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Highlights

What are the main findings?

e Initial Conservation AI UK Mammals model outputs demonstrated high precision
(>0.80) for foxes (Vulpes vulpes) and hedgehogs (Erinaceus europaeus) but low recall
(<0.50) for hedgehogs.

e  Following retraining, AI model performance improved substantially. However, dis-
crepancies between Al and human classifications remained statistically significant,
indicating that human accuracy still outperformed that of the Al model. Recall scores
for hedgehogs also remained low despite these improvements.

What are the implications of the main findings?

e  We present a semi-automated, three-step workflow incorporating an Al generalist
object detector, an Al species-specific classifier, and manual validation as an alter-
native image classification method that accelerates camera trap data analysis whilst
maintaining classification accuracy.

e  The findings provide baseline performance estimates of Conservation Al's UK Mam-
mals model and highlight the importance of continuous Al model training, the value
of citizen science in expanding training datasets, and the need for adaptable workflows
in camera trap studies.

Abstract

The widespread adoption of camera trap surveys for wildlife monitoring has generated
a substantial volume of ecological data, yet processing constraints persist due to the
time-consuming process of manual image classification and the reliability of automated
systems. This study assesses the performance of Conservation Al's UK Mammals model in
classifying three species—Western European hedgehogs (Erinaceus europaeus), red foxes
(Vulpes vulpes), and European badgers (Meles meles)—from a subsample of 234 records from
camera trap images collected through a citizen science initiative across residential gardens.
This analysis was repeated after retraining the model to assess improvement in model
performance. Initial model outputs demonstrated high precision (>0.80) for foxes and
hedgehogs but low recall (<0.50) for hedgehogs, with the lowest recall probability of 0.12 at
the 95% confidence threshold (CT). Following retraining, model performance improved
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substantially across all metrics, with average Fl-scores (weighted average of precision
and recall across the three species tested) improving at all CTs, though discrepancies with
human classifications remained statistically significant. Based on performance results from
this study, we present a semi-automated, three-step workflow incorporating an artificially
intelligent (AI) generalist object detector (MegaDetector), an Al species-specific classifier
(Conservation Al), and manual validation. Where privacy concerns restrict citizen science
contributions, our pipeline offers an alternative that accelerates camera trap data analysis
whilst maintaining classification accuracy. The findings provide baseline performance
estimates of Conservation Al’'s UK Mammals model and present an approach that offers a
practical solution to improve the efficiency of using camera traps in ecological research and
conservation planning. We also highlight the importance of continuous Al model training,
the value of citizen science in expanding training datasets, and the need for adaptable
workflows in camera trap studies.

Keywords: camera trap data; image data processing; wildlife monitoring; Al-assisted
image classification; citizen science; machine learning; semi-automated workflow

1. Introduction

Over the last decade, camera traps have become an essential tool for wildlife moni-
toring, providing valuable data for understanding species ecology, behaviour, and conser-
vation [1-3]. Beyond monitoring species distributions and abundance [4,5], camera trap
surveys can facilitate the study of activity patterns, species interactions, and social dynam-
ics [6-8]. This survey method offers a non-invasive and automated approach that enables
data collection across large spatiotemporal scales [9,10], with minimal human interference,
facilitating the study of elusive species and natural behaviour [11]. Additionally, camera
traps record all species within their field of view, enabling the detection of non-target
species and potentially contributing to broader biodiversity assessments [12].

Large-scale camera trap studies can generate a substantial volume of image data,
presenting significant challenges for data storage, management, and analysis [13,14]. Image
classification is particularly time-consuming and can delay the delivery of results critical
for conservation and management decisions [15,16]. The growing demand for efficient data
processing has driven the development of Artificial Intelligence (Al), particularly Deep
Learning (DL), a subset of machine learning, to automate camera trap image analysis [14].
DL methods learn complex patterns directly from large datasets using versatile learning
algorithms without manually designed parameters [17]. Al-driven approaches, such as
Convolutional Neural Networks (CNNs), consist of multiple layers that learn distinct data
representations at varying levels of abstraction to refine its understanding of complex
features and improve accuracy [17].

Several Al platforms have been developed to improve the efficiency of camera trap
data processing. These platforms can filter “blank” images; distinguish animals from
humans or vehicles [18]; classify species [19]; identify individuals [20]; and count the
number of individuals of a single species [14]. However, despite their advantages in
processing speed and efficiency, Al-based image classification still faces practical and
methodological challenges. Many Al models are based on transfer learning, involving
fine-tuning pre-trained foundation models such as a Faster Regional-based Convolutional
Neural Network (R-CNN) or a You Only Look Once (YOLO) model [21,22], which typically
require thousands of labelled images per species to achieve optimal performance [23].
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The accuracy of Al classifications remain variables across studies, with some reporting
lower accuracy than human classification [18,24,25], while others have demonstrated strong
performance [26]. For example, Vélez et al. [27] reported low to moderate recall (<0.70)
across several platforms including Conservation Al [28], MLWIC2 (Machine Learning for
Wildlife Image Classification [29], and Wildlife Insights [30], although precision was high
for certain species and taxonomic groups. In contrast, MegaDetector [31] achieved high
accuracy when distinguishing “blank” images from those containing an animal, a finding
also reported by Leorna and Brinkman [32]. Other platforms [33] have shown comparable
performance to human observers in terms of speed, cost, carbon efficiency, and accuracy,
with a 98% species-level accuracy reported in the United States [15] using a trained deep
convolutional neural network [32] and a F1-score of 96.2% reported using a two-stage deep
learning pipeline that integrates a global model and a species-specific model [34].

