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Abstract 

Social insects have inspired the behaviours of swarm robotic systems for the last 20 

years. Interactions of the simple individuals in these swarms form solutions to relatively 

complex problems. A novel swarm robotic method is investigated for future robotic 

cooperative object recognition tasks. Previous multi-agent systems involve cameras and 

image analyses to identify objects. They cooperate only to improve their hypotheses of 

the shape‟s identity. The system proposed uses agents whose interactions with each 

other around the physical boundaries of the object‟s shape allow the distinguishing 

features found. The agents are a physical embodiment of the vision system, making 

them suitable for environments where it would not be possible to use a camera.  

A Simplified Hexagonal Model was developed to simulate and examine the strategies. 

The hexagonal cells of which can be empty, contain an agent (hBot) or part of an object 

shape. Initially the hBots are required to identify the valid object shapes from a set of 

two types of known shapes. To do this the hBots change state when in contact with an 

object and when touching other hBots of the same state level, where some states are 

only achieved when neighbouring certain object shapes.  The agents are oblivious, 

anonymous and homogeneous. They also do not know their position or orientation and 

cannot distinguish between object shapes alone due to their limited sensor range. 

Further work increased the number of object shapes to provide a range of scenarios. In 

order to hypothesise the difficulty a swarm of hBots has distinguishing one object shape 

type from any other a system is devised to compare object shapes. Data-chains describe 

the object shapes, without orientation, by considering how many object cells the empty 

cells surrounding them are in contact with. Pairs of object shapes could then be 

analysed to determine their difference value from each other. These difference values 

correlate to a swarms difficulty in completing the specific scenarios.  

Finally, a genetic algorithm (GA) was analysed as a method to determine the behaviours 

of the hBots different states. The GA is more efficient than both derived and randomly 

populated methods, showing that a GA can be used to train agents without first 

determining differences between the object shapes. These insights provide a significant 

contribution to knowledge through the object shape analyses method and the swarm 

robotic strategies which establish a unique foundation for further development of novel 

applications for both swarm robotic and cooperative object recognition research.   
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Glossary of Terms 

GA: Genetic Algorithm 

SHM: Simplified Hexagonal Model. The simulation model used to run the experiments 

for this thesis. Its basic design is a hexagonal arena consisting of hexagonal cells, which 

contain, either a hBot or object cell, or are considered empty. 

hBot: Hexagonal agent used in the Simplified Hexagonal Model 

Object Cells: Cells that are bound together to form an object shape. 

Object Shape: A shape made from bound object cells for use in the Simplified 

Hexagonal Model. To be considered an object shape, the grouping of object cells must 

be solid. The smallest object shape is a single cell. 

State: Describes the current state of a hBot, which is a reflection of its observations. 

State-Behaviour: The behaviour or actions a hBot will take at any given state. 

State-Level: The level which any given state is at. This gives an indication of how many 

hBots would be required to gain a specific state. At state-level 1, state-level 2 and state-

level 3, it requires 1 hBot, 3 hBots and 5 hBots respectively. 

Data-Chain: An array of numerical values representing an object shape without 

considering position or placement by describing the number of object cells in contact 

with each of the empty cells surrounding the object shape in clock-wise order. The data-

chain is written as an array but has no beginning nor end. 

Sub-Chain: A sub section of the data-chain of any given length. 

Difference Value: A value between 0 and 1 which measures the perceived difference 

between two object shapes considering all the sub-chains at a specific length for a given 

data-chain.     
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Chapter 1: Introduction 

Cooperative object recognition is an area of research concerned with the identification 

of objects by a group of robotic agents who either are incapable of identifying an object 

alone or who increase the efficiency of object recognition through parallel cooperation. 

This research investigates the potential for training a group of agents utilising a swarm 

robotics approach to distinguish differences between objects through their shape. The 

aim of which is to provide future physical swarm robotic systems with strategies for 

cooperative object recognition, where rather than camera and vision recognition being 

used the agents interact with each other around the object‟s surface in order to analyses 

the shape to find features that distinguish them from one another. A proposed method 

is for these distinguishing features to be learnt by the swarm using a genetic algorithm 

(GA), the efficiency of which will be tested. The agents will have the following 

characteristics: 

Homogeneous, anonymous finite-state machines, incapable of  remembering 

previous events other than their current state and are incapable of individual 

mapping the shape of an object alone; without a common coordinate system; 

capable of determining how concave or convex a local part of the shape they are 

in contact with is, with three degrees of accuracy; and also perceiving the 

current state of any other agent they are in physical contact with.  

This approach is unique to cooperative object recognition where swarm robotic 

techniques have not been utilised in this way before. In order to distinguish between the 

objects the agents must cooperate with each other, sharing limited local information 

about the shapes convexity or concavity by changing state. As the agents are aware of 

the states of the other agents they neighbour a continuous feedback of information can 

occur allowing the agents to gain more information and find distinguishing features in 

the objects.   

By using individually less capable agents who alone cannot distinguishing between the 

objects allows the size of the future robotic systems they are implemented on to be 

reduced as they require less hardware. Possible applications include the identification of 

cancer growths, or viruses in a body through shape recognition, if the scale of the 

robots can be sufficiently reduced. The robotic agents could then either destroy the 

entities or highlight their location, providing temporary or on-going medical care.  
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1.1 Background to Swarm Robotics 

Swarm robotics is a strategy for dealing with multi-agent control that is influenced by 

research into understanding social insect behaviours (Şahin, 2005). Where individuals in 

multi-agent systems collaborate, in a predetermined manner, to complete tasks by 

working together in series or parallel, swarm robotics uses many agents whose 

interactions with each other cause the solution for the task to emerge. Relative to social 

insects robots are simpler, for example they cannot reproduce and they do not grow. 

However, it is not necessarily the complete natural system that swarm robotic research 

seeks to mimic. The emergence of the solution is key to swarm robotics and takes its 

inspiration from social insects such as ants, bees and termites (Şahin, 2005). In these 

insect communities there is no leader, no commander, nor ruling queen neither is there 

an overruling plan, scheme nor blueprint for the individuals to follow. However, these 

insects are capable of completing tasks that seem relatively complex, when compared to 

the individuals within them, through decentralised control. For example ants build nests 

(Franks and Deneubourg, 1997), can find the shortest routes using pheromone trails 

(Goss et al., 1989), can coordinate to move objects too large for a single ant to move on 

its own (Franks, 1986), they can also organise their dead into clusters (Diez et al., 2011), 

sort their brood (Sendova-Franks , 2004) and organise them all relative to each other 

and their nest (Deneubourg et al., 1991). A more general overview of the behaviours 

that control social insects is available, Theraulaz et al. (2003).  

Without a leader or specific plans how is it that these simple agents are capable of such 

tasks. It is partly their simplicity that makes them capable of decentralised problem 

solving. Each agent only needs to interact with their immediate environment and is 

ignorant of anything that is happening elsewhere. Their reaction to this local 

environment then changes the environment around them.  

As an example from nature, ants as a group can find and gather food, and are even 

capable of responding to the relative quality of those sources (Jackson and Châline, 

2007). Individual ants do not have this capability. Each ant responds to its local 

surroundings by releasing pheromones which other ants react to. When enough of these 

interactions between the individual ants and their environments occur then the solution 

to this relatively complex problem of food sourcing emerges, guiding the ants to the 

highest quality source of food. It is this type of simplistic but naturally robust, scalable 

and flexible system that swarm roboticists dealing with multi-agent systems are using to 
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control vast numbers of agents without adding further complexity to the agents as the 

scale of the problem increases.   

Swarm robotics research covers different attributes of behaviour, many of which mimic 

those seen in the natural world. These range from dispersion (Ludwig and Gini, 2006;  

Hsiang et al., 2004) and aggregation (Payton et al., 2001; Soysal and Şahin, 2005), 

through foraging (Winfield, 2009; Kriefer, Billeter and Keller, 2000; Shell and Matarić, 

2006)  and pattern formation (Suzuki and Yamashita 1999; Défago and Konagaya 2002), 

to self-assembly (Groß et al. 2006; Tuci et al., 2006) and self-organised construction 

(Wawerla, Sujhatme and Matarić, 2002; Theraulaz and Bonabeau, 1995a). There is an 

overview of the social insect influence on swarm robotic control by Kube and Zhang 

(1994).  

By considering the strengths of swarm robotics over different multi-agent control 

systems many real world applications can be found. The applications often considered 

include, search and rescue (Baxter et al., 2006; Payton, Estkowski, and Howard, 2003), 

and for use in hazardous areas such as mine-fields (Cassinis et al., 1999) as it allows for 

less human contact with potential dangers. What these domains have in common is 

their requirement for a robust system that can dynamically change with the environment 

as it changes. 

1.2 Research Questions 

 How capable are different swarms of agents at discerning two object shapes 

from each other through necessary cooperative object recognition. 

 How do the similarities of the object shapes determine the difficulty for the 

swarm of agents to distinguish between them? 

 Are a swarm of agents capable of learning to discern two object shapes from 

each other through a GA? 
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1.3 Summary of the Investigation 

The focus of this research will be on the strategies involved in controlling the swarm 

through the actions of the agents. Once these strategies are discovered a control design 

template would exist for future research with physical robotic systems. To undertake 

this investigation a simulation was developed using a hexagonal lattice. Before the use 

of physical hardware initial swarm robotics research was also carried out on square 

lattices (Beni, 1998). The simulation model developed for this research is the Simplified 

Hexagonal Model (SHM) which allows strategies for swarm systems to be tested and 

advanced in order to inform approaches to implement solutions on a physical platform 

(King and Breedon 2011a; 2011b). 

The SHM is built on a hexagonal lattice to allow the agents to have a better 

approximation of free movement when compared to a square lattice, making this 

system an appropriate way to develop strategies for a new area of research within the 

field. Each cell that constructs the arena space is either considered empty, containing an 

agent (hBot), or part of an object shape. The use of a discrete lattice as opposed to a 

space allowing continuous movement provides for a clear distinction of whether or not 

hBots are neighbouring each other or neighbour an object shape. This choice also 

restricts the number of relative positions the hBots and object cells can be in relation to 

each other. However, this is at the cost of reducing the similarities with a physical 

system, which are more accurately portrayed with continuous movement. The SHM 

could be developed for different research enquiries by changing the attributes of the 

agents to suit the task methodology.  

In order for the swarm of hBots to recognise an object shape it is necessary that the 

states of the agents in the negative space of the object shape relate to the object shape. 

In order to determine how this relationship may be created an investigation into the 

object shapes produced on a hexagonal grid is needed. This investigation involves 

developing a system to produce different object shapes in a logical manner. Once a 

number of shapes have been produced it is possible to analyse their relative differences 

and how the hBots interact with them. Part of the problem for the system producing 

these object shapes is avoiding congruent shapes being produced. To deal with this 

problem a study into binary image storage and transfer methods and techniques is 

carried out. This study provides an insight into the methods used for reducing the 

information needed to draw an image by considering the relationship of the shapes 
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boundary pixels, known as chain-coding (Katsaggelos et al., 1998). However, there are 

drawbacks to this method that need to be overcome. The major issues are that 

information about location and orientation are not required in the object shape 

discovery process. In this process any object shapes that are identical except from their 

positions and rotation are considered to be the same type of shape. These issues are 

resolved by considering the description of the boundary as a loop of information, with 

no beginning or end, termed the object shape‟s data-chain. Each shape has its own data-

chain and two data-chains can be compared to see if two shapes are identical or not. 

There is an exception to this, outside the remit of the research, where object shapes 

have the same data-chain in specific cases at the cusp of the hBots ability.  The system 

is able to compare two object shapes by comparing their data-chains and hence check if 

the object shape had already been added to the system. 

The hBots, in their locale, use the same information that is used to create the data-

chains as they, the hBots, inhabit the same negative space around the object shapes. 

However, as an individual they do not have access to all the information, only 

information from their neighbouring cells. The amount of information they can glean 

from their neighbours determines their current state-level. An individual hBot that is 

next to an object knows that it is next to either one, two or three object cells of that 

object shape, and this knowledge is a low state-level. In this research, cases where hBots 

could neighbour four or more cells are not currently considered. This choice reduces 

the number of total possible states at all state-levels and removes any case where a hBot 

could neighbour more than two other hBots in contact with the same shape. This 

reduces the number and type of object shapes that can be considered. It is a 

requirement for the project that the object shapes within the arena are not in contact 

with each other, as this would make them appear as a single object shape with a 

different shape boundary. 

As many object shapes have similar features locally a hBot cannot determine which 

specific type of object shape they are near from this low state-level. Local object 

information is not the only information available to the hBots. The hBots can 

determine the states of their immediate neighbouring hBots, which will also hold 

information about the object shape in their location. By changing their states based on 

their neighbours‟ states the hBots can increase their state-levels gathering further 

knowledge about the object shape. So despite only having a limited sensor range hBots 
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can cooperate to build their state-levels allowing them in turn to identify the different 

object shapes. One limiting factor of the hBots is the number of states and state-levels 

required in relationship to the size of the object shapes being compared. As the size of 

the object shapes increases it may require knowledge of a higher region of the boundary 

before a distinguishing feature is found. 

From the comparison of the data-chains of the object shapes it is possible to 

hypothesise the number of time-steps it would take a swarm of hBots to differentiate 

one object shape from another. The more the object shapes have in common the more 

cooperating agents, local to that object shape, it requires to distinguish them. However, 

knowing how difficult the task may be and having the hBots change states according to 

their perceived surroundings does not solve the problem of how the hBots should react 

at a given state. 

The solution to this problem is determined by the hBots state-behaviour, a rule table 

informing them of what actions to take based on their current state. There are a number 

of possible actions the hBots could take at a given time: move at random around the 

arena; remain neighbouring an object whilst trying to cooperatively identify it; and 

collect or remove an object shape that it neighbours. To determine what these state-

behaviours are requires a knowledge of the different object shapes’ data-chains, what 

states are achievable by the hBots when reacting with those object shapes, and the 

differences between the two. For example, given two object shapes, if a state is 

achievable for one object shape but not the other then that hBot would know it is next 

to that object shape, however if the state is achievable at both object shapes the hBot 

does not know whether it is at one object shape or the other. 

What is more interesting however, is measuring the hBots capability to learn what 

actions to take when given training tasks and a fitness value based on their performance. 

To investigate this idea GA is developed that allows task specific solutions to the state-

behaviours to evolve. GA follow Darwin’s evolution principle where the members of a 

population most suited to an environment have a higher chance of producing offspring 

which share similar traits to their parents (Eiben and Smith, 2007) . They have been 

used to solve many different types of problem, sewer network design (Afshar, 2012); 

designing a concert hall for optimal acoustics (Sato et al. 2002); the placement of wind 

turbines (Grady, Hussaini and Abdullah, 2005) and to aid in stock trading (Kuo, Chen 

and Hwang, 2001).  
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There are considerations to be made when using a GA to solve all or part of a swarm 

robotic system. As individuals in a swarm may act differently each time a test scenario is 

run to get an accurate representation of performance requires taking average results 

over a number of trials. The repetition of trials increases the run time of the GA. If the 

run time becomes so vast and the solution can be found in a simpler manner the use of 

a GA is inefficient. It is for this reason that a comparison is made with a randomly 

produced state-behaviour solutions over a range of task scenarios with varying 

perceived complexity as well as a systematically derived generic set of state-behaviours. 

The use of a GA or a randomly derived approach would result in a system that is more 

adaptable to different environments. In the envisioned final system there would be no 

need for a user to analyse the difference between object shapes, they would only need 

to provide feedback on how well the swarm performed. There are other methods 

available for training a multi-robotic system, such as reinforcement learning (Sutton and 

Barto, 1998) as used by Matarić (1997), however these are not considered here due to 

time constraints but should be considered in future research for comparison. 

Although determining the real world applications for a swarm robotic approach to the 

cooperative object recognition task is not the aim of the research there are areas where 

the system would be ideally suited. With the ever decreasing scale of technology and 

robotics and by eliminating the need for complex vision sensors, this type of 

cooperative object recognition would be suitable for nano-scale applications. At this 

scale agents of a swarm could interact with an object in a physical way, contouring to its 

shape. There is no need for the agents to understand the object directly but merely the 

relationships it has with the other robots that surround the object. This capability to 

understand the placement of neighbouring robots and the states they are in could be 

directly implemented into the robots. Utilising this system at this scale a swarm of 

robots could be trained to identify entities inside a human body, such as cancers and 

viruses, which would aid medical practices. 
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1.4 Contributions to Knowledge 

The main contributions to knowledge are as follows: 

 A strategy for distinguishing between two object shapes using a swarm of agents 

that interact both physically with the object shape‟s boundary and through state 

changes with their neighbouring agents. Utilising agents as described in section 

1.0.  

 A method for producing and describing object shapes constructed on a 

hexagonal lattice, termed a data-chain. This description of the object shapes 

does not considering the position and rotation of the object shape and allows 

analyses of pairs of object shapes to identify their difference value. The 

difference value is dependent on the length of sub-chain that is considered 

which reflects the way the hBot agents interact with each other and the object 

shapes. This method could be applicable to lattices of other shapes.   

 An analysis of the capabilities of the difference values and other metrics found 

between a pair of object shapes to predict the difficulty that a swarm of agents 

would have in distinguishing those two object shapes from each other. For each 

pair of object shapes the behaviours of the hBots, for each state, were 

determined with three methods; a generic baseline method, a randomly 

produced method, and that of a GA.  

1.5 Outline 

The proceeding thesis is set out as follows: Chapter 2 contains an overview of the 

different methods inherent to multi-agent and multi-robot systems; Chapter 3 considers 

and discusses the current research areas in swarm robotics, including a discussion on 

the types of cooperation; A review of relative research in cooperative object recognition 

and the use of genetic algorithms for multi-agent systems is included in Chapter 4, as 

well as a review of available multi-agent systems for experimentation; Chapter 5 

provides a methodology for the current research project; The initial investigation is 

covered in Chapter 6 showing that the SHM is a suitable model for testing multi-agent 

systems with object shapes, and provides guidance for the experimental set-up of the 

final investigation; Chapters 7 and 8 make up the second part of the investigation. 

Chapter 7 details how different object shapes are constructed on a hexagonal lattice and 
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how these shapes can be differentiated from each other giving a numerical value of 

difference. The method for calculating the difference value of a pair of object shapes is 

modified in Chapter 8 to consider how the hBots view and interact with the object 

shapes. The difference values found between the object shapes are tested by measuring 

how long it takes a swarm of hBots to distinguish one shape from another. In Chapter 9 

the GA method is described and in Chapter 10 the GA is tested against a random 

method for determining the state rule behaviours and a generic method. Both the GA 

method and the random method scenarios are measured for difficulty to find potential 

solutions against a range of predictions provided by the object shape difference analyses 

from the second part of the investigation. Finally Chapter 11 provides an overall 

discussion of the research investigation providing an overview of the outcomes and the 

future work that could be considered. 
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Chapter 2: Multi-Agent Systems 

This chapter compares the different methods used to control multi-agent and multi-

robot systems. The overview specifically considers the potential differences of the 

individual agents and the effect that these may have on the group‟s behaviours and its 

capabilities. A discussion on the influence of natural systems on multi-agent systems 

and the identification of two types of cooperation are also included. 

2.1 A Comparison of Methods 

A multi-agent system is one where a group of agents work together to complete a task. 

The exact method used by the agents or robots can vary depending on the goals of the 

research. These goals are often trying to find a balance between producing a system that 

is capable of completing a task and that of simplifying the design of the individual 

robotic agents. Shiloni, Agmon and Aminikia (2011) identify two different types of 

robotic agents, which they describe as „ants‟ and „elephants‟, highlighting the different 

design choices for multi-agent systems. Their description of robot ants and robot 

elephants identify two extremes of individual agent capability; where the robot ants are 

considered to be computationally simpler than robot elephants in a number of key 

features, making the robot ants more in-line with agents seen in swarm robotics. The 

ability of the individual agents has an overall effect on the capability of the group and 

the methods that are required to have those groups achieve any specific task. A 

comparison of the robotic ants and elephants‟ capabilities are listed in Table 2.1 

showing the potential variance in any specific multi-agent group.  
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 ‘Ant’ Robots: ‘Elephant’ Robots: 

Instruction Set Can 

 Move in all directions. 

 Sense a limited radius around 
them. 

 Read and write arbitrary 
levels of multiple 
pheromone types. 

Can 

 Move in all directions. 

 Sense a limited radius around 
them. 

Memory and 
Computation 

Have a limited recollection 
compared to the size of the 
work area, allowing them to 
remember only a constant 
number of previous moves. 
From a computational point of 
view, are finite state machines. 

Have unbounded memory. 
From a computational point of 
view, are Turing machines. 

Communication Have an unlimited amount of 
pheromones, which are 
essentially traces that can be 
read from and be 
written to a space. The 
pheromones do not evaporate 
by themselves but can be 
erased and re-written. 

Have reliable, instantaneous 
communications 
to all others. 

Localisation Have no means of localization. Can typically perfectly localize 
themselves on a shared 
coordinate system. However 
there is a tested variant where 
they cannot localize within a 
global grid. 

Anonymity Are anonymous, and therefore 
cannot identify each other. 

Have distinct identities, and all 
know of each other. 

Homogeneity Are homogenous; they all have 
the same capabilities, and run 
the same algorithm. 

Are homogenous in the sense 
that they all have the same 
capabilities and run the same 
algorithm. 

Centralisation Work in a decentralized 
fashion. 

Work in a centralized fashion. 

Table 2.1: The differences in capability of two types of robot which both have the same sensing 

capabilities. Adapted from Shiloni, Agmon and Aminika (2011). 

The results from Shiloni, Agmon and Aminika‟s (2011) experiment showed that “given 

a large enough space and infinite amount of pheromones, a single ant can simulate any 

task done by a single elephant that has no localization abilities”. However, “there exists 

some problems that can be solved by N elephants, but not with N ants” (Shiloni, 

Agmon and Aminika, 2011, p. 5786). Their research demonstrates that there are some 

limitations to what simplistic ant type agents can do and often that a more complex 
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elephant type robot will be more capable. Altshuler, Wagner and Bruckstein (2009) 

argue in opposition to using complex agents, especially where the original system is 

designed for simplistic agents cooperating in a swarm robotic approach. The results 

found for a graph exploration problem were surprising. The experiment showed that 

upgraded robots performed worse at the exploration task, taking more time than an 

unenhanced group. In other words their conclusion was that starting with the ant type  

agent for a swarm solution and developing them into elephants can make the solution 

less efficient. To gain a greater insight of suitable characteristics of a multi-agent system 

for cooperative object recognition task a more detailed analyses of the different aspects 

are examined here. 

2.1.1 Centralised and Decentralised Control 

A multi-agent system‟s control can be centralised or decentralised, describing where the 

main planning is undertaken for completing a given task. For a multi-agent system with 

centralised control there is usually one, but sometimes more, main controllers of the 

group. These main controllers gather information from the sub-level agents within their 

group and then issue commands, which spread back out into the group. In this type of 

system there is a definite hierarchy, information is sent up the hierarchy and commands 

are sent back down. The information sent upwards gives the main task control unit, be 

that a key mobile member of the group or a fixed post, an overview of events across the 

arena. Using this information the central control system decides which tasks need 

completing and by whom. Commands are then sent to the lower level agents, which 

perform those tasks as required. 

This type of system can be extremely efficient where all elements of the system are 

known including the task that needs completing. For example Sanches and Latombe, 

(2002) find that for the situation of multi-robot welding station that a centralised 

control method is preferable. The decentralised control strategies were found to be less 

reliable and only marginally quicker in a minority of successfully completed tasks. It 

should be noted that for this situation there were only two, four or six robots, which is 

a relatively small number especially when compared to typical swarm robotic systems.   

Problems with centralised control could arise when the systems that are being 

monitored or controlled by the robotic agents experience unforeseen changes or any 

additions are made to the system, as they are designed for dealing with specific tasks. 

These factors could potentially require a complete overhaul of the system.  There are 
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also potential issues with bottle-necking. The capabilities of the centralised controller is 

finite, if there is too much information to process the speed that the system can react is 

reduced. For example adding more robotic agents to the system will increase the 

amount of data that needs to be both received and analysed. 

A centralised system requires strong communication between the central control unit 

and all the other acting agents. In many practical settings there may not be unlimited 

communications between the control centre and the robotic agents (Clark, Rock and 

Latombe, 2003). Without this level of communication the system can break down. The 

solution offered to these problems for multi-agent system control is to use distributed 

or decentralised control. 

A decentralised control system removes the single point of control and has the 

interactions between the agents locally solve the problem. With this type of control 

system each agent in the group reacts only to what they perceive in their immediate 

surroundings. This reaction can either be to something in their environment or to 

information from another robot. Unlike the centralised control system there is no 

hierarchy within the group; all members are equally important. 

Laengle and Lueth (1994) make the distinction between three types of control for 

complex systems that consist of several executive subsystems or agents. They do this to 

clarify the difference between distributed and decentralised control, which is often used 

interchangeably. The three systems are: 

 Centralized Systems: A decision is made in a central mechanism and 

transmitted to executive Components. 

 Distributed Systems: The decision is made by a negotiation process between 

the executive components and executed by them. 

 Decentralized Systems: Each executive component makes its own decisions 

and executes only these decisions. 

This description clearly separates the notions of decentralised and distributed control 

systems, suggesting that a decentralised system does not have any form of 

communication. However, Lagoudakis (2005, p. 1) states that “[e]ven in decentralized 

multi-robot coordination, some information exchange is necessary” in order to aid 

decision making but also suggests that communication should be kept to a minimum. 
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The issue is in defining communication and negotiation. Even though there may not be 

explicit communication between one agent and another, there can still be implicit 

communication. The act of the agents changing their environment through the 

movement of objects or the movement of agents themselves alters other agents‟ 

perception of the environment they are in and is therefore a type of negotiation. For 

example, a task or sub-task could be completed or partly completed and the task itself 

becomes the method of negotiation of what has and what has not been done. Therefore 

it could be argued that without any form of communication either direct or indirect 

Laengle and Lueth‟s (1994) model of a decentralised system is equivalent to multiple 

agents working individually in parallel, without interacting with the other agents or their 

changes to the environment. In this type of system it would be impossible for the 

agents to cooperate intelligently with each other. In the case of swarm robotics there is 

no need for this precise distinction. 

2.1.2 Communication 

Communication between robots can be direct or indirect. Direct communication 

involves a robot giving another specific robot some amount of information or a 

command. The advantage of direct communication is the intent to communicate with a 

specific robot. Robot A intends to give robot B a command or some information, if the 

two robots are in communication range, the information can be sent by A, received by 

B and also confirmed to be received by B. Therefore the task of communication can be 

said to be complete. It is slightly more complicated than that as there are some issues 

with noise and interference, which need to be considered. However, in a perfect or at 

least robust system robot A has told robot B to do something and both robots A and B 

know this. 

The problem with this method is the need to communicate with a specific robot or in 

some cases the central control system. In an unknown environment there is no 

guarantee that the robots will be in contact with the member they are trying to 

communicate with. Also there is a potential problem with scalability; as more and more 

robots are added to the group the need for the robots to communicate and keep track 

of whom they have communicated with becomes increasingly complicated. These issues 

are addressed with indirect communication. 

Indirect communication avoids this problem of scalability. Here the agents of the group 

can communicate either through their environment or via implicit electronic forms of 
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communication. This type of communication is closely linked to the use of anonymous 

robots, discussed in section 2.1.3. 

In the first instance of implicit electronic communication each member of the group 

can express what it is doing or sensing. This local broadcast is achieved by changing an 

outgoing signal that is not directed to any specific agent but to any agents that are 

within range of the signal. Rather than the natural pheromones, as seen in ants, 

electronic forms of communication are used in swarm robotics such as; radio frequency 

identities utilising tags and readers (Herianto, Sakaakibara and Kurabayashi, 2007), 

infrared propagated by line-of-sight (Payton et al., 2001) changing light arrays (Nouyan 

et al., 2006).  This form of communication gives the advantage of not having to have 

direct links and channels between all the robots in the group but at the cost of not 

knowing if the broadcast was received by any other agents. An issue with both this form 

of indirect communication and more so direct communication is having to have the 

agents within communication range of each other. 

Having the swarm communicate through their environments alleviates this problem. If 

the agents are interacting with the environment then the environment can be used to 

store information about how much interaction has taken place and where it has taken 

place. This is known as stigmergy. The term stigmergy was first used by Pierre-Paul 

Grassé in 1959 when discussing the behaviours in termites (Theraulaz and Bonabeau, 

1999). 

“[Stigmergy] is based on the use of the environment as a medium of inscription of past 

behaviours effects, to influence the future ones. This mechanism defines what is called a 

self-catalytic process, that is the more a process occurs, the more it has chance to occur 

in the future. More generally, this mechanism shows how simple systems can produce a 

wide range of more complex coordinated behaviours, simply by exploiting the influence 

of the environment.” (Serugendo et al., 2004, p. 5) 

Ricci et al. (2006, p. 124) states that “stigmergy is mostly used as the source of simple 

yet effective coordination metaphors and mechanisms for robust and reliable systems in 

unpredictable settings.” The environment acts as both a memory and communication 

system for the swarm. This allows the agents to communicate with each other without 

necessarily being in the same space at the same time. This is one of the major benefits 

of a stigmergic systems over any form of communication between two robots direct or 
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indirect. Beckers, Holland and Deneubourg (1994) successfully used stigmergy in a task 

where different size groups (1-5) of robots had to collect 81 pucks into a single pile.  

An interesting example of electronic stigmergy through electronic pheromones can be 

found in the research by Susnea, Vasiliu and Filipescu (2008). They suggest that the low 

cost of RFID (Radio frequency identification) devices would allow them to be placed in 

abundance into an area of interest. The RFID would then act as a digital storage device 

for electronic pheromone in the environment and allow robots to directly mimic the 

behaviour of ant pheromones for route planning and shortest path problems. 

Werfel et al. (2006, p. 2794) discuss the benefits of „extended stigmergy‟ where they 

increased the capability of the building materials in a construction task to hold 

information about the structure. They state “[w]hile building structures from inert, 

indistinguishable blocks is possible, incorporating communication abilities into the 

blocks brings considerable benefits in speed and robustness.” 

This demonstrates the potential power of stigmergy to ignore communication issues 

that are inherent in direct communication and indirect communication between agents. 

However, this type of behaviour may not be suitable for all applications where 

communication is required for example if there is a high level of interaction between the 

agents themselves an indirect method of communication between the robots may be 

superior and where there are only a few robots completing complex tasks direct 

communication may be more appropriate. 

