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Abstract—In recent years, the development of smart edge
computing systems to process information locally is on the
rise. Many near-sensor machine learning (ML) approaches have
been implemented to introduce accurate and energy efficient
template matching operations in resource-constrained edge sens-
ing systems, such as wearables. To introduce novel solutions
that can be viable for extreme edge cases, hybrid solutions
combining conventional and emerging technologies have started
to be proposed. Deep Neural Networks (DNN) optimised for
edge application alongside new approaches of computing (both
device and architecture -wise) could be a strong candidate in
implementing edge ML solutions that aim at competitive accuracy
classification while using a fraction of the power of conventional
ML solutions. In this work, we are proposing a hybrid software-
hardware edge classifier aimed at the extreme edge near-sensor
systems. The classifier consists of two parts: (i) an optimised
digital tinyML network, working as a front-end feature extractor,
and (ii) a back-end RRAM-CMOS analogue content addressable
memory (ACAM), working as a final stage template matching
system. The combined hybrid system exhibits a competitive
trade-off in accuracy versus energy metric with Ef, ont—cna
= 96.23nJ and FEpock—end = 1.45nJ for each classification
operation compared with 78.06..J for the original teacher model,
representing a 792-fold reduction, making it a viable solution for
extreme edge applications.

Index Terms—tinyML optimisation, knowledge distillation,
analogue memory-centric classifier, RRAM-based content ad-
dressable memory

I. INTRODUCTION

The proliferation of edge computing devices has created an
increasing demand for efficient deployment of Deep Neural
Networks (DNN) in resource-constrained environments. Deep
neural networks have achieved remarkable success across
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various applications such as image classification [1], natural
language processing [2] and speech recognition [3] among
others. However, their deployment on edge devices remains
challenging due to two fundamental bottlenecks, the high
computational complexity of fully connected layers and the
substantial energy cost associated with memory access opera-
tions [4]. These challenges are particularly notable in the final
classification layers of neural networks, where dense matrix
operations require numerous memory accesses and floating-
point computations. This has led to significant interest in
developing methods to compress and optimise neural networks
while maintaining acceptable performance levels [5], [6].

The traditional approach to addressing these challenges has
focused on model compression techniques, including pruning,
quantisation, and knowledge distillation [7], [8]. While these
methods have shown success in reducing model size and
computational requirements, they primarily optimise within
the constraints of conventional digital architectures. Such
approaches still rely on matrix multiplication operations and
maintain the fundamental memory access patterns that con-
tribute significantly to energy consumption. Recent work [9]
has demonstrated that memory access operations can consume
more energy than arithmetic operations in neural network
inference, highlighting the limitations of purely algorithmic
optimisation approaches.

Current hardware architectures, particularly in edge com-
puting environments, face limitations in achieving energy effi-
ciency and low-latency performance [10]. The bottlenecks of-
ten arise from the high energy consumption of memory access
operations, the computational complexity of fully connected
layers, and the reliance on conventional digital processing.
In resource-constrained environments, the demand for local
data processing necessitates both innovative model optimisa-
tions and novel hardware solutions. Emerging analogue hard-
ware accelerators such as RRAM-based architectures, offer a
promising avenue for mitigating these challenges by enabling
parallel in-memory computation and reducing the energy costs
associated with traditional digital architectures.

To address these challenges, we present an architecture and
co-design methodology that combines both optimised DNNs
alongside emerging analogue hardware accelerators. More
specifically, our approach combines advanced DNN model
compression techniques with RRAM-based template pattern
matching in the analogue domain, replacing the computa-
tionally expensive and energy-intensive fully connected layers
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with more energy efficient comparison operations. Through
dynamic knowledge distillation, we transfer the capabilities
of a complex neural network to a smaller model specifically
designed for template generation. These templates are then
used for classification through pattern matching rather than
traditional matrix multiplication and activation functions.

This approach offers several key advantages over conven-

tional solutions. First, it eliminates the need for expensive
floating-point operations in the dense multi-level perceptron
classification stage, replacing them with lower complexity
parallel comparison operations. Second, the template-based
matching process aligns with emerging hardware architec-
tures optimised for parallel pattern matching, enabling more
efficient implementation. Third, our quantisation scheme for
template generation is specifically designed to minimise mem-
ory requirements while maintaining classification accuracy.
Finally, by considering both hardware and software constraints
in our design, we achieve a more holistic optimisation that ad-
dresses both computational complexity and energy efficiency.
In this work, we are showcasing a mixed-signal approach
in designing an energy efficient edge classifier by integrating
optimised DNN techniques with ACAM-based pattern match-
ing.

« We propose a novel co-design methodology that com-
bines digital DNN optimisation techniques with analogue
hardware, enabling energy-efficient and low-latency edge
classification.

o We introduce a knowledge distillation and pruning frame-
work that compresses a pre-trained DNN into a compact
model optimised for edge inference. This approach en-
sures high accuracy while reducing computational com-
plexity, making it well-suited for deployment on resource-
constrained devices.

« We develop robust techniques tailored for the generation
of binary templates for ACAM-based classification and
explore the impact of multi-template strategies and clus-
tering methods on classification accuracy.

The remainder of this paper is organised as follows: Section
IT presents the model optimisation methodology, including
knowledge distillation, pruning strategies, and quantisation
schemes tailored for deployment on ACAM hardware. Sec-
tion III introduces the ACAM hardware design, highlighting
its memory-centric architecture and energy-efficient template
matching capabilities, Section IV describes the experimental
setup, Section V evaluates the results and finally Section VI
concludes.

II. MODEL OPTIMISATION

In this section, we present our methodology for developing
a compressed neural network model optimised for deployment
on Analogue Content-Addressable Memory (ACAM) hard-
ware. Our approach combines state-of-the-art model compres-
sion techniques with optimisations to create an efficient and
edge computing hardware-friendly model [11].

Our proposed approach consists of several stages designed
to contribute to the overall goal of creating an ACAM-
optimised model:

1) Knowledge Distillation: A teacher-student framework
is utilised, where a larger, more complex model (the
teacher) is used to train a smaller, more compact model
(the student). This technique enables the development of
a model that maintains high accuracy while significantly
reducing computational requirements and memory foot-
print.

2) Pruning: Following distillation, an iterative pruning
strategy is applied to further reduce the model size. This
step involves identifying and removing less important
weights and connections, resulting in a sparser network
structure.

3) quantisation: We implement a quantisation scheme that
reduces the precision of weights and activations.

4) ACAM optimisations: Utilising the compressed model,
we generate templates suitable for pattern matching,
designed to utilise the analogue computation capabilities
of ACAM hardware.

A. Knowledge distillation

Knowledge distillation forms a crucial component of the
methodology for creating smaller, efficient models [12]. Our
implementation follows a teacher-student framework where
knowledge is transferred from a high-capacity teacher network
to a more compact student network.

The knowledge distillation process is controlled by two
key parameters: o and temperature 7. The « parameter
balances the importance between learning from the teacher’s
soft predictions and learning from the ground truth labels. The
temperature parameter 7' controls the softness of probability
distributions during knowledge transfer, where higher tempera-
tures produce softer distributions that reveal more fine-grained
knowledge about the relationships between the classes that the
teacher has learned.

