cients have been proposed [10]–[13]. However, more efficient
techniques are needed to determine coefficients for tight lower
bounds [13], particularly on multimodal fitness landscapes
with shortcuts [10]. While the linear bound coefficient has
been interpreted in terms of visit probability [13], a general
method for computing this visit probability is still lacking.

This paper aims to develop an efficient method for comput-
ing the coefficients in linear bounds (1) and (2). The method
makes two significant contributions to the formal develop-
ment and application of drift analysis. First, it reinterprets
a coefficient as a bound on the hitting probability, which
is the probability of reaching a fitness level for the first
time. Consequently, the task of estimating the hitting time is
transformed into estimating hitting probability.

Secondly, drift analysis of hitting probability is introduced
to estimate the hitting probability or linear bound coefficients.
Although the method is termed “drift analysis”, it focuses
on calculating hitting probabilities but not on hitting times.
Hence, it is entirely different from the drift analysis of hitting
time [5]. The method provides a new way to compute linear
bound coefficients and introduces new explicit expressions
for these coefficients. This greatly simplifies drift analysis
because it allows direct estimation of hitting time using explicit
formulas.

Comparing the performance of different EAs is crucial for
empirical research. Since the proposed method can estimate
both lower and upper bounds of hitting time, it provides
a useful tool for theoretically comparing the performance
of two EAs in terms of hitting time. The application is
demonstrated through a case study that compares two EAs for
the knapsack problem that incorporate feasibility rules [14],
[15] and solution repair [16], [17], respectively.

This paper is structured as follows. Section II reviews
related work. Section III provides preliminary definitions and
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results. Section IV interprets linear bound coefficients in terms
of hitting probabilities. Section V develops a novel drift
analysis method for computing hitting probabilities. Section
VI describes the application of comparing two EAs. Finally,
Section VII concludes the paper.

II. RELATED WORK

Since the introduction of drift analysis for bounding the
hitting time of EAs [5], several variants have been developed,
such as simplified drift analysis [6], multiplicative drift anal-
ysis [2], adaptive drift analysis [7], and variable drift analysis
[8], [9]. A complete review of drift analysis can be found in
[3], [4]. The main issue in drift analysis is the absence of some
universal and explicit expression for the drift function that can
be applied to various problems and EAs.

Recently, He and Zhou [10] proposed linear drift functions
(1) and (2) designed for elitist EAs. Based on the coefficients
in (1) and (2), they classified linear drift functions into three
categories.

1) Type-c time bounds: for all 0 < ℓ < k ≤ K, the
coefficients ck,ℓ = c are independent on k and ℓ.

2) Type-cℓ time bounds: for all 0 < ℓ < k ≤ K, the
coefficients ck,ℓ = cℓ depend on ℓ but not on k.

3) Type-ck,ℓ time bounds: the coefficients ck,ℓ depend on
both k and ℓ.

Obviously, Type-c and Type-cℓ are special cases of the
Type-ck,ℓ bounds. Wegener [11] assigned the trivial constants
ck,ℓ = 0 for the lower bound and ck,ℓ = 1 for the upper
bound. Interestingly, assigning ck,ℓ = 1 provides a tight upper
bound for many fitness functions, whereas assigning ck,ℓ = 0
usually leads to a loose lower bound. Several efforts have been
made to improve the lower bound. Sudholt [12] investigated
the non-trivial constant ck,ℓ = c and used it to derive tight
lower bounds for the (1+1) EA on various unimodal functions,
including LeadingOnes, OneMax, and long k-paths. Sudholt
referred to this constant c as viscosity. Doerr and Kötzing [13]
significantly advanced this work by developing a Type-cℓ
lower bound with ck,ℓ = cℓ. They applied this to achieve tight
lower bounds for the (1+1) EA on LeadingOnes, OneMax, and
long k-paths jump functions, naming the coefficient cℓ a visit
probability. However, Type-c and Type-cℓ lower bounds are
loose on multimodal fitness landscapes with shortcuts [10].

To address the shortcut issue, He and Zhou [10] proposed
drift analysis with fitness levels and developed the Type-ck,ℓ
linear bound, though this bound still necessitates recursive
computation. Drift analysis with fitness levels has unified
existing fitness level methods [11]–[13] within a single frame-
work. The fitness level method can be viewed as a specific type
of drift analysis that employs linear drift functions [10].

The study of hitting probability has received limited atten-
tion in the theory of EAs, with only a few studies available.
The term hitting probability has been used in various contexts.
He and Yao [18] and Chen et al. [19] used it to denote the
probability of reaching an optimum among multiple optima.
Jägersküpper [20] used it to describe the probability of a
successful step. Yuen and Cheung [21] referred to it as “the
first pass probability,” indicating the probability that the hitting

time does not exceed a threshold. Kötzing [22] also explored
this type of “hitting probability” through negative drift analysis
[6]. However, none of these studies relate to the explanation
of the linear bound coefficients in (1) and (2).

III. PRELIMINARIES

This section introduces several preliminary definitions and
previous results.

A. The Markov Chain for the Elitist EA

Consider an EA designed to maximize a function f(x),
where f(x) is defined over a finite set. The EA generates
a sequence of solutions (X [t])t≥0, where X [t] represents the
solution(s) at generation t. We model the sequence (X [t])t≥0

as a Markov chain, following the framework established in
[23], [24] . This chain is hereafter referred to as a Markov
chain related to the EA. Markov chain theory provides a solid
foundation for analyzing the behavior and performance of
EAs. Let X ∈ S denote a state (a candidate solution), where
S is the state space (all candidate solutions). Let Sopt ⊆ S
denote the subset of optimal solutions. We assume that the
chain (X [t])t≥0 satisfies three key properties.

1) Convergent (absorbing): Starting from any X ∈ S, the
chain can reach (be absorbed into) the optimal set Sopt

with probability 1.
2) Homogeneous: The transition probability p(X,Y ) from

X to Y is independent on t.
3) Elitist (increasing): Fitness values do not decrease. For

any t ≥ 0, f(X [t+1]) ≥ f(X [t]), where f(X) is the
fitness of X .

B. Probability of Transition between Fitness Levels

The fitness level method utilizes the transition probabilities
between fitness levels. A fitness level partition (S0, . . . , SK)
[11]–[13] is a partition of the state space S into fitness levels
according to the fitness from high value to low such that:

1) The level S0 is the optimal set Sopt.
2) For any pair of Xk ∈ Sk and Xk+1 ∈ Sk+1, the rank

order holds: f(Xk) > f(Xk+1).
Thanks to the elitist property, the transition probability from

Xk ∈ Sk to Sℓ (where 0 ≤ ℓ ≤ K) satisfies

p(Xk, Sℓ) =

{
∈ [0, 1] if ℓ ≤ k,
0 if ℓ > k.

(3)

Let [i, j] denote the index set {i, i + 1, . . . , j − 1, j} and
S[i,j] denote the union of levels Si ∪ · · · ∪ Sj . The transition
probability from Xk to S[i,j] is denoted by p(Xk, S[i,j]). The
convergence property implies that the transition probability
p(Xk, S[0,k−1]) > 0 for any k ≥ 1 and Xk ∈ Sk.

The transition probability from X [t] = Xk to X [t+1] ∈ Sℓ

conditional on X [t+1] /∈ Sk is denoted by

r(Xk, Sℓ) =

{
p(Xk,Sℓ)

p(Xk,S[0,k−1])
if ℓ < k,

0 if ℓ ≥ k.
(4)
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C. Digraphs and Paths

Digraphs have been utilized to visualize the behavior of
EAs [25]–[27]. In a digraph (V,A), the set V represents the
vertices, where vertex k corresponds to level Sk. The set A
represents the arcs, where arc (k, ℓ) indicates the transition
from Sk to Sℓ, provided that for some Xk ∈ Sk, p(Xk, Sℓ) >
0. Fig. 1 shows an example of a digraph.
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Fig. 1. The x-axis represents the state and the y-axis represents the fitness
value. Each arc is a transition. Two paths from S12 to S1 are highlighted.