Many researchers have recognized the limitations of fully automated and fully manual
approaches to camera trap image analysis [14,35] and employ a hybrid workflow that com-
bines Al and human classifications. Platforms such as eMammal [10] and MammalWeb [36]
enable citizen scientists to contribute to image classification efforts, though classification
accuracy can vary depending on participants’ identification expertise [35,37].

To gain a quantitative understanding of the effectiveness of Al and model retrain-
ing, an aspect that has received limited attention, we evaluate the performance of Con-
servation Al's UK Mammals model (one of the most developed UK Mammal detection
algorithms available) using a subsample of camera trap images, before and after model re-
training [15,27,38]. Conservation Al [28] is a cloud-based platform developed at Liverpool
John Moores University (UK) that classifies camera trap images containing wildlife species
from the UK, North America, and Africa. The online platform applies region-specific mod-
els to uploaded images and assigns species labels alongside confidence scores, providing a
user-friendly interface for camera trap image classification [28]. We also introduce a novel
semi-automated, three-step workflow that integrates a generalist Al model (MegaDetec-
tor) to remove blank images, a species-specific classifier (Conservation Al), and manual
verification (Figure 1). This proposed workflow aims to balance efficiency and accuracy
when processing large-scale camera trap datasets [32] and offers an alternative to fully
automated [39] or fully manual [13] classification approaches.

Step 1:
. Camera trap dataset
Al filtering *
Primary Al model
(high recall)
Step 2:

Al species-classification

Step 3:
Manual classification

=
[R——

Figure 1. Conceptual overview of the semi-automated, three-step workflow designed to create
a pipeline for camera trap image analysis by combining two Al image classification stages and
manual verification.
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2. Materials and Methods
2.1. Data Collection

Camera trap data were collected as part of a Chester Zoo citizen science project
(Hedgehog Watch) in 2021. West European hedgehogs (Erinaceus europaeus, hereafter
hedgehogs) were used as a flagship species to encourage public participation in an extensive
garden wildlife camera trap survey. The project involved volunteers from the public within
a 116 km? catchment area, pre-determined by Chester Zoo, signing up to participate and
deploy camera traps in their gardens between March and October from 2021 to 2023 [40].
Additionally, a further 79 rural locations were surveyed to ensure spatial coverage across
the sample area. Therefore, the full dataset contained 494 camera trap sites and produced a
total of 850,870 images. This study used a randomly selected subsample of 234 records from
170 camera trap surveys conducted between April and October in 2021 and 2022 to evaluate
Conservation Al's UK Mammals model performance. This subsample was derived from
a wide range of surveys to ensure it is representative of the full image dataset. Images
represented independent snapshots from different gardens at different times to avoid
pseudo-replication in consecutive frames and annotation drift. While it is possible that
the same individual could appear in multiple images—for example, if the same individual
visited more than one garden or the same garden at different times—such occurrences are
unavoidable in most camera trap studies and are negligible for this analysis.

Browning trail cameras (model BTC-7A, Browning, Birmingham, AL, USA) were
deployed by volunteers, set to the Trail Cam operation mode, with high (12 MP) photo
quality, a 1 min photograph delay, a three-shot standard multi-shot mode, and a fast trigger
speed (0.4-0.7 s). Cameras were fixed to a stable structure (tree, fence post, etc.) around
three metres away from an open area with an unobstructed field of view. They were
placed 20-30 cm above the ground and angled slightly downwards or parallel to the flat
surface [41,42].

2.2. Classification Methods

Model accuracy was estimated using classification performance for three species:
hedgehogs, red foxes (Vulpes vulpes, hereafter foxes), and European badgers (Meles
meles, hereafter badgers) (Figure 2). These three mammals had at least eight records
(hedgehogs = 177 detections, foxes = 49 detections, badgers = 8 detections) in the dataset
and were visually distinctive compared to other species (e.g., rodents).