Traditional supervised learning typically uses hard labels
for training. However, these hard labels don’t capture the rich
information about similarities between classes that the teacher
model has learned. Knowledge distillation preserves this in-
formation by using the teacher’s soft probability distributions
as training input for the student model.

The knowledge distillation process is guided by a composite
loss function that combines two components:

L =oaLgp(zs,2)+ (1 —a)Lop(zs,y) (D

where L i p represents the knowledge distillation loss between
the student outputs zs and teacher outputs z;, Lo denotes the
standard cross-entropy loss between student predictions and
ground truth labels y, and « is the balancing parameter.

The knowledge distillation loss Lxp is computed using
the Kullback-Leibler (KL) divergence between the softened
probability distributions of the student and teacher models:

Lip(zs,2t) = T*KL(0(25/T) || 0(2:/T)) )

where 7' is the temperature parameter that controls the softness
of the probability distributions, and o typically represents the
activation function:
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exp(z;/T)
Zj exp(z;/T)

The temperature scaling in equation 3 produces softer prob-
ability distributions by reducing the magnitudes of the logits,
revealing more information about the inter-class relationships
learned by the teacher. The 72 scaling factor in equation 2
ensures the gradient magnitudes remain approximately con-
stant when changing the temperature, as initially proposed by
Hinton et al [12].

To improve the effectiveness of knowledge transfer, we
incorporate curriculum learning by sorting the training data
based on the teacher model’s confidence. For each training
sample (z;,y;), we calculate a difficulty score d:

o(z) = 3)

d(wi, yi) = L(2e(4),Yi) “4)

where z;(z;) is the teacher’s prediction for input x;, and L
represents the cross-entropy loss between the prediction and
true label y;. The training data is then ordered from easiest
(lowest loss) to hardest (highest loss), allowing the student to
gradually progress from simple to more challenging examples
during training.

This knowledge distillation framework enables our student
model to benefit from the rich representations learned by
the larger teacher network while maintaining a significantly
smaller parameter count suitable for edge deployment. The
combination of soft targets and curriculum learning helps
the student model learn more effectively, leading to better
generalisation despite its reduced capacity.

B. Pruning strategy

After knowledge distillation, we apply structured pruning to
further reduce the model size and computational requirements
while maintaining performance. We employ a magnitude-
based pruning approach that systematically removes less im-
portant weights based on their absolute values, followed by
fine-tuning to improve accuracy [13].

The pruning schedule follows a polynomial decay that
gradually increases network sparsity from an initial value s;
= 0.50 (50% sparsity) to a final target sparsity sy = 0.80
(80% sparsity). This aggressive pruning strategy was chosen
to substantially reduce model complexity while maintaining
acceptable performance through the iterative pruning and fine-
tuning process. The sparsity at step ¢ is calculated as:

t .-
s(t) = sp + (si=sp)(1 = —)° )
t
At each pruning step, weights are ranked according to their
absolute magnitude:

r(wij) = wijl (6)

where w;; represents the weight connecting neurons ¢ and j.
Weights with the lowest magnitude are considered less impor-
tant and are candidates for pruning. The pruning threshold 6,
at step t is determined by:
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0, = Q(IW], s(t)) (7

where Q(|W|,p) returns the p-th percentile of the absolute
weights ||, and s(t) is the target sparsity at step ¢. Any
weight with magnitude below this threshold is set to zero.

To maintain model performance, we implement an iterative
pruning and fine-tuning schedule. After each pruning step, the
network undergoes a brief period of fine-tuning to allow the
remaining weights to adapt and compensate for the pruned
connections. This process continues until the final target
sparsity is reached.

After the pruning process is complete, a final fine-tuning
phase is performed to ensure the pruned model maintains its
accuracy. The remaining non-zero weights are then stored us-
ing a sparse matrix format, significantly reducing the model’s
memory footprint. The combination of gradual sparsity in-
crease and iterative fine-tuning helps preserve the most im-
portant features learned by the network while eliminating
redundant parameters. This compressed format is particularly
well-suited for deployment on the edge, as it reduces both
storage requirements and computational complexity during
inference.

C. Quantisation scheme

Our quantisation strategy operates in two stages: first, quan-
tizing the model weights using quantisation-aware training,
and second, quantizing the feature maps to align with hardware
constraints.

The model weights are quantised to 8-bit integers during
training. This process applies quantisation during training,
allowing the model to adapt to reduced precision, while still
helping to preserve accuracy compared with lower bit quan-
tisation during training. For ACAM deployment, we further
quantise the feature maps. We use a mean-based thresholding
approach for binary quantisation. This approach, using the
mean rather than a fixed threshold, better adapts to the
distribution of feature values.

D. ACAM-aware optimisations

Several architectural decisions in our network design are
specifically guided by ACAM hardware constraints and effi-
ciency considerations. The primary optimisation focuses on
minimising the use of complex layer types and reducing
the overall network depth while still aiming to maintain
performance.

A key design decision is the exclusion of fully connected
layers throughout the network. Traditional neural networks of-
ten employ multiple fully connected layers, particularly in their
final stages, which significantly increases the parameter count
and computational complexity. Instead, our architecture relies
primarily on convolutional layers, which are more parameter-
efficient due to weight sharing and maintain spatial relation-
ships in the feature maps while also demonstrating superior
memory access patterns. In convolutional operations, each
loaded weight is reused multiple times as it slides across the
input feature map and input values are reused across multiple



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL., NO

filter applications. This repeated use of data once loaded from
memory significantly improves the energy efficiency of the
network, as the energy cost of memory access is spread over
multiple computations. This design choice not only reduces
the model size but also aligns better with ACAM’s pattern
matching capabilities.

The number of convolutional layers is also carefully op-
timised. Rather than utilising deep networks with numerous
convolutional layers, we employ a compact design with strate-
gically placed convolutional layers. By using a progressive
expansion and reduction in filter count we aim to maintain
essential feature extraction capabilities while minimising the
overall computational requirements. The resultant lightweight
model is then used for the template generation and pattern
matching that replaces the classification functionality of a
traditional softmax layer.

1) Template generation: Template generation is a crucial
step in optimising neural networks for deployment on ACAM
hardware [14]. This process transforms the learned represen-
tations of a trained neural network into a format that can be
efficiently stored and matched within the ACAM architecture.
The primary goal of template generation is to create a set of
representative patterns for each class that capture the features
learned by the network.

Template generation aims to distill the high-dimensional
feature representations learned by the neural network into a
more compact and hardware-friendly format. This is achieved
by analysing the logits of the network’s penultimate layer
(before SoftMax classification) when processing training sam-
ples from each class. These logits are then processed to
create templates that capture the most important features for
distinguishing between classes.

The trained neural network is used to generate feature maps
for a large number of training samples from each class. These
feature maps represent the network’s internal representation of
the input data.