A path from Sk to Sℓ is a sequence of distinct vertices
k → vm−1 → · · · → v1 → ℓ and each pair vj+1 → vj
is an arc. This path is denoted by P [ℓ, k]. The special path
k → k − 1 → · · · → ℓ+ 1 → ℓ is abbreviated as [ℓ, k], which
is the same as the index set. Fig. 1 shows two paths from S12

to S1. Several sub-paths of the path P [ℓ, k] are represented as
follows.

• P [ℓ, k) = P [ℓ, k] \ {k} without vertex k.
• P (ℓ, k] = P [ℓ, k] \ {ℓ} without vertex ℓ.
• P (ℓ, k) = P [ℓ, k] \ {k, ℓ} without vertices k and ℓ.

D. Hitting Time and Hitting Probability

Given the Markov chain (X [t])t≥0 associated with an EA
and a fitness level partition (S0, · · · , SK), we introduce the
concepts of hitting time and hitting probability based on the
textbook [28].

Definition 1: Assume that the Markov chain (X [t])t≥0 starts
from Xk ∈ Sk, the first hitting time from Xk to Sℓ (where
0 ≤ ℓ, k ≤ K) is

τ(Xk, Sℓ) = inf{t : X [t] ∈ Sℓ}.

The mean hitting time m(Xk, Sℓ) denotes the expected value
of τ(Xk, Sℓ). The hitting probability to hit the set Sℓ is

h(Xk, Sℓ) = Pr(τ(Xk, Sℓ) < ∞).

The hitting probability to hit a specific state Yℓ in Sℓ is

h(Xk, Yℓ) = Pr(τ(Xk, Sℓ) < +∞ and X [τ(Xk,Sℓ)] = Yℓ).

The following proposition adapts [28, Theorem 1.3.2] for
the hitting probability h(Xk, Sℓ). It states that the hitting
probability from Xk to Sℓ is composed of two parts: (i)
transitioning from Xk to an intermediate state Yi and (ii)
transitioning from the intermediate state Yi to Sℓ.

Proposition 1: Given a fitness level partition (S0, . . . , SK)
and two levels k, ℓ : 0 ≤ ℓ < k ≤ K, the hitting probability
h(Xk, Sℓ) satisfies{

h(Xk, Sk) = 1.

h(Xk, Sℓ) =
∑k

i=ℓ

∑
Yi∈Si

p(Xk, Yi)h(Yi, Sℓ).

The following proposition is a modification of [28, Theorem
1.3.5], adapted to the mean hitting time m(Xk, Sk), where
Sk = S \Sk is the complement of the set Sk. It states that the
the mean hitting time m(Xk, Sk) consists of two components:
(i) the transition from Xk to an intermediate state Yk within
Sk, and (ii) the subsequent transition from Yk to a state outside
Sk. The value of 1 is included to account for the initial step.

Proposition 2: Given a fitness level partition (S0, . . . , SK)
and a level k : 0 < k ≤ K, the mean hitting time m(Xk, Sk)
satisfies

m(Xk, Sk) = 1 +
∑

Yk∈Sk

p(Xk, Yk)m(Yk, Sk).

For clarity of notation, Table I presents abbreviations for
the minimum and maximum values of transition probabilities,
hitting probabilities, and mean hitting times.

TABLE I
ABBREVIATIONS FOR MINIMUM AND MAXIMUM VALUES

pmin
Sk,Sℓ

:= min
Xk∈Sk

p(Xk, Sℓ) pmax
Sk,Sℓ

:= max
Xk∈Sk

p(Xk, Sℓ)

rmin
Sk,Sℓ

:= min
Xk∈Sk

r(Xk, Sℓ) rmax
Sk,Sℓ

:= max
Xk∈Sk

r(Xk, Sℓ)

hmin
Sk,Sℓ

:= min
Xk∈Sk

h(Xk, Sℓ) hmax
Sk,Sℓ

:= max
Xk∈Sk

h(Xk, Sℓ)

mmin
Sk,Sℓ

:= min
Xk∈Sk

m(Xk, Sℓ) mmax
Sk,Sℓ

:= max
Xk∈Sk

m(Xk, Sℓ)

E. Lower and Upper Bounds on Hitting Time

Assuming that the chain (X [t])t≥0 starts from X , m(X,S0)
is the mean hitting time from X to the optimal set S0. If
d(X) ≤ m(X,S0), then d(X) is called a lower bound of
m(X,S0). Conversely, if d(X) ≥ m(X,S0), then d(X) is
called an upper bound of m(X,S0).

Asymptotic notations such as O, Ω, and o are used to
differentiate between tight and loose bounds, as described in
the textbook [29]. Let n represent the dimension of the search
space. The mean hitting time m(X,S0) is a function of n. A
tight bound d(X) differs from the mean hitting time m(X,S0)
by only a constant factor, meaning d(X) = O(m(X,S0)) for
an upper bound and d(X) = Ω(m(X,S0)) for a lower bound.

F. Previous Results of Drift Analysis Using Linear Drift
Functions

The main results of drift analysis using linear drift functions
[10] are summarized in Proposition 3. A drift function d(X)
is used to approximate the mean hitting time m(X,S0) to the
optimal set S0.

Proposition 3: Given a fitness level partition (S0, . . . , SK),



4

(1) Let a drift function d(X) satisfy that for any X0 ∈ S0,
d(X0) = 0 and for 1 ≤ k ≤ K and any Xk ∈ Sk,

d(Xk) =
1

pmax

Sk,S[0,k−1]

+

k−1∑
ℓ=1

ck,ℓ
pmax

Sℓ,S[0,ℓ−1]

,

where coefficients ck,ℓ satisfy cℓ,ℓ = 1 and for k > ℓ,

ck,ℓ ≤ min
Xk∈Sk

k−1∑
j=ℓ

r(Xk, Sj)cj,ℓ. (5)

Then for k ≥ 1 and any Xk ∈ Sk, the drift

∆d(Xk) = d(Xk)−
K∑
i=0

∑
Yi∈Si

p(Xk, Yi)d(Yi) ≤ 1,

and the mean hitting time m(Xk, S0) ≥ d(Xk).
(2) Let a drift function d(X) satisfy that for any X0 ∈ S0,

d(X0) = 0 and for 1 ≤ k ≤ K and any Xk ∈ Sk,

d(Xk) =
1

pmin

Sk,S[0,k−1]

+
k−1∑
ℓ=1

ck,ℓ
pmin

Sℓ,S[0,ℓ−1]

,

where coefficients ck,ℓ satisfy where coefficients ck,ℓ ∈ [0, 1]
satisfy cℓ,ℓ = 1 and for k > ℓ,

ck,ℓ ≥ max
Xk∈Sk

k−1∑
j=ℓ

r(Xk, Sj)cj,ℓ. (6)

Then for k ≥ 1 and any Xk ∈ Sk, the drift

∆d(Xk) = d(Xk)−
K∑
i=0

∑
Yi∈Si

p(Xk, Yi)d(Yi) ≥ 1,

and the mean hitting time m(Xk, S0) ≥ d(Xk).
In this paper, we interpret ck,ℓ as the hitting probability from

Xk to Sℓ and introduce another drift analysis to estimate this
hitting probability.

G. Previous Results in the Fitness Level Method

The Type-c linear bound is a special cases of the Type-ck,ℓ
bound by setting ck,ℓ = c [10]. Sudholt [12] investigated Type-
c time bounds. Given a random initial state X [0], he gave the
lower time bound as follows:

K∑
k=1

Pr(X [0] ∈ Sk)

[
1

pmax

Sk,S[0,k−1]

+

k−1∑
ℓ=1

c

pmax

Sℓ,S[0,ℓ−1]

]
.

where the coefficient c is calculated as follows:

c ≤ min
k:1<k≤K

min
ℓ:1≤ℓ<k

min
Xk:p(Xk,S[0,ℓ])>0

p(Xk, Sℓ)

p(Xk, S[0,ℓ])
. (7)

Sudholt [12] used a different expression, but it is equivalent to
(7). The constant c is called viscosity, which is a lower bound
on the probability of visiting Sℓ conditional on visiting S[0,ℓ].