The subsample was submitted to Conservation Al’s online platform, and the UK
Mammals model was used to assign species classifications using a set of pre-defined species
labels. The model assigned a level of confidence to each detection, with higher values
reflecting a more certain classification. The subsample was also manually analyzed by the
first author and a research assistant [43,44] by inspecting images and assigning species
classifications using Timelapse software (v2.3.2.8; [45,46]). Timelapse is an image analyzer
that reads and displays images and allows the user to build a custom interface to examine
images efficiently. To standardize the species classification process for both the Al and
the manual approach, species labels were created in Timelapse prior to classifying images
using the Quick Paste tool to match those pre-determined labels used by Conservation AL
The tool allows species details, such as the name and number of animals in the image, to be
pre-set to minimize the time required to process each image.

Estimates of precision, recall, and Fl-scores (weighted average of precision and re-
call) [47] were calculated using True Positives (TP), the number of observations where the
species was correctly identified as being present in the image; False Positives (FP), the
number of observations where the species was absent but was classified as being present;
and False Negatives (FN), the number of observations where the species was present but
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was classified as being absent (Table 1). Mean F1-scores were also calculated using the total
F1-score across all three species, divided by the number of species.

Figure 2. Sample camera trap images showing the focal species (A) European badger (Meles meles),
(B) red fox (Vulpes vulpes), and (C) Western European hedgehog (Erinaceus europaeus).

Table 1. Metrics and equations used to measure Conservation Al's UK Mammals model performance
(TP: True positives, FP: False positives, FN: False negatives) [47].

Metric Equation Interpretation
Probability the species is correctly classified as
Precision =~ TP/(TP + FP) present given that the Al system classified it
as present.

Recall TP/(TP + EN) Probabthy the species is cqrrectly C.lasmfled as
present given that the species truly is present.
2 x precision X recall/

(precision + recall) Weighted average of precision and recall.

F1-score

Performance estimates were calculated across a range of confidence thresholds (0.65,
0.75, 0.85, 0.95), a common practice in machine learning to demonstrate how increasing
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certainty affects classification performance through trade-offs between precision and re-
call [15,27]. Adjusting confidence thresholds has been shown to influence accuracy and
consequently, ecological inference; for example, excluding low-confidence predictions can
improve the reliability of species-level classifications [14,48]. More specifically, higher confi-
dence thresholds reduce false positives by prioritizing precision, whereas lower thresholds
increase recall by reducing false negatives. Evaluating model performance across multiple
confidence thresholds therefore supports informed threshold selection based on study
objectives and the relative importance of precision, recall, or a balance of both.

Outputs from both Conservation Al and Timelapse containing species classifications
and image filenames were exported. Additionally, classification confidence levels were
extracted from the Al output. The two sets of species classifications from two different
human viewers were cross-checked and then combined into a single dataset along with
Al-assigned species classifications from the pre- and post-trained models. Therefore, the
combined dataset consisted of image filenames, species classifications from both human
and Al vision, and confidence levels. In this case, human vision was assumed to be accurate
as both observers were wildlife researchers with existing UK mammal identification skills
and classifications between them both aligned; therefore, confidence levels were set at a
value of 1 [13,25].

2.3. Data Analysis

All analyses were performed using R Statistical Software (v4.2.2; [49]). The perfor-
mance of Conservation Al's UK Mammals model was assessed using the purrr package
(v1.0.1; [50]). Al and human vision classifications were joined to estimate model perfor-
mance metrics (precision, recall, and Fl-scores) for each species, compared to human
vision [50]. Performance metrics were classified as low (<0.50), moderate (0.50-0.79), and
high (>0.80) [24] and were estimated for each species at confidence thresholds (CT) of 0.65,
0.75, 0.85, and 0.95. The pre-trained assessment calculated baseline model performance
estimates. Following this, the model was re-trained by manually classifying an additional
2341 images. The same metrics (precision, recall, and F1-scores) were then re-calculated for
the original subsample in a post-trained assessment.

Confusion matrices were constructed to visualize the patterns of Al classifications
among the three focal species using the pre- and post-trained Al models. Proportions of
images were categorized as “Correct” if the Al-assigned and human-assigned classification
matched, “Misclassified” if the Al model identified a different species, or “Blank” if the
Al model did not detect an animal. A confidence threshold of 0.85 was selected for the
confusion matrices as a pragmatic trade-off between precision and recall estimates [51].

Results from the pre- and post-trained models were compared using the McNemar’s
chi-squared statistic [52] to assess whether the proportion of accurate species classifications
differed significantly between models. Classifications generated by each AI model were
categorized as Matched or Unmatched relative to human-assigned classifications, and
comparisons were summarized in a two-dimensional contingency table. The assumptions
of the McNemar's test were met, as paired nominal data were used, observations were
independent, and discordant pairs were sufficient for reliable inference [53].