Template generation is a crucial step in optimising neural
network models for ACAM hardware implementation. This
process involves converting the feature maps produced by
the neural network into binary representations that can be
efficiently stored and processed in ACAM architecture. Two
primary methods for this binary thresholding have been ex-
plored; mean-based and median-based approaches.

In conventional signal processing, median-based threshold-
ing is often preferred for its robustness to outliers and ability
to maintain a balanced distribution of values in the binary
templates [15]-[17]. However, our analysis (see Fig. 1) reveals
that for neural network feature maps, mean-based thresholding
consistently outperformed the median approach. In the mean-
based method, the average value of each feature across all
training samples is calculated to serve as the threshold, with
feature values above the mean set to 1 and those below set to 0.
While this approach is traditionally considered more sensitive
to outliers, it can capture more nuanced distributions in the
feature space which is advantageous in the context of neural
network activations. Neural networks, particularly those em-
ploying ReLU activations, produce feature maps characterised
by significant sparsity, with numerous zero values. These zero
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activations substantially lower the mean threshold compared
to the median, creating a more discriminative binary repre-
sentation. The lower threshold enables the binary templates to
capture subtle, non-zero activations that often carry important
class-specific information, whereas a median-based approach
might eliminate these features by setting a threshold that
effectively treats many informative, low-magnitude activations
as noise. Therefore, the mean-based method is more sensitive
to the actual distribution of active features, preserving more
relevant information for classification.

Feature 3 Feature 10 Feature 11 Feature 12

ature 15 Feature 16

Fig. 1. Comparison of mean (red) and median (green) thresholding for each
feature output from the front-end classifier.

We also explore the possibility of generating multiple
templates for each class, specifically exploring configurations
with one, two, or three templates per class. This approach
acknowledges the variability within class distributions and
aims to capture a more comprehensive representation of each
class’s feature space. By creating multiple templates, we
can encompass different sub-clusters within a class, poten-
tially leading to improved classification accuracy. The multi-
template strategy is particularly beneficial for classes with high
intra-class variability. In our implementation, these multiple
templates are generated using a clustering approach on the
feature representations of each class. For instance, when using
three templates per class, we apply k-means clustering with
k=3 on the class-specific feature maps, and the centroids of
these clusters serve as the templates. K-means was chosen for
its computational efficiency and ability to partition data into
spherical clusters, making it a well-suited for this task. During
the matching process, an input query is compared against all
templates for each class, and the best match among these
templates determines the class similarity score.

To further optimise the clustering process, we utilised
silhouette scores to evaluate the quality of clustering for
different configurations. Silhouette scores provided a quantita-
tive measure of how well-separated and cohesive the clusters
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are, enabling the selection of the number of templates that
best captured the intra-class variability. This ensures that the
generated templates represent meaningful and distinct sub-
clusters within each class. While the multi-template approach
increases the memory footprint and the number of comparisons
required, it offers a trade-off between model complexity and
representational power, potentially leading to more robust and
accurate classifications, especially for complex datasets with
significant intra-class variations.

2) ACAM Pattern Matching Computing Concept: We pro-
pose using pattern matching to serve as the inference mech-
anism, replacing the traditional final classifcation function of
conventional digital DNNs with a hardware-optimised similar-
ity search operation. The main principle of pattern matching is
to compare an input pattern against a set of stored templates. In
this work this is performed by a RRAM-CMOS ACAM system
which is discussed in Section III. To evaluate the performance
of the hybrid software-hardware classifier, the modelling of the
ACAM is required towards introducing a good approximation
of its behaviour to the software flow. Additionally, due to
the intrinsic properties of the RRAM devices, the employ-
ment of program-once-read-many can provide better stability
and endurance of the emerging RRAM devices. Thus, the
calibration of the appropriate weights that are required for
the RRAM-based ACAM in software and the programming
once to the hardware is considered a more pragmatic method.
For inference (assuming that the appropriate weights have
been programmed to ACAM during training phase), the input
pattern typically represents the feature map generated by pro-
cessing an input sample through the front-end convolutional
feature extractor network. This feature map is used as a query
key to be compared against all stored templates. The stored
templates have been generated during the training process to
be used as the learned representation classes to be classified
by the network. The comparison, which can be performed in
parallel for all stored templates, identifies the template that
most closely matches the input pattern, therefore determining
the classification output by selecting the template that resulted
in the highest similarity. A simple feature count pattern match-
ing model is first explored to emulate the main functionality
of ACAM without introducing the more hardware-demanding
distance calculation from the matching window. Thus, unlike
a more complex similarity calculation model, we are assuming
that if an input is outside the effective matching window of
each ACAM cell then it’s effect to the output is zero. Each
input sample’s quantised feature map is compared against
the stored templates for all classes. The comparison sums
the number of exactly matching features between the input
and each template. This method is chosen for its simplicity
and efficiency in hardware implementation, as it primarily
involves bitwise comparison operations that can be performed
efficiently. The class with the highest feature count is selected
as the predicted class for the input sample.

For feature count-based pattern matching, given a query
feature vector Q and template T, each with N features, the
feature count score Sy, can be expressed as:

N
Sre(@,T) = 1(Qi=T,) ®)
i=1
where [ is the indicator function and e is the matching
threshold. For a more realistic model of ACAM, we are also
testing a similarity-based pattern matching approach which
implements a distance calculation when the input is outside
the matching window of the ACAM cell. For each template,
the function calculates a similarity score based on how well
the query’s features fall within the template’s defined bounds.
Specifically, it computes both a distance measure and a hit
ratio. The distance is calculated as the sum of squared differ-
ences between the query and the template bounds, but only
for features that fall outside the attribute’s matching range.
This approach allows for a degree of flexibility in pattern
matching, accommodating small variations in feature values.
The hit ratio represents the proportion of features that fall
within the template’s bounds, providing a measure of overall
match quality. The final similarity score is derived from these
metrics, with higher similarities indicating closer matches.
This similarity-based approach provides a more granular as-
sessment of match quality compared to the feature count
method, potentially offering improved discrimination between
closely related patterns.

For similarity-based pattern matching, we calculate both
distance and hit ratio. Given a template T with upper and lower
bounds [T, TY], the distance score D for features outside the
template bounds is:

N [(Qi—=TY)? if Qi>TY
D@QT)=)> {(TF-Qi)? ifQi<TE 9
=110 otherwise

The hit ratio H measures the proportion of features falling
within the template bounds:

N
H@ﬂ=%2ﬂ#§@§@) (10)
i=1

The final similarity score combines both metrics:
_ H@T)
1+ D(Q,T)

For both methods, the final classification decision C for a
query Q across M classes is determined by:

Ssim(Q7T) (1])

C(Q) = argmax S(Q,Tj)

JE{l,...M}

12)

where S represents either Sy, or Ssin, depending on the
chosen matching method.