The Type-cℓ linear bound is a special cases of the Type-
ck,ℓ bound by setting ck,ℓ = cℓ [10]. Doerr and Kötzing [13]
investigated Type-cℓ time bounds. They gave the lower time
bound as follows:

K∑
ℓ=1

cℓ
pmax

Sℓ,S[0,ℓ−1]

.

where the coefficient cℓ is a lower bound on the probability
of visiting Sℓ at least once. It can be calculated as follows, cℓ ≤ mink:ℓ<k≤K minXk:p(Xk,S[0,ℓ])>0

p(Xk,Sℓ)
p(Xk,S[0,ℓ])

.

cℓ ≤ Pr(X[0]∈Sℓ)
Pr(X[0]∈S[0,ℓ])

.

IV. ESTIMATE HITTING TIME BY HITTING PROBABILITY

This section explains the linear bound coefficient as the
hitting probability between two fitness levels.

A. Exact Hitting Time

Given a fitness-level partition (S0, . . . , SK), the hitting time
from a state Xk ∈ Sk to the optimal set S0 corresponds to the
cumulative time the chain spends in the non-optimal set S1 ∪
· · ·∪Sk. This intuition is rigorously captured in the following
theorem.

Theorem 1: Given a fitness level partition (S0, . . . , SK) and
a fitness level k : 0 < k ≤ K, the mean hitting time from
Xk ∈ Sk to the optimal set S0 is equal to

m(Xk, S0) =

k∑
ℓ=1

∑
Yℓ∈Sℓ

h(Xk, Yℓ)m(Yℓ, Sℓ).

Proof: When the chain (X [t])t≥0 starts from Xk ∈ Sk,
the probability that it first hits a state Yℓ ∈ Sℓ (for ℓ > 0) is
given by the hitting probability h(Xk, Yℓ). Upon reaching Yℓ,
the expected time the chain stays in Sℓ before transitioning to
the set Sℓ is m(Yℓ, Sℓ) where Sℓ = S0 ∪ · · · ∪ Sℓ−1.

Due to the elitist property, once the chain exits Sℓ, it cannot
return. The total expected time that is spent in all non-optimal
levels S1 ∪ · · · ∪ Sk before reaching the absorbing set S0 is

k∑
ℓ=1

∑
Yℓ∈Sℓ

h(Xk, Yℓ)m(Yℓ, Sℓ).

This cumulative time corresponds exactly to the mean
hitting time m(Xk, S0), since the event of reaching S0 for the
first time is equivalent to the event of leaving the non-optimal
set S1 ∪ · · · ∪ Sk for the first time.

B. Lower and Upper Bounds on Hitting Time

Theorem 1 gives the exact hit time. However, in most cases,
the exact hitting time cannot be calculated. Therefore, it is
necessary to estimate upper and lower bounds. The following
theorem gives linear upper and lower bounds on the hitting
time based on the hitting probability.

Theorem 2: Given a fitness level partition (S0, . . . , SK) and
a fitness level k : 0 < k ≤ K,

(1) The mean hitting time from Xk ∈ Sk to the optimal set
S0 is lower-bounded by

m(Xk, S0) ≥
k∑

ℓ=1

hmin

Sk,Sℓ

pmax

Sℓ,S[0,ℓ−1]

. (8)

(2) The mean hitting time from Xk ∈ Sk to the optimal set
S0 is upper-bounded by

m(Xk, S0) ≤
k∑

ℓ=1

hmax

Sk,Sℓ

pmin

Sℓ,S[0,ℓ−1]

. (9)
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Proof: 1) In the proof, the notation X♯
ℓ ∈ Sℓ denotes

a state such that m(X♯
ℓ , Sℓ) = mmin

Sℓ,Sℓ
. First, we estimate a

lower bound on m(Xℓ, Sℓ). According to Proposition 2, we
have

mmin

Sℓ,Sℓ
= m(X♯

ℓ , Sℓ) = 1 +
∑

Yℓ∈Sℓ

p(X♯
ℓ , Yℓ)m(Yℓ, Sℓ)

≥ 1 + p(X♯
ℓ , Sℓ)m

min

Sℓ,Sℓ
.

Then we get

mmin

Sℓ,Sℓ
≥ 1

1− p(X♯
ℓ , Sℓ)

=
1

p(X♯
ℓ , S[0,ℓ−1])

≥ 1

pmax

Sℓ,S[0,ℓ−1]

.

(10)

Second, we estimate a lower bound on the mean hitting time
m(Xk, S0) to the optimal set. According to Theorem 1,

m(Xk, S0) =

k∑
ℓ=1

∑
Yℓ∈Sℓ

h(Xk, Yℓ)m(Yℓ, Sℓ)

≥
k∑

ℓ=1

hmin

Sk,Sℓ
mmin

Sℓ,Sℓ

≥
k∑

ℓ=1

hmin

Sk,Sℓ

pmax

Sℓ,S[0,ℓ−1]

(by (10)).

Then we get Inequality (8).
2) The proof is similar to the first part.
The above theorems provide an explanation of the linear

bound coefficients. The hitting probability hmin

Sk,Sℓ
is a lower

bound coefficient, and hmax

Sk,Sℓ
is an upper bound coefficient.

Any ck,ℓ ≤ hmin

Sk,Sℓ
is a lower bound coefficient, while any

ck,ℓ ≥ hmax

Sk,Sℓ
an upper bound coefficient. Since h(Xk, Sk) =

1, the coefficient ck,k is always assigned to 1.
The terms viscosity [12], visit probability [13], and co-

efficient [10] fundamentally study the same subject: the
probability of visiting a fitness level. Their distinctions can
be characterized as viscosity for Type-c time bounds, visit
probability for Type-cℓ bounds, and coefficient for Type-ck,ℓ
bounds. We use the term hitting probability as it aligns with
the standard terminology found in the textbook [28].

V. DRIFT ANALYSIS OF HITTING PROBABILITY

This section outlines a drift analysis method for estimating
hitting probabilities.

A. Drift Function

Computing exact values of hitting probabilities is challeng-
ing. In this paper, a new drift analysis method is proposed to
estimate their bounds. A drift function c(Xk, Sℓ) is used to
approximate the hitting probability h(Xk, Sℓ) from Xk ∈ Sk

to Sℓ for any k, ℓ. It is designed specifically for elitist EAs
based on fitness level partitioning.

Definition 2: Given a fitness level partition (S0, . . . , SK), a
drift function c(Xk, Sℓ) (where Xk ∈ Sk and 0 ≤ k, ℓ ≤ K)
is a function such that

c(Xk, Sℓ) := ck,ℓ =

 0 if ℓ > k,
1 if ℓ = k,
∈ [0, 1] if ℓ < k.

(11)

The above drift function makes use of two observations that
(i) the hitting probability from Sk to Sℓ (where ℓ > k) is 0,
and (ii) the hitting probability to the same level is 1.

Definition 3: Based on the conditional transition probability,
the conditional drift from Xk to Sℓ is

∆̃c(Xk, Sℓ) := ck,ℓ −
K∑
i=0

∑
Yi∈Si

r(Xk, Yi)ci,ℓ

= ck,ℓ −
k−1∑
i=ℓ

r(Xk, Si) ci,ℓ, (12)

The drift (12) does not contain the terms i ≤ ℓ and i ≥ k,
since for i ≥ k, r(Xk, Si) = 0 and for i < ℓ, ci,ℓ = 0.

B. Drift Conditions

The following theorem provides drift conditions to deter-
mine that a drift function is a lower or upper bound on the
hitting probability.