2.1.3 Identity and Anonymity 

Robots and agents in multi-robot tasks can either be anonymous or identifiable. An 

identifiable robot has its own individual ID that it is aware of and that the other robots 

in the group are aware of. This can be useful in completing a task as specific robots can 

be commanded to do certain sub-tasks or jobs and this way the work can be distributed 

efficiently. There is a potential risk with this type of system in a situation where a 

specific robot or agent is required or told to do a job and that robot is not accessible. 

There are numerous examples of multi-robot systems that use robots with individual 

identification for different problems. For example:  

 A task where the robots need to move to a goal whilst remaining in formation 

and avoiding obstacles (Balch and Arkin, 1995). In this case the ID of the 
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robots determine the position they take in each of the possible formations, 

therefore the robots are acutely aware of their relative positions to each other. 

 As a diagnostic system where each robot continually gives out an „I am alive‟ 

message along with its ID. If the robot fails to send out the message the rest of 

the team re-evaluates the task (Schneider-Fontán and Matarić, 1998). Utilising 

IDs allows the robots to determine how many robots are currently active 

without which knowledge they would not be able to revaluate the task 

successfully. 

 Each of three robots are given a different colour collar to distinguish themselves 

whilst cooperatively moving an object (Spletzer et al., 2001). The unique IDs 

allowed the robots to cooperate to localize themselves and also assign a leader 

to follow to remain in formation.  

In contrast to these examples the robots can be anonymous. Anonymous robots do not 

have individual identification for the purpose of task solving. Batalin and Sukhatme 

(2002) found that simple anonymous robots slightly outperform more complicated 

robots with ephemeral identification techniques when deploying a mobile sensor 

network into an unknown environment. Anonymous agents are also used in Défago 

and Konagaya‟s (2002) research into circle formation. 

The advantage of this type of anonymous system is that there is no need to 

communicate to a specific robot or change the information that the robots use based on 

how many robots are currently trying to complete the task. This idea ties into 

homogeneity, in that having all the agents exactly the same allows for any robot to be 

interchanged with any other robot. 

2.1.4 Homogeneity 

The homogeneity of a group describes how similar each member of the group is to the 

other members. A homogeneous group is identical in every way including both physical 

design and their control behaviours whilst a heterogeneous group can be varied in either 

one or both of these categories. A heterogeneous group may be made up of completely 

unique individuals or sub-groups of identical individuals in any proportion to the overall 

group size. Getting heterogeneous groups to work together is an interesting research 

problem as each member can be capable of completely different things. The following 

are examples of research which utilise heterogeneous robotic groups: 
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 A task where three different robots are used to map an indoor area (Simmons et 

al., 2000). The robots are aiming to complete the task as efficiently as possible 

by considering their placement relative to each other. In this scenario there is no 

clear advantage in using a heterogeneous group of robots as they all have 

identical scanning and communication capabilities. One of the robots has tracks 

rather than wheels which may allow it to travel on different surfaces, however 

this is not used.  

 Heterogeneous robots are shown to be capable of cooperating to identify their 

location (Fox et al., 2000). In this scenario there are two types of robot, those 

that use sonar sensors and those that use laser-range finders. In the 

environment there are obstacles only identifiable by either of the sensors. By 

sharing the information of these positions with each other both types of robot 

can determine their location in a space. 

 Robotic agents capable of obstacle detection and avoidance guide a group of 

robots with only kin-recognition to create a sensor network (Parker et al., 2004). 

This system would in practice allow simpler, and therefore cheaper, robots to be 

distributed autonomously whilst the more able robots could be used again for 

other tasks making the overall system more cost effective.  

 A cooperative anchoring problem where differently capable robotic agents share 

information with each other in order to confirm the locations of objects of 

interest (LeBlanc and Saffiotti, 2008). In this system there are two mobile robots 

both with vision systems and one with a symbolic task planner, as well as static 

camera and RFID reader, which are also considered robots. By identifying 

features distinguishable to each robot they can cooperate to complete the task 

of locating a specific object. 

An advantage of having heterogeneous groups is that the individuals or sub groups of 

individuals can be built for specific tasks. However there are potential risks with this 

system. If within a group there is a specific task that needs to be completed by a specific, 

specialist agent and something happens to that agent that task cannot be completed. 

The end result is that a malfunction to a small percentage of the group can cause 

complete failure of the task. Another issue to consider is the number of each type of 

specialist robot required in the group. This information cannot always be known in 
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advance. A solution to these problems can be found with homogeneous groups. Every 

agent of a homogeneous group is identical to each other. One immediate benefit of this 

is the production cost of making a group or multiple groups of robots. As there are no 

differences in the physicality of the robots they can be mass produced far more easily. 

There is also no difference in the control architecture of the robots. Having a 

homogeneous group should allow for greater robustness. In the previous example, the 

heterogeneous group losing a key member or portion of the team could mean complete 

task failure; the same situation with a homogeneous team losing a portion of the group 

will not mean key tasks cannot be completed as each member is interchangeable.  

The interesting aspect is making the group capable of completing the task or tasks 

without there being any difference in the members. One easy way to do this would be 

to have multiple highly capable robots working in parallel but this negates the point of 

using simplistic robots in the first place. A more suitable way to do this would be to 

have the group or swarm change the way they react and behave when dealing with 

different tasks.  

It should be noted that Lerman (2006, p. 249) states “[r]eal robot systems are 

heterogeneous: even if the robots are executing the same controller, there will always be 

variations due to inherent differences in hardware.” However, this point is pedantic and 

would not allow for the distinction between the two classes. Even though it is correct it 

does not make sense to term a group as heterogeneous when it was designed both in 

behaviour and physicality as a homogenous group. 

2.1.5 Recall and Computation 

When discussing recall capabilities of robots it is confusing to use the word memory, all 

robots have memory in the computational sense, however not all robots are built to 

remember their past actions. Robots that cannot recall any of their past actions are 

termed oblivious robots (Défago and Konagaya, 2002). Oblivious robots must 

determine their actions based only on the information currently available to them 

(Yamashita and Suzuki 2010). 

Robots which can only recall their current state are termed finite state machines. Finite 

state machines have a limited number of possible states, based on their current state and 

what is being sensed they can change from this current state to another. The state that 

the agent is in determines it current behaviour. Hsiang et al. (2004, p. 79) use agents that 
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are modelled as finite state machines, stating they have only, “local communication, 

local sensors, and a constant-sized memory.” Shiloni, Agmon and Kaminka (2009; 2011) 

use robotic agents that can recall a limited number of previous actions. The amount of 

previous actions the agents can recall is incredibly small compared to the amount of 

actions it takes to complete the task. The advantage of this system is that the amount of 

recall is set and designed into the system, there is no need to consider edge cases where 

memory limits will be reached as it is an intrinsic design choice. 

In some instances the task that needs completing may require that more information is 

stored than a current state, for example this could be in mapping an unknown area 

(Thrun, Burgard and Fox, 2000; Simmons et al., 2000; Rekleitis, Dudek and Milios, 

1997). There is a limit to what this robots can recall of an environment, but this limit 

should be larger than the general task requires. In these situations these robots 

recollection of the space could be considered unbounded, relative to the task, whilst 

their behaviours in that space are limited. The advantage of systems like these is that 

they can record information that cannot only be used by the robots themselves to make 

more informed decisions it can be used at a later time by a third party. This ability is 

perhaps a disadvantage in dynamic spaces when mapping, as the recollection may not 

match the current environment. Having a distributed system would allow for quicker 

responses to an environment like this.  

2.1.6 Localisation 

Knowing the position and bearing within a coordinate system can be helpful to each 

member of a robot team. Having this shared knowledge allows for easier interaction 

and information sharing between the group, as they all share the same reference points. 

Localising a robotic agent can be done in a number of different ways. For example, 

depending on the size of the robots it would be acceptable to model them knowing 

their location through Global Positioning System (GPS). An alternate or additional 

method to GPS could be a shared beacon (Parker, 2002; Madhaven, Fregene and Parker, 

2002). Even in an unknown environment a beacon could be sent with the robot team. 

The robots could find their location and orientation relative to the beacon and therefore 

would be able to coordinate around a shared origin. 

The issues with these systems depend on the task been completed. For example if there 

is any interference with or there is no signal from a GPS the system will fail. The same 
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is true of the beacon, if this is damaged on deployment the agents would not be able to 

work as planned. Also any environmental interference could cause issues.  

An alternative to having a shared localisation of the team is to have individual and 

independent localisation. This method can make tasks more complicated to solve in the 

design phase and increase the complexity of the individual robots. However, they would 

make up from the lack in technological capabilities by being more robust where faults 

occur and universal in where they can be implemented. 

A compromise is found where the team of robots cooperate in order to localise 

themselves in the space. Fox et al. (2000) propose a system for the self-localisation of a 

group of robots. The robots are capable of finding their location in a space by sharing 

information with each other, which helps each agent confirm their position. This task is 

completed with a probabilistic approach. A similar approach is used by Spletzer et al. 

(2001). Here a team of robots keep in formation, whilst travelling along a prescribed 

trajectory, by identifying their locations relative to each other. 

2.1.7 Synchronisation 

Synchronisation describes the way that the robots or agents of a group complete their 

computations. At the very simplest level, the agents of a system can each observe, 

calculate their next action based on the sensed data, and perform an action based on 

their calculations. In a fully synchronised system each agent performs each of its 

routines (for example sense, calculate, or move) at the same time as the other agents. 

Synchronised systems are most likely used when simulating the behaviour of large 

groups of agents as it is simpler to have all the calculations of one type performed by 

each member of the group in sequence. For example, all the agents sense their 

surroundings, then all the agents calculate the response to the surroundings, then finally 

all agents act according to this response and this is then all repeated. 

In general a synchronised method is not how physical robotic multi-agent control 

systems are implemented. If a synchronised system were to be developed for a physical 

robot group, some mechanism would need to be put in place to keep the synchronicity. 

This could be a control pulse of some sort or by having all the agents synced and 

allowing a certain amount of time for each action to be performed. The problem here is 

being sure that the agents can be kept in synchronisation with each other. Any slips in 
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the synchronisation could make drastic changes between the simulated model and that 

of the physical model. 

Due to these issues of implementation from software simulations to physical simulation 

more realistic simulation models where each agent performs the same actions but not 

necessarily at the same time have been devised. These asynchronous simulations are 

discussed most often in multi-robot formation and gathering problems, as these are the 

base level tasks for multi-agent behaviours.  

Flocchini et al. (2005, p. 150) state their robots are fully asynchronous and have “no 

common notion of time, and the amount of time spent in observation, computation, 

movement, and in inactivity is finite but otherwise unpredictable.” This is done in order 

to try and make the simplest robot capable of completing a gathering task. The robots 

gather as long as they share some knowledge of a common compass. Souissi, Défago 

and Yamashita (2005) follow this research to describe a solution to the same problem 

with unreliable compasses. In this case the compasses start unstable but will eventually 

stabilise, however when this occurs is unknown to the agents. Klasing, Markou and Pelc 

(2008) follow a similar approach where each of their three actions of look, compute and 

move are asynchronous relative to each other. However, this is completed without a 

common compass bearing. A ring formation is possible for an odd number of agents in 

all cases and an even number of agents as long as the number of agents is not two, the 

initial configuration is not periodic and there are no edge-edge symmetries. 

2.2 Summary  

Through the study of the different aspects of multi-agent control architecture it has 

become apparent that there are two schools of thought. These different agent types are 

covered partially by Shiloni, Agmon and Aminikia (2009; 2011), the simple ant robot 

and the more capable elephant robot. The elephant robot seems capable of completing 

tasks due to its superior capability yet the research into different aspects of multi-agent 

systems suggests that the simpler ant like robot might provide a way for making a more 

adaptable system. One that is robust, scalable and flexible. These types of systems, 

within the robotics domain, are often linked to swarm robotics research. In fact the use 

of the word „ant‟ to describe one type of the individual agents capability ties neatly with 

the inspiration that was taken from the social insect group to create swarm robotic 

behaviours. Beekman, Sword and Simpson‟s (2008) introduction to the biological 
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foundations of swarm intelligence shows the strong influence between the two. It is 

these adaptable traits of swarm robotic systems that make the method a suitable choice 

for the cooperative object recognition task. 
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Chapter 3: Swarm Robotics 

From the investigation into multi-agent systems it was determined that a swarm 

robotics approach would be applicable for the cooperative object recognition task with 

limited capability agents. This chapter provides an overview of the most prominent 

research areas of swarm robotics. A discussion on the natural influences on swarm 

robotics is considered as well as a characterisation of the cooperation in the individual 

tasks being either necessary or efficient. 

3.1 Research Areas 

Those researching multi-robot control architecture examine ants‟ behaviours as they are 

visibly capable of completing so many complex tasks and yet are relatively simple 

individually. What makes these naturally occurring social insect groups so interesting is 

that there are no leaders to control the groups‟ behaviours nor is there a master plan 

that any individual has knowledge of.  It is the simple interactions and behaviours of 

each agent on a local level that causes solutions to tasks on a colony level to emerge.  

Ants in nature, for example, are capable of finding the shortest route to sources of food 

(Goss, 1989), they can determine which areas would make the most suitable homes 

(Franks et al. 2003), they can cooperate to move objects more efficiently (Franks, 1986) 

and they can sort their brood (Sendova-Franks, 2004) or organise their dead into 

clusters to avoid diseases (Diez et al., 2011). The ants complete these tasks despite their 

relative individual capabilities and without understanding what their part in the whole 

operation is. As well as influencing swarm robotic behaviours these social behaviours 

have also lead to swarm intelligence for optimisation (Kenedi and Eberhart, 1995; 

Eberhart and Shi, 2001; Blum and Li, 2008). By looking at these characteristics and the 

research in swarm robotics closely a greater understanding of what makes these 

behaviours so interesting can be achieved. 

3.3.1 Aggregation and Dispersion 

Before a swarm of robots can complete a given task they may need to move to the 

correct locations relative to each other. Generally this is done by the swarm aggregating 

(moving together) or dispersing (moving apart). Aggregation is a commonly seen 

behaviour in nature where animals gather into groups. Some fish move in schools, birds 

migrate in flocks and mammals herd together (Reynold, 1987). Reynold (1987) emulates 
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this group movement behaviour with the simulation Boids, this shows again how the 

interaction of simple rules can cause more complex behaviours to emerge. Often this 

natural aggregation behaviour is for protection either from predators or the elements 

(Hamilton, 1971). 

In swarm robotics aggregation is a prerequisite requirement for swarm movement and 

self-assembly especially if the swarm is initially dispersed. Dorigo et al (2004) discuss 

how the act of aggregation is used to bring together a group of s-bots which then can 

connect to each other to form a swarm-bot. They show how their aggregation 

behaviours, which utilise sound emitters and sensors on the robots, are scalable for 

group sizes up to forty.   

Soyal and Şahin (2005) discuss two forms of aggregation. Firstly, the agents in the 

system use environmental clues to organise themselves; examples of this behaviour in 

nature are seen both in flies who use light and temperature to aggregate and also in sow 

bugs who use humidity. The second behaviour is one that uses cooperative behaviours 

between the agents, this is harder to mimic in swarm robotics but leads to a more 

robust system. This difficulty arises because the behaviours in the second system are 

tied to the robot, where there are no external environmental clues directing them one 

way or another. However, in an environment where there is uniformity this second 

system could still function by reacting to each other, making it more robust. 

Other insects have influenced aggregation control in swarm robotics. Soysal and Şahin 

(2007) use characteristics of cockroach behaviour to aggregate a group of robots initially 

dispersed in a closed arena. The individual agents have no information regarding the 

size of the arena or the number of agents in the arena at any time. As each agent‟s 

sensor range is less than the arena size it ensures that it is not capable of knowing the 

conditions of the whole arena at any time. These limitations allow for easier scaling for 

future applications as the number of agents and the size of the arena are unknown to 

the agents. Therefore the agents do not need updating to cope with different tasks that 

vary in scale. 

Looking at only the key behaviours, of avoidance, approach, repel and wait, involved in 

an aggregation task Soysal and Şahin (2005) devised four different behavioural models 

for bringing a group of agents together by combining them in different ways. These low 

level behaviours show that it is not necessary to mimic actual individual natural 
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behaviours to produce recognisable group behaviours and that by using basic key 

techniques in different configurations new systems can be created. 

Dispersion is the opposite behaviour to aggregation, spreading the agents out across an 

area. This generally needs to be done in a way that covers the most area without 

individuals becoming too detached from the rest of the group. McLurkin and Smith 

(2007) examine five different dispersion techniques for indoor environments. These 

include: 

 Ideal gas motion: The agents move as molecules would in an ideal gas.  

 Disperse from source: The agents move away from a single source. 

 Avoid closest neighbour: The agents each move away from their closest 

neighbour.  

 Disperse uniformly: The agents move in the opposing direction to the vector 

sum of the positions of their nearest neighbours whilst remaining within a set 

maximum boundary distance. 

 Directed dispersion: A combination of two types of dispersion technique, 

disperse uniformly and frontier guided dispersion, where agents move towards 

unexplored areas. 

Again these techniques are not directly influenced by the behaviours of any specific 

individual animal. The same can be said for Pugh and Martinoli (2007) whose methods 

for constructing a searching swarm is inspired by Particle Swarm Optimisation. 

Although Particle Swarm Optimisation was originally influence by the movement and 

organisms in a bird flocks and fish schools (Kennedy and Eberhart, 1995). 

Dispersion is used in foraging, section 3.3.2, as well as building dynamic networks in 

multi-robot control. Ludwig and Gini (2006) propose a method of distribution for a 

surveillance sensor network application. The agents use the intensity of wireless signals 

transmitted from the robots to provide a rough estimation of their distance apart from 

each other. However, the agents have no idea of the bearing of the signals. They can 

however estimate the direction by tracking how much the signal intensity changes as 

they move. This choice simplifies the design of the robot, something that is important 

to consider as it leads to simpler manufacturing processes. 
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A real world application is described by Payton et al. (2001) where the gas expansion 

and guided growth dispersion of a swarm of simple robots through an unknown 

environment can provide guideposts for larger more powerful robots or for human 

operators to follow with the aid of augmented reality glasses.  

3.3.2 Foraging 

Foraging is the act of collecting items or objects and moving them to a certain area and 

is highly influenced by the behaviours of ants. The agents of the swarm need to disperse 

into the search area, find the objects and either return them back to a certain point or 

move them into clusters. It is usual for the objects to be moveable by a single robotic 

agent, however there are some instances, which combine both foraging and cooperative 

transport, section 3.3.4. Objects in foraging tasks are often referred to as pucks or 

where more influenced by natural systems the objects are prey and the collection point 

the nest. Winfield (2009) states that foraging is a bench mark test for swarm robotics as 

it is inspired by social insects, it is a complex task that deals with three subtasks; 

exploration, physical collection and navigation to certain points and finally to be 

efficient it requires cooperation between the members of the swarm. 

The way in which the agents cooperate with each other is important to consider. It 

would be possible to have a swarm simply act in parallel without interactions with each 

other, however this is not exhibiting an intelligent behaviour on the part of the swarm. 

In both cases simply adding more and more agents into the system reaches a point 

where it does not help any more in fact it can cause problems. This is because of the 

amount of interference that happens around the collection point of the foraged items. 

For this reason foraging is the most widely used domain to investigate the effects of size 

scalability on performance (Shell and Matarić, 2006). In order to deal with this problem 

Shell and Matarić (2006) compare a „bucket passing‟ idea, where the items are moved 

gradually by different groups of agents towards the base, with that of a more standard 

homogeneous method. They go on to suggest that there is a difference in degree rather 

than a difference in absolute type when considering different strategies. By considering 

this it is possible to get a gradient of different strategies. The need for this type of 

adaptive system is also clear from Sugawara and Sano‟s (1997) research. In a foraging 

task they measure the success of uncooperative and cooperative agents to deal with 

different distributions of pucks in an arena. The pucks were spread uniformly across the 

whole arena, spread uniformly in a quarter of the arena and also placed in a tight cluster. 
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Where the spread was uniform the uncooperative agents performed better, where there 

were tight clusters the cooperative agents, who signalled the other agents, performed 

better. It has been demonstrated by Liu and Passino (2004) that swarms deal better in 

noisy environments than individuals in a foraging task, where the agents used an 

attraction and repulsion function to forage. Atkin, Balch, Nitz (1993) also consider the 

use of communication in foraging. They find that the addition of communication 

increases the efficiency of the group as agents spend more time moving prey rather than 

finding prey.    

Rather than specifying a single point for the cluster to be formed, it is possible to have 

the cluster form naturally. Kazadi, Abdul-Kahliq and Goodman (2002) completed 

research where items can be picked up moved and dropped. Items are more likely to be 

picked up if they are on their own and more likely to be dropped if near a cluster. This 

was found to eventually lead to a single large cluster.  

Mimicking the behaviour of social insects Krieger, Billeter and Keller (2000), Liu et al. 

(2007) and Liu, Winfield and Sa (2007) have the agents forage for energy. This forms an 

interesting balance as the agents both need energy to forage and gain energy from 

successfully foraging. Within the models the items being foraged replenish over time, as 

would a natural food source. In a similar foraging task Labella, Dorigo and Deneubourg 

(2006) examine the efficiency of a group of agents that divide their labour between 

agents. The division of labour is determined by their individual ability to retrieve items 

of prey. In all these examples the agents attempt to react to their environment to work 

efficiently, with individuals only collecting prey when it is beneficial for the swarm to do 

so.   

The real world applications of foraging could be as varied as toxic waste clean-up, 

search and rescue, the removal of mines and collection of terrain samples (Campo and 

Dorigo, 2007). As it can be time consuming to run both physical and soft simulations it 

is common for analytical mathematical models of foraging behaviour to be developed 

for more efficiently finding variables  (Lerman, 2006; Hamann and Wörn, 2007; Campo, 

2007).  

3.3.3 Self-Assembly and Connect Movement 

Within swarm robotics self-assembly describes the act of multiple agents attaching to 

each other in different ways to form structures that change the functional capabilities of 
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the swarm. An example of this in the biological world is ants forming chains to bridge 

over gaps that would be too long for a single ant to traverse alone (Lioni et al. 2001). 

For this act to happen without any central control and with truly homogeneous agents 

is a difficult feat. Although once successfully implemented the system could be capable 

of many varying real world situations allowing the swarm to adapt to tasks of different 

magnitudes, for example pass through a small tunnel individually and then combine to 

traverse a chasm larger than an individual. 

Groß et al. (2006) list five ways that the self-assembly of robots can aid the robotics 

domain; self-repair; self-replication; additional mobility; parallelism and increased force. 

 Self-repair: If the robots are modules within a larger construct, any damaged 

module can simply be replaced with a working module. This may, depending on 

the location of the module and function of it, require different ranges of 

disassembly. 

 Self-replication: Using suitable building block agents available in the 

environment the assembled robots can replicate themselves. 

 Additional mobility: As the robots assembly together to form different shapes 

they may be able to traverse terrain or obstacles they could not move over 

individually. This could be bridging a gap or climbing over a step. 

 Parallelism: By detaching the individual agents from the assembled robot they 

can then perform tasks in parallel. 

 Increased force: The capable force output of the robots could increase as 

additional robots are added to the assembled structure. 

In practice self-assembly can be a difficult task to complete as once a new structure is 

formed, each member needs to know what its current role is in the task. Gilpin et al. 

(2008) describe a method for building different shape structures from dissembling a 

three-dimension block of multiple cubes. This method would allow agents to form into 

generic shapes, which are easier to build and then disassemble into more complex forms, 

which perhaps could not be built in a purely additive manner. A comprehensive 

overview of modular self-reconfigurable robot systems was written by Yim et al. (2007). 
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One of the more common used platforms for self-assembly is the s-bot system. Each 

agent, or s-bot as they are termed, has a LED ring array that displays the robots current 

state, a 360 degree camera and a gripper. The gripper allows the s-bots to link together 

to form different shapes without the need for specific linking locations. Groß et al. 

(2006) showed how the s-bots could link together even on rough terrain. The s-bots can 

assembly into different formations which can allow them to traverse gaps in terrain or 

climb over obstacles (Tuci et al. 2006). Another application to bridge crossing is 

suggested by Arbuckle and Requicha (2004) where rather than using passive 

components for nano-scale construction a swarm of self-assembling robots could be 

used. This would reduce the problem of one thing manipulating another to one thing 

manipulating itself.  

3.3.4 Cooperative Transport 

An extension of the foraging problem is the cooperative transport task. Within this 

research field the swarm of robots need to work together in order to move an object 

that is too large or heavy for a single agent to move on its own. To do this the agents 

must coordinate with each other in such a way that the majority of them are all trying to 

move the object in the same direction. Without a centralised system in place there needs 

to be an emergent way to do this task. This problem has been solved in the natural 

world by ants. Kube and Bonabeau (2000) go into great detail considering the 

movement of objects both individually and cooperatively by groups of ants and how 

this inspires their control techniques for robots. More specifically they consider the 

avoidance of stagnation, which could occur if all the agents are trying to move the 

object in different directions. The cooperative transport tasks can be reduced into 

subtasks; find object, move to object, push object and push object to goal (Kube and 

Zhang, 1996). In order to complete the task the robots changed between these subtasks 

based on the perceptual clues; can they sense the object; are they in contact with the 

object; are they moving and where is the goal?  

As agents in the system are simplistic in nature they often have no explicit knowledge of 

how their reactions will affect the world or what they have done in the past. This means 

they are unable to predict what will happen to the box in the future if they push it and 

cannot learn from their previous moves, therefore they can only react to the present 

situation. Matarić, Nilsson and Simsarin (1995) studied this problem with a system using 

two six-legged robots and an elongated box. They found that two robots were more 
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efficient at moving the elongated box than one. This was a general multi-robot control 

problem and not one inspired by social insect emergent behaviours as in swarm robots. 

Simply adding more robots to this system would not necessarily improve the efficiency. 

In fact even in a swarm robotic system adding more agents into the system does not 

necessarily make the task completion more efficient. Groß and Dorigo (2004a) used s-

bots to move different size and weight objects by either pushing or pulling them. The s-

bots assembled together in order to increase the force they were capable of applying on 

the object. They experimented with groups of between four and sixteen robots and 

found that although once the agents had assembled they could move the objects quicker 

with more robots, it took longer for the agents to assemble in the first place. Kube and 

Zhang (1994) also carried out research on how the number of robots trying to move an 

object changes the efficiency of completing that task. 

The issue here is organising the robots behaviours in a suitable way to deal with the 

cooperative transport task. Campo et al. (2006) research the uses of negotiation between 

robots in a cooperative transport task and how it affects the time taken to move the 

object and the accuracy of the direction which the object is moved. They use four 

robots, of which three are required to successfully move the object. However, a single 

robot acting in the incorrect way may make the object un-moveable. The four strategies 

they suggested were:  

 Transport directly. 

 Negotiate then transport. 

 Negotiate then transport and negotiate. 

 Negotiate and transport.  

Each of these was tested with different levels of noise. The most successful was the 

negotiate and transport strategy. They suggest this outcome is perhaps counter intuitive 

as less time is spent negotiating than the negotiate then transport and negotiate strategy. 

They suggest this outcome is because before the object is moved the robots are unable 

to assess if what they are doing is correct, therefore making decisions without any initial 

feedback slowing the early progress. 

Given that it is possible to physically move the object it may be necessary to guide it to 

the correct place. Using the s-bot Nouyan et al. (2006) devised a system where the 
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agents who initially randomly disperse in the arena search for the base and the prey. 

Those that find the base or the prey display the same colour as the base or the prey 

becoming part of that object. Eventually a chain is formed between the two which is 

shortened until the prey is moved to the base. 

All these cooperative transport tasks use a single object but could be expanded upon for 

the collection of multiple large objects. Zhang, et al. (2007) research this issue with a 

task where agents move multiple objects of unknown size and weight. Unlike the 

traditional foraging task the agents here must cooperate in order to move any single 

object. In this case the foraging task would be impossible to complete by a single agent 

to complete, as is true of all cooperative transport tasks by their definition.  

3.3.5 Pattern Formation 

Many tasks in swarm robotics could benefit from the agents forming certain patterns 

and shapes before completing those tasks. An example of this is self-assembly, having 

the agents move to the correct positions relative to one another before linking together 

could improve the efficiency of the whole process. For example in Balch and Hybinette 

(2000) research the robots are attracted to attachment sites around neighbouring robots 

in order to move a formation across an arena containing multiple obstacles. Where 

different attachment sites affect the formation produced. The problem, however, in 

pattern formation is completing it with the lowest capability agents possible. This 

restriction leads to agents that, in different combinations: do not have a shared frame of 

global reference or bearing; are oblivious (section 2.1.5); are anonymous (section 2.1.3); 

and are non-synchronised agents (section 2.1.7).   

There have been numerous studies into pattern formation of a group of decentralised 

autonomous agents. In some instances the agents were given individual IDs meaning 

they were not considered anonymous. In the research of Lemay et al. (2004) four agents 

are used, each agent is aware of the position of the other three agents and can then 

determine the best position for themselves using this information. The agents could 

form an arrow, column, circle, diamond, wedge or line. Fredslund and Matarić (2002) 

reduced the need for the agents to consider the position of all other agents to 

considering a single agent; their leader. However, doing this reduced the formations 

possible to chains that follow the main leader, either with the leader at one end of the 

chain or in the middle. Having a single leader gives a single point of failure. If the leader 

does the wrong thing, the whole group does the wrong thing. Ren and Sorensen (2008) 
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therefore devised a method where the number of leaders could be changed without 

affecting the complexity of the control system. The four agents‟ ability to remain in a 

square formation was measured using physical robots.  Increasing the number of leader 

agents increased the robustness of the group by avoiding a single point of failure. 

Pavone and Frazzoli (2007) used the idea of cyclic pursuit, where one agent follows its 

leader to form circles and spiral formations. They adapted their system so it could be 

completed with autonomous agents using a convex hull system.  

Défago and Konagaya (2002) also use autonomous agents to form a circle formation 

but in order to do so the agents required unlimited vision allowing them to know the 

position of all the other agents in the system. Using non-synchronised agents modelled 

as points with no common coordinate system Défago and Souissi (2008) have the 

initially randomly placed agents form non-uniform circle formations with agents evenly 

spread around the circumference within a finite amount of time. It is not necessary to 

have the agents aware of the entire arena space. Fujibayashi et al. (2002) show this with 

the use of virtual springs that act between the agents. The properties of the springs 

depend on the formation required. The spring like connections can be broken with a 

certain probability allowing either ladders, triangles or hexagon formations to be formed. 

Suzuki and Yamashita (1999) show that the initial configuration of the robots can 

determine the geometric formations that the robots can go on to form when using 

anonymous agents, due to issues of symmetry and agreeing on a shared coordinate 

system and bearing.  