The Cohen’s Kappa test [54] was used to estimate an unweighted kappa statistic from
the irr package (v0.84.1; [55]) that provided an index of interrater agreement between
(1) human vision and the pre-trained Al model, and (2) human vision and the post-trained
Al model. The strength of interrater agreement was categorized based on the Cohen’s
Kappa value (k) [56] (Table 2). A bootstrap estimate (1000 replicates) was used to estimate
the change in Kappa between models, and the associated 95% confidence interval was
calculated. Cohen’s Kappa can be sensitive to class imbalance and prevalence effects, which
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can result in low Kappa values despite high overall agreement. Therefore, Kappa estimates
were interpreted alongside accuracy-based metrics to provide a more complete assessment
of model performance [57,58].

Table 2. Interpretation of the strength of interrater agreement indicated by the Cohen’s Kappa value
(k) [54,56].

Cohen’s Kappa Value (k) Strength of Agreement
<0.00 Poor

0.00-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Excellent

2.4. Measuring Efficiency

The time taken for both human and Al vision to classify the subsample was measured
to provide an estimate of efficiency for both methods. For Al vision, the Conservation Al
team measured the length of time the model took to finish processing the subsample of
images. For human vision, two separate individuals measured the length of time it took to
manually classify the subsample. An average of the two time periods from both individuals
was calculated.

To provide a realistic estimate of the amount of time it would take to process the
full dataset using both approaches, the time durations using Al and human vision were
extrapolated. Estimates for both approaches were calculated by multiplying the average
number of seconds taken to classify an image (based on the total time taken to classify the
subsample (N = 187 images)), by the total number of images in the full dataset (N = 850,870).
The total number of seconds was then divided by 60 to produce the number of minutes and
by 60 again to provide the number of hours. Finally, the total number of hours was divided
by 24 to provide an estimated number of days required to process the dataset. For human
vision, the total number of hours was also divided by 8 to represent the typical length of a
working day in the UK [59].

3. Results
3.1. Species-Level Estimates

The pre-training assessment provided baseline performance estimates for Conserva-
tion Al's UK Mammals model compared to human vision (Table 3; Figure 3). The model
had high precision values (>0.80) at all CTs for hedgehogs and foxes, meaning these species
were correctly classified as present given that the Al model classified them as present. How-
ever, precision values for badgers were low (<0.50), except at 95% CT, where it increased
to 0.86.

Inversely, recall estimates were moderate (0.50-0.79) for badgers at all CTs. This shows
that the Al model had the same moderate level of confidence that badgers were correctly
classified as present given that they truly were present. Foxes had moderate recall estimates
at all CTs, except at 95%, which was low. Hedgehogs had low recall estimates (<0.50),
with the lowest recall probability of 0.12 at the 95% CT. The Fl-scores corroborate these
estimates, showing that badgers had a low Fl-score at 65% and 75% CTs, moderate at 85%,
and high at 95%. Foxes and hedgehogs had a moderate and low F1-score, respectively, at
all CTs (Figure 3).
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Table 3. Conservation Al's UK Mammals model performance metrics from a pre- and post-trained
assessment, using two sets of classifications shared by Al and human vision (precision: probability
the species is correctly classified as present given that the Al system classified it as present, recall:
probability the species is correctly classified as present given that the species truly is present, F1-score:
weighted average of precision and recall). Confidence thresholds of 0.65, 0.75, 0.85, and 0.95 were

used for determining classifications of each species.

Pre-Trained Model

Post-Trained Model

Confidence Performance Metrics

Threshold (CT) Species Precision  Recall F1-Score Precision  Recall F1-Score
Fox 1.00 0.61 0.76 1.00 0.63 0.78

0.65 Hedgehog  1.00 0.20 0.34 1.00 0.44 0.61
Badger 0.33 0.75 0.46 0.78 0.88 0.82
Fox 1.00 0.57 0.73 1.00 0.61 0.76

0.75 Hedgehog 1.00 0.17 0.29 1.00 0.40 0.57
Badger 0.38 0.75 0.50 0.78 0.88 0.82
Fox 1.00 0.51 0.68 1.00 0.55 0.71

0.85 Hedgehog 1.00 0.15 0.26 1.00 0.38 0.56
Badger 0.43 0.75 0.55 0.88 0.88 0.88
Fox 1.00 0.47 0.64 1.00 0.51 0.68

0.95 Hedgehog 1.00 0.12 0.21 1.00 0.30 0.46
Badger 0.86 0.75 0.80 1.00 0.62 0.77
Hedgehog Fox Badger

Fl-5cores
(weighted average of precision and recall)

o

Al model version
0.50 Pre-trained Al model
I . Post-trained Al model

Confidence thresholds for determining species classifications

Figure 3. Conservation Al's UK Mammals Model F1-scores (weighted average of precision and recall)
from two sets of classifications shared by Al and human vision from a pre-trained and post-trained
model. Confidence thresholds of 0.65, 0.75, 0.85, and 0.95 were used for determining classifications of
three different species.