III. RRAM-CMOS ACAM HARDWARE DESIGN AND
OPERATION
In this section, we are introducing the hardware description
of the RRAM-CMOS ACAM system used to replace the final
dense layers in conventional DNNs. The specific technology
employed for this ACAM is called Template piXeL (TXL)
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Fig. 2. Combined Deep Neural Network (DNN), for feature extraction and dimensionality reduction, with Analogue Content Addressable Memory (ACAM)
back-end network [20], for final classification of the extracted feature map through analogue information processing.

and depending on the specific requirements of each edge
application, different circuit and/or system implementations
can be used. Each and every implementation discussed is used
to implement specifically the last similarity comparison back-
end system, as shown in Fig. 2.

A. ACAM Architecture and Background

Template matching hardware accelerators can be used as
energy efficient classification engines closely integrated with
edge sensors. Recently, content addressable memory (CAM)
is a popular system architecture that has been repeatedly
deployed as template matching accelerators [18]. CAMs are
memory-centric systems using custom dense memory arrays
with hardware-level optimisation aimed at performing a fast
parallel search and match operation between a query key and
the stored templates. CAMs operate in a massively parallel
manner, comparing the input with every stored templates in
the CAM array simultaneously [18]. In recent years, towards
further reducing the energy dissipation of CAM systems,
emerging memory technologies have been proposed as strong
candidates to implement analogue memory and computing
technologies. Some of these advances resulted in Analogue
CAMs (ACAMs) that can be used to directly interface with
analogue sensors’ output and process information on-the-fly
without analogue-to-digital conversion that is costly in terms
of energy and IC area [19]. Implementing analogue template
matching accelerator near the edge sensors can further help
with data transfer bottlenecks since the information can be
efficiently processed using real-valued data locally to the
sensor and only the classification results will need to be
transmitted.

On the device engineering front, recent advances in emerg-
ing memory technologies introduce a new component for novel
analogue circuit design. Memristors, also known as Resistive
Random Access Memory (RRAM), are two-terminal, tuneable,
non-volatile, nanoscale resistive memory devices [21]. RRAM
has many beneficial traits over conventional memory devices.
RRAM can be integrated to implement novel computing
systems showcasing low power consumption, high throughput,
low area of integration and multi-bit information stored per
cell compared to their fully CMOS counterparts.

In the last decade, RRAM has been extensively investigated
for its use in processing information in the analogue domain
while being organised in dense topologies. RRAM devices can
be used to store multiple bits of information while retaining the

stored data in the absence of power, thus enabling dense non-
volatile memory modules. The investigation of RRAM devices
as a form of low power tuneable resistive element drives
analogies with the observed behaviour of biological synap-
tic connections. Hence, novel DNNs using RRAM-CMOS
hybrid circuits and systems have been proposed to satisfy
the computing needs, especially for resource-constrained edge
applications [22], [23]. Furthermore, the integration of RRAM
devices into CAM architectures can result in novel energy-
efficient ACAMs [24]. RRAM-CMOS ACAMs have been
shown to be leveraged as an efficient component for ML
models [25].

Towards integrating such analogue template matching clas-
sifiers in a wide variety of applications that require the classifi-
cation of high-dimensional data, the use of a feature extractor
front-end is required. A concept schematic of such a system is
shown in Fig. 2. The feature extractor performs the necessary
dimensionality reduction by generating a compressed feature
map of the initial high-dimensional input. As an example,
we could consider the use of an image sensor capable of
capturing a still image with a specific number of sensing pixels
with a convolutional network being used to perform a spatial
feature extraction of the input. The flattened feature map (e.g.
the output of a convolutional-based feature extractor) is used
as a query input for the back-end RRAM-CMOS ACAM
classifier. The classifier is used to perform the final classi-
fication of the lower-dimensional feature map by comparing it
to its pre-stored feature map templates. The stored templates
are created during the network training and are stored in
ACAM for inference. The back-end classifier responds with
a real-valued output vector that indicates the similarity of
the feature map with each of the stored template/landmark
feature maps, with the highest similarity being selected for
the classified pattern. The similarity search is performed using
real-valued data which circuit-wise is implemented by the
analogue ACAM layer. Through this configuration of mixed-
signal components, we can exploit the benefits of both digital
and analogue information processing for ML applications.
It has been shown that efficient digital feature extraction
system can be implemented through tinyML techniques that
can achieve competitive accuracy while using only a small
fraction of resources compared to their full DNN counterparts
[26]. Towards further optimising such techniques for extreme
edge cases an analogue RRAM-based classifier can be used
as final classification stage to replace the dense Multi-Layer
Perceptron (MLP) network that conventionally is used for the
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Fig. 3. Analogue Content Addressable Memory (ACAM) block diagram
showcasing the main analogue computing blocks [28]. The block is effectively
a two layer network, with the first layer being the ACAM module that
calculates in parallel the similarity of the input feature maps with the pre-
computed templates. The second layer senses the similarities and converts
them into the proper voltage levels to pass through a final Winner Take All
(WTA) network that computes the argmax function on the set of similarities.
We assume that the feature map used as input to ACAM is the output of the
front-end feature extractor with the ACAM being employed as a final layer
classification network.

final fully connected layers in many DNN models. The back-
end classifier can process data using the real-valued format
of the feature map and can perform the similarity check
in a massively parallel manner, thus saving both memory-
computing resources as well as inference latency. Depending
on the RRAM technology and the ACAM design employed,
different weight quantisation formats can be used. The use of
RRAM devices enables the integration of multi-bit memory
technology near the computing, thus further saving memory
resources and inference latency.

B. Memory-Centric Accelerators for Energy Efficient Tem-
plate Matching

In this work, we are employing specifically Template piXeL
(TXL) ACAM (TXL-ACAM) technology, which implements
an energy-efficient ACAM system for accelerating near-sensor
template matching operations. The ACAM system is de-
signed in a commercially available 180 nm CMOS technology
while the RRAM devices are added through back-end-of-line
(BEOL) integration. The RRAM devices are designed and
fabricated through in-house facilities [27]. The RRAM devices
per cell are used to define the matching window, thus the volt-
age range for which an input is considered as matching. The
TXL-ACAM implementation showcase competitive energy
efficiency compared to other state-of-art ACAM technologies
of approximately 185f.J per similarity search operation per
cell.

The TXL-ACAM can classify a low dimensionality input
(e.g. the feature map at the output of a convolutional feature
extractor) by calculating the distance of the input vector to
stored templates. A block diagram of the proposed TXL-
ACAM is shown in Fig. 3. The output of the TXL-ACAM is a
real-valued/analogue vector that encodes the similarity of the
input per template. This computationally cornerstone operation
could be considered similar to the search and match of a query

inside a miniaturised database. The set of similarities is pro-
cessed through a Winner Take All (WTA) network to calculate
efficiently the maximum similarity in the analogue domain.
The WTA implements the argmax function and provides a one-
hot encoding of the highest similarity template. All operations,
with regard to the TXL-ACAM system, are implemented in the
analogue domain using custom analogue circuitry. This results
in an analogue back-end classifier that can replace a larger last
stage CMOS-based MLP network used conventionally for the
last few stages of DNNGs.