3.3.6 Self-Organised Construction 

The self-organised construction task requires the swarm of robots to work together to 

build structures. To do this the agents must find the required piece and move it to the 

correct place at the correct time. Often the pieces are identical and there are numerous 

possible places to put that piece which means the task can be carried out in parallel by 

multiple agents.  

Although construction is a three-dimensional problem, the problem is often reduced to 

that of a two-dimensional problem. The building blocks themselves are often identical 

meaning that there is no specific order to collect them in, increasing the scalability and 

robustness of the task. Wawaerla, Sukhatme and Matarić (2002) found that increasing 

the number of robots also increased the efficiency of the system to complete the task of 

constructing a wall from alternating coloured blocks. However, there was often 
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interference between the robots trying to complete similar tasks in the same area. This 

issue could be addressed by splitting the agents into teams as done by Crabbe and Dyer 

(1999). Here they use one group of robots to move the blocks into roughly the correct 

place and one group to arrange them neatly. This allowed them to build more complex 

corridors and intersections. 

One idea to improve the capability of the construction is to use smart building blocks. 

In the research of Werfel, Bar-Yam and Nagpal (2005a) the smart blocks act as beacons 

informing the robotic agents where to construct. The structure itself contains the 

information of its state and what needs doing to it so the agents do not need to hold 

this information. This idea is expanded upon (Werfel et al., 2006) by exploring four 

types of blocks; inert blocks, distinct and inert blocks, writable and inert blocks and 

finally communicating blocks. The distinct blocks hold information that makes them 

distinguishable from each other so the robots can build a dynamic label map of the 

system. With writable blocks, the robots can change the states of the blocks. Finally the 

communicating blocks can store, process and communicate information to each other 

and the robots. Their findings show that more capable the blocks the better the system 

performed overall. They discuss the problems of failing smart blocks which may 

hamper the system. An error correction procedure is described (Werfel, Bar-Yam and 

Nagpal, 2005b). Again the issue of interference arises even with smart building blocks. 

Terada and Murata (2006) consider the construction of T-shapes and L-shaped 

structures. The corner sections caused problems of interference. Two methods were 

used to deal with collisions between the robots; module relay where any robots colliding 

passed the module on and also blackboard planning which prevents collision by using 

local communication. 

The use of smart block techniques are also used in three-dimensional construction 

problems (Werfel and Nagpal, 2008). These techniques are useful due to the inherent 

difficulty of constructing in a three-dimensional lattice. Werfel (2006) shows that it is 

possible to construct a two-dimensional shape from identical two-dimensional blocks, 

with directions indicated on each edge, that would allow a robot following those 

directions to visit every outside edge of that object and return to where it started, even 

if blocks are added or subtracted to the object. However, this is not possible with three-

dimensional cubes where a robot is required to visit every face. Using smart blocks 

allows information that the cubes contain and communicate to the robot to change 
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meaning the blocks can adapt to their current constructed shape, making visiting each 

face possible. 

Social insects‟ construction techniques have also been mimicked. Theraulaz and 

Bonabeau (1995a; 1995b) draw inspiration for the construction of three-dimension 

lattice formations from wasp colony nest construction. They were capable of producing 

structures with regular patterns and those which resembled the nest of different wasp 

colonies. Virtual pheromone plumes can also be used to guide the construction of 

blocks into an arcing wall in a two-dimensional simulation (Mason 2002). Termites have 

also inspired a physical robot system capable of producing balls of foam that harden 

over time to produce ridged structures. The robots can climb onto this structure and 

add further foam at higher heights in order to produce different structures (Bowyer, 

2000). The main difference is that the construction material is not found in the 

environment but given the robots initially.  

It may be the case that any structure built will need to be adapted or changed. De Rosa 

et al. (2006) show that by adding spaces or voids into a construction this is possible. 

Initially starting with a square source shape, which had randomly placed voids inside of 

it, they were able to successfully produce the target shapes of a T-shape, a rectangle and 

a circle. This is as long as the voids are sufficiently large to cope with the movement of 

the blocks. 
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3.4 Discussion on Swarm Robotics Research Fields 

3.4.1 Efficient Aiding and Necessary Cooperation 

From the research found in this literature survey there seems to be two general types of 

swarm robotic tasks. The first is where the actions of the swarm improve the efficiency 

of completing a task which could be completed by an individual. The second type is 

where the swarm or sub-group of the swarm work together to complete a task which 

they could not complete individually. 

For example consider collecting pucks into a cluster: 

 A single agent could move around the space collecting pucks one at a time, 

therefore not cooperating at all. 

 A group of agents could perform the same actions as the single agent parallel to 

each other. Probably reducing the amount of time it would take to collect a 

specific number of pucks.   

 A swarm of agents could share information with each other on puck rich areas 

potentially increasing the efficiency of the collection by targeting these specific 

areas.  

Although agents individually could find rich puck areas and keep returning to them, 

sharing information about the different areas allows the entire swarm to have a wider 

knowledge of the environment to target the most rich areas. Depending on the specific 

task this is the same for construction, an individual could construct on its own using the 

same techniques as a group of robots working in parallel, however, potential swarm 

techniques could further improve the efficiency of the system. 

The second type of general task has robots that have to work together or they simply 

will not be able to complete the task. This type of system is of more interest to this 

cooperative object recognition research. It is not simply a matter of increasing efficiency 

through effective communication, it is a matter of getting something to work which can 

only work through the successful cooperation of a number of agents. Behaviours of this 

type are apparent in aggregation and dispersion as you cannot gather or disperse a single 

robot, this is also true of pattern formation. These tasks involve the organisation of the 

robots either relative to each other or their environment but without necessary direct 

interaction with the environment. Finally there is cooperative transport and self-
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assembly. In the cooperative transport task it is not possible for a single robot to move 

the object, it takes coordination between many robots. Any transport task could be 

solved by building a sufficiently strong robot but this solution would be limited to a 

certain object parameters. Solving the problem through coordination between many 

robots provides a solution that is scalable and flexible enough to deal with different 

object sizes and weights. Again with the self-assembly the combination of the robots 

makes them capable of something they were not capable of before as individuals. By 

assembling together they can cross gaps they could not cross before, climb over objects 

or move over terrain they could not traverse before.  

Although both these general types of tasks are part of swarm robotics one focuses more 

on efficiency and the other is more concerned with capability of the group verses the 

individual‟s inability. Efficiency in this case been a measure of both how quickly a task 

can be done and the amount of energy required, and capability meaning simply to be 

able to do the task at all. Although it should be noted that both issues are a concern for 

each area type. 

3.4.2 Identifying Objects 

In all situations, within the literature,  involving the finding of, retrieval of and 

manipulation of objects each agent or robot in the system was aware when it found the 

object required. This individual object identification has been done in different ways for 

different pieces of research. In some case a lit box is used to draw the attention of the 

robots (Kube and Bonabeau, 2000) or similarly it has also been done using specific 

colour LEDs to distinguish it from the robots and base point (Groß et al., 2005; Groß 

et al. 2006). In these examples of cooperative transport there is only a single object to 

be moved. Even when there is a requirement to move different types of objects, the 

differences in the objects are made clear to the individual agents, an example of which 

can be seen in the simulation by Zhang et al. (2007). This same notion is repeated in the 

general foraging tasks, each robot becomes aware when they have collected a puck and 

knows that it is a puck they have collected. Finally the same assumption is in self-

organised construction. Alternating coloured blocks are used (Wawerla, Sukhatme and 

Matarić, 2002) for example. 

Where the focus of the research is to find workable strategies to, construct, forage or 

move it is logical to provide information to the robots about which items or objects are 

required. Adding object distinguishability for a variety of object types would add a 
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further layer of complexity that would distract from these original issues. However a 

need for systems which can address cooperative object recognition is shown by the 

existing research,  detailed in section 4.1. The benefits of using a swarm robotic method 

could potentially improve the scalability, robustness and flexibility of these systems. 

Another reason that the swarm robotic method may not have been considered so far is 

that there is no analogy available in the natural world. 

3.4.3 Inspirations from Nature 

Nature can provide a great amount of inspiration for many forms of technology. This 

inspiration can be direct, where an aspect of nature is copied almost exactly, or indirect, 

where the root behaviours used in nature are developed to solve tasks in a similar 

manner. Many aspects of swarm robotics systems take the more direct inspiration 

approach. Ants find the shortest routes using pheromones (Goss et al., 1989) and 

robots find the shortest routes using artificial pheromones (Payton et al., 2001 ). Wasps 

construct nests using simple rules, a swarm of agents use similar rules to construct 

structures (Theraulaz and Bonabeau, 1995a and 1995b). There are groups of ants that 

cooperate to move objects too large or inefficient for a single ant to move and there are 

swarms of robots that do the same (Kube and Bonabeau, 2000). The similarities 

between the agents of social insect groups and the neurons of a brain are considered in 

research in swarm cognition (Trianni and Tuci, 2011) and have led to vision systems 

implemented in robots (Santana and Corriea, 2011). The behaviours of schools of fish 

and flocks of birds have also directly influenced the way swarms of robots move in 

groups (Beni, 2005). It is perhaps due to the lack of a direct form of inspiration from 

social insects or any other group in nature that there has not been any research into 

cooperative object recognition with a swarm robotic approach. However, there is no 

reason why direct inspiration should need to be taken from a specific social insect 

behaviour. Although this is a suitable starting point for understanding how the 

techniques can be implemented it can soon become limiting. Already there are common 

adaptions of the behaviours seen in insects due to the hardware available in robotics. 

Systems inspired by ants and termites have to change and adapt how pheromones can 

be used in an electronic platform. This has been done in different ways; RFID tags 

(Mamei and Zambonelli, 2007), communication through LEDs (Groß et al., 2005; 2006) 

and transceivers (Payton et al., 2001). This suggests a sliding scale from direct 

inspiration to indirect inspiration in swarm robotics applications. 
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Using indirect inspiration further along that scale can potentially be more open; there is 

nothing in swarm robotics research that states it cannot be done in this way. Şahin 

(2005, p. 12) states “swarm robotics is the study of how large number of relatively 

simple physically embodied agents can be designed such that a desired collective 

behaviour emerges from the local interactions among agents and between the agents 

and the environment.” According to Beni (2005, p. 7)  “the principles underlying the 

multi-robot system coordination are the essential factor” to making swarm robotics 

what it is “the control architectures relevant to swarms are scalable, from a few units to 

thousands or millions of units, since they base their coordination on local interactions 

and self-organisation.” 

Although direct and specific inspiration is helpful on two accounts, improving multi-

robot control and understanding social insects or other natural occurring swarms, it is 

really the core elements that distinguish swarm robotics as a type of multi-robot control. 

By taking these control ideas a system can be produced for identifying objects 

cooperatively.  

3.5 Summary 

Many of the tasks research with swarm robotic techniques are inspired directly by 

naturally occurring systems. Restricting research to mimicking behaviours reduces the 

amount of potential applications to those that are already visible. Instead it also 

advantageous to look at the core behaviours present and use those as building blocks 

for solving different tasks. 

A division between two types of cooperative swarm task was identified. The behaviour 

of the agents can be considered necessary or efficient. Where the cooperative behaviour 

is considered efficient the robots can complete the tasks individually but do better by 

working together intelligently. In the case of necessary cooperative behaviour the agents 

must cooperate or they will not be able to complete the task. 
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Chapter 4: Related Research 

This chapter reviews the research into cooperative object recognition, distinguishing 

them by whether or not the cooperation is necessary to complete the task or it allows 

for a potentially more efficient system. A brief introduction into Genetic Algorithms 

(GA) is provided before a detailed review of multi-agent systems that have used the 

evolutionary algorithm to determine their behaviours and responses in a range of 

scenarios. Finally, an overview of both physical and simulated platforms for multi-agent 

systems is included. 

4.1 Cooperative Object Recognition 

The act of a group of agents working together in order to recognise an object can be 

considered cooperative object recognition, this has been achieved with both multi-agent 

and multi-robot systems. A portion of these systems consisted of robots, using relatively 

complex sensors and computational abilities, that are capable of completing the task 

alone and are individually capable of identifying objects and only utilising cooperation 

to increase the efficiency and robustness of the task. There are also systems where the 

cooperation is necessary in order for the agents to identify the object. 

4.1.1 Efficient Cooperative Behaviours 

Ye and Tsotsos (1997) research how a multi-agent group searches for a non-moving 

object in a given space. The search area is divided into a known number of cells which 

the robotic agents search. Each agent has a camera that can pan, tilt and zoom which is 

used to attempt to identify the objects position. The agents‟ individual knowledge 

consists of a probability distribution of the area which notes the likely hood of the 

object being in a specific cell. Through their use of this individual knowledge and shared 

group knowledge they cooperate to determine their next individual action in order to 

locate the object‟s position accurately. The robot considers seven parameters, the x,y 

and z coordinates of the camera, the width and height of the solid viewing angle of the 

camera and the pan and tilt of the camera in its search of the object shape. A limitation 

of their research is that it considers only the position of a single object rather than the 

identification of the object from a range of possibilities. 

Oswald and Levi (1997; 2001) research a method where individual agents‟ hypotheses of 

the identity of an object shape are compared and combined, and expressed in degrees of 
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belief using a Bayesian approach. Each agent receives their own image to analyse 

through a statistical recognition algorithm. The algorithm compares the objects to a list 

of potential hypotheses of what the object could be. This method improves the 

robustness of a hypothesis through shared information. However, the individual agents 

are still capable of predicting the type of object it is through the recognition algorithm, 

which requires a camera and knowledge of existing shapes.   

Büker (2000) agrees that the “robust recognition of complex 3D objects is often 

impossible when evaluating only a single 2D image of a scene” and provides a variation 

on the method for collaboration between the agents. As in the other cooperative object 

recognition research each agent is equipped with a camera and image processors. In this 

case the agents use Blackboard communication, where the information is stored 

centrally on a specific agent. The agents attempt to identify an object individually, when 

they hypothesise the object type a request for verification is sought from another agent. 

It is through these actions that they reduce the amount of errors in the object 

recognition. 

In these three examples the agents require, cameras and the capability to analyse the 

images they receive. The agents also need to know where they are in relation to each 

other and the object. All these amount to relatively complex individuals with complex 

interactions. It is possible for agents to distinguish between objects without these 

complex capabilities. However, this is at the cost of the complexity of the shapes they 

can distinguish between. Tuci, Trianni and Dorigo (2004) evolve the neural-network of 

a single agent to determine if it is in one environment or another. In one of the 

environments a light source is completely surrounded by an obstacle ring, in the other 

environment there is a gap in this ring allowing the agent to complete its task of 

reaching the source of light. If it is in the environment where the task is not achievable, 

the agent must determine when to give-up trying to reach the goal. This has been 

expanded in to a two robot system which evaluates the benefit of communication 

between the robots in completing the task (Ampatzis et al, 2006). In these systems, the 

environments are considered different, but the only difference in their environments is 

the single obstacle that potentially stops the robot reaching the goal. Therefore this 

could be considered an object recognition task, where the obstacle is the object that is 

being recognised. 
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In all these systems the agents are individually capable of distinguishing between objects 

on their own. It is the robustness and accuracy or efficiency of the individual agent‟s 

hypothesis on the object type that are improved through the sharing of information. If 

it were possible to have a swarm of agents cooperate as the system of recognition rather 

than verifying each other‟s actions the potential for further applications could be 

increased. Agents forming round the shape of an object, reacting to each other‟s 

placement around the contours of the shape could cooperate to identify the object 

through its shape and not through the analyses of numerous images. 

4.1.1 Necessary Cooperative Behaviours 

Research has been carried out where the agents must cooperate with each other to 

identify objects as individually they are not capable of doing so. McLurkin and Demaine 

(2009) describe a distributed boundary detection algorithm for multi-robot systems. The 

agents in the system identify when they are at either an internal or external boundary by 

the relative positions of their neighbouring robots. This is done by the agents who note 

gaps where they expect neighbouring robots to be, due to the way they are dispersed in 

the space, in order to identify convex and concaved boundary regions. For the robots to 

identify the boundary requires them to have unique identification and be able to 

estimate the position of their neighbours.  

Giplin and Rus (2012a) have developed a method for a multi-agent system to duplicate 

inanimate objects using modular robotic cubes, where an estimation of position is not 

required as the agents only communicated when in contact with each other. To achieve 

this the cube shaped Robot Pebbles attach to each other around the object, providing 

them with direct communication links in specific locations. Once the shape, which is 

constructed from inert cubes the same size as the Robot Pebbles, is completely 

surrounded a signal is passed around the object mapping its shape. This information is 

used to create a copy of the shape from the active robots, who remain attached to each 

other when the rest of the robots are removed. Although this research was initially 

achieved with shapes with a constant height, equal to one cube, the work has been 

expanded into three-dimensional cube constructed objects (Gilpin and Rus, 2012b). The 

robots used in their research provide an example of the type of physical system the 

methods devised by this swarm cooperative object recognition research could be 

implemented on in the future. Where they have focused on replication of objects 
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through complete knowledge of the object‟s shape, the focus here is on the minimum 

knowledge needed to distinguish between two types of object shape. 

By considering each sensor in a system as an agent the research by Tuci, Massera and 

Nolfi (2010) could be considered a heterogeneous multi-agent system. They evolve the 

neural controller for a simulated anthropomorphic arm that can distinguish between 

spherical and ellipsoid objects. The arm and hand joints are aware of their position 

through proprio-sensors, and touch sensors across the hand indicate if they are 

touching any object, be that the table, the ellipsoid, the sphere or another part of the 

robot arm. However, this multi-agent system would be considered to have strong 

communication capabilities and limited relative movement between the agents. 

Other than physical systems, multi-agent approaches for object recognition are used for 

understanding visual data. Here the environment that these agents inhabit is the images 

of the environment that the overall vision system is analysing. Examples of this type of 

system include (Santana and Corriea, 2011; Ramos and Almeida, 2004; Fernandes, 

Ramos and Rosa, 2005). These systems require further analysis of the agents response 

to the images to determine the higher level reactions required.   

The need for a system of cooperative object recognition is highlighted by these pieces 

of research that address the difficulty of identifying objects that have common features, 

both where the cooperation is efficient and when it is necessary. It is only through 

finding the differences of the objects that the objects can be identified distinctly from 

one another. There is currently no research that utilises multi-agent systems to 

distinguish between different objects through their shape alone where the agents are 

mobile and have limited sensor and communication capabilities.  
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4.2 Genetic Algorithms for Multi-Agent Systems 

A Genetic Algorithm (GA) allows solutions to evolve naturally without the system 

necessarily understanding the mechanics of the problem. This capability would be 

suitable for determining the state-behaviours of a swarm of agents in a cooperative 

object recognition task. Using this method the swarm could evolve to distinguish the 

differences between two objects without requiring pre-analyses of the object shapes to 

program the agents to behave in a certain way for that specific task.  

4.2.1 Genetic Algorithms 

GA are a type of Evolutionary Algorithm which describe methods for solving complex 

problems through techniques inspired by Darwinian principles of evolution. A 

population of candidate solutions compete against each other in an environment that 

represents the problem space. Candidates that perform better have a higher fitness for 

that environment and therefore are given a better probability of being selected as 

parents to produce offspring. By combining the traits of different well performing 

candidate solutions through recombination, also known as crossover, new hopefully 

better performing offspring will be produced. Mutation occurs to maintain diversity 

between one generation and the next by changing a part of the genome at random. To 

keep the population consistent only a selected number of candidate solutions and their 

offspring survive the selection process. A diagrammatical description of this entire 

process, with initialisation and termination, is shown in figure 4.1. Eiben and Smith 

(2007) provide information about evolutionary computing and how it can be used for 

different scenarios. 

 

 

Figure 4.1: Flow diagram for evolutionary algorithm process (adapted from Eiben and Smith, 2007) 
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One benefit of using a GA to find solutions to problems is that it can produce 

unexpected and counterintuitive outcomes. For example in the design of a wire antenna 

(Altshuler and Linden, 1997, p43) that “radiates near uniform power over the 

hemisphere” whilst appearing as a counter intuitive “crooked-wire” and a satellite boom 

(Keane and Brown 1996) that appears twisted and warped. GA have been used for 

many diverse problems which include: sewer network design (Afshar, 2012); designing a 

concert hall for optimal acoustics (Sato et al. 2002); the placement of wind turbines 

(Grady, Hussaini and Abdullah, 2005); to aid in stock trading (Kuo, Chen and Hwang 

2001). They have also been used for swarm robotic research, which will be discussed in 

more detail in section 4.2.2. 

However, this ability is countered by the amount of time a GA takes to test each 

candidate solution. The more computer intensive each test, the longer the GA will take. 

In the previous example of the satellite boom (Keane and Brown, 1996) the GA was 

only run for 10 generations due to the finite element analyses required for each of the 

candidate solutions, despite which solutions where found that outperformed the original 

design by many factors. In an ideal world it would be possible to have very large 

populations and numerous generations, however this is not possible as there are 

restraints to how long can be spent running the program. This restriction leads to 

balancing the numerous GA variables in order to get the most effective output in the 

time allowed. These variable are considered in more detail in section 9.2. 

4.2.2 Multi-Agent Systems Research 

GAs have been used to develop and optimise different aspects of swarm robotic and 

multi-agent systems including the classic problems of aggregation, dispersion, foraging, 

self-assembly and cooperative transport.     

Trianni et al. (2003) use s-bots with auditory and proximity sensors and sound 

producing capabilities to solve an aggregation problem through the use of GA. They 

observed two types of clustering behaviour, static and dynamic. Static clusters formed 

tightly packed groups within the larger group whilst the dynamic clustering has less tight 

groups but proved to be scalable for different group sizes resulting in a single group. 

Aggregation behaviours where also research by Bahçeci and Şahin (2005) where the task 

was to evolve strategies which maximise cluster size and minimise the number of 

clusters.  
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The force laws that governed solid, liquid and gas like dispersion and movement of a 

swarm of robotic agents which represent suitable behaviours for distributed sensing, 

obstacle avoidance and coverage tasks respectively were evolved through a GA by 

Spears et al. (2005). 

The notion of efficient foraging is visible in Bassett and DeJong‟s (2000) research that 

used GAs to find the most effective technique of getting Micro Air Vehicles to observe 

as much of a map as possible whilst avoiding collisions. A collision in this scenario 

would cause the agent to be removed from the test.  

Groß and Dorigo (2004b) use an evolutionary algorithm to produce control methods 

for two robots in order to have them cooperatively move an object as far as possible in 

an arbitrary direction in a limited amount of time. In this task the robots could only 

communicate through stigmergy and not directly with each other. Ampatzis et al. (2006) 

research the possibility of communication emerging in a swarm that was attempting to 

move towards a target light source in. In one version of the task it is possible for the 

agents to reach the target location through a gap in a ring surrounding the target and in 

another task it is not, as the ring is complete. Despite there being no specific fitness 

reward for using communication the emergence of signalling occurred in both tasks.  

In the effort to explore the effect of communication capabilities on a group of 

connected s-bots Trianni, Labella and Dorigo (2004) used GA to evolve neural network 

based responses to both the auditory and traction signals produced by robots that 

where trying to avoid holes. The fitness function considered three elements, the speed 

of the robots movement, the straightness of motion and the traction between the 

connected robots. The GA provided suitable results for both the groups, one using only 

the traction sensors the other also had the auditory sensors.  

The notion of selfish and cooperative agents is discussed by Yang and Luo (2007) 

where they form agent coalitions within the swarm through a GA approach. In order to 

do so effectively they introduce a two-dimensional chromosome encoding, crossover 

and mutation technique. These variations demonstrate how GA on a whole can be 

changed and adapted from the normal approach to suit specific tasks in more suitable 

ways, this is one reason why GA are such a versatile tool for problem solving. 

 

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD



 

47 
 

4.2.3 Genetic Representation of Agents  

One interesting concept that comes out of using GAs for multi-agent systems is how to 

create the genetic representation of the agents. There are four main methods that are 

described in the literature which covers evolution of multi-agent systems where the 

agents may have different behaviours. 

1. Evolving the behaviours as a single group. The individuals‟ behaviours and 

responses are grouped into a single genome whose candidate solution fitnesses 

are measured. 

2. Evolving the behaviours of individuals as they work in a group. The individual 

behaviours and their responses are encoded separately in the genome but their 

fitness is measured as a team. 

3. Evolving the behaviours of individuals separately, before putting them in a 

group. The individual behaviours and their responses are evolved separately as 

well as having their fitness measured separately. 

4. Evolving the behaviours of individuals where each member of the group has the 

same set of behaviours. The behaviours of the agents and their responses are 

identical, the fitness of the agents is measured as a group, but only one genome 

is required for evolutionary purposes. 

These four evolutionary methods are shown in figure 4.2. 
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Figure 4.2. Four methods for evolving behaviours of multi-agent systems utilising a genetic algorithm. 

Option 1: Sensed information of all agents affects actions of all agents, fitness measured as a group. 

Option 2: Sensed information of agents affect only the actions of that agent, fitness measured as a group. 

Option 4: Sensed information of agents affect only the actions of that agent, fitness measured 

individually. Option 4: Sensed information and actions of all agents are identical, fitness measured as a 

group.   

The problem with allowing a group of agents to be represented as a single genome, as in 

option 1, is that implies a strong communication between the agents, which is opposed 

to the nature of swarm robotics and often causes problems with large multi-agent 

systems. It also increases the length of the genome with the number of agents. 

Therefore the size of the search space is relative to the number of agents. The problem 

of increasing the number of agents is present in options 2 and 3 but in the number of 

search spaces that are present rather than the complexity of the search space itself. 

Therefore, these would be easier to process in parallel. Miconi (2003) compared 

cooperative co-evolution (option 2) with population orientated genetic algorithms 

(option 1). They found that replacing apparently less fit members of the group, as in 

option 2, could change the whole dynamic of the group causing an overall less fit team. 
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This change was apparent due to the continual sharp decreases that could be seen in the 

fitness values at regular intervals, suggesting that option 1 was better. However, the 

group numbers were relatively small; seven and fifteen agents.   

Yong and Miikkulainen (2001) also explored these different methods in a cooperative 

tasks where predators much act together in order to capture a prey which moves at the 

same speed. They found that evolving the behaviours of the individuals separately 

whilst testing their fitness as a group (option 2) produced the best results. They used 

three predators. Bassett and Jong (2000, p. 158) also found that “only when the team 

was evaluated as a whole did cooperation occur.” Option 3, was found by Yong and 

Miikkulainen (2001) to produce selfish agents which did not cooperate with each other. 

In this case all agents would chase after the prey but as they acted in the same selfishly 

optimal way were never capable of catching it. 

The consideration of these types of group GA are more important when evolving 

heterogeneous teams as they aim to produce different types of behaviours in different 

members of the group.  

A more general approach (option 4) where each agent of the swarm acts the same and is 

therefore homogeneous does not require this additional complication. Instead each 

candidate solution is mapped to every member of the swarm. Numerous different 

swarms have their fitness measured and compared against each other, their offspring 

producing a new swarm of identical agents. An example of this type of homogenous 

group GA can be seen in research by Reynolds (1993) where agents had to avoid both 

predators and obstacles and failing to do so would result in destruction. It should be 

considered that there is potentially no reason that this type of homogenous GA could 

not produce a group or swarm which behave differently in different scenarios and 

therefore still be cooperating with each other by completing different tasks. However, it 

is justifiable to consider that the behaviours needed and therefore the genome required 

would be far more complicated, although this is not confirmed. 

More generally Potter, Meeden and Schultz (2001, p. 1342) suggest that the 

“(coevolving) a team of homogeneous agents can take much less time, since each 

evaluation of an individual in the population goes towards all individuals‟ progress and 

the search space is smaller. In a heterogeneous group, the available CPU time during 

evolution must be divided among the different skill sets.”  
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Bahçeci and Şahin (2005) completed a series of four experiments in order to give 

guidance on future evolutionary behaviours for swarm robotics. These are the fitness 

combining method (which method of fitness to use); varying the number of runs per 

controller and the simulation duration whilst maintaining the total number of simulation 

steps; varying the number of runs and the number of generations whilst also 

maintaining the total number of simulation steps; and finally the set-up of the 

experiment considering how many agents are used and how effective these evolved 

solutions are for different size set-ups. In summary they give the following advice:  

 It is preferential to use less optimistic functions, such as median or minimum of 

performance values rather than maximum performance values. 

 Maximising the number of runs per controller should be prioritised over the 

number of time-steps in each run when a trade-off is considered. 

  It is difficult to determine the number of runs per controller and the number of 

generations. It is best to allow the evolution to run for many generations initially 

to see when the performance reaches a reasonable level. 

 Rather than running a simulation with multiple set-ups it is more beneficial to 

reduce the drawbacks of outlying results by repeating more runs per controller.  

These guidelines were used, in part, to help design the GA which was used for 

determining the state-behaviour rule relationships for the hBots in the cooperative 

object recognition task, section 9.1. 

4.3 Physical Multi-Agent Platforms 

There are numerous multi-agent platforms that have been utilised for research into 

swarm robotics and other multi-agent problems. A number of these platforms are 

detailed here. 

4.3.1 E-Puck 

The e-puck robot was designed as an educational tool for teaching robotics (Mondada 

et al., 2009; Guyot et al. 2011). Its basic configuration consists of a range of sensors and 

actuators. The sensors include eight IR proximity sensors, a 3D accelerometer, the 

microphones, and CMOS camera. The actuators include, two stepper motors to control 

the wheels, a speaker, and LEDs for communication between the agents. According to 
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the e-pucks main website there have been over 65 publications which have used the e-

puck robot up till the end of 2010 (E-Puck, 2010). Liu and Winfield (2011, p66) 

developed a Linux extension board which is compatible with the e-pucks mother board 

which provided “improved computation, memory and communications” and  “a 

flexible control architecture, that allows us to develop and test more demanding 

embedded robot controllers and swarm algorithms”. This has allowed them to carry out 

research in the investigation of social learning in a robot collective where robots imitate 

each other‟s behaviours (Winfield and Griffiths, 2010).  

4.3.2 S-Bot 

The swarm-bots project developed the s-bot, capable of self-assembly, physical 

cooperation and coordination, for tasks inspired by social insects for decentralised and 

distributed control (Dorigo et al. 2005).  The s-bots are capable of sensing their 

surroundings with a custom camera and spherical mirror as well as multiple infrared 

sensors, microphones, accelerometers and humidity and temperature sensors. The s-bot 

is capable of displaying different states through a coloured ring of LEDs which can be 

sensed by the other s-bots. Using a gripper the s-bots interact with the physical world 

around them and are capable of connecting to each other to form a swarm-bot. The 

research that has been carried out with the s-bot and swarm-bot include but are not 

limited to: cooperative hole avoidance (Triannia, Nolfi and Dorigo, 2006), pattern 

formation (Şahin 2002), self-assembly (Groß et al., 2005) and cooperative transport 

(Dorigo et al., 2005).  