Theorem 3: Given a fitness level partition (S0, . . . , SK), a
drift function (11) and two levels ℓ, k : 1 ≤ ℓ < k ≤ K,

(1) If for ℓ < j ≤ k and any Xj ∈ Sj , the conditional drift
∆̃c(Xj , Sℓ) ≤ 0, equivalently, the coefficient

cj,ℓ ≤ min
Xj∈Sj

j−1∑
i=ℓ

r(Xj , Si)ci,ℓ, (13)

then for any ℓ < j ≤ k, the coefficient cj,ℓ ≤ hmin

Sj ,Sℓ
.

(2) If for ℓ < j ≤ k and any Xj ∈ Sj , the conditional drift
∆̃c(Xj , Sℓ) ≥ 0, equivalently, the coefficient

cj,ℓ ≥ max
Xj∈Sj

j−1∑
i=ℓ

r(Xj , Si)ci,ℓ, (14)

then for any ℓ < j ≤ k, the coefficient cj,ℓ ≥ hmax

Sj ,Sℓ
.

Proof: 1) In the proof, the notation X♯
j ∈ Sj (where

ℓ < j ≤ k) denotes the state such that h(X♯
j , Sℓ) = hmin

Sj ,Sℓ
.

First, we prove that for ℓ < j ≤ k, the state X♯
j satisfies

the following inequality (15).

hmin

Sj ,Sℓ
≥

j−1∑
i=ℓ

r(X♯
j , Si)h

min

Si,Sℓ
. (15)

By Proposition 1, the hitting probability from X♯
j to Sℓ (where

ℓ < j ≤ k) satisfies

hmin

Sj ,Sℓ
= h(X♯

j , Sℓ) =

j∑
i=ℓ

∑
Yi∈Si

p(X♯
j , Yi)h(Yi, Sℓ)

≥
j∑

i=ℓ

p(X♯
j , Si)h

min

Si,Sℓ
.

Moving the term i = j from the right-hand side sum to the
left, we obtain inequality (15)

hmin

Sj ,Sℓ
≥

j−1∑
i=ℓ

p(X♯
j , Si)

1− p(X♯
j , Sj)

hmin

Si,Sℓ
=

j−1∑
i=ℓ

r(X♯
j , Si)h

min

Si,Sℓ
.
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Next, using the inequality (15), we prove the first conclusion
of the theorem, that is, for j = ℓ+ 1, · · · , k, cj,ℓ ≤ hmin

Sj ,Sℓ
by

induction. Since hmin

Sℓ,Sℓ
= 1, we get

cℓ+1,ℓ ≤ r(X♯
ℓ+1, Sℓ) (by (13))

= r(X♯
ℓ+1, Sℓ)h

min

Sℓ,Sℓ
≤ hmin

Sℓ+1,Sℓ
. (by (15) )

We make an inductive assumption that for i = ℓ+1, . . . , j,

ci,ℓ ≤ hmin

Si,Sℓ
. (16)

Recall that X♯
j+1 satisfies h(X♯

j+1, Sℓ) = hmin

Sj+1,Sℓ
. We get

cj+1,ℓ ≤
j∑

i=ℓ

r(X♯
j+1, Si)ci,ℓ (by (13))

≤
j∑

i=ℓ

r(X♯
j+1, Si)h

min

Si,Sℓ
(by (16))

≤ hmin

Sj+1,Sℓ
. (by (15), replace j by j + 1)

Therefore, the inequality cj+1,ℓ ≤ hmin

Sℓ+1,Sℓ
holds. This

completes the inductive step, and hence, by induction, the first
conclusion is proven.

2) The proof is similar to the first part.
Interestingly, the recursive expressions (13) and (14) in the

above theorem are identical to that in Proposition 3, despite
being derived through entirely different proofs. But Theorem 3
makes a new contribution: drift analysis of hitting probability.
A lower bound coefficient is a lower bound on the hitting
probability, while an upper bound coefficient is an upper bound
on the hitting probability. A drift function is used to bound the
hitting probability, and the drift condition determines whether
the drift function serves as a lower or upper bound.

Type-c and Type-cℓ bounds [10] can be rewritten in terms of
necessary and sufficient drift conditions. A detailed analysis
is given in the supplementary material. The drift conditions
in Theorem 3 are based on pointwise drift. Average drift [30]
can be used to handle random initialization.

C. Direct Calculation and Alternative Calculation

The coefficients in Theorem 3 are determined recursively.
He and Zhou [10] gave explicit expressions for calculating the
coefficients as follows.

Corollary 1: Given a fitness level partition (S0, . . . , SK)
and two levels ℓ, k : 1 ≤ ℓ < k ≤ K,

(1) Let a drift function (11) (where c(Xk, Sℓ) = cmin

k,ℓ ) satisfy
that cmin

ℓ,ℓ = 1 and for 1 ≤ ℓ < j ≤ k,

cmin

j,ℓ = rmin

Sj ,Sℓ
+

∑
ℓ<j1<j

rmin

Sj ,Sj1
rmin

Sj1
,Sℓ

+
∑

ℓ<j1<j2<j

rmin

Sj ,Sj2
rmin

Sj2
,Sj1

rmin

Sj1
,Sℓ

+ · · ·

Then cmin

j,ℓ ≤ hmin

Sj ,Sℓ
.

(2) Let a drift function (11) (where c(Xk, Sℓ) = cmax

k,ℓ )
satisfy that cmax

ℓ,ℓ = 1 and for 1 ≤ ℓ < j ≤ k,

cmax

j,ℓ = rmax

Sj ,Sℓ
+

∑
ℓ<j1<j

rmax

Sj ,Sj1
rmax

Sj1 ,Sℓ

+
∑

ℓ<j1<j2<j

rmax

Sj ,Sj2
rmax

Sj2 ,Sj1
rmax

Sj1 ,Sℓ
+ · · ·

Then cmax

j,ℓ ≥ hmax

Sj ,Sℓ
.

Proof: (1) By applying induction, it is straightforward to
confirm that for ℓ < j ≤ k, the coefficient cmin

j,ℓ satisfies

cmin

j,ℓ =

j−1∑
i=ℓ

rmin

Sj ,Si
cmin

i,ℓ ≤
j−1∑
i=ℓ

r(Xj , Si)c
min

i,ℓ .

Consequently, according to Theorem 3.(1), for ℓ < j ≤ k, we
have cmin

j,ℓ ≤ hmin

Sj ,Sℓ
.

(2) The proof is similar to the first part.
Each term in cmin

j,ℓ or cmax

j,ℓ represents the product of con-
ditional probabilities of reaching Sℓ along a path originating
from Sj . The hitting probability is obtained by summing the
conditional probabilities over all paths connecting Sj to Sℓ.

In Theorem 3, coefficients are computed recursively in the
direction from ℓ + 1 to k: cℓ+1,ℓ, cℓ+2,ℓ, . . . , ck,ℓ. They can
also be computed recursively in the opposite direction from
k − 1 to ℓ: ck,k−1, ck,k−2, . . . , ck,ℓ, as shown below.

Theorem 4: Given a fitness level partition (S0, . . . , SK) and
two levels ℓ, k : 1 ≤ ℓ < k ≤ K,

(1) Let a drift function (11) satisfy that for 1 ≤ ℓ < j ≤ k,

cj,ℓ ≤
j∑

i=ℓ+1

cj,i r
min

Si,Sℓ
, (17)

then for any ℓ < j ≤ k, the coefficient cj,ℓ ≤ hmin

Sj ,Sℓ
.

(2) Let a drift function (11) satisfy that for 1 ≤ ℓ < j ≤ k,

cj,ℓ ≥
j∑

i=ℓ+1

cj,i r
max

Si,Sℓ
, (18)

then for any ℓ < j ≤ k, the coefficient cj,ℓ ≥ hmax

Sj ,Sℓ
.

Proof: (1) By applying induction to (17), we can establish
that cj,ℓ ≤ cmin

j,ℓ . Since cmin

j,ℓ ≤ hmin

Sj ,Sℓ
, we arrive at the desired

conclusion.
(2) The proof is similar to the first part.