TABLE 1
TXL ACAM HARDWARE CHARACTERISTICS

Hardware Characteristics RRAM-CMOS TXL ACAM [28]
CMOS Technology 180nm MOSFET (5V Components)
RRAM Pt/ AlO4_2/T104/Pt -based
Technology metal oxide bi-layer MIM
Voltage Supply (Main) 3.3V
Energy
(per cell per search) 185fJ
Frequency 10MHz
Latency
(per inference/search) 100nsec
Area 0.485m?
Macro 1536 cells
Capacity 32 X 48 array

In Fig. 4(a), a schematic representation of the 6T4R TXL-
ACAM pixel is shown [28]. The upper and lower thresholds
of the matching window per cell are effectively defined based
on the ratio of the upper and lower RRAM device which
shifts the voltage threshold of the hybrid RRAM-CMOS
inverters. Additional circuitry implemented per cell is used to
conditionally charge the matchline when the input falls within
the cell’s matching window. An additional pMOS devices
is controlling the cell’s output through current limiting. The
current limiter pMOS devices is used to calibrate the cell’s
charging rate in case of a match. The circuit performs a pattern
matching operation between its input signal and its stored
patterns (stored in the form of programmable conductances
through the integration of the non-volatile RRAM devices).
Each hybrid inverter stores one of the bounds through appro-
priately configured RRAM devices. The charge for each cell
is accumulated using an analogue capacitor-based integrator
circuit implemented for each row of the memory topology
(thus per template). If multiple cells have a match with
attributes of the query input then multiple connections to Vpp
are enabled and the matchline is driven at some specific rate
(dependent on the number of match enable available per TXL-
CAM array) to high voltage. The sense amplifiers can be used
to detect if the overall match activity per template exceeds a
specific predefined level controlled by the amplifiers threshold
voltage. The sense amplifiers are calibrated to detect a specific
voltage level which is translated to match based on the time-
to-charge dynamics of the matchline. In case no such voltage
level is observed within the readout operation timeframe, then
the template is considered to not match with the input query at
a sufficient rate. The sense amplifiers voltage threshold can be
arbitrarily set depending on the intrinsic RRAM-CMOS cell
dynamics that define the charging rate of the matchline.
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Fig. 4. RRAM-CMOS -based Template piXeL (TXL) ACAM cell schematics.
There are many version of the TXL-ACAM technologies with each version
comprised of a specific set of trade-offs. In (a) a 6T4R charging design is
showcased aimed at ML applications with increased sparsity [28] In (b),
a 3T1R precharging design is shown that is aimed at applications that has
strict area specifications as well as differentiability as trait for the final stage
classification [29].

In Fig. 4(b), a schematic representation of the 3T1R TXL-
ACAM pixel is shown [29]. The 3TIR ACAM cell consists
of a single 1-transistor-1-resistor (1T1R) memory cell (serial
connection of Rjp;1 RRAM and My, nMOS devices) and
two additional transistors (Mp; pMOS and Mpys nMOS)
for matchlines evaluation. The input voltage controls the
resistance of the M transistor, and thus the voltage divider
formed by the RRAM devices and the Mpy1. The additional
nMOS and pMOS devices (My1 and Mp1, respectively) are
connected to a dual matchline configuration (M Lyow and
MLygrcyg). The two matchlines M Lyrayg and MLpow
represent the high and low bounds of the matching window,
respectively. Due to the complementary behaviour between
nMOS and pMOS, the nMOS transistor is responsible for
discharging M L;ow when the input voltage is below the
lower bound while the pMOS transistor is responsible for
discharging M Ly;cy when the input voltage exceeds the
higher bound. Contrary to Fig. 4(a), the 3T1R design follows
a precharging and evaluating operation cycle instead of a
discharging/initialisation and evaluation. The larger charging
cell could be preferable in sparse activation applications, while
the more conventional 3T1R precharging cell design could be
preferred in normally distributed activation applications due to
its smaller size.

More specifically, if the input voltage I N is below the lower
bound Vi ow, the resistance of the nMOS transistor M 4 is rel-
atively high which drives V' D (voltage at the intermediate node
of the 1TIR voltage divider circuit) to an appropriate voltage
to enable discharge through the nMOS transistor Mjysro of
matchline M Lpow. At the same time, the pMOS transis-
tor Mg is non-conductive and the matchline M Ly;oy
is not discharging through the pMOS device. If the input
voltage I N exceeds the higher threshold, the resistance of
the nMOS transistor M4 is relatively low which drives V D
to an appropriate voltage to make the pMOS transistor My gy
ON to discharge the matchline M Ly while the nMOS
transistor Mpy;ro is OF F' and the matchline M Lz ow is not
discharging fast enough. If the input voltage IN is lower
than the high threshold and higher than the low threshold,
then a match case occurs. The safe V' D value makes both
pMOS transistor My, and nMOS transistor My, 1o partially

or completely OFF so that the matchlines M Ly;cy and
M Liow are not discharging. By evaluating both matchlines a
final decision about the match/mismatch case can be asserted.
Furthermore, being able to evaluate each threshold separately
provides better assessment in case of mismatching and makes
the cell differentiable. Thus, we can understand how to train
the RRAM weights by assessing which threshold is surpasses
or not.

Due to the use of analogue sub-systems the noise sensitivity
is an area that requires considerations to avoid non-idealities
from the analogue and mixed-signal sub-system to introduce
noise to the final classification output. The TXL ACAM sys-
tem employs supra-threshold RRAM-CMOS operating point
thus mitigating the noise introduced by the CMOS circuits to
the final classification results. The main noise source could
be traced to the emerging RRAM technology due to cycle-
to-cycle and device-to-device variability as well as other non-
idealities. The functional model of the TXL ACAM used to
implement the proposed model does not model the hardware
non-idealities in the Python simulations provided. This en-
ables us to easily integrate this functional model of TXL to
TensorFlow framework and test its extrapolated effectiveness
in tinyML classification applications. The energy figure used
for the model-level energy calculations is based on post-
layout simulations and is used to calculate the approximate
extrapolated performance of the custom tinyML network under
investigation. The TXL ACAM layer has been simulated on
Cadence Virtuoso environment and Spectre+SPICE simulation
engine. Although RRAM devices have cycle-to-cycle varia-
tions, statistical corner analysis can help to define safety mar-
gins for the matching windows per each cell. This marginally
affects the tuneability of the TXL cells which in return affects
the quantization. However, the proposed 9T4R TXL design
demonstrates high matching window tuneability which can
be used to mitigate this variability by applying wider safety
margins without significant effect on the quantization and
approximation template matching computing.

IV. EXPERIMENTAL SETUP

A. Datasets preparation

The CIFAR-10 dataset [30] has been used to evaluate model
performance as it is a widely recognised benchmark in the
field of image classification. CIFAR-10 is selected as our
evaluation benchmark because it represents a well-established
standard in the TinyML community, enabling direct com-
parison with existing edge classification approaches while
demonstrating the core hybrid co-design methodology. The
grayscale preprocessing reflects realistic constraints in ultra-
low-power edge vision systems where monochrome sensors
are commonly employed to minimise data bandwidth and
energy consumption. This dataset consists of 60,000 32x32
colour images across 10 classes, with 6,000 images per class.
The dataset is divided into 50,000 training images and 10,000
test images.