4.3.3 Khepera 

The Khepera robot was developed by K-Team (Mondada, Franzi, Guignard, 1999). It is 

a two-wheeled robot, with eight infrared sensors capable of determine light-level and 

the proximity of nearby robots. It also has a modular design which allows for the 

addition of different components, such as gripper arm or two-dimensional vision sensor 

Harlan, Levine and McClarigan, (2000) discuss it as a suitable platform for introducing 

undergraduates to robotics and introduce a development platform for it. The research it 

has been used to conduct includes different learning methods for robots (Stolzmann 

and Butz, 2000; Sehad and Touzet, 1994). Expansions to the system to include blue-

tooth communication have also been developed (Grosseschallau, Witkowski and 

Rückert 2005). 
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4.3.4 Miabot 

The Merlin Miabot Pro is a two-wheeled robot with two-way blue tooth 

communication. It has an expansion port that allows for the addition of a 

programmable gripper and an LED starboard, which improves overhead tracking. One 

of the main uses of the Miabot Pro has been robot football (Robinson et al., 2004). This 

system is available for research at Nottingham Trent University with a 3x3 metre arena 

and 20 Miabot Pros all enabled with LED starboards for tracking. The tracking system 

consists of four overhead cameras whose images are stitched together to give the 

relative location and orientation of the agents. This allows the user to simulate different 

types of sensor capabilities without necessarily having to change the hardware whilst 

still allowing for true physical collisions and interactions between the robots. Baxter et 

al. (2006; 2007) have used the Miabot Pro to investigate multi-robot search and rescue 

strategies through the use of shared information about potential fields from obstacles. 

4.3.5 Molecubes 

The Molecube is a cube shaped modular robotic system (Zykov, Chan and Lipson, 2007) 

Each of the cubes is divided into two triangular pyramid halves which can rotate relative 

to each other. The Molecubes attach to each other with an interference fit. A 

mechanical interface of pins allows communication between connected modules. Each 

module can sense the position and temperature of its servo, and the modules 

orientation relative to attached modules. It is possible to have a robot system built from 

multiple Molecubes replicate itself from other Molecubes (Zykov et al., 2007). There is 

also research that simulates the Molecube to find behaviours of self-replication through 

evolutionary methods (Studer and Lipson, 2006; Zykov et al., 2007). As well as 

mechanical gripper and wheel cubes, passive components have being developed for the 

Molecube to expand its capabilities and functions, these include: cardan cores, hinges, 

cubes, rod sockets and feet (Zykov et al., 2008). 

4.3.6 ATRON  

The ATRON is a modular robotic system, each module is approximate sphere which is 

split through its equator into two parts (Østergaard et al., 2006). These two hemispheres 

can rotate relative to each other, allowing the modules to switch which other modules 

they are connected to. The modules connect to each other with three hooks which a 

mechanically controlled, although this is “power inefficient and relatively slow” it is 

“power neutral while maintaining a connection” (Jörgensen, Østergaard and Lund, 2004, 
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p. 2070). A five single slip ring allows communication between the two hemispheres, 

one which manages power, the other hemisphere contains the accelerometer, rotation 

actuator and main processor. Communication between neighbouring modules is 

handled by four infer-red sensors on each hemisphere. The ATRON has been used for 

research involving: artificial evolution of control (Østergaard and Lund, 2003), a 

method for a distributed cluster walk (Østergaard and Lund, 2004).   

4.3.7 Catom 

The Catom system is designed as programmable matter for the purpose of Claytronics, 

a process where shapes can be built from many individual elements, called catoms. 

These catoms each have a series of electromagnets that allow them to connect to each 

other in different formations(Goldstein and Mowry, 2004). Different shapes can be 

formed by the movement of catoms. An example is discussed (Goldstein, Campbell and 

Mowry, 2005) where a hole inside an otherwise solid lattice structure of catoms can 

move around changing the surface‟s shape. The shape can also be expanded by adding 

these holes and reduced by removing them. The end goal of the research is to have a 

system where by a synthetic reality can be built allowing users to interact with it in 

natural ways, without the use of additional aids, like virtual reality headsets (Goldstein, 

Campbell and Mowry, 2005). 

4.3.8 Miche 

Each robot in the Miche system is a module which can be combined into different 

arrangements. To do this the robots start in a block with physical connections to each 

other. By releasing certain bonds between the modules, modules begin to fall away 

leaving the desired shape. Gilpin et al. (2008) liken this to forming a sculpture from a 

block of material, where unwanted pieces are removed piece by piece. Each module is 

completely autonomous with its own power supply, processing capabilities, 

communication interfaces, and actuators (Giplin et al., 2008). 

4.3.9 Robot Pebbles 

The Robot Pebbles platform is one where each individual module is a cube which is 

capable of attaching to each other on four of their sides to form different shapes with a 

uniform height of one cube. To attach to each other they each have four EP magnets, 

which are also responsible for  power transfer, and communication (Gilpin, Knaian and 

Rus, 2010).  The research that has been carried out with the Robot Pebble considers the 

formation of shapes through subtraction (Gilpin, Knaian and Rus, 2010), the formation 
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of multiple shapes from the same starting block of robots (Gilpin, Koyanangi and Rus, 

2011) and the duplication of inert shapes with a resolution equal to the size of the 

module (Gilpin and Rus, 2012a).  

4.3.10 Systems Review 

A review of these systems object recognition capabilities and their ability to 

communicate between agents is described in table 4.1.  

System Object Recognition 

Capabilities 

Communication between Agents 

E-Puck IR Proximity Sensors; CMOS 

camera 

Speaker; LEDs 

S-Bot IR Proximity Sensors; custom 

camera and spherical mirror 

Speaker; LEDs 

Khepera IR Proximity Sensors Bluetooth 

Miabot The robot is modifiable and 

additional sensors can be added. 

(Can be simulated through the 

use of overhead tracking).  

The robot is modifiable and 

additional communications can be 

added. (Can be simulated through 

the use of overhead tracking). 

Molecubes Can only detect other 

neighbouring agents. 

Eight interlocking pairs of ABS pins 

and sockets. 

ATRON Can only detect other 

neighbouring agents. 

Infer-red 

Catom Can only detect other agents. Linx 900Mhz Radio Transmitter and 

Reciever 

Miche Can only detect other 

neighbouring agents. 

Infer-red  

Robot 

Pebbles 

Can only detect other 

neighbouring agents. 

Magnetic Interface 

Table 4.1: Object recognition and communication capabilities of different multi-agent robot systems. 
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4.4 Simulated Multi-Agent Platforms 

Perhaps due to the cheaper nature of producing a simulation over a physical robot there 

are many available types of platforms that have been used for multi-agent research, far 

too many to list all of them here when they have so much in common with each other. 

Harris and Conrad (2011) provide a more in-depth overview of popular robotics 

simulators and toolkits not exclusively for multi-agent control. In the following 

paragraphs a number of examples are discussed. 

In general having a simulation of a swarm of agents on a computer gives a lot more 

freedom. Experiments can be run in parallel on a single computer or over a number of 

computers and there is no down time needed between experiments for recharging 

batteries and physical maintenance. This means that it is possible to gather more data in 

a shorter amount of time. There are also less issues with the resources of the 

experiment, for example it is possible to add more robots without any additional 

financial cost making the experimentation less restricted to what exists in the laboratory. 

In general for swarm robotic and multi-agent system simulations there is a gradient 

between those that model existing hardware platforms and those that are more abstract 

in execution. The systems that model existing hardware attempt to mimic the 

behaviours of the physical robots in order to alleviate the time considerations but 

resulting in strategies that can be transferred direct to the physical robot platforms for 

testing. Constructing these types of simulators is more time consuming than those of 

the abstract models but provide data similar to that of the actual hardware. For example 

the Webot is a simulation and prototyping platform designed to work with 

commercially existing hardware (Michel, 2004). Guyot et al. (2011) use a combination of 

the Webots simulation platform with the e-puck for teaching robotics. The Player/Stage 

platform and simulation system also falls into this category of simulation (Gerky, 

Vaughan and Howard, 2003). The Player is designed for the control of physical robots 

and does this through communication with the robot, reading the sensors and then 

controlling the actuators. The Stage is designed so the Player aspect of the system can 

be simulated as if it was using real robots allowing for simple transfer of strategies from 

simulations and physical robots. 

There is a middle ground between the physical and computer simulated platforms 

where the simulations are designed for developing and testing strategies without having 

a specific hardware model in mind. An example of this type is MASON. MASON is a 
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highly variable Java based simulation platform designed with multi-agent systems in 

mind (Luke et al., 2005). The MASON platform has been used to research the use of 

moveable beacons, which act as an approximation of pheromones to identify the 

shortest routes between objectives (Hrolenok et al., 2010). It has also been used for 

research in training agents to complete different tasks by building up numerous 

behaviours on top of each other (Luke and Zuparo, 2010; Sullivan and Luke, 2011). The 

benefit of this is not having to limit the control schemes to currently viable platforms 

whilst retaining the majority of the behaviours and nuances which make the physical 

platforms. The most abstract simulation that is in common use for the study of multi-

agent behaviours is that of a grid-world simulation. 

4.4.1 Cellular Robot Simulations 

The earliest recorded work on swarm robotics was completed using a grid-world 

simulation, although under the name Cellular Robotics (Beni, 1998). According to Beni 

(2005) he was inspired by Wolfram‟s collective research into cellular automata in „A 

New Kind of Science‟ (Wolfram, 2002).  

A cellular automaton consists of a sequence of sites carrying a discrete set of values 

which can be arranged on any regular lattice. “The value at each site evolves 

deterministically with time according to a set of definite rules involving the values of its 

nearest neighbours” (Wolfram, 1982). Although this is a relatively simple process it can 

be used to model physical, computational and biological systems. Further work 

specifically with two-dimensional cellular automaton was carried out (Packard and 

Wolfram, 1985). The main change between this research and Beni‟s (1998) initial swarm 

robotic research was that the agents could move through the system from cell to cell 

rather than the cells simply flipping states. The same sort of relationships were 

important; what is the agent doing, what is happening near the agent and what will the 

agent do next based on these previous factors. All of these issues are closely tied to 

swarm robotics research. 

In these grid-world simulations any agent modelled in the system takes up a single cell 

and moves discretely from one cell to another. This is opposed to more realistic 

simulations where discrete grids are also used but the distance between grid nodes is far 

smaller than the size of the robot, therefore their movement is smoother and the 

distance travelled in a single step is smaller (Winfield, 2005). However, despite the 
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opportunity to build simulations in this manner lattice based simulation have been used 

for multi-agent and swarm robotics research over the last twenty years:  

 Lucarini et al.(1993) uses a grid of 100x100 cells to model and research the 

capabilities of a group of robots to navigate between two points in an unknown 

area with obstacles. 

 Şahin et al. (2002) use discrete movement between the nodes of a hexagonal 

grid to simulate the robots‟ movement. This simplification was to make the 

“implementation of connecting and disconnecting of the s-bots [robots] easier” 

as the research was interested in linking robots together to form new robotic 

structures. 

 Matarić, Sukhatme and Østergaard (2003) use a grid-world to initially implement 

a simplified version of a multi-robot handling task for finding alarmed areas and 

fixing problems. This was then moved onto a physical system.   

 Shen, Will and Galstyan (2004) discuss a distributed control method for robot 

swarming behaviours and self-organization which they term the Digital 

Hormone Model. In this they model the behaviours of the swarm using a 

discrete grid measuring 100x100 cells.  

 Hsiang et al. (2004)  explore dispersion algorithms for robotic swarms. The 

simulations they use are based on a discrete grid.  

 Engels and Kamphans (2006)  discuss the NP-Hard (non-deterministic 

polynomial-time hard) Randolph‟s Robot Game which is built on a grid-world.  

 Shiloni, Agmon and Kaminka (2009) describe the difference between highly 

capable „elephant‟ type robots and very simplistic „ant‟ type robots using a 

discrete grid. 

 Chouhan and Niyogi (2012) illustrate the importance of communication whilst 

planning multi-agent actions in a grid-world containing obstacles. 

The main advantage of using this type of grid-world is the simplicity of the 

programming especially for testing initial concepts and strategies. This is especially true 

in the case of modular robotics. Once agents are connected to each other into a lattice 
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formation, they may communicate and solve problems in a way that is similar to agents 

in a simulated grid-world.  

4.4.2 Different Shaped Cells for Grid-Worlds 

The vast majority of grid-world simulations are built on square lattices. This is most 

likely due to the simplicity of representing the system both mathematically and visually 

on a computer screen which is also constructed from a square lattice. However, there 

are other possible lattices possible which have uniform cells where all the internal angles 

of the individual cells are equal. In total there are three types; triangular, square and 

hexagonal.  

In a square grid-world each cell has eight cells that could be considered neighbours, 

four of them side contacts and four of them corner contacts. The distance between the 

centre points of cells varies depending on if they are side contacts or corner contacts. 

There are two ways of modelling single cell movement within a square grid-world. 

 Allow the agents to only move to the four neighbouring side contact cells, as in 

a Von Newmann Neighbourhood. 

 Allow the agent to move to the eight neighbouring cells, sides and corner 

contacts, as in a Moore Neighbourhood. 

Using these two methods the shortest distance to travel between two cells discretely can 

be found. Figure 4.3 shows the least number of moves required for agents that can 

move discretely from cell to cell through either the four side contacts only or for agents 

that can travel to any of their eight neighbouring cells. 

    4     

 

4 4 4 4 4 4 4 4 4 

   4 3 4    4 3 3 3 3 3 3 3 4 

  4 3 2 3 4   4 3 2 2 2 2 2 3 4 

 4 3 2 1 2 3 4  4 3 2 1 1 1 2 3 4 

4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4 

 4 3 2 1 2 3 4  4 3 2 1 1 1 2 3 4 

  4 3 2 3 4   4 3 2 2 2 2 2 3 4 

   4 3 4    4 3 3 3 3 3 3 3 4 

    4     4 4 4 4 4 4 4 4 4 

Von Newmann Neighbourhood  Moore Neighbourhood 

Figure 4.3: The minimum distance of discrete travel between cells on a square grid-world for a Von 

Newmann Neighbourhood and a Moore Neighbourhood. 
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These square grid systems produce patterns of concentric squares, where one is at a 45 

degree angle to the other. The distance travelled to the corner points of these squares is 

equal to the distance to the centre of the sides of the squares. However, the distance 

from the centre of a square to the corner is approximately 1.414 (or √  ) times longer 

than the apothem, the distance from the centre to the centre of an edge.  

In a hexagonal grid each cell only has six side contacts there are no corner only contacts. 

There is only one way of modelling single cell movement from cell to neighbouring cell. 

 Allow the agents to move to any of the six neighbouring side cells. 

The minimum distance an agent can travel between any two cells can be found as 

shown in Figure 4.4. 

 

Figure 4.4: The minimum distance of discrete travel between cells on a hexagonal grid-world.  

This hexagonal grid-world system produces patterns of concentric hexagons. Although 

the distance from the centre of a hexagon to the corner is approximately 1.155 (or 

 

      
 ) times larger than that of the distance from the centre to the centre of a side, this 

is smaller than the value (1.414) found for the square grid. This is because a hexagon is 

a better approximation of a circle than a square. The reason that a better approximation 

of a circle is beneficial is that it gives a more realistic representation of movement.  

In a triangular grid-world each cell has twelve potential neighbours, three of them side 

contacts and nine of them corner contacts. As with the square grid-world there are two 

ways of modelling single cell movement within a square grid-world. 

 Allow the agents to only move to the three neighbouring side contact cells. 

 Allow the agent to move to the twelve neighbouring cells, sides and corner 

contacts. 
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Using these two methods the shortest distance to travel between two cells discretely can 

be found. Figure 4.5 shows the least number of moves required for agents that can 

move discretely from cell to cell through either the three side contacts only or for 

agents that can travel to any of their twelve neighbouring cells. 

 

         Neighbourhood size 3         Neighbourhood size 12 

Figure 4.5: The minimum distance of discrete travel for a triangular grid-world where the 

neighbourhood is either the 3 side contacts or the 12 side and point contacts. 

For the triangular grid world with a neighbourhood size of three, mapping the centre 

points of each cell of the same magnitude gives three patterns. In the case where the 

value is one it gives a triangle, in all other odd number cases it gives a six sided shape 

with uneven sides, and in all even number cases it gives a hexagon. Where the 

neighbourhood size is twelve, the shape produced is an approximately a six sided shape. 

Regarding the edges more closely gives a jagged line rather than a continuous one. This 

shape is the same as the odd number cases for the neighbourhood size three triangular 

lattice. This shape also gives the largest discrepancy between direct travel from the 

centre to the most distant corner and the centre of one if the sides. The difference is 

equal to the ratio of the base length to base height of a equilateral triangle, giving the 

same ratio as the hexagonal gird-world, 1.155. However, this is an approximation due to 

the irregular shape produced and the value would be marginally higher, considering the 

precise furthest point away. 

Overall, considering both regularity and the ratio of the distances to the edges and the 

corners, the hexagonal model gives the best approximation of a circle out of the three 
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grid systems. For this research a hexagonal lattice was chosen due to the geometric 

relationships between neighbouring cells in the grid. 

4.5 Summary 

Research into cooperative object recognition has been varied. A number of the systems 

use the act of cooperation to increase the efficiency or robustness of their individual 

object recognition. In other systems the agents must cooperate in order to recognise the 

objects they are trying to identify. There is currently no research that utilises multi-agent 

systems to distinguish between different objects through their shape alone where the 

agents are mobile and have limited sensor and communication capabilities. 

The use of GA to evolve the required behaviours of a multi-agent system was also 

investigated. This method would allow the agents to adapt to different object 

identification tasks without minimal input from a third party. It may also provide 

solutions that are more efficient but less obvious in terms of development. 

A survey of the different methods of simulation, both physical and computational was 

carried out. This survey aided in the identification of a suitable system for the current 

research project. The advantages of using a computational simulation currently 

outweigh that of using a physical platform for this project since a simulation of a swarm 

on a computer gives a lot more freedom. There is no down time needed between 

experiments for recharging batteries and physical maintenance making it possible to 

gather more data in a shorter amount of time. It is possible to add more robots without 

any additional financial cost and in addition the benefits or otherwise of using GA can 

be explored within a reasonable time frame. 
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Chapter 5: Swarm Simulation Methodology 

This chapter outlines the cooperative object recognition task that the agents aimed to 

complete. The Simplified Hexagonal Model is described as a novel platform for 

simulating swarm cooperative object recognition along with the motivations for and 

limitations of using this platform. Specific details, where they vary between individual 

experiments, are not included in this chapter but are included with the relevant 

experiments. 

5.1 Cooperative Object Recognition Task 

The task the swarm had to complete was to identify one of two different object shapes 

in a closed arena. There was an equal quantity of each object shape in the arena. One 

object shape was considered valid and the other invalid. In order to complete the task 

all of the valid object shapes needed to be acted upon by the swarm. In the case of the 

initial research (Chapter 6), this act involved removing the three valid objects by 

transporting them to the collection zone. In the later research the six valid object shapes 

needed to be destroyed by the agents (Chapter 8 onwards). The valid object shapes used 

had features in common with the invalid object shapes and features that distinguished 

one from the other. It was rare for an individual agent to distinguish a valid object 

shape from an invalid object shape alone. 

5.2 Choice of Platform 

From the review of different simulation methods it was determined to use a hexagonal 

grid-world simulation. This choice was made to allow the focus of the research to be on 

the strategies involved for swarm robotic cooperation without the need to consider a 

specific application and physical platform. The main advantages of this choice over a 

physical platform are the ability to run more concurrent tests, have less down time 

between tests and have an arena space large enough to contain numerous objects that 

can be identified with cooperating agents. Each of these is important especially in the 

later stages of experimentation where a GA is utilised, which requires numerous repeats 

of tests. 

The choice of a discrete grid-world simulation for the simulation allowed for a clear 

distinction between agents that are neighbouring each other or object shapes and those 
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that are not. Using this approach, agents have a distinct understanding of their local 

surroundings. There are cells that they touch and cells that they do not. Although this 

choice limited realism of the interactions, as there was no noise or physical interaction, 

it provided a simplified model in which to examine, identify and analyse the behaviours 

of the agents and the results of these experiments will provide guidance for future 

swarm cooperative object recognition research.  

5.2.1 Processing Programming Language 

The choice was made to build a custom platform, in the Processing language, for the 

research experimentation despite the availability of the numerous simulators currently 

available. Building a custom simulation platform allowed for more control over the 

entire system although there was a limitation in there currently being no other multi-

agent system tested on it to compare results with. Processing (Processing, n.d.) is an 

object-orientated 2D and 3D application programming interface built on the Java 

language, with a focus on visualisation. These elements made Processing a suitable 

choice for this research, since, object shapes and agents could be built as objects within 

the system, Java is a robust and well maintained language and provided a way to watch 

the movements and reactions of the agents.  

5.3 Simplified Hexagonal Model 

The Simplified Hexagonal Model (SHM) platform was designed specifically for 

completing the research experimentation. It has the advantage of providing a  platform 

that could be adapted for other multi-agent problems which would utilise a bounded 

two-dimensional hexagonal grid-world. Each cell can be: an object or part of an object; 

a hBot (an agent); a boundary region; or an empty arena space. Time in the SHM is 

measured in time-steps, where each time-step is a complete cycle of the main program, 

detailed in section 5.6.  

5.3.1 The Arena 

In the SHM the arena is a hexagonal shaped lattice where each of the six sides of the 

hexagonal arena has twenty-one cells. Immediately outside these cells is a boundary that 

the hBots cannot enter or pass. For the initial experiments only (Chapter 6) a hexagonal 

collection zone was added to the centre of the arena. 
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5.3.2 Object Shapes 

Object shapes are constructed in the SHM by grouping a number of neighbouring 

object cells together. The smallest feasible object shape is the same size as a single cell 

and only solid object shapes are considered. In all of these cooperative object 

recognition experimentation there were two object shape types used. Within the SHM 

one of these types is classed as valid and is the object shape the swarm is required to 

react with. The other type is invalid and acts as a distraction to the agents. Object 

shapes were initially placed such that they did not touch each other and hBots in 

contact with an object shape would not neighbour any hBot in contact with another 

object shape.   

In the initial cooperative object recognition experimentation (Chapter 6) the object 

shapes were approximations of triangles and hexagons, as in figure 5.1. The validity of 

the object shapes were varied. In total six object shapes were used, three of each type. 

Any invalid object shapes moved out of the arena by the agents, experiment specific, 

were deleted. Valid, hexagonal object shapes moved into the collection zone were 

considered successfully collected. To complete the task all three of the hexagonal object 

shapes required collecting. 

Figure 5.1: Triangular and Hexagonal object shapes constructed from neighbouring object cells. 

For the later experimentation (Chapter 8 onwards) a range of object shapes each with 

four object cells were used. All object shapes with four object cells are shown in figure 

5.2.  
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Figure 5.2: All object shapes created from four object cells 

5.3.2.1 Data-Chain 

An object shape can be described without considering rotation or location by 

considering the contours of its boundary region. Each cell that neighbours an object 

shape is given a value determined by how many cells it touches, as per Figure 5.3, 

forming what is termed a data-chain for the object shape.  Traversing the data-chain 

clockwise produces a sequence of numbers which will be always written using the 

sequence that is first lexicographically of all the cycles from all starting points and will 

itself be referred to as the data-chain of the object shape. For example the data-chains 

for the triangle and hexagon shown are {1,1,2,2,1,1,2,2,1,1,2,2} and 

{1,2,1,2,1,2,1,2,1,2,1,2}.  

 

Figure 5.3: Surrounding cells show the number of object cells they are in contact with for both the 

triangular and hexagonal object shapes. This values are used to form the data-chains for the object 

shapes: Triangle, {1,1,2,2,1,1,2,2,1,1,2,2} and Hexagon, {1,2,1,2,1,2,1,2,1,2,1,2}. 

The data-chains is derived from the same negative space around the object shape that 

the hBots inhabit and contain the same information the hBots can sense and gather. By 

comparing data-chains against each other the differences between object shapes can be 

  1    1       1    2     1 

  2 2     2         2 

  2       2      1   1 

   1               1            2       2 

      1    2     2    1    1   2     1 
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determined. The methods for discovering and describing object shapes as well as their 

differences are discussed in more detail in Chapter 7 and Chapter 8.  

5.4 The hBots 

An hBot swarm within the SHM is homogeneous, that is all agents have identical 

characteristics in terms of their capabilities, control architecture and behaviour. As such 

the hBots are considered to be anonymous and therefore unable to distinguish between 

specific agent identities and each agent is interchangeable with any other agent. These 

choices meant that no specialist agents were required for any part of the cooperative 

object recognition task. The hBots also do not have a common coordinate system and 

are not aware of their position relative to the arena coordinate system. Therefore there 

was no requirement for beacons or any other kind of positioning system to be utilised 

increasing the amount of potential applications that the system could be used for in 

future research. 

5.4.1 Sensor Capability  

The hBots can sense the number of object cells of an object shape that it is 

neighbouring. This gives the hBots an impression of how convex or concave the part of 

the object shape they are neighbouring is. Neighbouring one, two or three cells 

represents a convex, straight, or concaved section of the object shape, respectively.  

These agents can determine the state of any other hBot that it is neighbouring. A cell is 

classified as neighbouring a hBot when it is one of the six cells that immediately 

surround the hBot, as shown in figure 5.4, this represents the sensor range of the hBot. 

 

Figure 5.4: The hBot can determine the number of object cells and the states of hBots within its sensor 

range, the size cells that immediately neighbour it. 

This means that the perception of the hBots is considerably smaller than the arena they 

inhabit. The hBots‟ sensor range is also too small for them to appreciate the entirety of 
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the object shapes used in the experimentation. This means that they individually have 

knowledge of their local surroundings but are not capable of perceiving the whole of an 

object shape in order to distinguish it from another object shape. 

At this stage of the research the sensor capabilities of the hBots are considered to be 

perfect, the hBots will not mistake one state for another state, or miscount the number 

of object cells they neighbour.  

5.4.2 Communication 

The hBots communicate their current state utilising a local broadcast. The range of the 

broadcast is one cell. Therefore the transfer of current state information is only passable 

to hBots that are neighbouring each other. There is no direct feedback between the 

agents to confirm receipt of data, however the system was modelled without noise so 

communication was considered to be perfect. No other information can be 

communicated by the hBots, therefore they are unable to coordinate their actions in any 

manner. 

5.4.3 Random Movement 

For each time-step hBots move with equal probability to any of their neighbouring six 

cells, unless one of these six cells contains an object cell or a cell on the boundary of the 

arena. If at the moment the hBot tries to move to a cell which already contains another 

hBot they remain in the cell they are currently in. 

The behaviour of a hBot neighbouring an object shape changes slightly. When next to 

an object cell the hBot generally stays still. This is to increase the amount of interaction 

around the object shape. However, the hBot has a probability, adjusted for each test, of 

moving away from that cell. This reduces the chance of stagnation by allowing 

movement away from the object shape. If the hBots simply remained stationary, they 

could be divided amongst parts of multiple object shapes without enough neighbouring 

agents interacting to distinguish between those object shapes. 

Although the hBots computational behaviours are synchronised each of their positions 

are updated one at a time, which means they can never occupy the same cell. The order 

that they move in is randomised each time they perform the move action. This choice 

was made to reduce any effects that could occur through them always moving in the 

same order. 
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5.4.4 Computation and Recall  

The hBots were modelled as finite state machines, with a maximum total of 265 states, 

over four state-levels. The state-level of the hBot represents how much information it 

has gathered about its local area through the interaction of it and its directly 

neighbouring hBots. The higher the state-level the more information the agent has 

about the shape. The process of state-relationships, how they change between states 

and which states are possible, are described in more detail in section 5.5.  

The hBots are not capable of gathering enough information to map an entire object 

shape, they can only consider part of it. This limitation also means that the hBots are 

not capable of knowing the entire contents of the arena at any time. 

5.5 hBot Cooperative Object Recognition 

The hBots cooperate to distinguish the difference between object shapes. As the hBots 

inhabit the same negative space around the shape that the data-chain is derived from 

they use this same information to discern the object shapes from one another, although 

this information is gathered in a cooperative manner. The current state-level of the 

hBot indicates how much knowledge it has about the object shape, whilst the state 

describes this knowledge.  

 A hBot at state-level 0 is not in contact with an object shape and therefore does 

not know anything about the object shape 

 A hBot at state-level 1 knows the number of object cells it is neighbouring: one, 

two, or three. This knowledge is represented by states 1, 2 and 3 respectively. 

This value could theoretically be between one and six, however in this research 

the object shapes were limited as to only allow situations where the values one, 

two and three occur, the reason for this are discussed in section 5.7.4. 

 A hBot at state-level 2 knows as much as three individual agents, as it knows its 

previous state-level 1 state and the states of its neighbours. Represented by 

states 4 – 21. 

 A hBot at state-level 3 knows as much as five individual agents, through the 

changing states of its neighbours in reaction to their neighbours. Represented by 

states 22 – 264. 
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A hBot can only increase its state-level and therefore its knowledge about the object 

shape it is trying to identify when neighbouring two other agents at the same state-level 

or higher. Therefore an agent is incapable of assessing an object shape on its own. The 

knowledge the hBots have represent the contours of the boundary of the object shape 

they are trying to identify. As the object shapes being distinguished have features 

different from each other certain states are only achievable when an agent is 

neighbouring that object shape. Using this method it is possible for the hBots to 

distinguish between two different object shapes. 

Theoretically if there were enough hBots and states two object shapes are 

distinguishable from one another. This is because the object shapes‟ data-chains are 

distinguishable, except where there is a tunnel (section 7.5.3), and the hBots use the 

same information to identify the difference between them. However, the hBots cannot 

distinguish between object shapes that are symmetrical to each other (section 5.7.6). 

Currently as there are only three state-levels and 264 states the object shapes the hBots 

can distinguish between are limited, this is discussed further in section 5.7.5.   

5.5.1 State-Relationships 

In this research the states of a hBot and its neighbours are described in the following 

manner: 

[own state][state of neighbour with lowest state][state of neighbour with highest state] 

All the possible patterns of three neighbouring hBots currently in state-level 1 and their 

resulting new state are shown in table 5.1. It is only the centre hBot represented by the 

first value of the three that changes state. However, the other hBots would also change 

state if they were neighbouring two hBots themselves. 