The post-training assessment provided model performance estimates after the algo-
rithm had undergone additional training (Table 3; Figure 3). Precision probability remained
at 1.00 for foxes and hedgehogs but increased for badgers by 136% (0.65 CT), 105% (0.75 and
0.85 CT), and 16% (0.95 CT) to reach a probability value of 1.00. Recall estimates improved
for all species. Although badger estimates increased by 17% at all CTs, improving from
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moderate to high, recall decreased by 17% and remained moderate at 95% CT. Fox recall es-
timates increased by 2% (0.65 CT), 5% (0.75 CT), 6% (0.85 CT), and 6% (0.95 CT), improving
to be moderate at all CTs. Hedgehog recall estimates increased the most out of all three
species (120% (0.65 CT), 150% (0.75 CT), 171% (0.85 CT), and 173% (0.95 CT)) but remained
low at all CTs. Fl-scores improved for all species, with badgers improving to be high at all
CTs, except at 95% CT, where they were moderate. They were followed by foxes, which
improved but remained moderate. Hedgehog F1-scores improved to be moderate at all CTs,
except at 95%, where they remained low (Figure 3). Overall, the post-training assessment
shows that the model was able to precisely classify all three species, most accurately recall
badgers, and least accurately recall hedgehogs from a subsample of camera trap images.

The confusion matrices demonstrate the patterns of Al-assigned classifications, sup-
porting the observed overall high precision, lower recall results and the improvements in
the post-trained Al model (Figure 4). Hedgehogs were the most frequently misclassified
and undetected species. Although a higher proportion of hedgehog classifications were
correct using the post-trained Al model, more than half (60%) of hedgehogs remained un-
detected. Foxes were correctly classified by Al around half of the time, with the remaining
half going undetected. Badgers were rarely misclassified as other species; the main issue
was missing detections, which were relatively low in the post-trained model (12%).

Pre-trained Al model Post-trained Al model

Hedgehog 15% 79% 38% 60%
Al classification outcome
‘g Correct
@ Fox 51% 47% 55% 45% . ) "
L% Misclassified
Blank
Badger 75% 25% 88% 12%
o o & o o &
& & & &

& o5
puS o

Proportion of Al-assigned classifications (at a 85% confidence threshold)

Figure 4. The proportion of Al-assigned classifications recorded as “Correct” (matched the human-
assigned classification), “Misclassified” (as a different species), or “Blank” (undetected), for three focal
species: European hedgehogs (E. europaeus), red foxes (V. vulpes), and European badgers (M. meles), us-
ing the pre- and post-trained Conservation AI UK Mammals model and a 85% confidence threshold.

3.2. Overall Estimates

In the pre-trained evaluation, average Fl-scores were moderate at 65%, 75% and
95% CTs and low at 85% CTs (Table 4). The Cohen’s Kappa test indicated fair agreement
(k = 0.21), but a significant difference between human- and Al-assigned classifications from
the pre-trained model (z = 10.9, p <0.001). In the post-trained evaluation, average F1-scores
improved at all CTs but remained moderate, increasing by 42% (0.65 CT), 41% (0.75 CT),
47% (0.85 CT), and 16% (0.95 CT) (Table 4; Figure 5). Al-assigned classifications showed a
significant improvement (k = 0.11 difference, 95% CI: 0.07-0.15) in agreement with human-
assigned classifications, with post-trained estimates indicating a fair agreement (x = 0.31)
but a significant difference between human and Al assigned classifications remained
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(z=121, p < 0.001). The McNemar'’s test indicated significantly more accurate species
classifications assigned by the post-trained Al model, compared to the pre-trained model
(% (1) =30.2, p < 0.001).

Table 4. Conservation AI's UK Mammals Model performance using two sets of classifications shared
by AI and human vision, from a pre- and post-trained model (average F1-scores: mean weighted
average of precision and recall from three species F1-scores). Confidence thresholds of 0.65, 0.75, 0.85,
and 0.95 were used for determining classifications of each species.

Confidence Threshold (CT) Pre-Trained Model Post-Trained Model
0.65 0.52 0.74
0.75 0.51 0.72
0.85 0.49 0.72
0.95 0.55 0.64

[

AT model version
0.50 Pre-trained Al model
. Post-trained Al model

Average Fl-scores
(weighted average of precision and recall)

fa
5]

0.65 0.75 0.85 0.95

Confidence thresholds for determining species classifications

Figure 5. Conservation Al's UK Mammals Model average Fl-scores (mean weighted average of
precision and recall from three species F1-scores) from two sets of classifications shared by Al and
human vision from a pre-trained and post-trained model. Confidence thresholds of 0.65, 0.75, 0.85,
and 0.95 were used for determining species classifications.