CIFAR-10 serves as a common challenge in image clas-
sification tasks, allowing for direct comparison with other
state-of-the-art methods. The dataset’s size allows for rapid
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experimentation and iteration, which is crucial when develop-
ing new classification approaches. Furthermore, the 10 distinct
classes (airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck) provide a good representation of real-world object
recognition tasks.

To better simulate the input characteristics of ACAM hard-
ware we pre-processed the CIFAR-10 images by converting
them to grayscale. This conversion was performed using the
standard formula: Y = 0.2989 x R + 0.5870 x G + 0.1140
x B, where Y is the resulting grayscale value, and R, G, and
B are the red, green, and blue channel values respectively.
This conversion is specifically motivated by ACAM hardware
constraints, as reducing from 3-channel RGB to single-channel
grayscale decreases memory requirements by 67% and sim-
plifies analogue template matching operations in our RRAM-
based cells. After the grayscale conversion, the values are
normalised to improve the stability of neural network training
and the subsequent quantisation process.

In addition to CIFAR-10, we validate our approach on
a larger, more complex dataset, CINIC-10 [31]. CINIC-10
presents a significantly more demanding benchmark, compris-
ing 270,000 images with greater diversity due to the inclusion
of downsampled ImageNet samples, which introduces substan-
tial domain shift and intra-class variability

B. tinyML Feature Extractor Model architectures

A ResNet-50 [32] architecture is used as the teacher model.
This deep residual network is chosen for its high performance
on the CIFAR-10 dataset and its ability to learn rich, hierar-
chical features [33]. The ResNet-50 model consists of three
stages, each containing multiple residual blocks. The first stage
operates on 16 channels, with subsequent stages doubling the
number of channels while reducing spatial dimensions. Each
residual block comprises of two 3 x3 convolutional layers with
batch normalisation and ReLU activation function. A shortcut
connection is added to each block, with 1x 1 convolutions used
when necessary to match dimensions. The network concludes
with global average pooling and a fully connected layer for
classification. The ResNet-50 model is initialised with He
normal initialisation and employs L2 regularisation to prevent
overfitting.

1) Student Ablation Studies: Our ablation studies quantify
the impact of each optimisation technique and architectural
decision on classification performance of the student model as
shown in Table II. The study explored a range of architectures,
from simple dense networks (390,000 parameters) to complex
multi-layer convolutional models (5.9M parameters), explor-
ing various configurations including dense layers (128-1024
units), convolutional layers (16-512 filters), and global average
pooling. While not every configuration explored during this ex-
ploratory phase is shown, Table II highlights the key architec-
tures, parameters and optimisation techniques we were consid-
ering before finalising the architecture choice. The sequential
application of optimisation techniques demonstrated clear ben-
efits. Knowledge distillation consistently improved accuracy
across all model configurations, with an average improvement
of 5.2% compared to baseline training. Notably, for the CNN-
based architectures, knowledge distillation yielded even more
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Fig. 5. Student CNN model architecture using a traditional softmax classifier.

substantial gains, with improvements ranging from 7.3% to
9.4%. The subsequent application of pruning maintained this
enhanced performance, showing minimal degradation (average
-0.8%) while significantly reducing model complexity. 8-bit
training aware quantisation also proved extremely robust,
reducing accuracy by only 0.42% on average while enabling
hardware-efficient implementation.

Starting with a baseline model containing dense lay-
ers (Dense 128), we observed that increasing dense layer
width (256, 512) actually degraded performance, with accura-
cies dropping to 78.2% and 77.89% respectively for binary
similarity-based matching. This suggests that larger dense
layers may introduce redundant parameters without captur-
ing additional discriminative features. The final architecture,
avoiding dense layers to align with ACAM hardware con-
straints, achieved the optimal balance between model com-
plexity and accuracy with convolutional termination layers
outperformed dense layer configurations in terms of stability
across quantisation schemes. Models concluding with con-
volutional layers demonstrated consistent performance across
different quantisation levels, with accuracy variations limited
to +£1.2%. In contrast, dense layer configurations showed
higher sensitivity to quantisation, with accuracy variations of
up to +3.5%.

2) Student Model Architecture: The final student model is
a significantly smaller convolutional neural network designed
with ACAM deployment as shown in Fig. 5. It consists of three
main convolutional layers, where the first two are followed by
batch normalisation and max pooling operations. The network
begins with 32 filters in the first layer, increases to 128 in
the second, and concludes with 256 filters in the third layer.
An additional convolutional layer with 16 filters is appended
to reduce the feature map size. The architecture has been
designed to balance computational efficiency with model size
and feature extraction capability.

To quantify the computational requirements of both ar-
chitectures, we calculate the number of multiply-accumulate
(MAC) operations. For each convolutional layer, the total
number of MAC operations is given by:

MACSconv = Hout X Woul X Kh X Kw X Cin X C(oul (13)

where H,, and Wy, are the output feature map dimensions,
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TABLE I
ABLATION STUDY RESULTS: IMPACT OF KNOWLEDGE DISTILLATION (KD), PRUNING, AND QUANTIZATION ON DIFFERENT STUDENT MODEL
ARCHITECTURES USING A SOFTMAX LAYER FOR CLASSIFICATION.

Architecture Baseline KD Pruning Quantization | Parameters | Model Size | Improvement
Description Accuracy (%) | Accuracy (%) | Accuracy (%) | Accuracy (%) (MB) (%)
Dense Layer Architectures
Dense 128 4191 45.59 38.49 43.78 390K 0.38 +3.68
Dense 256-128-64 46.97 50.19 48.62 49.52 800K 0.80 +3.22
Dense 1024-512-256 46.60 51.63 50.89 50.07 3.8M 3.64 +5.03
Dense 512-128 47.40 50.56 49.19 50.91 1.6M 1.57 +3.16
Simple CNN Architectures
CNN 16 + Dense 32 46.16 45.22 43.68 47.03 460K 0.45 +0.87
CNN 32 + Dense 32 55.21 59.20 61.09 58.87 920K 0.88 +5.88
CNN 32 + Dense 64-16 57.92 63.10 63.92 60.83 1.8M 1.76 +6.00
Multi-Layer CNN Architectures
CNN 16-32-64 + Dense 32 61.10 71.23 70.61 65.24 1.4M 1.35 +10.13
CNN 64-128 + Dense 32 59.83 71.35 71.64 66.30 3.3M 3.14 +11.81
CNN 32 + Dense 128 58.00 70.56 70.00 67.00 3.6M 3.50 +12.56
CNN 32-64 + Dense 64 59.36 71.89 71.47 67.26 3.2M 3.09 +12.53
CNN 16-32-64 + Dense 128 62.58 74.56 73.69 67.84 5.6M 5.31 +11.98
CNN 16-32 + Dense 32 65.77 73.36 72.85 67.89 32M 3.09 +7.59
CNN 64-128-256 + Dense 32 59.39 75.73 74.64 68.93 5.9M 5.65 +16.34
Global Average Pooling (GAP) Architectures

CNN 64-128-256 + GAP 60.19 66.57 70.67 71.14 380K 0.38 +10.95
CNN 64-128-512 + GAP 65.37 71.28 75.44 76.05 832K 0.82 +10.68
CNN 64-128-256-1024 + GAP 70.85 78.16 79.61 77.74 3.0M 2.93 +8.76

CNN notation: Conv2D filters (kernel size), GAP: GlobalAveragePooling2D

Improvement column shows the best technique improvement over baseline
All models evaluated on grayscale CIFAR-10 dataset

K}, and K, are the kernel dimensions, and C}, and C,, are
the input and output channels respectively. This calculation
allows us to compare the computational complexity of our
teacher and student models, demonstrating the efficiency gains
achieved through our architectural choices.