  

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD



 

70 
 

Own State 
(1st Level) 

Neighbour 
State (Lowest) 

Neighbour 
State (Highest)  

Shorthand 
Description 

New State 
(2nd Level) 

1 1 1 [1][1][1] 4 

1 1 2 [1][1][2] 5 

1 1 3 [1][1][3] 6 

1 2 2 [1][2][2] 7 

1 2 3 [1][2][3] 8 

1 3 3 [1][3][3] 9 

2 1 1 [2][1][1] 10 

2 1 2 [2][1][2] 11 

2 1 3 [2][1][3] 12 

2 2 2 [2][2][2] 13 

2 2 3 [2][2][3] 14 

2 3 3 [2][3][3] 15 

3 1 1 [3][1][1] 16 

3 1 2 [3][1][2] 17 

3 1 3 [3][1][3] 18 

3 2 2 [3][2][2] 19 

3 2 3 [3][2][3] 20 

3 3 3 [3][3][3] 21 

Table 5.1: All possible patterns of three neighbouring hBots currently in 1st level states resulting in 2nd 

level states as described. 

Although this simplifies the hBots as they do not have to determine the position of 

their neighbours there is a limitation to this method of cooperation in that symmetrical 

sections of an object shape will appear the same and therefore so will object shapes 

symmetrical to each other, there is further discussion of this in section 5.7.6.  

5.5.2 State-Behaviours 

For each state the hBots can reach their behaviour changes dependant on the 

relationship between the two object shapes that are being distinguished from each other. 

The state-behaviour of the hBot is determined by whether or not that state is achievable 

for one, both or neither of the object shapes. The number of possible behaviours that 

the hBots act upon vary between the initial experiments and the later experiments, but 

can generally be described as staying still with a given probability or acting on the object 

shape by moving or destroying it. If the hBots have been given the correct state-

behaviour rules, they will never remove the invalid object shape. The exact details for 

each set of experiments are covered in section 6.1.3 and section 8.4.  
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5.5.3 Possible State Neighbours 

Due to the relationship of the position of a hBot to their neighbouring hBots‟ there are 

certain patterns of state-level 2 states that are not possible. For example, given a hBot is 

in state 4 according to the state-relationship rules its neighbours must have both been in 

state 1, table 5.1. Given that this is true, a hBot in state 4 can only neighbour hBots at 

state-level 2 which were also originally in state 1 and also had at least one neighbour in 

state 1. Where this neighbour in state 1 represented the first hBot now in state 4. This 

means its neighbouring hBots could potentially have been in states 4, 5 or 6 at state-

level 2. Meaning that it was impossible for a hBot in state 4 to neighbour a hBot in 

states 7-21.  

Following this logic of possible neighbouring states through the rest of the states it was 

possible to determine all the state relationships at both state-level 1 and state-level 2. 

Figure 5.5 shows which states it was possible to be neighbouring each other, where 

possible state relationships are noted in grey. Given these restrictions the possible 

patterns of three neighbouring hBots are shown in table 5.2, with the new higher state-

level state the centre hBot, noted in the left most bracket set, would change to. These 

considerations result in there being a total of 264 states across state-levels 1, 2 and 3, 

not including state 0 at state-level 0. 
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Figure 5.5: The possible neighbouring states for the first 21 states. Where a grey box is shown it is 

possible for hBots of that state to be neighbouring each other and therefore state relationships which 

contain those states need to be considered for possible higher level states. 
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[1][1][1] 4 [6][6][16]   61 [11][7][13]   118 [14][20][20]   177 [19][12][15]   234 

[1][1][2] 5 [6][6][17]   62 [11][7][14]   119 [15][17][17]   178 [19][14][14]   235 

[1][1][3] 6 [6][6][18]   63 [11][8][8]   120 [15][17][19]   179 [19][14][15]   236 

[1][2][2] 7 [6][16][16]   64 [11][8][11]   121 [15][17][20]   180 [19][15][15]   237 

[1][2][3] 8 [6][16][17]   65 [11][8][13]   123 [15][19][19]   181 [18][6][18]   214 

[1][3][3] 9 [6][16][18]   66 [11][8][14]   124 [15][19][20]   182 [18][6][20]   215 

[2][1][1] 10 [6][17][17]   67 [11][11][11]   125 [15][20][20]   183 [18][6][21]   216 

[2][1][2] 11 [6][17][18]   68 [11][11][13]   126 [16][6][6]   184 [18][8][8]   217 

[2][1][3] 12 [6][18][18]   69 [11][11][14]   127 [16][6][8]   185 [18][8][9]   218 

[2][2][2] 13 [7][10][10]   70 [11][13][13]   128 [16][6][9]   186 [18][8][18]   219 

[2][2][3] 14 [7][10][11]   71 [11][13][14]   129 [16][8][8]   187 [18][8][20]   220 

[2][3][3] 15 [7][10][12]   72 [11][14][14]   130 [16][8][9]   188 [18][8][21]   221 

[3][1][1] 16 [7][11][11]   73 [12][5][5]   131 [16][9][9]   189 [18][9][9]   222 

[3][1][2] 17 [7][11][12]   74 [12][5][7]   132 [17][6][6]   190 [18][9][18]   223 

[3][1][3] 18 [7][12][12]   75 [12][5][8]   133 [17][6][8]   191 [18][9][20]   224 

[3][2][2] 19 [8][10][10]   76 [12][5][17]   134 [17][6][9]   192 [18][9][21]   225 

[3][2][3] 20 [8][10][11]   77 [12][5][19]   135 [17][6][12]   193 [18][18][18]   226 

[3][3][3] 21 [8][10][12]   78 [12][5][20]   136 [17][6][14]   194 [18][18][20]   227 

[4][4][4] 22 [8][10][16]   79 [12][7][7]   137 [17][6][15]   195 [18][18][21]   228 

[4][4][5] 23 [8][10][17]   80 [12][7][8]   138 [17][8][8]   196 [18][20][20]   229 

[4][4][6] 24 [8][10][18]   81 [12][7][17]   139 [17][8][9]   197 [18][20][21]   230 

[4][5][5] 25 [8][11][11]   82 [12][7][20]   140 [17][8][12]   198 [18][21][21]   231 

[4][5][6] 26 [8][11][12]   83 [12][8][8]   141 [17][8][14]   199 [19][12][12]   232 

[4][6][6] 27 [8][11][16]   84 [12][8][17]   142 [17][8][15]   200 [19][12][14]   233 

[5][4][4] 28 [8][11][17]   85 [12][8][19]   143 [17][9][9]   201 [19][12][15]   234 

[5][4][5] 29 [8][11][18]   86 [12][8][20]   145 [17][9][12]   202 [19][14][14]   235 

[5][4][6] 30 [8][12][12]   87 [12][17][17]   146 [17][9][14]   203 [19][14][15]   236 

[5][4][10] 31 [8][12][16]   88 [12][17][19]   147 [17][9][15]   204 [19][15][15]   237 

[5][4][11] 32 [8][12][17]   89 [12][17][20]   148 [17][12][12]   205 [20][12][12]   238 

[5][4][12] 33 [8][12][18]   90 [12][19][19]   149 [17][12][14]   206 [20][12][14]   239 

[5][5][5] 34 [8][16][16]   91 [12][19][20]   150 [17][12][15]   207 [20][12][15]   240 

[5][5][6] 35 [8][16][17]   92 [12][20][20]   151 [17][14][14]   208 [20][12][18]   241 

[5][5][10] 36 [8][16][18]   93 [13][11][11]   152 [17][14][15]   209 [20][12][20]   242 

[5][5][11] 37 [8][17][17]   94 [13][11][13]   153 [17][15][15]   210 [20][12][21]   243 

[5][5][12] 38 [8][17][18]   95 [13][11][14]   154 [18][6][6]   211 [20][14][14]   244 

[5][6][6] 39 [8][18][18]   96 [13][13][13]   155 [18][6][8]   212 [20][14][15]   245 

[5][6][10] 40 [9][16][16]   97 [13][13][14]   156 [18][6][9]   213 [20][14][18]   246 

[5][6][11] 41 [9][16][17]   98 [13][14][14]   157 [18][6][18]   214 [20][14][20]   247 

[5][6][12] 42 [9][16][18]   99 [14][11][11]   158 [18][6][20]   215 [20][14][21]   248 

[5][10][10] 43 [9][17][17]   100 [14][11][13]   159 [18][6][21]   216 [20][15][15]   249 

[5][10][11] 44 [9][17][18]   101 [14][11][14]   160 [18][8][8]   217 [20][15][18]   250 

[5][10][12] 45 [9][18][18]   102 [14][11][17]   161 [18][8][9]   218 [20][15][20]   251 

[5][11][11] 46 [10][5][5]   103 [14][11][19]   162 [18][8][18]   219 [20][15][21]   252 

[5][11][12] 47 [10][5][7]   104 [14][11][20]   163 [18][8][20]   220 [20][18][18]   253 

[5][12][12]   48 [10][5][8]   105 [14][13][13]   164 [18][8][21]   221 [20][18][20]   254 

[6][4][4]   49 [10][7][7]   106 [14][13][14]   165 [18][9][9]   222 [20][18][21]   255 

[6][4][5]   50 [10][7][8]   107 [14][13][17]   166 [18][9][18]   223 [20][20][20]   256 

[6][4][6]   51 [10][8][8]   108 [14][13][19]   167 [18][9][20]   224 [20][20][21]   257 

[6][4][16]   52 [11][5][5]   109 [14][14][14]   168 [18][9][21]   225 [20][21][21]   258 

[6][4][17]   53 [11][5][7]   110 [14][14][17]   169 [18][18][18]   226 [21][18][18]   259 

[6][4][18]   54 [11][5][8]   111 [14][14][19]   170 [18][18][20]   227 [21][18][20]   260 

[6][5][5]   55 [11][5][11]   112 [14][14][20]   171 [18][18][21]   228 [21][18][21]   261 

[6][5][6]   56 [11][5][13]   113 [14][17][17]   172 [18][20][20]   229 [21][20][20]   262 

[6][5][16]   57 [11][5][14]   114 [14][17][19]   173 [18][20][21]   230 [21][20][21]   263 

[6][5][17]   58 [11][7][7]   115 [14][17][20]   174 [18][21][21]   231 [21][21][21]   264 

[6][5][18]   59 [11][7][8]   116 [14][19][19]   175 [19][12][12]   232   

[6][6][6]   60 [11][7][11]   117 [14][19][20]   176 [19][12][14]   233   

Table 5.2: All possible combinations of state-level 1 and state-level 2 states and the new state they lead 

to for the „own state‟ hBot. [own state][lowest neighbour][highest neighbour] 
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5.6 The System 

There are two major components to the overriding system, one is the SHM sub-system 

and the other is a supervisor sub-system  The supervisor maintains and controls the 

SHM in such a way to preserve the integrity of the SHM. Each of the hBots is given an 

individual identity by the supervisor whilst within the SHM sub-system each hBot 

remains as an autonomous anonymous agent. This allows the supervisor sub-system: to 

know the states and positions of all the agents as well as the object shapes; to inform 

the hBots about what they are currently sensing and to display the simulation.  

The hBots have a number of actions they can perform: sense; determine current state, 

move, and act. Act is used here as a vague term as the specific action is determined by 

the current experiment, and details the precise way hBots handle object shape removal 

or destruction, the details of which are given with the relevant experiments. In the SHM 

sub-system it is as if all of the hBots actions are synchronised but in actuality it is the 

supervisor determining when they perform each action. The supervisor ensures that all 

hBots, in one time-step, perform their actions in turn, one immediately after the other . 

After each action is performed the contents of each cell are updated by the supervisor 

allowing this sub-system to keep track of the positions and states of the hBots as well as 

the object shapes. An overview of the hBots‟ actions relative to the supervisor updating 

the contents of the cells is given in the pseudo code in figure 5.6. 
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void main 

  for (i = 0; i < number of hBots; i++){ 

    hBot[i] performs interaction with object; 

    // this specific action is determined by the experiment 

  } 

  Update contents of all cells; 

  // the order of the hBots move is randomised, where randOrder[] is 

  // initialised with values: 0 - number of hBots.  

  for (i = 0; i < number of hBots; i++){ 

    int posA = (int) random(noOfBots); 

    int posB = (int) random(noOfBots); 

    int tempA = randOrder[posA]; 

    int tempB = randOrder[posB];    

    randOrder[posA] = tempB; 

    randOrder[posB] = tempA; 

  } 

  // the hBots move only if the cell they attempt to move to is  

  // currently available 

  for (i = 0; i < number of hBots; i++){ 

    hBot[randOrder[i]] senses surroundings; 

    hBot[randOrder[i]] moves to random neighbouring cell, if empty; 

  } 

  for (i = 0; i < number of hBots; i++){ 

    hBot[i] senses surroundings; 

  } 

  for (i = 0; i < number of hBots; i++){ 

    hBot[i] updates current state; 

  } 

  Update contents of all cells; 

  Cells displayed; 

  Time-steps++; 

Figure 5.6: Pseudo code for main Simplified Hexagonal Model program supervisor detailing the order 

in which the hBots perform their actions. 
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5.6.1 Experimental Data 

In a real world application for a swarm cooperating for object recognition it would be 

very important that is was known how well the swarm would perform in completing the 

task to some pre-determined criteria. For example if time was going to be more 

important than cost would increasing the number of agents increase or decrease the 

time taken to find the identify the objects? If time is decreased is the decrease in time 

worth the extra cost? How important would robustness be? Would it be sufficient to 

have a swarm that succeeds in finding only 90% of objects but does it quickly as 

opposed to one that succeeds all the time but takes a long time to do so?  These factors 

would determine the desirability of this system for cooperative object recognition and 

so it is important from the start to produce results on the efficiency and capability of 

the swarm within the simulation. 

To measure the efficiency and capability of the swarm to cooperatively identify different 

object shapes numerous pieces of information were gathered. The two main factors that 

represent the ability of the swarm are the amount of time they take to complete a given 

task scenario and how much energy they consume as a group. As the experiments were 

carried out in grid-world simulations time was measured by counting the number of 

time-steps. The values found allow the comparison of both different scenarios and 

different control variables for the hBots.  

In the SHM the energy required to complete any task is estimated by multiplying the 

number of hBots in the scenario by the number of time-steps recorded. This estimation 

does not consider the individual actions of the hBots but provides a suitable measure to 

gauge where the completion of the task may be time efficient but it is not energy 

efficient, since a disproportionate amount of agents are used.  

 5.7 Limitations of the Platform 

Due to the nature of the methods chosen for completing this investigation there were 

some limitations to the SHM as a platform and limitations in the way in which the 

agents were modelled. These limitations were chosen to make the investigation possible 

in the time allotted for the project. Future research in the cooperative object recognition 

area will provide answers to these current limitations the details of which are discussed 

further in Chapter 11. The limitations themselves are considered in more detail here. 
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5.7.1 Grid-World 

The SHM was constructed on a hexagonal lattice where the hBots were the same 

dimensions as a single cell and the object shapes were made from a number of cells. 

The movement of the hBots was discrete from one cell to another, which is a 

simplification of real world movement. 

The choice of a hexagonal grid allowed for a standard relationship between 

neighbouring cells as there is there is only one type of potential neighbour (section 

4.4.2). However, this makes the grid-type less standard and therefore more difficult to 

compare to existing grid systems. It would be possible to convert the system to a square 

grid-world, although that conversion is not considered here. 

5.7.2 The Requirement to Cooperate 

The hBots cooperate to identify differences in object shapes. It would be possible to 

derive a system were a single autonomous hBot with similar capabilities could complete 

the same task. To do this the hBot would have to travel around the object shape 

changing state dependant on its current state and what it senses when it moves to the 

next cell. This would require additional capabilities. In order to travel round the object 

shape it would have to know the direction of the object cells and determine the next 

empty cell to move to. However, there are a number of advantages in the cooperative 

method which will have greater influence when the system is moved to a physical 

platform:  

 As the scale of the object shape increases relative to the size of the agents, it will 

require a longer amount of time for a single agent to travel around the object 

shape, where cooperating agents can cover more of the object shape at the same 

time. 

 A system which involves surrounding an object shape with multiple agents can 

react quicker to any changes in that object shape when compared to a single 

agent that needs to travel around the object shape. This increases the number of 

applicable application for the system. 

 When the system is moved to a physical platform, the agents themselves can 

become a unit of measurement. If they are cooperating and neighbour with each 

other they form a network similar to a lattice. If however, one agent was to 
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travel around an object shape it would require controlled movement and 

absolute position knowledge to build up information of the object shape being 

identified.  

5.7.3 Perfect Sensors and Communication 

All the hBots were modelled with perfect sensor and communication capabilities. A 

hBot would neither falsely broadcast which state it is in nor will a hBot misinterpret 

another hBots broadcast. A hBot would also always correctly identify the number of 

object cells it is neighbouring. In a physical application it may not be possible to have 

agents that have 100% accurate sensors and communication, there will need to be 

consideration of this in future studies once the generic strategies have been tested. 

5.7.4 Neighbouring Up to Three Object Cells 

The system assumes that object shapes which would allow a hBot to be in contact with 

more than three object cells at a time do not exist. This limits the number of potential 

shapes that the hBots could be used to identify. The method could be expanded to 

consider up to six object cells. However, this would significantly increase the number of 

states required by the hBots whilst not affecting the ability of the hBots to identify the 

chosen object shapes for the experiments. Due to the way a hBot reacts to object 

shapes it is not capable of distinguishing between two object shapes that are separated 

by a single cell as they would consider them to be the same object shape. 

5.7.5 Knowledge Equivalent to Five hBots 

Through their cooperation the hBots can reach a state which where they are aware of 

the equivalent information of five individual hBots. This makes certain object shapes 

indistinguishable from each other, where they have the many features similar to each 

other. An example of two object shape data-chains that could not be distinguished by 

these hBots are {1,1,1,2,2,2,2,2,1,1,1,2,2,2,2,2} and {1,1,1,2,2,2,2,2,2,1,1,1,2,2,2,2,2,2}, 

shown in figure 5.7. The difference between these object shapes is that of scale, one of 

them is one object cell longer than the other. However, the length of the object shapes 

would require the knowledge of at least seven hBots to distinguish between them. This 

would be done by considering the same space that the sub-chain of the shorter length 

object shape (1,2,2,2,2,2,1) is derived from with either of the sub-chains (2,2,2,2,2,2,1) 

or (1,2,2,2,2,2,2) from the longer object shape. 
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Figure 5.7: Two shapes that cannot be distinguished from each other by the hBots due to their similarity 

to each other and the limitations of the hBots. 

5.7.6 Symmetrical Object Shapes 

Due to the way the hBots change between states they cannot distinguish between 

symmetrical object shapes, or parts of object shapes. In the following example two sets 

of three hBots are neighbouring similar parts of symmetrical object shapes, figure 5.8. 

The hBot A neighbours an object shape with the data-chain {1,1,1,2,2,1,2,1,1,1,3,2} and 

the hBot B neighbours an object shape with the data-chain {1,1,1,2,1,2,2,1,1,1,2,3}. The 

three hBots including hBot A are on the sub-chain (1,3,2) and the three hBots including 

hBot B are on the sub-chain (2,3,1). Although these sub-chains are different the 

resulting state of hBot A and hBot B at state-level 2 will both be the result of 

referencing the state-rule list with values [3][1][2], state 17. 

 

Figure 5.8: hBot A and hBot B will both change to the same state even though their neighbours are the 

opposite way round. Green is state 1, Blue is state 2, Red is state 3.The resulting states for both hBots 

A and B is state 17    

5.7.7 Synchronised 

The SHM is a synchronised platform, where each of the hBots perform their actions in 

near unison. In a physical platform this would be difficult to implement. A more 

idealistic simulation would have the hBots act in an asynchronised manner. The choice 

was made not to do so at this stage to reduce the complexity of the program and 

therefore the amount of run-time it would take to complete the experiments. 
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5.7.8 Controlled Movement 

It was assumed that the hBots had an ability to control their movement in order to 

remain stationary with a given probability when neighbouring an object cell. Dependant 

on how movement would be controlled in a physical system and considering the aim of 

simplifying the agents‟ capabilities this could be difficult to implement. As no specific 

physical platform is currently identified for the system a range of possibilities are 

explored regarding the probability of movement, from 0 to 1, in section 6.2.2.    

5.8 Training the Swarm 

It is beneficial if the swarm that is attempting the task to distinguish between two types 

of object shape does not have to be explicitly told the differences between these types. 

To do this a method of training is required. A GA was chosen as a suitable technique 

for the hBots to learn to distinguish between two object shapes which would remove 

the process of having to identify the object shapes. The specifics of the GA method 

used and the random method to generate the behaviours that it is compared to are 

discussed in section 9.2 and section 9.3. 

5.9 Summary 

A cooperative object recognition task is described. In this task the swarm of agents 

must distinguish one of the object shapes from the other and depending on the 

experiment destroy the object shape or move the object shape into the collection zone. 

To complete this investigation a research platform named the SHM was created in the 

Processing programming language. The SHM in general consisted of agents named 

hBots which moved around a hexagonal shaped arena made from hexagonal cells. 

Object shapes in the arena were made from binding numerous object cells together. 

The hBots identiedy the object through the changing of their states which were affected 

by other agents‟ states. 

The main limitation of the SHM is that it is an abstract representation of a real world 

environment. As such, the strategies devised cannot be directly transferred to any 

specific robotic platform. However, the cooperative approach identified will influence 

the design of strategies for robotic platforms or the robotic platforms themselves in 

future. The simplicity of the method at this time gave the benefit of allowing many tests 

to be carried out as they are computationally light. 
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Chapter 6: Initial Research 

This chapter contains the initial multi-agent experimentation using the Simplified 

Hexagonal Model (SHM) platform. In an arena with a predetermined size and number 

of hexagonal and triangular object shapes different sized swarms of hBots with varied 

probabilities of moving in certain situations were given the task of removing only the 

valid object shapes. The results found were used to guide further experimentation for 

more complex object recognition tasks where the similarities and distinguishing features 

of the object shapes used were varied rather than the variation of the hBot agent 

attributes.  

6.1 Methodology 

6.1.1 The Arena 

For all of the initial experiments the arena contained three triangular object shapes and 

three hexagonal object shapes. Each of these shapes was placed at the same distance 

from the collection zone, which is at the centre of the arena measuring eleven cells 

between opposite corners. The hBots started adjacent to this collection zone. As more 

hBots were added they continued to spiral outward clockwise from the centre, 

remaining as close to the collection zone as possible, without overlapping. The arena at 

time-step zero is shown in figure 6.1. 

 

 

Figure 6.1: The SHM arena with both triangular and hexagonal object shapes placed evenly around 

the collection zone. 
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6.1.2 Removing Object Shapes 

Object shapes were removed by the hBots when they pushed or pulled them into the 

collection zone. The hBots themselves could not enter the collection zone and returned 

to state 0 when in contact with it. When more than 50% of the object shape was in the 

collection zone it disappeared, as if it had fallen into a hole. To move an object shape 

required at least four hBots in an identifying state attempting to move it, this 

distinguished the movement task from the recognition task. The object shape could not 

be moved if there were other hBots blocking their path or the path of object shape they 

were moving.  

6.1.3 The hBots 

In the initial experiments the number of possible states and state-levels were reduced to 

those necessary for identifying the difference between hexagons and triangles. The 

defining feature of hexagonal and triangular object shapes are their corners. The 

method of differentiating between these two types of object shapes considered the 

relationship of their corners so that any scale hexagonal and triangular object shapes 

could be distinguished. Figure 6.2 shows different sized hexagonal and triangular object 

shapes where each bounding empty cell contains the number of object cells it is in 

contact with. The states that are achievable for any size hexagonal and triangular object 

shape are considered in table 6.1. From this one identifying state for both shapes is 

found, state 5 for the triangular object shape, and state 7 for the hexagonal object shape, 

the other remaining state-level 2 states are not achievable by the agents for these tasks. 

 

Figure 6.2: Objects with surrounding cells showing number of sides in contact with object. 
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State-Level States Possible for Every Size 
Hexagon 

Possible for Every Size 
Triangle 

1 1 YES YES 

2 YES YES 

2 [1][1][1] = 4 NO NO 

[1][1][2] = 5 NO YES 

[1][2][2] = 7 YES NO 

[2][1][1] = 10 NO NO 

[2][1][2] = 11 YES YES 

[2][2][2] = 13 YES YES 

Table 6.1: The states achievable by hBots interacting with hexagonal and triangular object shapes at 

state-levels 1 and 2. 

One additional behaviour was used in the initial experimentations which is inconsistent 

with the later research and that is the behaviour of hBot in states 1 or 2, neighbouring a 

hBot in an identifying state will change to that identifying state. A decision tree is shown 

in figure 6.3 which illustrates how the hBots change states based on their surroundings 

for the initial experimentation. The behaviours the hBots exhibit in each of these states 

is described in table 6.2. 

 

Figure. 6.3: A decision tree explaining how the current states of the hBots are determined based on their 

sensed surroundings. 
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State Behaviour (per time-step) Colour 

0 Move in a random direction. If the direction chosen is not available the 
hBot remains stationary. 

Grey 

1 Probability between 0 and 1, determined by specific test, of moving in 
a random direction. If the direction chosen is not available the hBot 
remains stationary. 

Green 

2 Blue 

5 Attempt to push/pull object one cell towards the collection zone if 
that object shape is valid. If other hBots are in the way of the hBots or 
object shapes they remain stationary. 

Red 

7 Purple 

Table 6.2: The state and behaviours for the hBots. 

An example of a group assessing a triangular object shape can be seen in figure 6.3 

which shows:  

i)  Three hBots in contact with object in states 1 for single side contact and state 2 

for dual object side contact, three hBots in state 0 are approaching object. 

ii) A group of three hBots form at a corner of the triangle with states 1, 1, and 2. 

iii) The centre hBot of the first group of three changes to state 5, from state 

relationship [1][1][2], a second group of three hBots is in contact with the object 

with states 1, 2, and 2. 

iv) The two outer hBots of the first group change to state 5 also, the second group 

remain in states 1, 2 and 2 as this is common to both hexagonal and triangular 

objects. 

Figure 6.4: Example of hBots using state behaviour to identify a triangular object. 

The assessment of a hexagonal object shape is very similar. 

The details of the initial SHM program, written in the Processing open source language, 

used for all the initial experiments in this Chapter is included in Appendix A. 
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6.1.4 The Variables 

A series of tests were carried out to determine the effects of three different factors in 

the cooperative object recognition task. 

 The number of hBots 

 The probability of them moving away from an object shape. 

 Which object shape was considered valid. 

Considering all of these three variables in relationship to each other gave a total of 440 

individual tests, each of which were repeated fifty times. The hBots had a maximum of 

15000 time-steps to complete the task. The data obtained included: the number of time-

steps taken to complete the task; the amount of energy to complete the task and the 

number of object shapes removed. When all three valid object shapes where not 

collected the number of time-steps to complete was recorded as 15000. 

6.2 Results 

6.2.1 Task Completion 

In tests with a low numbers of hBots at high probabilities of movement the hBots did 

not always manage to complete the task of removing all three invalid objects within the 

given 15000 time-steps. This is likely due to the hBots not remaining near the object 

shapes long enough to form groups of three around the corner of the object shape in 

order to differentiate them. As the group size increases this becomes less of a problem 

as overall there is less empty space in the arena and therefore more interaction around 

the boundary of the object shapes. The number of successfully removed object shapes 

for each of the experiments are shown in Appendix B.1 and Appendix B.2.  

Considering all swarm group sizes, a probability of 0.1 gave the largest number of 

completed tasks, this is true whether the valid object shape was a hexagonal or 

triangular object shape as shown in figures 6.5 and 6.6 respectively. The probability 

which completed the least amount of tasks overall was 1.0, as shown in figures 6.7 and 

6.8. At movement probabilities of 0.7 and above there is a distinct jump visible in the 

number of completed tasks from 90 to 100 hBots. The reason that this occurs is 

currently unclear. However, it could related to the amount of free space available for the 
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hBots to move around in, where at 100 hBots a suitable density for completing the tasks 

in the given 15000 time-steps is found. 

 

Figure 6.5: The number of object shapes removed when the probability to move is 0.1 and the 

hexagonal object shape is valid. 

 

Figure 6.6: The number of object shapes removed when the probability to move is 0.1 and the 

triangular object shape is valid. 

 

Figure 6.7: The number of object shapes removed when the probability to move is 1.0 and the 

hexagonal object shape is valid. 
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Figure 6.8: The number of object shapes removed when the probability to move is 1.0 and the 

triangular object shape is valid. 

It was found that a group size of 10 was not large enough to complete the object 

recognition task for any probability of movement for hBots in states 1 and 2. In general, 

the higher the probability of the agents moving away from an object shape, the larger 

the swarm size was required to be in order to complete the task. Swarm sizes of 150 

above were always successful at removing all three valid object shapes whether they 

were hexagonal or triangular. However, the information does not consider the efficiency 

at which the task was completed. 

6.2.2 Swarm Size 

As the number of hBots is increased the number of time-steps required to complete the 

cooperative object recognition task is decreased. This is true whether the valid object 

shape is a hexagon or a triangle as shown in the heatmaps in figure 6.9 and figure 6.10 

respectively. The results of these tests are shown in full in Appendix B.3 and B.4. For 

low probabilities (0.0 – 0.3) of movement when in states 1 and 2 the number of time-

steps it takes initially drops quickly between 10 and 60 hBots, and levels out when the 

number of hBots reaches 110.  This is likely due to the higher probability that a hBot 

that comes into contact with an object will remain next to the object shape until the 

object shape is removed. Therefore there is a limited amount of variance between which 

of the hBots are neighbouring the object shapes. As the number of hBots increases, the 

number of them interacting directly with the object shapes remains constant, as there is 

a limited number of spaces around each shape, causing the relationship to level out. In 

the case of a 0.1 probability of moving there is even a minor increase in the number of 

time-steps it takes to complete the task when above 150 hBots, this is greater in the case 

of a triangular valid object figure 6.10.  
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However, as the probability of movement increases towards 1.0 the relationship 

between the two variables becomes increasingly linear when plotted on a logarithmic 

scale, and once a suitable amount of hBots have been reached to successfully complete 

the task. This change can be seen in more detail in the plots in Appendix B.3 and B.4. 

This is due to the hBots constantly changing position around the object shape, 

effectively switching places with each other. As the number of hBots increases there is a 

greater chance that the hBots as a swarm rather than as an individual will interact with 

the object shapes, this is due to the overall reduced amount of empty space in the arena 

in which the hBots can move. 
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Figure 6.9: A heatmap of the mean average number of time-steps required to complete the task 

where hexagonal object shapes were valid. Xs indicate results with less than 50% completed tasks, 

where results would have higher values. 
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Figure 6.10: A heatmap of the mean average number of time-steps required to complete the task 

where triangular object shapes were valid. Xs indicate results with less than 50% completed tasks, 

where results would have higher values. 

6.2.3 Energy Consumption 

The time-steps it takes to complete the object recognition task gives one perspective of 

the swarms effectiveness of completing the task. A physical agent would require energy 

to work. As the number of agents in the swarm increases so does the amount of energy 

consumed by the swarm for each time-step. Taking this into consideration the energy 

each swarm group size took to complete the task was calculated for each of the tests. 