3.3. Efficiency

The Al model processed the subsample of images in 30 s and a single image in an
average of 0.16 s, while human vision processed the sample in an average of 10 min and an
image in an average of 3.2 s (Table 5). Extrapolated values suggest that 37.8 h or 1.6 days
would be required for Al vision to process the full dataset of 850,870 images, whereas
756.3 h or 31.5 days would be required for human vision to process the same dataset.
However, as previously mentioned, unlike AI, a human would be unable to consistently
work over a 24 h period. Therefore, 94.5 days, working 8 h per day, would be a more
realistic estimate of the length of time required for a human to process the full dataset [59].
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Table 5. Extrapolated values, from a subsample of camera trap image classifications, which provide
an estimate of the time required to process the full dataset of 850,870 images using human and
Al vision.

Classification Method

Estimated Length of Time Required to Classify Camera Trap Dataset (850,870 Images)

Human vision
Al vision

Seconds Minutes Hours Days (24 h) Days (8 h)
2,722,784 45,379.7 756.3 31.5 94.5
136,139.2 2269.0 37.8 1.6 -

4. Discussion
4.1. AI Model Performance and Retraining Effects

Our findings provide baseline performance estimates of Conservation Al’s pre-trained
UK Mammals model and demonstrate the potential for improved model performance
following algorithm retraining. Although average F1-scores in the post-trained model im-
proved from baseline estimates in the pre-trained model, Al model classifications remained
significantly different from human-assigned classifications. The F1-scores achieved by the
post-trained Al model were notably higher than those of the pre-trained model at all CTs,
with improved precision and recall, but scores remained moderate. These findings align
with wider research demonstrating that AI models often achieve high precision [24], but
their performance can vary considerably by species and is often limited by challenges in
achieving high accuracy [15,48].

4.2. Species-Specific Detection Differences

The model could detect foxes and badgers reasonably well, but a high rate of false
negatives indicates that the Al frequently failed to detect hedgehogs, despite being able to
accurately classify all three species once detected. The differences in identification accuracy
among the three species are likely driven by a combination of biological traits, environ-
mental context, and model design [34,60]. Hedgehogs are small and round-bodied and
lack prominent features, meaning they could be easily obscured by the environmental
heterogeneity of residential gardens containing features such as furniture, dense vegeta-
tion, or long grass. In contrast, foxes and badgers are larger-bodied with more distinctive
silhouettes and often occupy a greater proportion of the image frame compared to small
species [61]. These species also differ in movement patterns, which can influence whether
individuals are captured clear in single frames [62,63]. Hedgehogs’ tendency to remain
partially concealed could have contributed to fewer high-quality detection opportuni-
ties [34,64], whereas foxes and badgers are more likely to be exposed [65,66]. However,
these are hypothesized explanations that require additional testing. Consistent with our
findings, a previous evaluation of Conservation Al's model reported high precision for
some species but low to moderate recall (<0.70), particularly for small mammals such as
rodents and squirrels [27]. This suggests that the challenges faced by Al in detecting smaller
species that are easily obstructed may be attributed to the insignificant features of such
species in the training data [27,34,67].

4.3. Environmental Context, Sampling Conditions, and Model Transferability

It is also possible that artificial garden characteristics included in the images were
potentially not included or underrepresented in the models’ training data. The lack of
transferability to new environments whilst maintaining accuracy [68] remains a challenge
for Al and highlights an ongoing limitation in Al-based ecological monitoring [35]. This is
of particular concern in the UK, where a large proportion (18-27%) of urban landscapes are
comprised of private gardens [69], highlighting the need for more adaptable and context-
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aware Al models within large-scale automated biodiversity monitoring [35]. However, our
findings highlight the value of citizen science in facilitating camera trap deployment in
private gardens and urban green spaces, enabling the collection of data on UK mammals
that are often restricted to these otherwise inaccessible areas [70]. This can potentially
enhance Al recognition of urban species and various garden features, thereby expanding
the diversity of training datasets and improving the transferability of Al models.
Additionally, images in our study were mostly captured at nighttime, which could
have affected detection rates [71]. Despite this, the significant improvement in the post-
trained model performance highlights the importance and effectiveness of continuous
algorithm training to improve species detection and classification accuracy [33]. However,
badgers, a primarily rural species [72,73], were detected in a relatively small number of
garden camera trap surveys, compared to the two urban-adapted species [74,75]. This
disparity may suggest that the true Al detection rates for badgers were potentially un-
derestimated due to the small sample potentially not capturing a realistic representation
of background and subject variation [76]. However, our findings indicate that Conserva-
tion Al's UK Mammals model demonstrated accurate recall and identification of badgers,
suggesting that the limited sample size likely had a minimal effect on the overall results.

4.4. Al Efficiency and Operational Trade-Offs

Despite the lower accuracy of Al classifications compared to human classifications, Al
models can process images notably faster than humans [25], highlighting the efficiency of
Al-based systems in handling large image datasets [14,33,77]. However, the specifications
of hardware used for image processing can influence processing speed and efficiency [78],
while the hardware configuration required for Al operations, cloud service costs, or local
deployment barriers are crucial factors affecting adoption by conservation agencies [27,79].