D. Lower Bound Coefficients Using Paths

For multimodal fitness landscapes, there are multiple paths
from one fitness level to another. For example, in Fig. 1, there
are 11! paths from S12 to S1. To calculate a lower bound
coefficient ck,ℓ, it is sufficient to use one path P [ℓ, k] from Sk

to Sℓ, rather than using all paths from Sk to Sℓ. For example,
in Fig. 1, coefficient c12,1 can be estimated using a longer
path S12 → · · · → S2 → S1, or a shorter path S12 → · · · →
S8 → S1. In this case, two values of c12,1 can be generated,
however, it suffices to utilize any one of them.

The following theorem uses a path to obtain the lower bound
coefficient ck,ℓ. If vertex j ∈ (ℓ, k] is not on the path P (ℓ, k],
then we directly assign the coefficient cj,ℓ = 0.
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Theorem 5: Given a fitness level partition (S0, . . . , SK) and
two levels ℓ, k : 1 ≤ ℓ < k ≤ K, let P [ℓ, k] be a path from k
to ℓ. Let a drift function (11) satisfy that for j ∈ (ℓ, k]\P (ℓ, k],
cj,ℓ = 0, and for j ∈ P (ℓ, k],

cj,ℓ ≤ min
Xj∈Sj

∑
i∈P [ℓ,j)

r(Xj , Si) ci,ℓ. (19)

Then for ℓ < j ≤ k, coefficient cj,ℓ ≤ hmin

Sj ,Sℓ
.

Proof: For j ∈ (ℓ, k] \ P (ℓ, k], since cj,ℓ = 0, the
conditional drift ∆̃c(Xj , Sℓ) ≤ 0. For j ∈ P (ℓ, k], the
conditional drift ∆̃c(Xj , Sℓ) ≤ 0 by (19). According to
Theorem 3.(1), we get the conclusion.

To avoid recursive computation in (19), the following
corollary provides a non-recursive formula to compute the
coefficients. It is a path-based version of [27, Theorem 4].

Corollary 2: Given a fitness level partition (S0, . . . , SK) and
two levels ℓ, k : 1 ≤ ℓ < k ≤ K, let P [ℓ, k] be a path from k
to ℓ. Let a drift function (11) satisfy that for j ∈ (ℓ, k]\P (ℓ, k],
cj,ℓ = 0, and for j ∈ P (ℓ, k],

cj,ℓ =
∏

i∈P (ℓ,j]

rmin

Si,SP [ℓ,i)
, (20)

then for ℓ < j ≤ k, coefficient cj,ℓ ≤ hmin

Sj ,Sℓ
.

Proof: From the product (20), we get

min
i∈P (ℓ,j)

ci,ℓ =
∏

i∈P (ℓ,j)

rmin

Si,SP [ℓ,i)
,

cj,ℓ = rmin

Si,SP [ℓ,i)
min

i∈P (ℓ,j)
ci,ℓ. (21)

For j ∈ P (ℓ, k],

min
Xj∈Sj

∑
i∈P [ℓ,j)

r(Xj , Si) ci,ℓ

≥
∑

i∈P [ℓ,j)

rmin

Sj ,Si
min

i∈P (ℓ,j)
ci,ℓ

= rmin

Sj ,SP [ℓ,j)
min

i∈P (ℓ,j)
ci,ℓ = cj,ℓ (by (21)).

According to Theorem 5, we get the conclusion.
In (20), the transition probability rmin

Si,SP [ℓ,i)
corresponds

to the transition from Si to the path P [ℓ, i). An intuitive
interpretation of this corollary is that the hitting probability
hmin

Sk,Sℓ
is lower-bounded by the product of the conditional

probabilities of staying on the path P (ℓ, k).

E. Upper Bound Coefficients Using Paths

Intuitively, it seems impossible to obtain an upper bound
coefficient ck,ℓ using a path, since the hitting probability of
going from Sk to Sℓ is not less than that of going from Sk to
Sℓ via a path P [ℓ, k]. Counterintuitively, the following theorem
establishes an upper bound on the hitting probability using one
path. If vertex i ∈ [ℓ, k] is not on the path P (ℓ, k], we simply
assign the coefficient ci,ℓ = 1.

Theorem 6: Given a fitness level partition (S0, . . . , SK) and
two levels ℓ, k : 1 ≤ ℓ < k ≤ K, let P [ℓ, k] be a path from k

to ℓ. Let a drift function (11) satisfy that for j ∈ [ℓ, k]\P (ℓ, k],
cj,ℓ = 1, and for j ∈ P (ℓ, k],

cj,ℓ ≥ max
Xj∈Sj

r(Xj , S[ℓ,j)\P (ℓ,j)) +
∑

i∈P (ℓ,j)

r(Xj , Si)ci,ℓ

 ,

(22)

then for ℓ < j ≤ k, the coefficient cj,ℓ ≥ hmax

Sj ,Sℓ
.

Proof: For j ∈ (ℓ, k] \ P (ℓ, k], since cj,ℓ = 1, the
conditional drift ∆̃c(Xj , Sℓ) ≥ 0. For j ∈ P (ℓ, k], the
conditional drift ∆̃c(Xj , Sℓ) ≥ 0 by (22). According to
Theorem 3.(2), we get the conclusion.

The coefficient computation in Theorem 6 is recursive.
The following corollary provides a non-recursive formula to
compute the coefficients.

Corollary 3: Given a fitness level partition (S0, . . . , SK) and
two levels ℓ, k : 1 ≤ ℓ < k ≤ K, let P [ℓ, k] be a path from k
to ℓ. Let a drift function (11) satisfy that for j ∈ (ℓ, k]\P (ℓ, k],
cj,ℓ = 1, and for j ∈ P (ℓ, k],

cj,ℓ =
∑

i∈P (ℓ,j]

rmax

Si,S[ℓ,i)\P (ℓ,i)
, (23)

then for ℓ < j ≤ k, the coefficient cj,ℓ ≥ hmax

Sj ,Sℓ
.

Proof: From the sum (23), we get

max
i∈P (ℓ,j)

ci,ℓ =
∑

i∈P (ℓ,j)

rmax

Si,S[ℓ,i)\P (ℓ,i)
,

cj,ℓ = rmax

Sj ,S[ℓ,j)\P (ℓ,j)
+ max

i∈P (ℓ,j)
ci,ℓ. (24)

For j ∈ P (ℓ, k],

max
Xj∈Sj

r(Xj , S[ℓ,j)\P (ℓ,j)) +
∑

i∈P (ℓ,j)

r(Xj , Si)ci,ℓ


≤ rmax

Sj ,S[ℓ,j)\P (ℓ,j)
+ rmax

Sj ,SP (ℓ,j)
max

i∈P (ℓ,j)
ci,ℓ

≤ rmax

Sj ,S[ℓ,j)\P (ℓ,j)
+ max

i∈P (ℓ,j)
ci,ℓ = cj,ℓ (by (24)).

According to Theorem 6, we get the conclusion.
In (23), the conditional probability rmax

Si,S[ℓ,i)\P (ℓ,i)
corre-

sponds to the transitions from Si to [ℓ, i)\P (ℓ, i), the vertices
not on the path P (ℓ, j). An intuitive interpretation of this
corollary is that the hitting probability hmax

Sk,Sℓ
is upper-bounded

by the sum of the conditional probabilities of leaving the path
P (ℓ, k) to [ℓ, k) \ P (ℓ, k) .

VI. COMPARISON OF TWO ALGORITHMS

This section applies the proposed method to a comparative
analysis of two EAs for the knapsack problem.

A. Comparison of Two EAs

In computer experiments, the performance of two EAs is
assessed using a benchmark suite that includes both easy
and hard problems [31]. Similarly, theoretical studies should
compare EAs using a benchmark suite.

In this paper, three instances of the knapsack problem
are designed to serve as a benchmark suite for comparison.
They represent both easy and hard scenarios. The knapsack
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problem is chosen because of its NP-complete complexity and
its well-established role as a classic problem for explaining
EAs [32]. Unlike common benchmarks such as OneMax and
LeadingOnes [12], [13], the knapsack problem is subject to a
constraint. Various constraint-handling techniques have been
employed in EAs, such as feasibility rules [14], [15], the
penalty method [33], solution repair [16], [17].