The results are available in full in Appendix B.5 the hexagonal object shape was valid 

and Appendix B.6 where the triangular object shape was valid. 

Comparing the results for the time-steps, figures 6.9 and 6.10, and energy, figures 6.11 

and 6.12, over both the number of hBots and their probability of movement when the 

triangular object shape was valid interesting changes can be noted. The clearest changes 

are at the extreme values where there are either low numbers or high numbers of hBots 
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and low and high probabilities of movement. However, at low probabilities there are a 

greater number of uncompleted tasks, it would be expected that in these cases it would 

take a larger number of time-steps to complete the task if it is even possible. When 

considering the energy consumption of the group these values move closer to the mean. 

The most efficient swarm group had 110 hBots in it and a probability 0 of moving 

when considering time-steps alone, but when considering the energy consumption the 

most efficient number of hBots was reduced to 80.  
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Figure 6.11: A heatmap of the mean average number of energy required to complete the task where 

hexagonal object shapes were valid. Xs indicate results with less than 50% completed tasks, where 

results would have higher values. 
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Figure 6.12: A heatmap of the mean average number of energy required to complete the task where 

traingular object shapes were valid. Xs indicate results with less than 50% completed tasks, where 

results would have higher values. 

6.2.4 Probability of Movement 

In general as the probability of the hBots moving away from the object shapes whilst in 

states 1 and 2 increases so does the amount of energy required to complete the 

cooperative object recognition task. This variation in energy consumption is diminished 

when there are either high or low numbers of hBots in the swarm, as shown in figure 

6.11 and 6.12 for both when hexagonal and triangular object shapes are valid. In 

situations where there are higher numbers of hBots in the enclosed arena there will be 

an increasing number of them that do not interact with the object shape and hinder the 

swarms progress by either consuming energy or being in the way whilst other hBots are 

trying to move the valid object shapes to the collection zone. Changing these hBots 

probability of movement will have a relatively small effect as the arena is congested. The 

required number of agents quickly surround and identify the object shape and are no 

longer affected by the probability of movement. In the case of low hBot numbers the 
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hBots take a longer amount of time to identify the object shapes because they are 

spread too thin. It is difficult to determine, with the current results, whether if a low 

number of hBots remaining near the object shape or not is relevant because of the lack 

of data, due to hBots failing to complete the tasks. However, the trend of the heatmap 

indicates that the difference will be less prominent than the mid-range, 60 to 120, 

number of hBots. 

6.2.5 Hexagons and Triangles 

There was little difference between the results whether the hexagons or the triangles 

were the valid object shape. This is most likely due to the relationships between the 

object shapes chosen for these tests themselves. Both the triangular object shape, with 

six object cells, and hexagonal object shape, with seven object cells, have twelve spaces 

around them. This means that it is possible for the same number of hBots to be 

engaged in identifying them. There are also six places out of these twelve that would 

allow a hBot to each a suitable state to identify them for both situations. Despite the 

similarities there is a slight difference in results where higher numbers of hBots are used. 

When the triangular object shape was classed as valid the energy consumed increases at 

a higher rate for these larger numbers of hBots. This could be explained by the 

placement of spaces that allow a hBot to reach a suitable identifying state. When dealing 

with a triangle the placements are in pairs at each of the corners whilst in the case of the 

hexagonal object shape they are spread out one at each of the six corners. This 

observation is true for any size hexagon or triangle. As the hexagonal and triangular 

object shape are always compared to each other and not a third object shape there is 

little difference when either one is classed as valid and the other is classed as invalid. 

6.3 Further Investigations 

The initial investigation used only two types of object shapes and it was found that 

there was little variation between them when either was set as the valid object shape and 

the other set as the invalid object shape. Further experiments are required which 

increase the range of object shapes that are used whilst considering the difference 

between the object shapes themselves. How the difference between the object shapes 

changes the difficulty of the swarm‟s cooperative object recognition task is an important 

factor to consider. 
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With the focus of further investigation being on different object shape couples the 

other variables would need to be reduced. In the case of the probability of the hBots 

moving when in none identifying states, a lower value would appear to more suitable. 

However, as the complexity in the different object shapes is increased a number of 

probabilities of movement should be considered.  

6.4 Summary 

The initial investigation using the SHM with only two type of object shape, the triangle 

and hexagon, revealed a number of interesting results. Where only time-steps are 

considered increasing the number of hBots increases the efficiency in which the swarm 

completes the object recognition task. Increasing the probability that an agent in state 1 

or state 2, attempting to identify the object shape, moves decreases the efficiency. 

By also considering the amount of energy consumed by the swarm the most efficient 

set-up shifts towards a lower number of hBots with the exception of very low numbers 

of hBots. This suggests that with a high number of hBots there is an increasing number 

of hBots who are not contributing to the task completion but perhaps also hindering it 

by restricting the movement of the valid object shapes towards the collection zone. 

Overall there was little difference between the cases where the hexagonal object shape 

was valid and the triangular object shape was valid. An increase in the number of object 

shapes with an increased range of differences between them is necessary for a more 

thorough study of the cooperative object recognition task.  
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Chapter 7: Object Shapes 

In the initial hBot research, two types of object shapes were used, hexagonal and 

triangular. These object shapes were chosen because they had both distinct differences 

from each other as well as similarities. In this chapter an increased range of object 

shapes are considered through a systematic production of the shapes possible with a 

hexagonal grid-world. The data-chains that describe these object shapes without 

needing information of orientation and placement. With minor exceptions, that fall 

outside the scope of this research, data chains are shown to be unique generators for 

object shapes. 

7.1 Possible Object Shapes 

The way chosen to explore hexagonal cell object shapes was to start as simple as 

possible and gradually add more complexity.  The simplest object shape in a hexagonal 

lattice is a single hexagonal cell. The next object shape, in terms of complexity, has two 

hexagonal cells next to each other, described as an object shape with a two cell 

allowance. The next object shapes are those with three cell allowances, and so on. 

However, once there are more than two cells in the object shape there is more than one 

possible combination of putting those cells together whilst ignoring rotational symmetry. 

In the case of object shapes with a three cell allowance there are three possible shapes. 

Increasing the cell allowance by only one, from three to four, more than triples the 

possible object shapes to ten. As object shapes are described partially by the number of 

object cells they contain, object shapes which appear similar but have different scales 

are not considered to be the same object shape. Figure 7.1 shows all the possible object 

shapes with one, two, three and four cell allowances as well as the identification number 

they were assigned for this research. Beyond this point it was increasingly difficult to 

find and draw the shapes by hand, as shapes were easily missed and the shear amount 

required would be time consuming. Despite this difficulty it was necessary to 

understand the nature of object shapes in the hexagonal cell grid. 

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD



 

94 
 

 

Figure 7.1: Possible object shapes built from neighbouring cells on a hexagonal grid with one, two, three 

and four object cell allowances. The identification number of the object shapes used by this research are 

shown. 

7.2 Systematically Creating the Object Shapes 

A systematic system was designed to search through all the possible shapes starting with 

a one cell allowance increasing to an N cell allowance. To understand how the system 

works spiral locations first have to be explained. 

7.2.1 Spiral Location 

A spiral location is a coordinate that describes a location on a grid using a single value, 

as opposed to a Cartesian coordinate which uses two, x and y. In figure 7.2 a cell in 

hexagonal grid is shown with the relative coordinates of its neighbours. Starting at the 

Cartesian coordinate (0,0) it is possible to spiral outwards systematically covering each 

cell, figure 7.3.  
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Figure 7.2: A cell and its neighbours with their relative Cartesian coordinates for a hexagonal lattice.    

 

Figure 7.3: A spiralling search system shown on a hexagonal cell grid starting from (0,0) continuing 

outwards in a clockwise fashion.  

By numbering each cell in order starting from 0 the spiral location of that cell is found. 

Figure 7.4 describes the spiral location coordinate for each cell and their relative ring-

number is marked in red. Where, the ring number describes the minimum distance that 

any cell on the ring is from the centre coordinate. For example, spiral location 0 is on 

ring number 0, spiral locations 1-6 are on ring number 1, spiral locations 7-18 are on 

ring number 2. 
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Figure 7.4: The spiral location coordinates and their relative ring-numbers. The minimum distance 

between the centre cell and any cell on a relative ring is equal to its ring number. 

The maximum spiral location coordinate for any given ring could found be found with 

the following formula, where r is the ring number: 

                            ( 
 )   ( ) 

7.2.2 Producing the object shapes 

To start the identification of the object shapes the first object cell is added at spiral 

location (0) and the shape is recorded as ID0. This becomes the first base shape for 

other shapes to be created from. After all n objects containing c object cells have been 

found these are recorded as IDp to ID(p + n – 1) for some integer p, IDp becomes the 

next base shape. Then add another object cell to the base shape placing it first at spiral 

location (0) and then moving it incrementally through allspiral locations. At each 

location the resulting shape created is only classed as an authentic object shape if:  

 The new object cell does not overlap an existing object cell from the base shape. 

 The new object cell is in contact with at least one of the currently existing object 

cells. 

 The object shape created is not hollow. 

 The object shape created does not already exist.  

Each authentic object shape is recorded including its identification number and the 

spiral location coordinates of its object cells. Once all possible object shapes are found 
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using the base shape IDp, the base shape is updated to ID(p+1) and a new object cell is 

added and the process repeated.   

Theoretically, in an infinite grid, this method could then be repeated until all possible 

object shapes containing a given number of cells are found. In practice the system was 

limited to the size of the grid used. 

7.2.3 Checking the Object Shape is Authentic 

Of the four checks to determine if the object shape is authentic the first two, 

considering the position of the new object cell, were determined by comparing the 

location of all the current object cells. Hollow object shapes were identified using a 

flooding algorithm, where the four empty corner cells of the grid were initially marked 

and any empty cells touching those also became marked. These four starting cell 

locations were chosen to increase the spread rate, whilst not inhibiting the space the 

object shapes were created in at the centre. Once the flooding algorithm had reached a 

stable size the arena was checked for empty cells, if there were any the object shape 

would not be classed as authentic. Figure 7.5 shows an example of the flooding 

algorithm in practice with a hollow and solid object shape. The method used to remove 

hollow shapes is only suitable when using a finite grid space. 
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Figure 7.5: On the left: A grid containing a hollow shape is flooded until it becomes stable, there are 

some cells which are empty and un-marked therefore the shape is hollow and not a new object shape.  

On the right: A grid containing a solid shape is flooded until it becomes stable, there are no empty cells 

therefore the shape is solid and potentially a new object shape. 

The final check needed to determine that the new object shape was not identical to one 

that was already recorded with an ID number. As it is the shape of the object that is 

important and not the position of the object cells a method was required for coding the 

object shape which would remain unchanged whatever its position or orientation. The 

development of such a coding system was built from the concept of object shapes as 

binary images. 
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7.3 Object Shapes as Binary Images 

Geometric shapes in both two-dimensional and three-dimensional space can be 

distinguished by their boundary regions. These differences are determined by how many 

sides or faces they have and how these sides and faces relate to each other. Research 

exists considering the relationships and similarities between different two-dimensional 

shapes. This research compares the shapes of objects or images to find similarities 

between them. Latecki and Lakämper (2002) used a process of digital curve evolution to 

simplify the shapes and reduce the amount of noise there is in order to compare them. 

The process allows for the shape similarity measure to be used with shapes in their 

database. In comparison Sajjanhar and Lu (1997) normalised shapes by position, scale 

and orientation in order for them to be compared to each other.  

The object shapes in the SHM could be considered binary images where the object is 

the image and the arena is the background. Shape coding is used to store these types of 

binary images in a range of different ways (Katsaggelos et al. 1998; Zhang and Lu 2004). 

Most relevant of these techniques is chain coding. Chain coding maps the relative 

positions of the neighbouring pixels at the boundary of a shape (Katsaggelos et al., 

1998). It is usually done on a square grid but has also been done on a hexagonal lattice 

(Scholten and Wilson, 1983). Lossless chain coding copies the exact information 

required to recreate the image, whilst lossy chain coding reduces the data required at the 

cost of making an approximation of the image. Examples of two types of lossless pixel 

based chain coding on a square grid using 4-neighbours and 8-neighbours are shown in 

figure 7.6. Here the starting position is in the top left and the code determines the 

position of the next cell. Once the progression returns to its starting cell the boundary 

of the shape is mapped, allowing the shape to be reproduced. Using 8-neighbour chain 

coding decreases the length of the chain-code but at the cost of increasing the amount 

of variables for each bit of the chain-code. 
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Figure 7.6: (a) 4-Neighbour and (b) 8-Neighbour contour chain coding. The start point is shown with 

a spot (top left). The code for (a) 0,2,0,2,0,4,2,2,6,4,4,6,4,0,6,6 and (b) 0,1,1,3,2,5,4,5,7,6.    

Chain-coding is similar in theory to how a geometric shape can be represented by the 

length and curve of its sides and the angles they intersect. These contours can follow 

the pixels at the inside or the outside of the shape as seen in figure 7.7. An alternative 

method has been considered where the chain code considers the relationships of the 

inter-pixel edge links (Nunes et al., 2000; Park, Martin and Yu, 2008) as seen in figure 

7.8.  

 

Figure 7.7: Pixels used for the contour coding are either pixels within the shape (a) inner contour or 

those neighbouring the shape (b) outer contour.  

 

Figure 7.8: In edge based contour coding it is the relative edges of the pixels that are coded rather than 

the pixels themselves.   
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There are lossy techniques, where estimations are used to increase efficiency by 

decreasing the accuracy of the chain-code. These techniques aim to minimise the 

amount of information needed to store and transfer images, usually in videos where 

many images are needed for this final product (Nunes et al., 2000; Park, Martin and Yu, 

2008). The issue with lossy techniques is the loss of quality when the images are 

required to be remade accurately. 

For the case of the shapes in the SHM it was important that the representations of the 

objects were lossless, a near approximate would not suffice. Due to the issue of needing 

to know where to display the image, in the case of lossless contour and chain coding, 

the information needs to contain a starting point. This starting point also requires either 

the initial orientation of the first piece of data to be known, a common orientation or 

every piece of information containing an orientation. Also, an image that is rotated by 

90 degrees will have a different chain-code to an image that has not been rotated. For 

these reasons this type of existing contour or chain coding was not suitable for the 

object shape investigation and a new one needed to be developed 

7.3.1 Describing Object Shapes without Location or Rotation 

Relative to the object shapes the hBots exist in the negative space around them, similar 

to outer-contour chain coding. By considering the negative space around the objects 

and the way the hBots perceive the object cells, it is possible to produce an array of 

information, termed the data-chain, which, with exceptions that fall outside the remit of 

this research discussed in section 7.5.3.,  will be shown to be unique to each object 

shape irrespective of placement or orientation and hence can be used in describing the 

object shapes used within the research.  

Every empty cell that touches an object shape cell can be given a value determined by 

how many different object cells it touches. In figure 7.9 the first fifteen object shapes 

are shown with the empty cells surrounding them containing the number of object 

shape cells they are in contact with. This information is similar to how the hBots view 

the object shapes and therefore provides additional benefits when comparing the data-

chains of object shapes to each other. 
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Figure 7.9: The first fifteen object shapes whose neighbouring empty cells containing the number of object 

shape cells they are in contact with. 

This arrangement of cell values forms what is termed the data-chain for the object. 

Traversing the chain clockwise produces a cyclic sequence of numbers, that is a 

sequence a0, a1, ….. an-1 that can be read starting at any number ak 0≤k<n  and reading 

consecutively modulus n to ak-1 . If these reading are listed separately in lexicographical 

order then one will be first, this list will be used to represent the data-chain and will be 

referred to as the data-chain of the object.  For example the data-chain from the object 

shape with the two cell allowance is {1,1,1,2,1,1,1,2}. In table 7.2 the data-chains for 

each of the first forty-eight shapes are described. The identification number describes 

the order in which the object shapes were found. The base shape details the 

identification number of the object shape that the additional cell was added to in order 

to make that shape in the object shape creation process.  
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Identification 
Number of 
Cells 

Length of 
Data-Chain 

Data-chain Base Shape 

0 1 6 {1,1,1,1,1,1} - 

1 2 8 {1,1,2,1,1,1,2,1} 0 

2 3 9 {1,1,2,1,1,2,1,1,2} 1 

3 3 10 {1,1,1,2,1,2,1,1,1,3} 1 

4 3 10 {1,1,1,2,2,1,1,1,2,2} 1 

5 4 10 {1,1,2,1,2,1,1,2,1,2} 2 

6 4 11 {1,1,1,2,2,1,1,2,1,1,3} 2 

7 4 11 {1,1,1,3,1,1,2,1,1,2,2} 2 

8 4 12 {1,1,1,3,1,1,1,3,1,1,1,3} 3 

9 4 12 {1,1,1,2,1,3,1,1,12,1,3} 3 

10 4 12 {1,1,1,2,1,2,2,1,1,1,2,3} 3 

11 4 12 {1,1,1,2,1,2,1, 2,1,1,1,4,} 3 

12 4 12 {1,1,1,2,2,1,2,1,1,1,3,2} 3 

13 4 12 {1,1,1,3,1,2,1,1,1,3,1,2} 3 

14 4 12 {1,1,1,2,2,2,1,1,1,2,2,2} 4 

15 5 11 {1,1,2,1,2,1,2,1,1,2,2 } 5 

16 5 12 {1,1,1,3,1,1,2,1,2,1,1,3} 5 

17 5 12 {1,1,1,2,2,1,2,1,1,2,1,3} 5 

18 5 12 {1,1,1,3,1,2,1,1,2,1,2,2} 5 

19 5 12 {1,1,2,1,1,3,1,1,2,1,1,3} 6 

20 5 13 {1,1,12,2,1,1,3,1,1,1,2,3} 6 

21 5 13 {1,1,1,2,2,2,1,1,1,3,1,1,3} 6 

22 5 13 {1,1,1,2,2,1,1,2,2,1,1,1,4} 6 

23 5 13 {1,1,1,2,1,2,2,1,1,2,1,1,4} 6 

24 5 13 {1,1,1,2,2,2,1,1,2,1,1,3,2} 6 

25 5 13 {1,1,1,3,2,1,1,2,1,1,3,1,2} 6 

26 5 13 {1,1,1,3,1,1,2,2,1,1,1,3,2} 7 

27 5 13 {1,1,1,2,1,3,1,1,2,1,1,2,3} 7 

28 5 13 {1,1,1,2,3,11,2,1,1,2,2,2} 7 

29 5 13 {1,1,1,4,1,1,2,1,1,2,2,1,2} 7 

30 5 14 {1,1,1,2,1,3,1,1,1,3,1,1,1,4} 8 

31 5 14 {1,1,1,2,3,1,1,1,3,1,1,1,3,2} 8 

32 5 14 {1,1,1,3,1,1,1,3,1,2,1,1,1,4} 8 

33 5 14 {1,1,1,2,1,2,1,3,1,1,1,2,1,4} 9 

34 5 14 {1,1,1,2,1,3,2,1,1,1,2,2,1,3} 9 

35 5 14 {1,1,1,2,1,3,1,2,1,1,1,3,1,3} 9 

36 5 14 {1,1,1,2,1,2,1,2,2,1,1,1,2,4} 10 

37 5 14 {1,1,1,2,2,1,2,2,1,1,1,2,3,2} 10 

38 5 14 {1,1,1,2,3,1,2,1,1,1,3,1,2,2} 10 

39 5 14 {1,1,1,2,1,2,3,1,1,1,2,1,2,3} 10 

40 5 14 {1,1,1,2,1,2,2,2,1,1,1,2,2,3} 10 

41 5 14 {1,1,1,2,1,2,2,1,2,1,1,1,3,3} 10 

42 5 13 {1,1,2,1,2,1,2,1,2,1,1,2,5} 11 

43 5 14 {1,1,1,2,2,1,2,1,2,1,1,1,4,2} 11 

44 5 14 {1,1,1,3,1,2,1,2,1,1,1,4,1,2} 11 

45 5 14 {1,1,1,2,2,2,1,2,1,1,1,3,2,2} 12 

46 5 14 {1,1,1,3,2,1,2,1,1,1,3,2,1,2} 12 

47 5 14 {1,1,1,2,2,2,2,1,1,1,2,2,2,2} 14 

Table 7.2: The identification number of the object shape and the corresponding, number of cells in the 

shape and the data-chain, length of data-chain and the base shape that the new object shape was built 

upon. 
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7.4 From Object Shapes to Data-Chains 

A method was developed to identify the data-chain of each object shape found. As the 

first object shape is a single object cell at spiral location coordinate (0) the tracking 

pointer was placed here first. The pointer then determined if the cell at the tracking 

pointer‟s relative spiral location (1) was an empty cell or an object cell. If it was an 

object cell the pointer then moved to this coordinate and repeated the process until it 

checked and found an empty cell. This empty cell was marked as the first in the data-

chain and given a value equal to the number of object cells it was in contact with. The 

pointer then checked its next spiral location, relative to itself, in this case (2). If this cell 

is also empty it was marked as the next position in the data-chain and given a value 

equal to the number of object cells that surround it. However, if it was an object cell the 

tracking pointer moved to its position. When the tracking pointer moved from one 

object cell location to another it needed to change which relative spiral location 

direction it checked first. 

 Given the previous pointer search direction was the relative spiral location P. The 

current pointer search direction was P+1 modulus 6. 

In the case that any of the empty cells had already been searched the relative search 

spiral location was increased by one. This process was repeated until all the surrounding 

cells had been marked, ordered and given a value relative to the number of object cells 

they were in contact with. An example of this method being used to find the data-chain 

for object shape ID 2 which has 3 cells is explained in figure 7.10. 

Whilst it may at first appear that a data-chain is a unique representation of an object 

shape section 7.5.3 provides an example that this is not true for all data-chains. Section 

7.5 as a whole, however, demonstrates that data-chains are a sufficient and unique 

representation for the object shapes used within the research and hence when such an 

object shape is constructed its data-chain can be compared to all the previous listed 

data-chains to determine if the object shape already exists. 
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Figure 7.10: Example of method to find the data-chain for object shape ID 2 with 3 cells. Blue arrows 

show check and move pointer to new position, red arrows show identification of unmarked empty cell 

and green arrows show previously identified empty cells. The spiral locations of the objects cells are 

marked in white text the order the empty cell is found in is marked in the empty cell and the number of 

object neighbours is marked inside the brackets. 

 

 

 

 
The pointer starts at spiral location coordinate (0) and checks 
the cell at spiral location (1) relative to the pointer. As this is 
an object cell the pointer moves to this cell. 
 
The pointer is now in spiral location (1), it checks the cell at its 
relative spiral location (1), it is empty. This empty cell is 
marked its order 1 is noted and the number of neighbouring 
object cells is noted in brackets, also 1. The pointer checks at 
relative spiral location (2), it is also empty. This is the second 
empty cell with 2 neighbouring object cells. At relative spiral 
location (3) is an object cell so the pointer moves to this 
position. 
 
The pointer is now at spiral location (2). The last relative spiral 
location checked was 3. (3+4)%6 = 1. Checking at spiral 
location (1) relative to pointer, the cell is empty but has 
already been marked. Empty cells checked in order 3, 4 and 5 
have number of neighbouring object cells 1, 1 and 2 
respectively. Spiral location (5) relative to the pointer is an 
object cell, the pointer moves to this cell. 
 
The last relative spiral location checked was 5. (5+4)%6 = 3. 
The first spiral location checked relative to the pointer, now at 
location (0) is 3. Order 6, 7 and 8 are found to have 
neighbouring objects cells 1, 1 and 2 respectively. Pointer 
moves to spiral location (1). 
 
Empty cell with order 9 found to have 1 neighbouring object 
cell. All surrounding cells checked. Data-chain has a length 9 
and is {1,1,2,1,1,2,1,1,2} found from  the values from cells with 
orders 1 to 9 {1,2,1,1,2,1,1,2,1} which are made into a cyclic 
sequence from which  the first in lexicographic order is 
determined. 
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7.4.1 Simple and Complex Object Shapes  

When finding an object shape‟s data-chain each of the surrounding cells can be  visited 

one or more times. Where every surrounding cell is visited only once the object shape is 

considered simple. Figure 7.11 shows two examples of simple object shapes with data-

chains {1,1,1,2,1,2,1,2,1,1,1,4} and {1,1,1,3,1,2,1,1,1,3,1,2}.  

 

Figure 7.11 Two simple object shapes with data-chains {1,1,1,2,1,2,1,2,1,1,1,4} and 

{1,1,1,3,1,2,1,1,1,3,1,2}. 

Where this is not true, and any number of these surrounding cells are visited more than 

once, this is considered a complex object shape. In the case of the complex object 

shapes, these cells that are used more than once to form the data-chain can be 

considered „shared-links‟. In the majority of cases these shared-links are used twice, but 

can be used up to three times in the same data-chain. These shared-links are the 

equivalent of a number of overlapping cells each with their own number of 

neighbouring cells which are added to each other to give the final value. An example of 

a complex object shape with a shared-link used twice is {1,1,2,1,2,1,2,1,2,1,1,2,5,2} 

where the bold numbers represent the shared-link. In comparison, an object shape with 

a shared-link used three times {1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,3,5,3,5,3,2} where the bold 

numbers represent the twice shared-link and the underlined numbers represent the 

thrice shared-link. Both of these object shapes are shown in figure 7.12. 
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Figure 7.12: Example of complex shapes with shared-links. Data-chains 

{1,1,2,1,2,1,2,1,2,1,1,2,5,2} and {1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,3,5,3,5,3,2} where the bold 

numbers represent the twice shared-link and the underlined numbers represent the thrice shared-link. 

Complex object shapes represent the real world situation where the shapes being 

explored by a swarm contain cavities, tunnels or entrances of the same order of size as 

individual agents within the swarm. In this situation there would be increased 

probability of agents getting in the way of each other or blocking parts of the shape, so 

that the swarm would be acting at the cusp of its capability. Should a greater level of 

detail be necessary in the object recognition task then then either a smaller design or 

increased observational ability would need to be considered for the agents. 

For this research cavities, tunnels and entrances were designed to be of sufficient size to 

be beyond the cusp of capability of the swarm. The actual issue that can occur at the 

cusp of capability are examined in sections 7.5.2 and 7.5.3 

7.5 From Data-Chains to Object Shapes 

It is necessary to show when it is possible to use the comparison of data-chains in order 

to identify previously found object-shapes. In other words when is a data-chain a 

unique representation of an object shape and the relationship between the two 

equivalent? A data-chain can be formed into a trace of the object shapes boundary, 

described by the number of object cells it is in contact with. Using this information 

within a data-chain it seems likely that the object shape giving rise to a data-shape could 

be reconstructed from that data-chain. 

7.5.1 Tracing a Data-Chain 

Having obtained a data-chain from an object shape a general method was devised for 

constructing an object shape from it. Firstly consider tracing the boundary of an object 

shape where the trace may be considered as a series of steps. Each step involves a move 
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from one vertex of a hexagon along one edge to an adjacent vertex, figure 7.13. There 

are six directions that the trace can follow, D0, D1, D2, D3, D4, and D5 shown in figure 

7.14. These can be considered pairs of opposing directions, D0 and D3, D1 and D4, D2 

and D5. The traces along these directions D0, D1, D2, D3, D4, and D5 can be represented 

by the displacement vectors (1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0) and (0,0,-1) 

respectively. Starting with a displacement of (0,0,0) the on-going displacement can be 

measured during the trace of the boundary. A finite sequence of directions will produce 

the boundary of an object shape if the final displacement is (0,0,0) and no two sub-

displacement totals are identical. The latter case indicating the trace has crossed over 

itself. 

 

Figure 7.13: One step of tracing a data-chain, moving along an edge from one vertex to an adjacent 

vertex. 

 

Figure 7.14: The six possible trace directions on a hexagonal lattice. 

For a data-chain arising from a simple object shape the links in a data-chain can be used 

in order to determine a sequence of directions from which the construction of an object 

shape can be attempted. This is achieved using a combination of two functions: 

 Fpositive: Trace in current direction Dc, then c = (c+1) modulus 6. 

 Fnegative: Trace in current direction Dc, then c = (c-1) modulus 6. 

as follows 

D0 
D5 

D1 

D2 D3 

D4 
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 For a link of 1 in the data-chain: Fpositive 

 For a link of 2 in the data-chain: Fnegative, Fpositive 

 For a link of 3 in the data-chain: Fnegative, Fnegative, Fpositive 

 For a link of 4 in the data-chain: Fnegative, Fnegative, Fnegative, Fpositive 

 For a link of 5 in the data-chain: Fnegative, Fnegative, Fnegative, Fnegative, Fpositive 

For example the simple object shape data-chain {1,1,1,2,1,2,1,1,1,3} is tested following 

these instructions in table 7.3. Each function is carried out in order determined by the 

data-chain and the values of displacements are calculated. At each stage the 

displacement is checked against previous displacements. As no displacement other than 

the starting displacement is repeated the data-chain has constructed an object shape.  

Value of link in  
proto-chain 

Function  Displacements Same as Previous 
Opposing Value 

Current 
Direction 

- - [0,0,0] FALSE D0 

1 Fpositive [1,0,0] FALSE D1 

1 Fpositive [1,1,0] FALSE D2 

1 Fpositive [1,1,1] FALSE D3 

2 Fnegative [0,1,1] FALSE D2 

 Fpositive [0,1,2] FALSE D3 

1 Fpositive [-1,1,2] FALSE D4 

2 Fnegative [-1,0,2] FALSE D3 

 Fpositive [-2,0,2] FALSE D4 

1 Fpositive [-2,-1,2] FALSE D5 

1 Fpositive [-2,-1,1] FALSE D0 

1 Fpositive [-1,-1,1] FALSE D1 

3 Fnegative [-1,0,1] FALSE D0 

 Fnegative [0,0,1] FALSE D6 

 Fpositive [0,0,0] TRUE D0 

Table 7.3: Tracing the data-chain {1,1,1,2,1,2,1,1,1,3} to determine that it is a data-chain 

representing an object shape. 

For simple object shapes the method of construction from the data-chain ensures that 

the object shape constructed has the same data-chain as that used during its 

construction. Hence for simple object shapes the object shape and its representation as 

a cyclic sequence are isomorphic. So it is legitimate to use the representation when 

checking to see if simple object shapes have already been identified during their 

systematic production. 
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7.5.2 Tracing Complex Object Shapes 

For complex object shapes a refinement of the data-chain is required since each 2, 3 or 

4 in the data-chain could be either a shared-link or not. Figure 7.15 shows the different 

positions of object cells arising from the same value in a data-chain.  

 

Figure 7.15:  All relative object cell placement options, not considering rotation, that produce 1, 2, 3, 4 

or 5 in a data-chain.  