However, Al maintains an operational advantage over human vision in terms of
continuous and consistent image processing [35]. Unlike humans, who are realistically
limited to an average 8 h workday [59], an Al model could operate 24 h a day without
fatigue. Furthermore, human concentration levels can fluctuate over time and vary between
individuals [80,81], potentially affecting the accuracy and consistency of species detections.
Although human vision was assumed to be accurate in our study, it remains possible
that some animals could have been missed. To mitigate this, two independent observers
were employed, and Al accuracy was calculated relative to human observations [34,43,44].
Nevertheless, variability in human consistency may introduce observer bias, a constraint
not encountered by Al-based detection. One potential strategy to address this is to involve
multiple individuals in processing subsamples of image datasets. However, if trained
individuals are required, this approach may incur additional costs that must be considered.

When evaluating automated versus manual approaches to camera trap image clas-
sification, there is an inherent trade-off between the costs and benefits of each method.
While challenges remain in applying Al to camera trap image analysis, its efficiency-related
advantages are clear, though often come at the expense of reduced accuracy compared to
human observation. Although Schneider et al. [23] suggest that over ~95% recall is a practi-
cal benchmark for reliable species classifications, the level of Al performance considered
acceptable by conservationists will vary depending on the relative importance of efficiency
versus accuracy, driven by specific research objectives and associated time constraints.

4.5. Hybrid Approaches: Al, Human Verification, and Citizen Science

Alternatively, there is potential in applying a combination of Al and citizen science
classifications [82]. Citizen science platforms such as eMammal [10], MammalWeb [36],
eBird [83], and Zooniverse [84] engage public volunteers in camera trap projects to improve
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image analysis efficiency. However, species identification skills can vary depending on
individual knowledge and experience, which can impact accuracy [35]. Additionally, some
image datasets that include images captured in private residential gardens, such as the
one used in our study, pose privacy concerns that restrict sharing to publicly accessible
databases, meaning citizen scientists cannot contribute to classifications. When citizen
science participation is an option, it is frequently reported that, although involving humans
in image processing increases the time taken to obtain classifications, it reduces errors con-
siderably and improves the accuracy of the results [25,35]. Furthermore, involving citizen
scientists supports conservation by promoting public awareness and engagement [85].

Using human analysis of camera trap images can also provide more intuitive in-
sights beyond species identification, such as behaviours or interactions that Al may not
capture [24,86]. Humans can also analyze sequences of images to detect animals by rec-
ognizing movement across frames, whereas many Al models typically analyze images
individually [32]. For example, when an animal is not clearly visible in a single image, a
human observer may still infer its presence by tracking its movement across a series of con-
secutive images. A potential constraint associated with using human vision is the process of
learning to use image analysis software such as Timelapse [45,46] or digiKam [87], which is
typically required when processing large image datasets. While some Al platforms require
proficiency in coding to process images, others, such as Conservation Al, offer user-friendly
interfaces that allow direct image uploads, thereby eliminating the need for users to acquire
new technical skills. Conversely, Al classification models require continuous retraining
to enhance performance, a process that depends on large datasets and substantial human
effort to manually verify images and guide the training [33].

Our study involved human observers who worked in the wildlife conservation field
and thus had prior knowledge, which may have led to more accurate identifications
than would be expected from untrained members of the public [37,88,89]. This could
have introduced potential observer bias [33], with reported human vision accuracy not
representing broader, non-expert populations.

4.6. Implications for Workflow Design and Ecological Monitoring

Based on the AI model performance results from this study, a semi-automated work-
flow with a three-stage classification method was designed to overcome challenges asso-
ciated with accuracy and efficiency for future camera trap studies, when citizen science
classification was not an option due to privacy restrictions (Figure 6). This method aimed
to create a pipeline for camera trap data analysis as an alternative to a fully automated or
manual approach to processing the full dataset [40]. To balance classification accuracy and
efficiency, the workflow combines two Al models (MegaDetector and Conservation Al)
with manual classification [34].

The first step uses a primary Al model with high recall estimates (MegaDetec-
tor) [18,32] as an initial filter to identify blank images and those containing an animal.
Selecting a lower confidence threshold for accepting classifications at this stage will in-
crease recall and reduce the number of false negatives, minimizing the risk of excluding
images containing an animal [27]. However, this is at the expense of reducing precision and
potentially including more false positives that may require additional manual validation.
The second step involves a secondary Al model with high precision estimates to classify
images containing an animal at the species level (Conservation Al) [28]. Selecting a high
confidence threshold at this stage will increase precision and reduce the number of false
positives, minimizing the risk of misclassification [27], but at the expense of reducing
recall and potentially resulting in more false negatives that may require additional manual
validation. The final step involves manually reviewing images that meet the following
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criteria: images classified by the primary Al filter as (i) containing an animal with a confi-
dence level below the confidence threshold or (ii) blank with a confidence level below the
threshold. Additionally, images processed by the secondary Al filter that are classified as
(iii) containing a species with a confidence level below the threshold and (iv) all images
classified as blank will require manual classification (Figure 6).