In this section, we compare an EA employing feasibility
rules (algorithm 1) with another EA employing solution repair
(algorithm 2). To evaluate their performance, we examine the
ratio of their mean hitting times (speedup), defined as

mean hitting time of algorithm 1
mean hitting time of algorithm 2

.

B. The Knapsack Problem

The knapsack problem is described as follows. There are n
items, each with a specific weight wi and value vi. The goal
is to select a subset of these items to include in the knapsack,
ensuring that the total weight does not exceed the capacity of
the knapsack C while maximizing the overall value. For the
ith item, let bi = 1 indicate that the item is included in the
backpack, and bi = 0 indicate that the item is not included in
the backpack. The knapsack problem can be expressed as a
constrained optimization problem. Let x = (b1, . . . , bn).

max f(x) =

n∑
i=1

vibi subject to
n∑

i=1

wibi ≤ C. (25)

The first EA is the (1+1) EA using feasibility rules, which
is described in Algorithm 1. The (1+1) EA is chosen because
it serves as a common baseline in the theoretical analysis of
EAs [12], [13]. Its purpose is to avoid complex calculations of
transition probabilities, allowing a focus on the analysis itself.
We assume that the EA is initialized with an empty knapsack;
however, other initialization strategies can also be considered.
According to feasibility rules, an infeasible solution will not
be accepted because it is worse than the empty knapsack.

Algorithm 1 The (1+1) EA with Feasibility Rules

1: Specify X [0] = x to be the empty knapsack.
2: for t = 1, 2, . . . do
3: Flip each bit of x independently with probability 1/n

to generate a solution y.
4: if both x and y are feasible then
5: Select the one with the larger objective value f as

X [t+1].
6: else if both x and y are infeasible then
7: Select the one with the smaller constraint violation

value
∑

i wibi − C as X [t+1];
8: else
9: Select the feasible one as X [t+1].

10: end if
11: end for

The second EA is the (1+1) EA using greedy repair,
which is described in Algorithm 2. Greedy repair transforms
an infeasible knapsack into a feasible one by removing the
item(s) with the smallest value-to-weight ratio. Therefore, it

is sufficient to consider feasible solutions. The fitness function
is the objective function f(x).

Algorithm 2 The (1+1) EA with Greedy Repair

1: Specify X [0] = x to be the empty knapsack.
2: for t = 1, 2, . . . do
3: Flip each bit of x independently with probability 1/n

to generate a solution y.
4: while y is infeasible (weight exceeds capacity) do
5: Select an item with the smallest value-to-weight ratio

and remove it from the knapsack.
6: end while
7: if f(y) ≥ f(x) then
8: X [t+1] = y;
9: else

10: X [t+1] = x.
11: end if
12: end for

Table II presents three knapsack problem instances with
different optimal solutions. In every instance, there are two
high-value, high-weight items and n−2 low-value, low-weight
items. Item 1 has the highest value-to-weight ratio, exceeding
1, while Item 2 has the lowest ratio, falling below 1. The
remaining items all have a value-to-weight ratio equals to 1.

To facilitate analysis, the fitness levels in these knapsack
problem instances are expressed in the following form:

L(b1,b2;k) = {x = (b1, . . . , bn); k = b3 + · · ·+ bn}.
L(b1,b2;[i,j]) = {x = (b1, . . . , bn); i ≤ b3 + · · ·+ bn ≤ j}.

Let (b1, b2; k) denote a solution in L(b1,b2;k) and L+
(b1,b2;k)

denote the set of feasible solutions with a fitness value larger
than f(b1, b2; k).

The hitting probability from (a1, a2; i) to L(b1,b2;k) is de-
noted as h(a1,a2;i),(b1,b2;k), and its linear bound coefficient is
denoted as c(a1,a2;i),(b1,b2;k). Similarly, r(a1,a2;i),(a1,a2;i)+ de-
notes the conditional probability from (a1, a2; i) to L+

(a1,a2;i)
,

while m(a1,a2;i),(b1,b2;k) denotes the mean hitting time from
(a1, a2; i) to L(b1,b2;k). Using the notation, it is convenient
to calculate transition probabilities. For example, consider the
(1+1) EA with feasibility rules on Instance KP1 and the
transition from L(0,0;0) to L(0,0;n−3). This transition happens
if and only if bits b1, b2 remain unchanged, n−3 of the n−2
zero-valued bits in b3, . . . , bn flips, and the other bits remain
unchanged. Therefore, the transition probability

p(0,0;0),(0,0;n−3) =

(
1− 1

n

)2 (
n− 2

n− 3

)(
1

n

)n−3 (
1− 1

n

)
.

C. Instance KP1

Fig. 2 shows the digraph of the two (1+1) EAs on Instance
KP1.

1) The (1+1) EA Using Feasibility Rules: It is sufficient
to consider feasible solutions because infeasible solutions are
worse than the empty knapsack. According to the lower bound
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TABLE II
KNAPSACK PROBLEM INSTANCES.

ID item i 1 2 3, . . . , n capacity C global optimum local optimum

KP1 value vi n− 2 n/2− 1/3 1
n− 2 L(1,0;0) and L(0,0;n−2) L(0,1;1)weight wi n− 2− 2/3 n− 3 1

KP2 value vi n− 2− 1/3 n/2− 1/3 1
n− 2 L(0,0;n−2) L(0,1;1) and L(1,0;0)weight wi n− 2− 2/3 n− 3 1

KP3 value vi n− 1 n/2− 1/3 1
n− 2 L(1,0;0) L(0,1;1) and L(0,0;n−2)weight wi n− 2− 2/3 n− 3 1

feasible solutions x

0

2

4

6

8

10

f(x
)

L(1, 0; 0)

L(0, 1; 0)
L(0, 1; 1)

L(0, 0; n− 2)

L(0, 0; 0)
L(0, 0; 1)

L(0, 0; n/2 − 1)
L(0, 0; n/2)

L(0, 0; n/2 + 1)

KP1

Fig. 2. The digraph of the two (1+1) EAs on Instance KP1. Vertices represent
fitness levels (feasible solution area). Arcs represent transitions. n = 12.

(8) in Theorem 2, the mean hitting time from the empty
knapsack to the global optimal set L(0,0;n−2) ∪ L(1,0;0) is

m(0,0;0),(0,0;n−2)∪(1,0;0) ≥
h(0,0;0),(0,1;1)

p(0,1;1),(0,1;1)+
. (26)

Since L+
(0,1;1) = L(1,0;0) ∪ L(0,0;[n/2+2,n−2]), the transition

probabilities

p(0,1;1),(1,0;0) ≤
(
1

n

)3

,

p(0,1;1),(0,0;[n/2+2,n−2]) ≤
1

n

(
n− 3

n/2 + 1

)(
1

n

)n/2+1

,

and then the transition probability

p(0,1;1),(0,1;1)+ ≤
(
1

n

)3

+
1

n

(
n− 3

n/2 + 1

)(
1

n

)n/2+1

= O(n−3).

Thus, the mean hitting time

m(0,0;0),(0,0;n−2)∪(1,0;0) ≥ Ω(n3) h(0,0;0),(0,1;1). (27)

We compute the hitting probability h(0,0;0),(0,1;1) using the
path L(0,0;0) → L(0,1;1). An intuitive observation is that the
probability of hitting L(0,1;1) is Ω( 1n ) because of flipping bit
b2 and flipping one of bits in [b3, bn]. Strictly speaking, the
hitting probability

h(0,0;0),(0,1;1) ≥ p(0,0;0),(0,1;1)

≥ 1

n

(
n− 2

1

)
1

n

(
1− 1

n

)n−2

= Ω

(
1

n

)
.