This means that for each link in the data-chain there multiple traces to be considered 

for each of these circumstances. The number of possible traces is affected by the value 

of the link in the data-chain, as follows: 

 A link of 1 in the data-chain gives a single trace option. 

 A link of 2 in the data-chain could be 2 or 1, giving two trace options. 

 A link of 3 in the data-chain could be 3, 2 or 1, giving three trace options. 

 A link of 4 in the data-chain could be 4, 3, 2 or 1, giving four trace options. 

 A number 5 in the data-chain gives a single trace option. 

It is possible to determine the total number of options that need to be tested when 

attempting to construct an object shape from a data-chain using the following rules: 

 Each 2 in the data-chain, doubles the number of potential traces. 

 Each 3 in the data-chain, triples the number of potential traces. 

 Each 4 in the data-chain, quadruples the number of potential traces.  
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Each searched option produces a representative data-chain, or rep-chain, which refines 

the data-chain by splitting the shared-links into the appropriate values for the 

component traces. For example the data-chain {1,1,2,1,2,1,2,1,2,1,1,2,5,2} would give a 

total of sixty-four rep-chains each represented by a different route along the branches as 

shown in figure 7.16.  

For each of the rep-chains found an attempt to construct an object shape can be 

undertaken using the functions in section 7.5.1. Each attempt can be tested in the same 

way as before to check for crossing points and for closure. False rep-chains, if traced 

out, will cross at least a single point more than once or not return to the starting 

position. In the case of the data-chain {1,1,2,1,2,1,2,1,2,1,1,2,5,2} the rep-chain that 

finds the solution is {1,1,2,1,2,1,2,1,2,1,1,1,5,1}. Notice how it is the two shared-links 

that have changed value from the data-chain to the rep-chain. Unlike the data-chains 

from simple object shapes which are traced once, the necessary branching of data-

chains from complex object shapes may produce more than one rep-chain that 

construct object shapes. Since these rep-chains are different the systematic algorithm of 

section 7.4 will identify the associated object shapes as different though both will have 

the same data chain. 
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Figure 7.16: Search for rep-chains of the data-chain {1,1,2,1,2,1,2,1,2,1,1,2,5,2} which is shown to 

be a true object shape by the rep-chain {1,1,2,1,2,1,2,1,2,1,1,1,5,1}, highlighted red in the diagram. 
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7.5.3 Single Data-Chains with Multiple Object Shapes 

There are instances of data-chains describing more than one object shape. This is due to 

the way the data-chains are produced. The first example of a data-chain that produces 

two different object shapes, has eight object cells and the data-chain 

{1,1,2,1,2,1,2,2,1,2,1,2,1,1,3,5,3}, where the shared-link is highlighted bold. The two 

object shapes it represents are shown in figure 7.17. The reason the object shapes have 

the same data-chain is due to the narrow tunnel. In one object shape this tunnel goes 

one way and in the other it goes the other way. This subtle change is not noticeable with 

the current data-chain notation system.  

 

Figure 7.17: Two different object shapes with the same data-chain 

{1,1,2,1,2,1,2,2,1,2,1,2,1,1,3,5,3}. 

Where the rep-chains are found for these types of data-chain, they produce numerous 

viable results. In this example the rep-chains {1,1,2,1,2,1,2,2,1,2,1,2,1,1,1,5,2} and 

{1,1,2,1,2,1,2,2,1,2,1,2,1,1,2,5,1} are found providing a clear distinction between the two 

object shapes, where the shared-link is split into its component parts. Although these 

object shapes are symmetrical it is not necessary for this to be true for shared data-

chains to occur. This can be proven by adding another object cell at the furthest left 

extremity of both shapes which in both cases gives the data-chain {1,1,1,3,1,1,3,5,3, 

1,1,2,1,2,1,2,2,1,3}. 

The requirement for rep-chains occurs at the cusp of capability of the swarm due the 

order of size of the hBots being close to that of the size of the narrow tunnelling within 

some complex object shapes.  The reason for the rep-chains not being used as the 

standard representation for object shapes is that within the scope of this research a 

hBot counts the number of object cells it neighbours without considering their position. 

This is a limitation of the hBot and data-chain systems where neither can distinguish 

between object shapes that have a similar shape other than the direction of a narrow 
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tunnel. To add further observational requirements to a hBot would remove its 

simplicity without adding a huge amount of benefit. The capabilities of a swarm in 

completing the cooperative recognition task can at these initial stages be adequately 

determined by choosing simple object shapes within the experiments.  

7.6 Types of Object Shapes Found 

The object shape search method, details in Appendix C, was run up to and including 

object shapes with a cell allowance of eight. The number of possible object shapes 

found is described in table 7.4. As the number of object cells used increases the number 

of different object shapes for each cell allowance increases. The first complex object 

shape occurs when there are five object cells and is shown in figure 7.12, the first pair of 

object shapes with the same data-chain occurs when there are eight object cells, shown 

in figure 7.17. 

Number of 
Object Cells in 
Object Shape 

Number of Object 
Shapes 

Number of Complex 
Object Shapes 

Number of Data-
Chains with Multiple 
Object Shapes 

1 1 0 0 

2 1 0 0 

3 3 0 0 

4 10 0 0 

5 33 1 0 

6 146 11 0 

7 618 85 0 

8 2802 561 1 

Table 7.4: Increasing the cell allowance for the object shapes increases the amount of possible object 

shapes that can be made.  

7.6.1 Computational Complexity 

The limiting factor for the complexity of identifying object shapes is checking that the 

new object shape has not already been found. As this is done by comparing the data-

chain of the object shape to all the previously identified data-chains, for the number of 

object cells allowed this is an exponential time complexity, (O(en)). 

The number of locations the new current cell has to be tested in increases in relation to 

the ring size, figure 7.4, required for containing the object shape. This is true for testing 

if the latest spiralling search object cell is overlapping a current base-shape cell and 

testing if it is neighbouring one of the current base-shape cells. Due to the way the 

object shapes are found the ring number is at most one greater than the current number 
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of object cells. The ring numbers have a quadratic relationship with regards to the 

number of cells contained within them, section 7.2.1. Therefore these methods both 

have a quadratic time complexity, (O(n2)). 

The flooding algorithm, section 7.2.3, decreases in the time it takes to stabilise as the 

number of object cells in the object shape increases, as there are less cells to complete. 

In its current configuration the arena size is required to be at least one ring size larger 

than the maximum number of object cells to allow placement of the initial flooding cells. 

Therefore it also has a quadratic time complexity, (O(n2)). 

Martins and Simoni (2009) discuss an alternate method for determining the different 

possible combinations of hexagonal cells whilst considering metamorphic robots. Their 

system involves identifying the number of distinct orbits a shape has in order to 

determine the number of places a new cell can be added. Although the system they use 

may be more efficient in identifying different configurations of hexagonal cells, the 

method used here involves data-chains which not only describe the object shape but 

can be used to determine a difference value between two object shapes, as completed in 

Chapter 8. 

7.7 Summary 

By increasing the number of object cells in an object shape, an ever increasing number 

of object shapes can be found. A systematic method is described for finding these 

object shapes starting with a single cell object shape ID0, and using this as a bases for 

finding new object shapes, which in turn are used to find further object shapes with 

increasing numbers of object cells. To be considered a new object shape, the object 

shape must not be hollow nor already exist.  

To determine if the object shapes created have already been noted a data-chain is 

created for each object shape. The data-chain describes the boundary region of the 

object shape in a similar manner to chain-coding, however it is done in such a way that 

it considers how a hBot would view the object shape. It is also possible to determine if 

any given data-chain can reconstruct its object shape by tracing directions mapped from 

the links within a chain. For some object shapes there was a requirement to consider the 

variety of object cell placements for data-chain links with the values 2, 3, or 4. This 

produces rep-chains only some of which construct object-shapes checked by 

determining if their own traces return to the starting position without crossing any other 

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD

SBE3KINGD
Sticky Note
Unmarked set by SBE3KINGD



 

116 
 

vertex on that trace more than once. It was found that in some instances data-chains 

describe more than one object shape. This is a limitation of the method used to 

determine the data-chain of the object shape which itself is modelled on how the hBots 

view and interact with the object shape and therefore share this same limitation. 
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Chapter 8: Comparing Object Shapes 

The technique of comparing complete data-chains to distinguish between object shapes 

does not by itself provide a metric of how different two object shapes are from each 

other when compared to another pair of object shapes. To do so requires looking at 

sections of the data-chains, named sub-chains to determine numerical variations 

between two object shapes. The values of these variations are dependent on the length 

of sub-chain that is considered. A general method indicating how much information is 

needed about an object shape to distinguish it from the other is described first. Here 

sub-chain sequences of fixed length for two object shapes are compared term by term 

to see if they match and the results used to calculate a distinguishing value. A metric, the 

difference value, more specific to the cooperative recognition task is then produced 

based on the way that hBots interact with the object shapes. In this case the method 

converts the terms of a sub-chain into the states a hBot could achieve and the 

difference values are calculated from the state values. A comparison between the 

calculated difference values is made with experimental results which measured the 

number of time-steps it takes a swarm of hBots to complete the object recognition task 

with the same object shapes. 

8.1 General Method for Comparing the Object Shapes  

To determine a value of difficulty for distinguishing the differences in pairs of object 

shapes when only given a limited knowledge of that object shape a series of similarity 

tests were carried out on a number of object shapes. The limited knowledge about the 

object shape is represented by partial information about the entire data-chain. This 

partial information, or sub-chains, are taken from consecutive linear sequences of links 

from the data-chain.  The length of a data-chain is the number of cell bordering an 

object shape which is the same as the number of links in the representation of the data-

chain. In theory these sub-chains can vary in length from one to any size number, as a 

data-chain is a cyclic sequence, for example (2,1,1,2,1,1,2,1,1,2,1,1) is a sub-chain of 

length 12 from the data-chain {1,1,2,1,1,2,1,1,2} of length 9. Sub-chains with length 

greater than the length of the data-chain will start repeating from term data-chain length 

plus one. This repetition of information, to some extent, also reflects how hBots, due to 

their limited capability, interact with object shapes through their state changes. A 

specific sub-chain describes a feature of an object shape at a given size which can be 
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compared to features of another object shape to determine if they are identical or not. 

Examining sub-chains of different lengths gives an impression of how capable different 

size groups of neighbouring agents would be at discerning different object shapes. In 

this general case each term of a sub-chain is considered in the same order as the data-

chain. A number, the distinguishing value, can be calculated  between two object shapes 

at a given sub-chain length as follows.  

All sub-chains of the same fixed length for both object shapes are found and the non-

matching ones counted.. For example all the possible sub-chains of length three for the 

data-chains of objects shapes ID 2 and ID 1 are given in table 8.1 

ID 2: {1,1,2,1,1,2,1,1,2} ID 1: {1,1,1,2,1,1,1,2} 

(1,1,2) (1,1,1) 

(1,2,1) (1,1,2) 

(2,1,1) (1,2,1) 

(1,1,2) (2,1,1) 

(1,2,1) (1,1,1) 

(2,1,1) (1,1,2) 

(1,1,2) (1,2,1) 

(1,2,1) (2,1,1) 

(2,1,1)  

Table 8.1: The different sub-chains with three data-links possible for object shapes ID 2 and ID 1‟s 

data-chains. Sub-chains of three that do not occur in the other shape are highlighted red. 

The number of possible sub-chains of a given length is equal to length of the data-chain. 

The same patterns of sub-chains can occur more than once within a single object 

shape‟s data-chain. These repetitions represent all the different parts of the object 

shapes, which are similar to each other. In the above example all the sub-chains length 

three in ID 2 are also in ID 1. However, in the reverse case, object shape ID 1 has a 

sub-chain length three (1,1,1) that object shape ID 2 does not have. Therefore object 

shape ID 2 is not distinguishable from ID 1 but ID 1 is distinguishable from ID 2 with 

sub-chain length three. In general the distinguishing value when comparing object shape 

A to object shape B is different to that found when comparing B to A. The 

distinguishing value in comparing A to B is the number of  sub-chains of given length 

that are found in A but not in B divided by the length of the data-chain for A. 

Distinguishing values will always be from zero to one. A measure of how object shape P 

differs from object shapes Q is given by dividing the number of sub-chains of given 

length of P not found in Q by the min-length of P. 
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 In the above example the distinguishing value for ID 2 compared to ID 1 is 0 and for 

ID 1 compared to ID 2 is 0.25. These solutions were found as there are no sub-chains 

in ID 2 that are not in ID 1 and two cases of (1,1,1) in ID 1, which are different from 

any sub-chains in ID 2, and ID 1 has a data-chain length of 8, 2 divided by 8 is 0.25. 

This demonstrates that inspecting how different object shape ID 1 is to object shape ID 

2 is not the same to inspecting how different object shape ID 2 is to object shape ID 1. 

This is true of all the different combination pairs of object shapes. 

Distinguishing values can be found for all sub-chain lengths. Increasing the sub-chain 

length to four, as shown in table 8.2, a different set of distinguishing values are found. 

The sub-chains which are not in the comparison ID‟s set of sub-chain, at that particular 

length, are highlighted red. In this case the distinguishing value for ID 2 compared to 

ID 1 is 0.33‟ and for ID 1 compared to ID 2 is 0.5.  

ID 2: {1,1,2,1,1,2,1,1,2} ID 1: {1,1,1,2,1,1,1,2} 

(1,1,2,1) (1,1,1,2) 

(1,2,1,1) (1,1,2,1) 

(2,1,1,2) (1,2,1,1) 

(1,1,2,1) (2,1,1,1) 

(1,2,1,1) (1,1,1,2) 

(2,1,1,2) (1,1,2,1) 

(1,1,2,1) (1,2,1,1) 

(1,2,1,1) (2,1,1,1) 

(2,1,1,2)  

Table 8.2:The different sub-chains with four data-links possible for object shapes ID 2 and ID 1‟s 

data-chains. Sub-chains of length four that do not appear in the other shape are highlighted red. 

8.2 Results from General Method of Object Shape Comparison 

The distinguishing values for all pairs of all object shapes with four object cells or less, 

ID 0 to ID 15. was recorded for different length sub-chains of the data-chains, ranging 

from 1 to 10. For each sub-chain length the average distinguishing value was calculated 

by adding all the distinguishing values of each ordered pair of object shapes found for 

that sub-chain length, excluding those that compared against themselves, and dividing it 

by the total number of comparisons made. As the sub-chain size increased so did the 

average distinguishing  value between all the object shapes when compared to each 

other, as shown in figure 8.1. This outcome was expected as the comparison of longer 

sub-chains within the data-chains would lead to a lower likelihood of similar patterns 

arising, increasing the distinguishing values to their maximum value of one.. The graph 
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in figure 8.1 shows that for the first fifteen object shapes, ID 0 – ID 14, once a sub-

chain length of 8 is considered all the object shape pairs can be distinguished from each 

other considering any position in the data-chain, where the longest data-chain has 

length twelve. 

 

Figure 8.1: The average distinguishing value for all of the first 15 object shapes when comparing sub-

chain sizes between 1 and 10. 

To better understand the relationships between the differences and similarities of the 

object shapes heat-maps were drawn for each of the different sub-chain lengths 

comparing all the possible pairs of object shapes to each other. The heat-maps for ID 0 

– ID 47 with sub-chain lengths ranging from 1 – 10 are shown in order in figures 8.2 

and 8.3 where the object shape in each row is compared to the object shapes in each 

column such that every intersection describes the distinguishing value when the row 

object shape is compared to the column object shape. The diagonal where each object 

shape is compared to itself always has a distinguishing value of 0. The values are not 

symmetrical about this line as due to the non-commutative nature of distinguishing 

value calculation. This increase was expected as the comparison of larger segments of 

the data-chain would lead to lower likely hood of similar patterns arising. 
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Sub-Chain Length 1 

 

 
Sub-Chain Length 2 

 

 
Sub-Chain Length 3 

 

 
Sub-Chain Length 4 

 

 
Sub-Chain Length 5 

 

 
Sub-Chain Length 6 

 
0                                                                0.5                                                                1 

Figure 8.2: Heat-maps showing the distinguishing value of the row object shape from the column object 

shape for the first 48 objects shapes when compared to each other with a range of sub-chain lengths. 
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Sub-Chain Length 7 

 

 
Sub-Chain Length 8 

 

 
Sub-Chain Length 9 

 

 
Sub-Chain Length 10 

 
0                                                                0.5                                                                1 

Figure 8.3: Heat-maps showing the distinguishing value of the row object shape from the column object 

shape for the first 48 objects shapes when compared to each other with a range of sub-chain lengths.  

Further inspection of heat-maps, especially those depicting sub-chain lengths five to 

eight, showed interesting groupings of distinguishing values which appear to step down 

or across. These groupings were symmetrical in position but not in exact value. These 

relationships can be seen more clearly in figure 8.4, where the groups are highlighted 

from the top right of the heat-map in figure 8.3 which shows the clearest of these 

relations for a sub-chain length of seven. The reason these grouping occurred was 

because these groups share the same base shape. This result makes sense as the object 

shapes will have a lot in similar with each other as there is only a single cell difference 
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between them, which with larger shapes, with longer data-chains, make less of a 

difference to the sub-chains available. 

 

Figure 8.4: Close up of results from sub-chain length 7. The object shapes with the same base shape 

have similar distinguishing values when compared to the object shape with the same ID as the base 

shape. 

8.2.1 Special Instances of Object Shapes 

The heat-maps found give a representation of all the distinguishing values for each sub-

chain length. The effect of changing the sub-chain length on the average distinguishing 

values of each of the object shapes can be seen in figure 8.5. As the sub-chain length 

increased from 3 to 10 the spread of the values decreased. From the figure outlying 

results can be found, these indicate where an object shape has a significant average 

distinguishing value from the rest of the object shapes and therefore identifies 

interesting object shapes. 
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Figure 8.5: The average distinguishing value of an object shape from the other object shapes vs. the 

average distinguishing value of the other object shapes to that object shape for sub-chain lengths 1 to 10. 

The outlying results (those 0.2 or further away from the average results of the sub-chain) are highlighted 

with a ring. 

There are a number of object shapes that had distinct distinguishing values from the 

rest of the object shapes with the same sub-chain length. These outlying results are 

highlighted by dashed circles in figure 8.5. All of these results were at least a radial 

distance of 0.2 from that specific sub-chain length group average. These results are all 

further right than the average. This trend indicates that these object shapes have mostly 

features which are common in other object shapes and have few or no features of their 

own that distinguish them from other object shapes. The reverse of this trend would 

require an object shape that has few or no features which other object shapes have 

whilst having rare features. From the measurements made this reverse case does not 

appear to occur in the same scale of magnitude. The reason for this is that the object 
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shapes will generally have common features when considering relatively low sub-chain 

lengths and the limited number of values for the links in those sub-chains. 

The object shapes which are outlying results are:   

 Sub-chain lengths 1 and 2 both have object shapes ID 0 and ID 8 outside of 

this 0.2 radius. 

 Sub-chain length 3 has object shapes ID 0, ID 1, ID 2, ID 5, ID 8 and ID 42 

outside this radius. 

 Sub-chain length 4 has object shapes ID 0, ID 1 and ID 2 outside this radius. 

 Sub-chain length 5 has only object shape ID 0 outside this radius. 

All of these outlying object shapes are shown in figure 7.1 in section 7.1 with the 

exception of object shape ID 42 which is shown in figure 7.12 in section 7.4.1. The 

reason that these object shapes were outlying from the average is due to the distinct 

sequence and patterns of numbers that makes up their data-chains.  

 Object shape ID 0 was the only shape with only the number 1 in its data-chain. 

 Object shapes ID 1, ID 2 and ID 5 had short data-chains, which are repeated 

through the shape showing rotational symmetry. 

 Object shape ID 8 was the only shape with just the numbers 1 and 3 in its data-

chain.  

 Object shape ID 42 was the only shape with a number 5 in its data-chain. 

The number of outlying object shapes for different sub-chain lengths gives further 

indication to the variation of the distinguishing  values. The grouping of the 

distinguishing values were initially packed close together with sub-chain length 1, they 

then expanded through to sub-chain length 4 before becoming gradually compacted to 

a single point at sub-chain length 10. 
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8.3 Differentiating Object Shapes for hBots 

The method used to calculate the distinguishing value between two object shapes 

considered the terms of the sub-chains in consecutive order. However, this is not how 

the hBots sense their surroundings. The hBots do not consider the position of their 

neighbours, but only that it has up to two hBot neighbours each with their own state. 

Therefore to find a relevant metric, the difference value, consistent with the 

observations of the hBots in the cooperative object recognition tasks the previous 

method had to be refined.   

8.3.1 Calculating Difference Values for hBots 

In comparison with the calculation of distinguishing values for the general object shape 

comparison the hBot comparison makes two distinct changes. First of these changes 

was the need to consider only sub-chain lengths of 1, 3 and 5. These lengths represent 

the required number of hBots to change between the three state-levels, 1, 2 and 3 and 

provide enough information for the hBots to distinguish most object shapes. To clarify, 

a hBot at state-level 1 will be occupying the equivalent of one link in the data-chain, a 

hBot at state-level 2 will have two neighbours and therefore have knowledge of three 

links in the data-chain, and a hBot at state-level 3 will be neighbouring two hBots that 

are also neighbouring another two hBots and it will have knowledge about five links in 

the data-chain. Secondly rather than the terms in the sub-chains being compared 

directly  the sub-chain  is used to determine the highest state that a hBot could reach if 

it was interacting with the part of the object shape that is represented by that sub-chain.  

Given a data-chain of an existing object shape it is possible to determine which states at 

which state-levels are achievable for a group of hBots by examining the sub-chains and 

using tables 5.1 and 5.2.  

 At sub-chain length one the single number in the sub-chain is equal to that of the 

state of the hBot in contact with the object shape at that same location. 

o (A) maps to state A. 

 At sub-chain length three the terms are converted into possible relative hBot states 

using the shorthand notation of section 5.5.1. 

o (A,B,C) maps to [B][lowest of A and C][highest of A and C] which returns the 

new current state for the hBot at position B. 
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 At sub-chain length five two stages of conversion are required. First three, three 

length sub-chains must be found, producing three states from which the final state 

can be determined. 

o (A,B,C,D,E) is broken into three (A,B,C) , (B,C,D) and (C,D,E). 

 (A,B,C) maps to [B][lowest of A or C][highest of A or C] giving state P. 

 (B,C,D) maps to [C][lowest of B or D][highest of B or D] giving state Q. 

 (C,D,E) maps to [D][lowest of C or E][highest of C or E] giving state R. 

o Taking P,Q,R in order 

 The triple (P,Q,R) maps to [Q][lowest of P or R][highest of P or R] which 

gives the final state for the hBot at position C. 

For example in Table 8.3 the data-chain of object shape ID 5, {1,1,2,1,2,1,1,2,1,2}, is 

examined to find the hBots‟ achievable states at state-level 1, 2 and 3 when interacting 

with this object shape. These achievable states are compared to those of object shape 

ID 6, {1,1,1,2,2,1,1,2,1,1,3}, in Table 8.4 where the difference value is found by dividing 

the number of achievable states that are not present in the other object shape by the 

length of the data-chain. This represents the number of positions that a hBot could 

determine that it is next to one object shape and not the other.  

Data-Chain State-Level 1 State-Level 2 State-Level 3 

1 1 [1][1][2] = 5 [5][5][10] = 36 

1 1 [1][1][2] = 5 [5][5][10] = 36 

2 2 [2][1][1] = 10 [10][5][7] = 104 

1 1 [1][2][2] = 7 [7][10][10] = 70 

2 2 [2][1][1] = 10 [10][5][7] = 104 

1 1 [1][1][2] = 5 [5][5][10] = 36 

1 1 [1][1][2] = 5 [5][5][10] = 36 

2 2 [2][1][1] = 10 [10][5][7] = 104 

1 1 [1][2][2] = 7 [7][10][10] = 70 

2 2 [2][1][1] = 10 [10][5][7] = 104 

Table 8.3. Determining the achievable states for object shape ID 5 {1,1,2,1,2,1,1,2,1,2} at State-

Levels 1, 2 and 3. 
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State-Level 1: 

Achievable States 

State-Level 2: 

Achievable States 

State-Level 3: 

Achievable States 
Object  

Shape ID 0 

Object 

Shape ID 1 

Object 

Shape ID 0 

Object 

Shape ID 1 

Object 

Shape ID 0 

Object 

Shape ID 1 
1 1 5 6 36 52 

1 1 5 4 36 26 

2 1 10 5 104 32 

1 2 7 11 70 112 

2 2 10 11 104 112 

1 1 5 5 36 37 

1 1 5 5 36 36 

2 2 10 10 104 103 

1 1 7 5 70 40 

2 1 10 6 104 57 

 3  16  184 

Difference Values (relative to alternate object shape) 

0/10 1/11 2/10 4/11 6/10 10/11 

Table 8.4: Determining the difference values of object shape ID 5 and object shape ID 6. The 

achievable values which are not possible in the alternate object shape are highlighted red. The difference 

value realitve to the opposing object shape is calculated by dividing the number of these types of values by 

the length of the data-chain. 

8.3.2 The Difference Values 

When considering how hBots interact with object shapes difference values for only the 

first fifteen object shapes (ID 0 – ID 14) were compared to each other with the 

exception of object shape ID 11. The reason for not including object shape ID 11 is 

that this object shape is the only one of the object shapes that contains a number 4 in 

its data-chain. Including a single object shape with a number 4 in its data-chain would 

increase the number of state relationships required to be considered at each state-level 

and therefore increase the complexity of the problem by a factor that would outweigh 

the benefits of including a single extra object shape in the experiment. Given the 

current object shapes it was necessary to determine the possible state-relationships that 

could occur for the hBots, their state-levels and their relationships to each other.  
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As seen by hBots at state-level 1 

 

 
As seen by hBots at state-level 2 

  

 
As seen by hBots at state-level 3 

 
0                                                                0.5                                                                1 

Figure 8.6: Difference Values of row object shape to column object shape including object shapes ID 0 

– ID 14 (excluding ID 11). Repeated at three different length sub-chains (1,3,5) representing different 

hBot state-levels (1,2,3). Black represents no difference between the object shapes and white represents a 

complete different.  

The more information a hBot has about its surroundings, through cooperation, the 

easier it should be for it to distinguish one object shape type from another. This effect 

is shown in figure 8.6, the average difference values over the entire heat-map becomes 

higher as the relative state-level of the hBot increases. Even at state-level 3 there are 

some object shapes that could not be distinguished from each other. In the majority of 

these cases this observation was because the object shapes were mirror images of each 
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other (ID 6 and ID 7; ID 10 and ID 12; ID 9 and ID 13), this can be seen in figure 6.3 

where the black boxes which are symmetrical along the diagonal as well as by the 

identical results for both their rows and columns. It was also not possible to distinguish 

object shape ID 2 from object shapes ID 6 and ID 7 nor was it possible to distinguish 

object shape ID 4 from object shapes ID 10 and ID 12 by reaching state-level 3. 

However, the reverse for all cases was not true. At state-level 1, 2 and 3 it was easier to 

distinguish most of the other object shapes from object shapes ID 0 and ID 8. This 

ease of differentiation was because object shape ID 0 had only 1s in its data-chain 

making any shape that has any other number (all other object shapes) easy to distinguish 

from it. Object shape ID 8 had no 2s in its data chain and therefore was easy to be 

distinguished from. 

8.4 Comparison to hBot Experiments 

To test if the hypothesis from the difference values provided a true indication of how 

difficult a swarm of hBots would find it to complete a specific task scenario it was 

necessary to complete a series of simulations. In these experiments object shapes were 

not moved by the hBots, whether they were valid or invalid. Instead once a hBot 

reached a state where it had identified the valid object shape, the valid object shape it 

was in contact with is removed from the arena instantly, as if it had been dissolved or 

destroyed. The difficulty of the task would be expressed by the amount of time-steps it 

took to identify all of the valid object shapes whilst ignoring the others. To make this 

experimentation possible the actions a hBot took for each of its state needed to be 

determined for each pair of object shapes. There were three potential actions for a hBot 

to take when in each state, although only one of these actions were assigned to each 

state: 

1. Identify object shape: Object shape is instantly removed from arena when an 

hBot in this state is touching it. 

2. High probability of moving away from object shape: The hBot has 0.9 

chance of changing to state 0 and moving if possible when in this state. 

3. Low probability of moving away from object shape: The hBot has 0.1 

chance of changing to state 0 and moving if possible when in this state. 
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This number of actions was increased from two possible actions as seen in the initial 

experimentations (Chapter 6) where there was only one probability, per test, of moving 

away from an object shape that was being identified. The duel probability levels were 

added to the hBots in order to further avoid stagnation and for the agents to adapt to 

different states, where they are more or less likely to move to a higher state-level which 

could potentially distinguish the object shape. There was also no requirement for the 

hBots to move any of the object shapes. 

These three rules of behaviour were linked to each of the 264 possible states of the 

hBot determined by the two object shapes used in the scenario and according to which 

of the object shapes were valid and should be removed, as if dissolved, and which were 

invalid and should be ignored. To find the suitable behaviour for each of the states a list 

of all the possible states achievable by a swarm of hBots when interacting with each 

individual  object shape was constructed. Cross referencing two object shapes and the 

hBots‟ possible states, whilst considering which was object shape valid, governed the 

rules chosen for each specific state for a given scenario.  

The pseudo code in figure 8.7 explains how the actions for each state was determined 

when considering two object shapes; one of which valid, the other invalid. In the case 

that a state is not achievable for either of the object shapes in the scenario, its state-

behaviour is not important as it is never acted upon. 

At this point it was not clear whether moving with a low probability was the best action 

where both object shapes have a reachable state in common. It seemed logical in the 

general case to allow the hBots to arrive at a higher state-level, by having a higher 

likelihood of staying still, as this is more likely in general to give different distinguishing 

states. There could be exceptions where the shape to be found has a reachable state-

level 1 state (for example state 3) that does not appear in the other shapes data-chain for 

example ID 10 and ID 14 as shown in figure 8.8. In this case, whether or not it is best 

for the hBots to move with a high probability unless in behaviour 3 when they remove 

the shape is unclear. A list of all the states that a hBot could reach at any of the first 

fifteen object shapes, excluding object shape ID 11, is included in Appendix D. 
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for(int i = 0; i < noOfStates; i++){ 

    valid[i] = false;   // is state achievable for valid or 

    invalid[i] = false; // invalid object shape 

 

    if(state i is a possible state for valid object shape){ 

        valid[i] = true; 

    } 

    if(state i is a possible state for invalid object shape){ 

        invalid[i] = true; 

    } 

 

    if(valid[i] == invalid[i]){ 

        if(valid[i] == true){ 

            // state achievable for both object shapes 

            if(state level[i] == 3){ 

                // cannot reach a higher state-level 

                action[i] = High probability of movement 

            } 

            else{ 

                // can reach a higher state-level 

                action[i] = Low probability of movement 

            } 

        } 

        else{ 

            // state not achievable for either object shape 

            action[i] = High probability of movement 

        } 

    } 

    else{ 

        if(valid[i] == true){ 

            // state only achievable for valid object shape 

            action[i] = Remove object shape 

        } 

        else{ 

             // state only achievable for invalid object shape 

            action[i] = High probability of movement 

        } 

    } 

} 

Figure 8.7: Pseudo code for determining the action to take for a given state given the possible states 

achievable for an object shape that is valid and one that invalid.  