V. RESULTS
A. Model compression performance

The implementation of our compression methodology
demonstrates a successful balance between model size reduc-
tion and maintained performance. As shown in Table III, our
teacher model, based on the ResNet-50 architecture, achieved
a baseline accuracy of 93.77% on the CIFAR-10 dataset,
with corresponding F1-score, precision, and recall metrics all
around 93%, which is similar to previous work [33]. This
performance comes at the cost of substantial computational
requirements, with the model containing approximately 26.2
million parameters and requiring roughly 3 billion operations.
The same teacher model trained on the greyscale CIFAR-10
dataset requires a similar number of parameters but achieves
a slightly reduced accuracy of 91.04% due to the reduced
number of features. This demonstrates the increased challenge
of working with greyscale images for the compressed student
models.

On the other hand, the unoptimised base student model,
while achieving a significant reduction in model size to just
380,314 parameters (a 98.5% reduction), initially showed
a considerable performance drop to 76.29% accuracy. This
model required nearly 24 million operations, already represent-
ing a 99% reduction in computational complexity compared
to the teacher model. However, the application of our opti-
misation techniques, including knowledge distillation, pruning

and quantisation significantly improved the student model’s
performance while also further reducing the number of oper-
ations. The optimised student model achieved an accuracy of
82.22%, representing a substantial 5.93% improvement over its
unoptimised comparative model. This optimisation came with
an additional benefit of reducing the effective MAC operations
to 4.76 million through 80% sparsity, as operations involving
pruned (zero-valued) weights can be skipped entirely, rep-
resenting an 800-fold reduction in operations compared to
the original teacher model. By eliminating these unnecessary
computations, the network achieves significant energy savings
while maintaining classification accuracy.

While the performance gap between the teacher and opti-
mised student model remains at 8.82%, it should be considered
in the context of the dramatic reduction in model complexity.
The optimised student model maintains this performance level
while using just 1.45% of the parameters of the teacher model
and requiring only 0.13% of the computational operations.
This trade-off between performance and resource efficiency
positions the model favourably for deployment on resource-
constrained ACAM hardware.

B. Pattern matching performance analysis

The evaluation of different pattern matching approaches
reveals important insights about the trade-offs between accu-
racy and computational complexity. Binary (1-bit) template
quantisation achieved consistent performance of 70.91% ac-
curacy across both feature count (see Fig. 6) and similarity-
based approaches, though this represents a reduction from
the 82.22% accuracy achieved by the student model using a
traditional softmax classifier. This 11% accuracy drop must
be considered in the context of the significant computational
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Fig. 6. Confusion matrix of optimised student model using feature-based
pattern matching classifier.

benefits - while the softmax classifier requires floating-point
operations and dense matrix multiplications, the binary pattern
matching approaches operate using only simple bit compar-
isons.

While the 20% accuracy reduction from teacher model to
final pattern matching implementation appears substantial, this
trade-off becomes acceptable in several critical edge com-
puting scenarios where energy efficiency and computational
constraints outweigh absolute accuracy requirements. Appli-
cations such as always-on wearable health monitoring devices,
where battery life is paramount and approximate classification
is sufficient for trend detection, would benefit significantly
from the energy reduction achieved by our hybrid approach.
Similarly, resource-constrained IoT sensor networks for envi-
ronmental monitoring, smart agriculture, or industrial predic-
tive maintenance can tolerate moderate accuracy losses when
the alternative is frequent battery replacement or inability to
deploy due to power constraints. Additionally, applications re-
quiring real-time response with minimal latency, such as basic
gesture recognition for human-computer interaction or simple
object detection for robotics, can leverage the computational
simplicity of bit-wise operations over complex floating-point
calculations, making the accuracy trade-off worthwhile for
maintaining responsive performance on severely constrained
hardware platforms.

The identical performance between feature count and
similarity-based approaches in the binary domain can be
explained by examining how the matching operations converge
when features are quantised to single bits. In the binary
case, both methods effectively reduce to counting matching
bit positions, since the similarity approach’s distance cal-
culations and hit ratio measurements become equivalent to
direct bit comparisons when working with binary values. This
convergent behaviour suggests that more complex similarity
calculations provide no additional benefit when working with
these features.

While binary pattern matching achieves lower accuracy
compared to the student model with softmax, its computa-
tional simplicity and minimal memory requirements make it
an attractive option for extremely resource-constrained edge
applications where the 11% accuracy trade-off is acceptable
in exchange for significant energy savings and hardware sim-
plification.

Accuracy by Class

Fig. 7. Per-class accuracy of optimised student model using feature-based
pattern matching classifier.

C. Multiple template analysis

The investigation of using multiple templates per class
reveals slight improvements in classification accuracy, as
shown in Table IV. This analysis explores configurations using
one, two, and three templates per class to capture intra-class
variations more effectively.

The increasing the number of templates from one to two
improved accuracy from 70.91% to 71.64%, a gain of 0.73%.
However, further increasing to three templates per class
showed a slight decrease to 71.60%, suggesting diminishing
returns from additional templates. This pattern suggests that
binary quantisation, with its reduction of features, creates rel-
atively distinct and well-separated class representations where
a single template can already capture the essential pattern for
each class. The minimal improvement with a second template
and decrease with a third indicates that these features lack
the granularity to meaningfully distinguish additional intra-
class patterns, essentially leading to redundant or potentially
conflicting templates.

These consistently small improvements indicate that in-
creasing the number of templates may not be an effective
strategy for enhancing classification performance. The limited
gains must be weighed against the significant increase in
memory requirements and computational complexity associ-
ated with storing and comparing multiple templates per class.
This suggests that simpler configurations with fewer templates
might offer a better balance between resource utilisation and
classification performance. The results indicate that focusing
on optimising the quality of a single template per class might
be more beneficial than increasing the number of templates,
particularly given the minimal returns observed with additional
templates.
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TABLE III
COMPARISON OF TEACHER AND STUDENT MODEL PERFORMANCE, CALCULATED USING A SOFTMAX LAYER FOR CLASSIFICATION.