Thus, the mean hitting time from the empty knapsack to the
global optimal set L(0,0;n−2) ∪ L(1,0;0) is

m(0,0;0),(0,0;n−2)∪(1,0;0) = Ω(n3)Ω(n−1) = Ω(n2). (28)

2) The (1+1) EA with Greedy Repair: Let S0 denote the
global optimal set L(0,0;n−2) ∪ L(1,0;0), and S1 be the rest
of feasible solutions. According to the upper bound (9) in
Theorem 2, the mean hitting time from any x1 ∈ S1 to S0 is
upper-bounded by

1

minx1∈S1
p(x1;S0)

.

For any x1 = (0, b2; k) ∈ S1, the probability of a mutation
from (0, b2; k) to (1, ∗; ∗) is 1

n (where ∗ represents an arbitrary
value). Since Item 1 has the largest value-to-weight ratio, after
greedy repair, only item 1 remains and the solution becomes
(1, 0; 0). So the probability p(x1;S0) is at least 1

n . Then, the
mean hitting time from the empty knapsack to the global
optimum (1, 0; 0) is

m(0,0;0),(1,0;0) = O(n). (29)

By comparing equations (28) and (29), we find that for KP1,
the (1+1) EA with greedy repair is faster than that of the (1+1)
EA using feasibility rules by a factor of Ω(n).

D. Instance KP2

Fig. 3 shows the digraph of the two (1+1) EAs on Instance
KP2.

feasible solutions x

0

2

4

6

8

10

f(x
)

L(1, 0; 0)

L(0, 1; 0)
L(0, 1; 1)

L(0, 0; n− 2)

L(0, 0; 0)
L(0, 0; 1)

L(0, 0; n/2 − 1)
L(0, 0; n/2)

L(0, 0; n/2 + 1)

KP2

Fig. 3. The digraph of the two (1+1) EAs on Instance KP2. Vertices represent
fitness levels (feasible solution area). Arcs represent transitions. n = 12.
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1) The (1+1) EA Using Feasibility Rules: According to the
upper bound (9) in Theorem 2, the mean hitting time from the
empty knapsack to the global optimum is

m(0,0;0),(0,0;n−2) ≤
n−3∑
ℓ=0

1

p(0,0;ℓ),(0,0;ℓ)+
+

1

p(0,1;0),(0,1;0)+

+
1

p(0,1;1),(0,1;1)+
+

h(0,0;0),(1,0;0)

p(1,0;0),(1,0;0)+
. (30)

The transition probabilities in (30) are estimated as follows.
For ℓ = 0, . . . , n− 3, the transition probabilities

p(0,0;ℓ),(0,0;ℓ)+ ≥ p(0,0;ℓ),(0,0;ℓ+1) ≥
n− 2− ℓ

n

(
1− 1

n

)n−1

.

p(0,1;0),(0,1;0)+ ≥ p(0,1;0),(0,1;1) =
n− 2

n

(
1− 1

n

)n−1

.

p(0,1;1),(0,1;1)+ ≥ p(0,1;1),(1,0;0) ≥
(
1

n

)3 (
1− 1

n

)n−3

.

p(1,0;0),(1,0;0)+ ≥ p(1,0;0),(0,0;n−2) ≥
(
1

n

)n−1 (
1− 1

n

)
.

Thus, we get the mean hitting time

m(0,0;0),(0,0;n−2) ≤ O(n3) +
h(0,0;0),(1,0;0)

(n− 1)n−n
. (31)

Intuitively, the hitting probability h(0,0;0),(1,0;0) is no more
than the sum of the conditional transition probabilities from
L(0,0;ℓ) to L(1,0;0) ∪L(0,1;[0;1]) where ℓ = 0, . . . , n− 3. Since
these conditional probabilities decreases exponentially fast as
ℓ increases, the hitting probability h(0,0;0),(1,0;0) = O( 1n ). We
rigorously prove this using Corollary 3.

We choose the path L(0,0;0) → L(0,0;1) → L(0,0;2) →
· · · → L(0,0;n−3) → L(1,0;0) to calculate the hitting probability
h(0,0;0),(1,0;0). According to Corollary 3, the hitting probability

h(0,0;0),(1,0;0) ≤
n−3∑
ℓ=0

r(0,0;ℓ),(1,0;0)∪(0,1;[0,1])

=

n−3∑
ℓ=0

p(0,0;ℓ),(1,0;0) + p(0,0;ℓ),(0,1;0) + p(0,0;ℓ),(0,1;1)

p(0,0;ℓ),(0,0;ℓ)+

≤
n−3∑
ℓ=0

p(0,0;ℓ),(1,0;0) + p(0,0;ℓ),(0,1;0) + p(0,0;ℓ),(0,1;1)

p(0,0;ℓ),(0,0;ℓ+1)
. (32)

The transition probabilities

p(0,0;ℓ),(1,0;0) ≤
(
1

n

)ℓ+1

.

p(0,0;ℓ),(0,1;0) ≤
(
1

n

)ℓ+1

.

p(0,0;ℓ),(0,1;1) ≤

{
1
n , ℓ ≤ 1,
1
n

(
ℓ

ℓ−1

) (
1
n

)ℓ
, ℓ ≥ 2.

p(0,0;ℓ),(0,0;ℓ+1) ≥
n− 2− ℓ

n

(
1− 1

n

)n−1

.

Substituting them into (32), we get the hitting probability

h(0,0;0),(0,1;0) ≤ O

(
1

n

)
+

n−3∑
ℓ=2

e

n− 2− ℓ

(
2

nℓ
+

ℓ

nℓ

)
= O

(
1

n

)
. (33)

Inserting (33) into (31), we get the mean hitting time
m(0,0;0),(0,0;n−2) is upper-bounded by

m(0,0;0),(0,0;n−2) =
O(n−1)

(n− 1)n−n
. (34)

2) The (1+1) EA Using Greedy Repair: According to the
lower bound (8) in Theorem 2, the mean hitting time from the
empty knapsack to the global optimum is

m(0,0;0),(0,0;n−2) ≥
h(0,0;0),(1,0;0)

p(1,0;0),(1,0;0)+
. (35)

Since L+
(1,0;0) = L(0,0;n−2), the transition probability

p(1,0;0),(0,0;n−2) ≤
(
1− 1

n

)(
1

n

)n−1

. (36)

Then, the mean hitting time

m(0,0;0),(0,0;n−2) ≥
h(0,0;0),(1,0;0)

(n− 1)n−n
. (37)

Intuitively, the chain follows the path (0, 0; 0) → (0, 0; 1) →
· · · → (0, 0;n/2 − 1) with probability Ω(1). For each vertex
on this path, the mutation probability from (0, 0; ℓ) (where
ℓ = 0, . . . , n/2 − 1) to (1, ∗; ∗) is 1

n . After greedy repair,
the solution becomes (1, 0; 0). Thus, the hitting probability
h(0,0;0),(1,0;0) is no less than the sum of Ω( 1n ) over ℓ =
0, . . . , n/2 − 1. Then the hitting probability h(0,0;0),(1,0;0) =
Ω(1). We rigorously prove this using Theorem 4.

According to (17) in Theorem 4, we have a lower bound
on the hitting probability as

h(0,0;0),(1,0;0) ≥ c(0,0;0),(1,0;0)

= r(0,0;0),(1,0;0) +

n/2−1∑
ℓ=1

c(0,0;0),(0,0;ℓ) r(0,0;ℓ),(1,0;0). (38)

We omit the terms with ℓ ≥ n
2 from the summation, as

excluding them still yields a valid lower bound.
The conditional transition probability r(0,0;ℓ),(1,0;0) (where

0 ≤ ℓ < n/2) is calculated as follows. The mutation
probability from (0, 0; ℓ) to (1, ∗; ∗) is (1 − 1

n )
1
n (where ∗

represents an arbitrary value). Since Item 1 has the largest
value-to-weight ratio, after greedy repair, only Item 1 remains.
The solution becomes (1, 0; 0). Thus, we get

r(0,0;ℓ),(1,0;0) ≥ p(0,0;ℓ),(1,0;0) = Ω

(
1

n

)
.