Stﬂp 1: [ Camera trap dataset. ]
Al filtering ¢
MegaDetector (high recall).
Images
Accept classifications assigned with a determined level of confidence A classified as

high level of confidence should be accepted for images classified as
blank. A low level of confidence should be accepted for images classified
as containing an animal, to avoid discarding images containing animals. threshold.

v v v

Images classified as containing Images classified as containing Images classified asblank
under confidence threshold.

Step2:

\‘ v
‘_?
v

v

Step 3:
D Start/end points
l:l Decision points
U Images for analysis
D Image classification

Manual classification

Figure 6. A semi-automated three-step workflow that combines two Al image classification platforms
(MegaDetector and Conservation Al) and manual verification to improve the efficiency and accuracy
of camera trap image analysis.

Accuracy is enhanced through the manual validation of images with classification
probabilities below a predefined confidence threshold. This method streamlines image

https://doi.org/10.3390 /1518030502


https://doi.org/10.3390/rs18030502

Remote Sens. 2026, 18, 502

15 of 20

processing whilst maintaining accuracy by harnessing the strengths of two Al platforms
and incorporating manual validation, providing a balanced alternative to using a single-
platform automated system and fully manual classification, when citizen science classifi-
cations are not possible. This workflow suggests using MegaDetector, reported to detect
animals with approximately 95% accuracy [32], as the primary Al step to filter blank images
and Conservation Al as the secondary Al step to classify species. However, this workflow
is adaptable and can incorporate different Al models suited for other camera trap image
analysis. By narrowing the gap between data collection and analysis, this workflow can
potentially provide more timely insights to inform decision-making [38,90]. One current
limitation is the time required to reformat Al-exported data, which often varies in structure
and must be standardized prior to manual review [27].

4.7. Further Research Recommendations

Therefore, we recommend that future research carefully considers the design of im-
age analysis workflows, balancing trade-offs between accuracy and efficiency based on
study objectives. Key factors to consider include data volume, processing limitations,
time constraints, target species, and the type of ecological information needed to achieve
research objectives [14,23,24,45,91-93]. Gaining an insight into the baseline error levels
considered acceptable by conservationists, when using Al to help reduce the time gap
between data collection and research output, could help to guide future investment in Al
model training. Furthermore, evaluating Al model performance across a broader range
of species, particularly small-bodied and visually cryptic mammals, as well as across dif-
ferent geographic regions, habitat types, and conditions such as lighting, camera angles,
and degrees of occlusion, would provide a more comprehensive understanding of model
reliability and generalizability [15,61,94]. By further assessing how Al performs under
different conditions and for other species, researchers could better quantify uncertainty in
automated classifications, improve training datasets, and refine model algorithms. Finally,
further research into how distance metrics from the camera to the animal, based on animal
size, affect Al classification and how this methodology could be implemented practically
for mammals is needed to potentially improve the identification of smaller species [39,67].

4.8. Key Points and Applications

Overall, our study demonstrates that retraining AI models improves the accuracy of
Al classifications of camera trap images. Although, the moderate F1-scores achieved by
Conservation Al’s post-trained UK Mammals model highlight the ongoing limitations of
fully automated workflows [15,48], they emphasize that Al performance is species- and
context-dependent, with reduced reliability of smaller, more camouflaged species [27].
Nevertheless, Al substantially improves the efficiency of processing large camera trap
datasets [14,77]. Our findings support the use of a semi-automated three-step workflow
that combines high-recall detection, high-precision species classification, and targeted
manual validation. This integrated approach provides a practical balance between accuracy
and efficiency for ecological monitoring, particularly where citizen science contributions
are not feasible, enabling the more timely delivery of findings for conservation decision-
making. The proposed workflow is readily applicable to solve real-world challenges in
camera trap image analysis.

5. Conclusions

Our study provides baseline estimates of camera trap image classifications using
Conservation Al's UK Mammals model. The importance of ongoing algorithm training to
enhance species identification accuracy is demonstrated by improvements observed in the
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post-trained assessment. Although accuracy remained moderate following training, the Al
model notably outperformed human vision in processing efficiency. These findings align
with wider research indicating that Al provides a more efficient but generally less accurate
approach to image analysis. This trade-off between accuracy and efficiency presents
challenges when choosing between automated or manual methods for image classification.
Existing projects have incorporated citizen science to overcome these challenges; however,
the reliability of results can vary, and certain datasets pose privacy concerns that restrict
sharing to publicly accessible databases for citizen scientist classification. To overcome
this, we developed a semi-automated workflow that combines two Al models with manual
classification to balance these competing priorities. We anticipate that our findings will
inform key considerations in applying Al and manual review techniques for camera trap
data processing and assist in guiding future workflow development.
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