Model Accuracy  F1-Score  Precision Recall Parameters MAC operations Compression ratio
Teacher colour 93.77 93.78 93.83 93.77 26,215,810 3,858,551,808 -
Teacher greyscale 91.04 91.05 91.13 91.05 26,209,538 3,808,375,808 1.01:1
Student (without optimisations) 76.29 76.29 76.14 79.29 380,314 23,785,120 162:1
Student (with optimisations) 82.22 82.20 82.34 82.23 380,314 4,757,024 811:1
TABLE IV strengths that address specific limitations of purely digital
COMPARISON OF ACCURA%N‘K)‘E?;E‘;SING VARYING NUMBER OF methods. Recent digital TinyML frameworks such as MCUNet

Number of templates | Accuracy (%)
1 7091
2 71.64
3 71.60

D. Energy efficiency estimates

For the back-end classifier, each template matching opera-
tion consumes 185f] per cell. With our architecture requiring
10 templates of 784 features each, the energy consumption is:

Eback—end = N, templates X Nfealures X Ecell

(14)
=10 x 784 x 185f] = 1.45nJ

The total energy consumption of our front end network
can be calculated considering both sparsity and quantisation
effects. Given our total MAC operations of 23,785,120 from
Table III, and accounting for 80% sparsity, the effective
number of MAC operations is 4,757,024. However, we must
also consider that lack of the final softmax fully-connected
layer using this ACAM optimised approach, therefore we can
remove an addition 7,850 operations that were used by this
final layer, meaning the total operations for the front end
classifier is 4,749,174. Using the energy figures from Horowitz
[34] for 8-bit operations (0.2pJ for multiply and 0.03pJ for
add) and memory access costs (20pJ for 32KB cache), we
can calculate the energy consumption of the front-end feature
extractor. For each MAC operation, the computation energy
is 0.23pJ and the memory access energy is 20pJ, giving a
total front-end energy consumption of 96.07nJ per inference.
This combines with our back-end ACAM energy of 1.45n] for
template matching, resulting in a total system energy consump-
tion of 97.52n] per classification operation. In comparison
the teacher model has a total energy consumption of 78.064J
demonstrating the proposed methodology achieved a 792 times
energy reduction.

This demonstrates that our hybrid approach achieves signif-
icant energy efficiency, with the ACAM back-end consuming
less energy than traditional digital implementations. This paves
the way for new opportunities in multi-modal sensing enabling
smaller, more efficient deep learning models that can be
implemented in devices such as wearables while preserving
battery life.

E. Discussion

When compared to state-of-the-art digital-only TinyML
optimisation techniques, our hybrid approach demonstrates

[35] and optimised MobileNetV3 implementations achieve
compression ratios of around 7x while maintaining 80-90%
accuracy on CIFAR-10 outperforming our 70.91% accuracy.
However, these approaches still rely fundamentally on digi-
tal multiply-accumulate (MAC) operations and dense matrix
multiplications in their classification layers which typically
consume 200-2500 pJ per inference even after quantisation
and pruning [36]. In contrast, our hybrid approach eliminates
floating-point calulcations entirely in the final classification
stage, replacing computationally expensive softmax operations
with simple bit-wise pattern matching that consumes only
1.45n] for the back-end classifier. While binarized neural
networks (BNNs) [37] achieve similar bit-level operations
throughout the entire network with 88-90% CIFAR-10 accu-
racy, they still rely on sequential layer-by-layer processing
where each layer must complete before the next can begin.
This fundamental architecture prevents BNNs from exploiting
the massively parallel template matching capabilities inherent
in ACAM hardware, where all stored templates are compared
simultaneously against the input query in a single operation
cycle.

To address the scalability and generalisability of our pro-
posed methodology beyond CIFAR-10, we conducted addi-
tional experiments on the more challenging CINIC-10 dataset.
Training on grayscale CINIC-10, our teacher model (ResNet-
56) achieved 72.84% test accuracy, while the optimised student
model reached 65.96% accuracy. These results align well
with literature our student model performance is comparable
to lightweight architectures achieving 65-66% on CINIC-
10 [38], while our teacher model performs competitively to
state-of-the-art models which have achieved 82% [39], [40],
considering the additional constraints of grayscale conversion.
Following 1-bit feature-based template pattern matching using
the optimised student model, the hybrid system maintained
53.74% accuracy. Despite the 12.22% accuracy reduction
from student to template matching, the system maintains the
energy reduction demonstrated on CIFAR-10, validating that
our methodology generalises effectively to larger, more diverse
datasets.

The fundamental advantage of our approach lies not in
competing directly with digital optimisation techniques, but
in addressing the memory wall problem that limits all digi-
tal approaches especially in edge computing case scenarios.
Traditional TinyML methods, regardless of quantisation level,
suffer from the fundamental energy cost imbalance between
computation and memory access. According to Horowitz
[34], memory accesses consume 10-100x more energy than
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arithmetic operations (10-100 pJ for cache access vs. 0.03-
0.9 pJ for basic operations), with off-chip DRAM accesses
requiring 1-2 orders of magnitude more energy still (1.3-
2.6 nJ). In conventional processors, on-chip memory systems
already account for over 50% of total die energy consump-
tion, and this proportion increases significantly when off-chip
memory accesses are included. TinyML inference exacerbates
this problem through repeated loading of weights and acti-
vations from memory for each layer’s computations, creating
a memory-bound rather than compute-bound energy profile.
This memory access bottleneck remains problematic regardless
of weight quantisation techniques, as even 1-bit weights must
still be retrieved from memory storage during inference.

Our RRAM-based ACAM performs computation directly
within the memory array, eliminating data movement between
memory and processing units for the classification stage. This
memory-centric computing paradigm becomes increasingly
valuable as model sizes grow and memory access costs
increase. Furthermore, the analogue nature of our back-end
classifier enables natural handling of sensor noise and vari-
ations without requiring additional digital processing steps,
making it particularly suitable for direct sensor-to-decision
applications in IoT environments. While purely digital ap-
proaches excel in applications requiring maximum accuracy,
our hybrid methodology offers a unique solution space for
ultra-low-power applications where the combination of ac-
ceptable accuracy, extreme energy efficiency (97.52nJ total),
and hardware simplicity creates deployment opportunities that
would be infeasible with conventional digital-only TinyML
approaches.

VI. CONCLUSIONS

This work demonstrates the feasibility of a hybrid digital-
analogue architecture for edge image classification through
the integration of optimised neural networks with RRAM-
based ACAM hardware accelerators. The proposed digital
methodology utilising knowledge distillation achieves substan-
tial efficiency improvements while maintaining accuracy, with
our resultant student model achieving 82.22% accuracy on
CIFAR-10 using only 1.45% of the teacher model’s parameters
and reducing MAC operations by a factor of 800. For analogue
classification, template pattern matching maintains 70.91%
accuracy using a simple feature count approach, suggesting
more complex pattern matching approaches may not yield
proportional benefits in classification accuracy.

This approach demonstrates significant advantages in terms
of energy efficiency, with the ACAM back-end consum-
ing only 1.45n] per classification operation compared with
78.06p] for the teacher model, while maintaining acceptable
accuracy levels for edge applications. These results establish
the potential of digital-analogue approaches for resource-
constrained edge devices. Future research could further ex-
plore template generation techniques and novel ACAM cell
designs, further optimising classification accuracy and energy
efficiency in edge computing applications.
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