Then the lower bound coefficient

c(0,0;0),(1,0;0) = Ω

(
1

n

)
+Ω

(
1

n

) n/2−1∑
ℓ=1

c(0,0;0),(0,0;ℓ). (39)
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The lower bound coefficient c(0,0;0),(0,0;ℓ) is calculated
using Corollary 2. By (20) in Corollary 2, we assign

c(0,0;0),(0,0;ℓ) =

ℓ−1∏
j=0

r(0,0;j),(0,0;(j,ℓ]) =

ℓ−1∏
j=0

p(0,0;j),(0,0;(j,ℓ])

p(0,0;j),(0,0;j)+

=

ℓ−1∏
j=0

p(0,0;j),(0,0;(j,ℓ])

p(0,0;j),(0,0;(j,n−2]) + p(0,0;j),(1,0;0) + p(0,0;j),(0,1;[0,1])

=

ℓ−1∏
j=0

1

1 +
p(0,0;j),(0,0;[ℓ+1,n−2])+p(0,0;j),(1,0;0)+p(0,0;j),(0,1;[0,1])

p(0,0;j),(0,0;(j,ℓ])

.

(40)

For j ≤ ℓ− 1 < n/2, the transition probabilities

p(0,0;j),(0,0;[ℓ+1,n−2]) ≤
(
n− 2− j

ℓ+ 1− j

)(
1

n

)ℓ+1−j

,

p(0,0;j),(0,1;[0,1]) ≤
1

n
.

p(0,0;j),(1,0;0) ≤
1

n
,

p(0,0;j),(0,0;(j,ℓ]) ≥
(
n− 2− j

1

)
1

n

(
1− 1

n

)n−1

.

Substituting them into (40), we get for ℓ < n/2,

c(0,0;0),(0,0;ℓ) ≥
ℓ−1∏
j=0

1

1 + e
(ℓ+1−j)! +

2e
n−2−j

≥
n/2−1∏
j=0

1

1 + e
(n/2−j)! +

2e
n−2−j

= Ω(1).

We omit the proof of Ω(1) in the product, which one can refer
to [27, Lemma 2] for details. Then we get

c(0,0;0),(1,0;0) = Ω

(
1

n

)
+Ω

(
1

n

) n/2−1∑
ℓ=1

Ω(1) = Ω(1).

Thus, the mean hitting time to the global optimal set
L(0,0;n−2) is

m(0,0;0),(0,0;n−2) ≥
Ω(1)

(n− 1)n−n
. (41)

By comparing (34) and (41), we observe that for KP2, the
(1+1) EA using greedy repair is slower than that of the (1+1)
EA using feasibility rules by a factor O(n−1).

E. Instance KP3

Fig. 4 shows the digraph of the two (1+1) EAs on Instance
KP3.

1) The (1+1) EA Using Feasibility Rules: According to the
lower bound (8) in Theorem 2, the mean hitting time from the
empty knapsack to the global optimum L(1,0;0) is

m(0,0;0),(1,0;0) ≥
h(0,0;0),(0,0;n−2)

p(0,0;n−2),(0,0;n−2)+
. (42)

feasible solutions x

0

2

4

6

8

10

f(x
)

L(1, 0; 0)

L(0, 1; 0)
L(0, 1; 1)

L(0, 0; 0)
L(0, 0; 1)

L(0, 0; n/2 − 1)
L(0, 0; n/2)

L(0, 0; n/2 + 1)

L(0, 0; n− 2)

KP3

Fig. 4. The digraph of the two (1+1) EAs on Instance KP3. Vertices represent
fitness levels (feasible solution area). Arcs represent transitions. n = 12.

Since L+
(0,0;n−2) = L(1,0;0), the transition probability

p(0,0;n−2),(1,0;0) =

(
1− 1

n

)(
1

n

)n−1

.

Thus, the mean hitting time

m(0,0;0),(1,0;0) ≥ Ω(nn−1)h(0,0;0),(0,0;n−2). (43)

Intuitively, the chain follows the path L(0,0;0) → L(0,0;1) →
· · · → L(0,0;n−2) and reaches L(0,0;n−2) with positive proba-
bility. We use Corollary 2 to prove that the hitting probability
h(0,0;0),(0,0;n−2) = Ω(1). By (20), we get

h(0,0;0),(0,0;n−2)

≥
n−3∏
j=0

r(0,0;j),(0,0;(j,n−2]) =

n−3∏
j=0

p(0,0;j),(0,0;(j,n−2])

p(0,0;j),(0,0;j)+

≥
n−3∏
j=0

p(0,0;j),(0,0;(j,n−2])

p(0,0;j),(0,0;(j,n−2]) + p(0,0;j),(0,1;[0,1]) + p(0,0,j),(1,0;0)

=

n−3∏
j=0

1

1 +
p(0,0;j),(0,1;0)+p(0,0;j),(0,1;1)+p(0,0,j),(1,0;0)

p(0,0;j),(0,0;(j,n−2])

.

The transition probabilities

p(0,0;j),(0,1;0) ≤
(
1

n

)j+1

.

p(0,0;j),(0,1;1) ≤

{
1
n , j ≤ 1,
1
n

(
j

j−1

) (
1
n

)j
, j ≥ 2.

p(0,0;j),(1,0;0) ≤
(
1

n

)1+j

,

p(0,0;j),(0,0;[j+1,n−2]) ≥
(
n− 2− j

1

)
1

n

(
1− 1

n

)n−1

.

Then we get

h(0,0;0),(0,0;j)

≥ 1

(1 + 3e
n−2−j )

2

n−3∏
j=2

1

1 + 2e
nj(n−2−j) +

ej
nj(n−2−j)

= Ω(1).

We omit the proof of the bound Ω(1) in the product, which
one can refer to [27, Lemma 2] for details. By substituting the



12

above bound Ω(1) into (43), we get the mean hitting time to
the optimal solution as follows:

m(0,0;0),(1,0;0) = Ω(nn−1). (44)

2) The (1+1) EA with Greedy Repair: Let S0 = L(1,0;0)

represent the global optimal set, with S1 containing all other
feasible solutions. Following the same analysis applied to the
(1+1) EA with greedy repair on Instance KP1, we get that
the mean hitting time from an empty knapsack to the global
optimal solution is given by

m(0,0;0),(1,0;0) = O(n). (45)

By comparing (34) and (41), we observe that for KP3, the
(1+1) EA using greedy repair is faster than that of the (1+1)
EA using feasibility rules by a factor Ω(nn−2). Table III
demonstrates that neither greedy repair nor feasibility rules
can dominate the other.

TABLE III
COMPARISON OF ALGORITHM 1 AND ALGORITHM 2.

KP1 KP2 KP3

mean hitting time of Algorithm 1
mean hitting time of Algorihm 2

Ω(n) O(n−1) Ω(nn−2)

VII. CONCLUSIONS

This paper investigates the computation of coefficients in
the linear drift function for elitist EAs. First, we provide a
new interpretation of the linear bound coefficients, where each
coefficient corresponds to a hitting probability at a specific
fitness level. This transforms the task of estimating the hitting
time into one of estimating the hitting probability. Second,
we propose a new drift analysis method for estimating hit
probability. This method improves the drift analysis method
with new explicit expressions for estimating the hitting time.

The proposed method can estimate both lower and upper
bounds on the hitting time, which is useful for comparing the
hitting time of two EAs. To demonstrate this, it is applied
to compare two EAs with feasibility rules and greedy repair
for solving the knapsack problem. The results show that
neither constraint handling technique consistently outperforms
the other across various instances. However, in certain special
cases, using greedy repair can significantly reduce the hitting
time from exponential to polynomial.

Future research will aim to extend this framework to the
analysis of more combinatorial optimization problems, such as
vertex cover and maximum satisfiability problems. However,
there are inherent limitations to the linear drift function.
Specifically, it may not provide tight time bounds for fitness
functions that do not follow a level-based structure. Also, it is
not available for non-elitist EAs.
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