 

Figure 8.8: The object shape ID 10 with a 3 in its data-chain is valid whilst object shape ID 14 

without a 3 in its data-chain is invalid, 37 hBots are in their starting position at the centre of the arena.  
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8.4.1 The Difference Value and the Number of Time-Steps 

Each of the thirty combinations of object shapes with exactly four object cells were 

repeated fifty times with thirty-seven hBots and the average number of time-steps to 

complete the task of removing all six required object shapes was recorded. The object 

shapes were placed in two rings of six, each alternating between valid and invalid object 

shapes as in figure 8.8. There was no need to consider energy used as the number of 

agents remained constant, there was also no upper time limit for the experiments. The 

average of the fifty tests was found and plotted against the average difference value, 

found from the mean of the three difference values at the sub-chain lengths of 1, 3 and 

5. The results from this comparison are shown in figure 8.9, which show a clear 

correlation between the two sets of data. As expected a pair of object shapes with a 

higher average difference value required more time-steps before the task was completed. 

As the difference value increased beyond 0.5 the effect on the number of time-step to 

complete the task decreased. This relationship between the difference values was further 

examined, figure 8.10, where the difference value at each of the different sub-chain 

length 1, 3 and 5, which represent the hBots at state-levels 1, 2 and 3 respectively, was 

considered.  The area under the graphs correlates to the average difference value.  

 

Figure 8.9: Average difference values for each pair of object shapes (ID 5 – ID 14, excluding ID 11) 

compared with the average number of time-steps for them to complete the task of identifying six required 

object shapes. The standard deviation and maximum and minimum values are shown. 
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T-Steps: 3980 

 
Valid 5 : Invalid 6 
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Valid 14 : Invalid 6 
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Valid 14 : Invalid 8 

T-Steps: 3030 

 
Valid 14 : Invalid 9 

T-Steps: 6700 
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Figure 8.10: The difference value for each equivalent state-level of the hBots (1,2,3) with the average 

number of time-steps taken to complete the task, to the nearest 50. The area under the graph represents 

of the average difference value over the three state-levels. 
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8.5 Summary 

A method was devised for determining the difference between two object shapes by 

considering each sub-chain of a certain length in their respective data-chains. Each sub-

chain that one object shape had and the other did not indicated a feature that was 

present in that object shape and not the other. Increasing the length of the sub-chains, 

increased the distinguishing value between the object shapes. This increase is because 

more of the total object shapes boundaries are being considered and therefore there is 

more information to distinguish between them. Interestingly comparing object shape A 

to object shape B does not necessarily give the same distinguishing value as the reverse. 

This is due to the relationship of common and distinguishing features between the 

object shapes, where one may have a distinguishing feature but the other not. 

A number of distinct shapes were found which have the property that they are relatively 

difficult to be distinguished from other object shapes but easy for other object shapes 

to be distinguished from them. These object shapes individually tended to have many 

repeated features (ID 0, ID 1, ID 5, ID 8) or had distinct features, for example being 

the only shape to have a certain number in their data-chain (ID 42) or not have a certain 

number in their data-chain (ID 8). 

By adapting this system to consider the states a hBot could reach in sub-chains of 

lengths 1, 3 and 5, and comparing those achievable states to each other rather than the 

value of the links in the data-chain a metric was devised which gives the difference value 

between one object shape and another. This metric was shown to be accurate by 

running a series of experiments which compared the difference values found to the 

number of time-steps it took to complete that specific object recognition task with a 

swarm of thirty-seven hBots. 
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Chapter 9: Training Methodologies 

A range of eleven object shape recognition scenarios were selected from those used in 

section 8.4 to compare two methods for training a swarm of hBots to distinguish 

between the objects without them initially being aware of the differences in the object 

shapes. The two methods compared were a genetic algorithm and a random search. 

Both methods search and test a number of candidate solutions, which detail the 

behaviours the hBot exhibit at each state. The capabilities of fittest solutions are related 

to the general solutions derived in section 8.4. The two methods are detailed here with 

their assessment criteria.  

9.1 The Object Shape Recognition Scenarios 

Previously, the state-behaviours for the hBots had been determined through a separate 

analysis of the object shapes they were cooperating to distinguish between. By deriving 

a method of self-training for the hBots this separate analysis of the object shapes can be 

removed from the process. The hBots, however, required feedback on their 

performance in order to train for that scenario. This feedback, in the form of fitness 

values, was measured by the types of object shapes, valid and invalid, they removed and 

when they removed them. The scenarios were selected to analyse how the methods deal 

with tasks with a range of different difficulties.   

9.1.1 Scenario Selection 

The scenarios chosen were limited by the time available to complete the research whilst 

maintaining a reasonable degree of complexity. It was found that a maximum of 7000 

time-steps would be acceptable per candidate run to give the required number of test 

repeats, detailed in section 9.2.7. The actual number of time-steps required for different 

scenarios to complete, with pre-determined state-behaviours, can be found in section 

8.4.1. All of the scenarios that have a maximum time-steps to complete the task of less 

than 8500 and an average below 4000 but above 1300 where chosen. This choice limits 

the initial study to the eleven scenarios which fall in the middle of the difficulty 

spectrum. There are nine scenarios which in terms of time-steps taken to complete can 

be considered to be easier and ten which can be considered more difficult. A summary 

of the chosen eleven scenarios and the maximum and average run-times are shown in 

table 9.1. These scenarios show a range of difficulty, where the average number of time-

steps taken for the slowest scenario to complete took more than double the fastest. 
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ID of object shape to 
be... 

The maximum number of 
time-steps to complete 
task. 

The average number of 
time-steps to complete 
task. Removed Ignored 

5 6 7877 3980 

5 9 9982 3645 

5 14 6678 2392 

6 5 3712 1400 

6 14 5744 1699 

8 10 6334 3331 

10 5 2724 1355 

10 9 9015 3728 

10 14 3545 1501 

14 5 5969 1993 

14 9 8623 2686 

Table 9.1: The maximum and average number of time-steps to complete for the eleven chosen scenarios 

for the GA. 

9.1.2 The Cooperative Object Recognition Task used in Training 

The arena was set identically to the experiments in section 8.4, with, six valid object 

shapes and six invalid object shapes. The valid object shapes required removing and the 

invalid should be ignored. The number of hBots remained constant throughout and was 

set as thirty-seven. As before, any object shape neighbouring a hBot that performs a 

remove object shape behaviour is removed instantly as if destroyed. However, unlike 

previously, during training it was possible for the hBots‟ state-behaviours to be 

incorrectly determined and for them to remove some invalid object shapes, mistakes 

being quantified to provide feedback. 

9.1.3 The Training Methods 

Each candidate solution, of both methods, would be tested fifteen times in order for 

averages of the number of the valid and invalid object shapes removed to be calculated 

as well as the number of time-steps required to remove those object shapes. These 

averages would be used to determine the fitness values of each candidate solution, 

detailed in section 8.4. For each scenario both methods were attempted three times to 

reduce the chance of anomalous results. Ideally this would be much higher, however 

time limitations permitted only this amount. 

The successfulness of the methods would be determined by the fitness values achieved 

by the best performing candidates and the number of suitable candidate solutions found. 

This will indicate how easy suitable solutions were to find and the capability of those 

solutions.  
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9.1.4 Calculation of Fitness for Candidate Solutions 

An evaluation function gives each candidate solution its fitness value, which represents 

how well it has performed at the scenario. These fitness values can then be used to 

compare the relative capabilities of the candidate solutions to one other and in the GA 

method this evaluation function helps determine parent selection and survivor selection 

over generations of a population.  

The purpose of the agents in the cooperative object identification tasks was to 

distinguish one of the object shapes from the other and remove it from the arena. The 

object shape type that is to be identified and removed by the agents and the one that is 

to be ignored by the agents are not known to the agents. These shapes are known by 

the overarching control system which measures the candidate solutions performance. 

The fitness value for each candidate solution is determined in the following way. 

For each of the fifteen tests on a candidate solution, the number of valid and invalid 

object shapes removed and the number of time-steps taken to remove the first and last 

are each recorded. 

                                          

                                            

            

In the situation that no object shapes are removed from the valid set of object shapes, 

the time for the first removed is set to the maximum number of time-steps for the 

experiment and the time for the last removed was set to zero.   

         {
                                                                              
                                                                        

 

        {
                                                                                  
                                                                         

 

         {
                                                                                   
                                                                            

 

        {
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As the behaviours of the hBots were not deterministic each candidate solution swarm 

required multiple runs in order to give a clear indication of their capabilities. The results 

from these runs were averaged. In the case of the number of object shapes removed, of 

each type, a median number was found, noted by a ~ above the variable. This method 

followed the advice given by Bahçeci and Şahin (2005) regarding the avoidance of 

optimistic functions which combine the performance values obtained from different 

runs. For the number of steps taken for each of the four variables the mean value was 

calculated, noted by the ― above the variable.  

The overall fitness, normalised between 0 and 1, for a candidate solution was found 

with the following formula: 

         
       ( ̃   ̃)    

        

   
 

Where: 

  {
     ̃         ̃   

      ̃         ̃   
                           

 

   (  ̅        ̅   )  ( ̅        ̅    ) 

Note:  ̃is the median of V and  ̅is the mean of V. 

The values chosen for the fitness values are such that: 

 Removing only the correct object shapes is more important than the difference 

in the number of each type of object shape removed. 

 The number of each type of object shape removed is more important than the 

number of time-steps it took to remove them. 

 The number of time-steps taken to remove the object shape is the least 

important factor. 

This will allow the GA to rank the candidate solutions by their capability of completing 

the task. 
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9.2 Genetic Algorithm Determined State-Behaviours  

The first method used to determine the state-behaviours of the hBots was a genetic 

algorithm or GA. There are a number of key components to creating a GA that can be 

utilised to solve any given problem. These components needed to be considered 

carefully in order for there to be a suitable correspondence between the way the GA 

searches the problem space for the optimal solution. In a GA the phenotype describes 

how the solution reacts in the simulated world, whilst the genotype encodes the 

phenotype so that the operations within the GA can be performed on it. The 

components of a GA include; population, representation, recombination, mutation, 

evaluation function,  parent selection mechanism, survivor selection mechanism, 

initialisation and termination condition.  

9.2.1 Representation of Candidate Solutions 

Each candidate solution in the GA represents a swarm of homogeneous hBots, which 

all have identical state-behaviours determined by the genome. Other aspects of the 

hBots control were not affected by the GA, including, how they moved and how they 

switched between the different states dependant on their neighbouring hBots‟ states. 

The problem being solved by the GA is, which of the three possible behaviours should 

the hBot perform when in a given state. The bits of the genome represent the behaviour 

performed at each of the available states. Although there are a maximum of 264 states, 

only 41 states need to be considered in the genotype as the other states are not possible 

to achieve with the object shapes in the scenarios used, the reasons for this choice are 

discussed further in section 9.2.3. As the hBots were not initially aware of any of the 

differences between the valid and invalid object shapes all three behaviours need 

determining by the training method. The three possible behaviours the hBot can 

perform were: 

1. Remove the object shape 

2. A 0.9 chance of moving away from object shape. 

3. A 0.1 chance of moving away from object shape. 

In summary, the GA genome has  an integer representation with a restricted set of 

{1,2,3} where each candidate solution represents the state-behaviour relationships for 

each agent of an entire swarm of hBots. 
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9.2.2 Recombination 

Recombination is a variation operator which merges the genetic information of two 

parent genomes in order to produce offspring. The offspring shares some of the 

features of both the parents in the hope that it will be better suited to its environment, 

although this is not always the case. 

In N-point crossover there is a distinct point in which the information is no longer 

taken from one parent‟s genome but is taken from the other to form the offspring‟s 

genome. The crossover point is selected at random, but will not happen before the first 

bit or after the last bit. The N in N-point crossover represents the number of times that 

this switch occurs. In the case that N is 2, two random points are selected along the 

length of the genomes at which point the information is taken from the other parent. 

An example of two-point crossover is given in figure 9.1.  

1 2 2 1 3 2 1 2 2 2  1 2 2 2 2 1 1 2 2 2 

→ 

3 3 1 2 2 1 1 3 1 2  3 3 1 1 3 2 1 3 1 2 

 

Figure 9.1: An example of Two-point crossover for an integer representation genetic algorithm. 

The GA for this task used a two-point crossover as appose to any other crossover 

methods available such as uniform crossover. This method was chosen as it more 

closely represents the relationships of the state-rules which also split into three sections 

due to state-level 1 having three states. This would increase the likelihood that related 

state-rules would be kept together. However, to make this relationship apparent it was 

necessary to reorder the states to represent the relationships they had to each other. 

There were a total of 264 states (excluding state 0, which was searching for an object). A 

hBot in state 1 could only potentially move to states 4 to 9 and states 22 to 102, the 

relationships of the states and state-levels are shown in figure 9.2. Further those hBots 

currently in state 6 could only potentially move to states 49 to 54. The order the states 

were represented in the genotype were determined by doing a depth first search of the 

state-rule relationships. By doing this the related states were placed together in the 

genotype . The order would be as follows where triple dots represent missing numbers: 

 1, 4, 22, 23, 24, 25, 26, 27, 5, 28, 29 … 47, 48, 6, 49, 50, 51, 52, 53, 54, 7, 55, 

56 … 74, 75 and so on.   
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Figure 9.2: The state-rules relationship. A hBot in any state can only move to a higher state it is 

connected to in the direction of the arrow.  
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9.2.3 Mutation Operator 

Mutation is the second variation operator, it changes individual bits of a candidate 

solution‟s genome with a given probability.  

As an integer representation was chosen the mutation operator chosen was a variation 

of the random resetting operator, where any bit selected for mutation will not return to 

its current state. In this GA there are three possible values for each bit [1,2,3] in the 

genome which each represent a different action. Therefore if a bit was at value 2 and 

was selected to be mutated it will change to either 1 or 3 with equal probability. This 

choice was made to increase the variance, as the standard mutation rate is decreased by 

the unachievable states for a given scenario.  

The probability that any bit will change is known as the mutation rate. The mutation 

rate is commonly set as 1/L where L is the length of the genome. There was a potential 

issue with this value of mutation in the case of the state-behaviour rule GA in that not 

all the states and therefore parts of the genome would be used for each scenario. If the 

states are not used as they cannot be reached by a hBot trying to identify either of the 

object shapes, in that scenario, any mutation that then happens at the relevant bit of the 

genome becomes the equivalent of doing nothing. Therefore the mutation rate would 

be artificially decreased by a small amount in general, and would technically vary from 

scenario to scenario dependant on the object shapes in the scenario. However, this 

method was still determined to be the best method of choosing the mutation rate. The 

effect of this problem was reduced for the purposes of the experiment by only using 

states in the genome that could be reached by the object shapes ID 0 to ID 14, 

excluding object shape ID 11 as it is not used. This decision reduced the total number 

of states from 264 to 41. In future research it would be appropriate to determine what 

cause this change in mutation rate might do to affect the evolutionary process. The 41 

states in the order they were represented in the genome were: 

 1, 4, 22, 25, 26, 27, 5, 31, 32, 33, 36, 37, 40, 6, 52, 53, 57, 7, 70, 71, 8, 79, 2, 10, 

103, 104, 105, 11, 112, 113, 117, 12, 133, 13, 151, 3, 16, 184, 185, 17, 193 
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9.2.4 Population Model 

The population for any specific generation acts as a record of the current, existing 

genomes on which an evaluation function takes place. Populations are generally defined 

by their size and members, where individuals in the population are static the population 

itself varies. For the object recognition task the population is formed from a range of 

candidate solutions.  Some populations also contain spatial structures where the 

position of the members of the population play a role in determining their fitness, 

Cantú-Paz (1998) discusses this in more detail.  

The population model describes the way in which the current population of parents and 

offspring is reduced to the required population size after the recombination process. It 

was determined that the generation model would be used for the state-behaviour rule 

selection GA. This choice increased the simplicity of the survivor selection model as all 

parents are replaced by an equal number of offspring in each generation.  

9.2.5 Parent Selection 

Parent selection is the method by which the parents of the next generation of candidate 

solutions are selected by comparing their fitness values.  

The method chosen for this GA was tournament selection, with size 4. The size of a 

tournament selection indicates the number of candidates that are taken from the 

population and ranked against each other. The highest ranked candidate is added to the 

parent pool and the remainder are returned to the potential pool so they may get picked 

again. This process is repeated until there are enough parents in the parent pool for 

producing offspring. In the state-behaviour GA the parent pool was equal to half the 

population. 

Tournament selection was chosen over fitness proportional selection as it allowed 

candidate fitness‟ to be compared without the magnitude of the difference in their 

values effecting the outcome. This choice was important due to the way fitness is 

measured in the system, section 9.1.4.   

9.2.7 Initialisation and Termination Condition 

The final aspects of the GA that needed determining were both the initialisation and the 

termination condition. Random seeding was selected for the state-behaviour GA as the 

most common initialisation condition and it represents the lack of initial information 

the hBots have about the scenario. 
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The termination condition can be set in a number of different ways. The evolutionary 

algorithm can continue until the following cases as provided by Eiben and Smith (2007, 

p. 24): 

 The maximally allowed CPU time elapses 

 The total number of fitness calculations reaches a given limit. 

 The fitness improvement remains under a threshold value for a given period of 

time (i.e. a number of generations or fitness evaluations). 

 The population diversity drops under a given threshold.  

The upper boundary for the number of time-steps in a test was determined by 

considering the total amount of run time available for the experiment and how long it 

took for the scenarios to be completed in the previous experiment, section 8.4.1. The 

largest limiting factor was the time it would take to complete a single complete run of 

the GA for a number of different scenarios which would each require repeating 

themselves. 

To calculate the time it would take to run the GA a number of factors were considered; 

how long the program took to run a single time-step, the maximum number of time-

steps in a run, the number of runs each candidate solution of the population gets before 

averaging, the population size, the maximum number of generations. The number of 

different scenarios tested and the number of repeats for each scenario were not crucial 

to the calculation of time, but limited by the number of tests that could be run in 

parallel.  

Each of these factors had to be balanced in unison in order to give the GA enough 

freedom to explore the possible solutions whilst not running for an unsuitable amount 

of time. It was determined that the parameters suitable for running a GA scenario were 

as in table 9.2. 

Population Size 30 

Tests per member of population 15 

Maximum number of time-steps per test 7000 

Maximum number of generations 30 

  

Total number of time-steps 94500000 

Table 9.2: The parameters for the genetic algorithm test. 
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9.3 Randomly Determined State-Behaviours 

In general a GA is a time consuming way of solving problems, in some cases the time it 

can take outweigh the benefits of utilisation. If there are other less computationally 

heavy ways of finding the same solution or similarly capable solutions to the problem 

they should be used as a matter of efficiency. One of the simplest ways to potentially 

derive a suitable solution is to randomly generate them. This method is equivalent of 

having a large initial population of candidate solutions in a GA but only having a single 

generation, so there is no iterative improvement through the recombination and 

mutation of members of the population. 

In this series of tests, each of the eleven scenarios was also tested with 900 randomly 

generated candidate solutions, this is equivalent to the GA which had 30 generations 

from a population of 30 candidate solutions. Each of the candidate solutions had fifteen 

repeated runs with the object shapes reset, as with the GA, to allow for the variance in 

results and their fitness calculated using the same formula, section 9.1.4, so the two 

methods could be compared. Each of the eleven scenarios were repeated three times 

with a new set of candidate solutions.  

9.4 Comparison of Methods 

To discover whether both the GA solutions and the randomly derived solutions were in 

fact suitable they needed to be compared to the general solution that was derived by a 

series of generic rules for the experiment in section 8.4. These were run again with the 

same experimental set up as the GA and the randomly derived experiments in order to 

give a comparable fitness value. 

As an analyses of the object shape pairs for the different scenarios had been found,  

section 8.3.2, predictions on the difficulty for the GA or the random procedure could 

be made. Table 9.3 describes the predicted difficulty of the tasks as determined by:  

 The difference values of the data-chains of the object shapes at sub-chain 

lengths 1, 3 and 5. 

 The differences in the number of identifying states for the valid object shape 

and the level of those states.  
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For example, where the valid shape has a low difference value to the invalid shape it will 

be more difficult to identify and remove the valid object shape. This number is related 

to but not the same as the number of identifying states. In the case of the number of 

identifying states, the number represents how many different potential states could be 

used to distinguish the valid object shapes from the invalid object shapes out of the 41 

states. A lower number is more difficult as there are less potential solutions. The higher 

the level required also increased the difficulty as to reach those higher level states 

requires the correct number of hBots to interact with each other. state-level 1 requires a 

single hBot, state level 2 requires three neighbouring hBots and state-level 3 requires 

five neighbouring hBots.  

Object 
Shape 

Difference Value of sub-
chain lengths 

Number of 
Identifying States per 
all states at each 
State-Level 

Difference in 
identifying states 
between valid and 
invalid object shape 

Find Ignore 1 2 3 MEAN  Lvl 1 Lvl 2 Lvl 3 Total  Lvl 1 Lvl 2 Lvl 3 Total  

5 6 0.00 0.20 0.60 0.26 0.00 0.02 0.05 0.07 -0.02 -0.07 -0.17 -0.27 

5 9 0.00 0.20 1.00 0.40 0.00 0.02 0.07 0.10 -0.02 -0.07 -0.07 -0.17 

5 14 0.00 0.60 1.00 0.53 0.00 0.05 0.07 0.12 0.00 -0.02 -0.02 -0.05 

6 5 0.09 0.55 0.90 0.52 0.02 0.10 0.22 0.34 0.02 0.07 0.17 0.27 

6 14 0.09 0.36 0.90 0.45 0.02 0.07 0.22 0.32 0.02 0.05 0.15 0.22 

8 10 0.00 0.25 1.00 0.42 0.00 0.02 0.07 0.10 -0.02 -0.12 -0.22 -0.37 

10 5 0.08 0.58 0.90 0.53 0.02 0.12 0.27 0.41 0.02 0.12 0.22 0.37 

10 14 0.08 0.42 0.83 0.44 0.02 0.12 0.24 0.39 0.00 0.07 0.12 0.27 

10 9 0.00 0.42 0.83 0.41 0.00 0.10 0.24 0.34 0.02 0.07 0.15 0.24 

14 5 0.00 0.67 1.00 0.56 0.00 0.07 0.10 0.17 0.00 0.02 0.03 0.05 

14 9 0.00 0.50 1.00 0.50 0.00 0.05 0.10 0.15 -0.02 -0.05 -0.05 -0.12 

Table 9.3: The difference values for three sub-chain lengths‟ and the number of identifying states at each 

state-level for the object to be found. Higher values suggest an easier scenario to find a solution to. 

9.5 Summary 

From the experiment in section 8.4 the difficulty of completing cooperative object 

recognition scenarios was assessed by the number of time-steps taken to complete them. 

Eleven of these scenarios were chosen which showed a range of difficulty based on that 

assessment. Two methods were devised for determining the behaviours of the hBots at 

each state so they may learn to distinguish between two object shapes without initially 

knowing their differences. This was done by giving the hBots feedback on how well 

they had completed the task. The first method is that of a GA. Each candidate solution 
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is a swarm of homogeneous hBots. The genome is an integer representation with a 

restricted set, using 2-point crossover recombination and a variation of random 

resetting for the mutation operator. A tournament selection with size 4 is used, with a 

generation model. There are thirty candidate solutions run for thirty generations. The 

second method is that of randomly determined state-behaviours. This is equivalent to a 

GA with random seeding, a single generation and 900 candidate solutions. Both these 

methods will be compared by utilising a set of fitness values determined by the generic 

rule system for each of the scenarios to determine their capability to determine suitable 

state-behaviours. 
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Chapter 10: Analyses of Training Methods 

The results for both the GA and random training methods are analysed and compared 

to determine their suitability. This analyses takes into account the difficulty of finding 

the suitable solutions to all eleven selected scenarios as well as the overall capability of 

the solutions found. The best performing candidate solutions for each method were re-

tested to determine how they perform over an extended duration. Specific consideration 

is given to the results showing how the hBots interact with the invalid object shape. 

10.1 Results of the Genetic Algorithm 

The GA, detailed in Chapter 9 and written in full in Appendix E, was run three times 

for each of the eleven scenarios. The following notation is used for each scenario:   

 F5I6A: Find and remove valid object shape ID5 whilst ignoring invalid object 

shape ID6 experiment run A. 

The fitness results of all the experiments are presented in figures 10.1, 10.2 and 10.3, 

where the blue box shows the first and third quartile and the red line the median, the 

whiskers indicate the maximum and minimum fitness values for that generation. Each 

generation has thirty candidate solutions. A suitable solution to the scenario is declared 

as one where, over the average of the fifteen repeated candidate runs, that candidate 

solution removed all of the six valid object shapes whilst not removing the invalid 

object shapes within the allotted 7000 time-steps. This requires the candidate solution 

to have a fitness value of above 0.9792.  
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Figure 10.1: Boxplot of fitness values for subsequent generation population for scenarios F5I6, F5I9, 

F5I14 and F6I5, with whiskers showing the minimum and maximum fitness values. 
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Figure 10.2: Boxplot of fitness values for subsequent generation population for scenarios F6I14, 

F8I10, F10I5 and F10I9, with whiskers showing the minimum and maximum fitness values. 
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Figure 10.3: Boxplot of fitness values for subsequent generation population for scenarios F10I14, 

F14I5, and F14I9, with whiskers showing the minimum and maximum fitness values. 

For all but one of the scenarios a suitable solution was found for each of the three 

repeated runs of the GA. The exception to this is F10I9B, the box plot of which is 

shown in figure 10.2, where there is no visible improvement in the population.    

From closer inspections of this scenario‟s population it was found that for F10I9B each 

of the candidate solutions removed all of both types of object shape on average, with 

the exception of one solution that removed less of the valid object shapes for the first 

generation. However, there was marginal improvement in the maximum values which 

indicates that although all the object shapes were removed, the valid ones were being 

removed earlier in subsequent generations and the invalid ones later. Despite the single 

GA run where a suitable solution was not found the other two runs for F10I9 indicate a 
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scenario which is neither simple or difficult relative to the other scenarios, based on the 

shape of the boxplots alone. This suggests that the random seeding of the first 

generation or the amount of randomness due to the recombination, mutation and the 

tournament selection methods can affect the outcome of the GA. 

The difficulty of the scenarios can be approximated by the shape of the boxplots over 

the three repeated runs. If the populations‟ fitness increased rapidly early it would 

suggest an easier problem to solve. For example F6I14 and F10I5, shown in figure 10.2. 

Both scenarios have similar results across the three repeated runs, where a suitable 

candidate solution is found within the first five generations. 

Examples of scenarios which suitable solutions where more difficult to find are F5I6 

and F8I10, as shown in figures 10.1and 10.2 respectively. In both of these scenarios the 

improvement in the population between generations is more gradual when compared to 

the scenarios which appear simpler. A suitable candidate solution that removes all six 

valid object shapes is not found until approximately generation fifteen in scenarios F5I6 

and F8I10. 

10.1.1 Comparison to Predicted Difficulty Metric of Scenarios 

In section 9.4, a range of predicted difficulties were determined for the eleven scenarios. 

These difference values, number of identifying states and the number of time-steps to 

compete when given the generic solution all relate to the difficulty of the scenario. 

From examining the results of the GA it was identified that F6I14 and F10I5 are 

examples of simpler scenarios and, F5I6 and F8I10 are examples of more difficult 

scenarios. The predicted relative difficulties are shown for F6I14 and F10I5 are shown 

in table 10.1 and the values for F5I6 and F8I10 are shown in table 10.2.  

Object 
Shape 

Difference Value of sub-
chains lengths 

Fraction of Identifying 
States at each State-
Level 

Difference in fraction 
of valid and invalid 
identifying states 

Find Ignore 1 2 3 MEAN  Lvl 1 Lvl 2 Lvl 3 Total  
Lvl 
1 

Lvl 2 Lvl 3 Total  

6 14 0.09 0.36 0.90 0.45 0.02 0.07 0.22 0.32 0.02 0.05 0.15 0.22 

10 5 0.08 0.58 0.90 0.53 0.02 0.12 0.27 0.41 0.02 0.12 0.22 0.37 

Table 10.1: Two scenarios that are predicted to be relatively simple to solve due to the high number of 

identifying states and the higher number of difference of sub-chain lengths for the find and ignore data 

chains. 
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Object 
Shape 

Difference Value of sub-
chains lengths 

Fraction of 
Identifying States at 
each State-Level 

Difference in fraction 
of valid and invalid 
identifying states  

Find Ignore 1 2 3 MEAN  Lvl 1 Lvl 2 Lvl 3 Total  Lvl 1 Lvl 2 Lvl 3 Total  

5 6 0.00 0.20 0.60 0.26 0.00 0.02 0.05 0.07 -0.02 -0.07 -0.17 -0.27 

8 10 0.00 0.25 1.00 0.42 0.00 0.02 0.07 0.10 -0.02 -0.12 -0.22 -0.37 

Table 10.2: Two scenarios that are predicted to be relatively difficult to solve due to the high number of 

identifying states and the higher number of difference of sub-chain lengths for the find and ignore data 

chains. 

The predicted difficulties, where lower numbers are considered indicators of a more 

difficult scenario, correlate to the results from the GA runs. There is one exception 

where the value is contrary to the rest at sub-chain length 3, F8I10, has a difference 

value of 1.0. This shows that once a hBot reaches state-level 3 it will definitely be able 

to determine if it is next to object shape ID8 or not. However, this is the most difficult 

state-level to reach as it requires five hBots interacting with each other, making it less 

likely to be a factor compared to state-level 1 and state-level 2. 

These factors for predicting the difficulty of finding a suitable solution were examined 

in more detail across the eleven scenarios. This examination was to determine the 

strength of correlation between the predicted difficulty values and the difficulty 

perceived for the GA to find the solutions. The difficulty that the GA had in 

determining a suitable solution was measured by the average number of successful 

candidate solutions of the three runs of the GA. This gives an indication of how quickly 

the solutions were found and the consistency of those solutions. 

This perceived difficulty from the results was compared to the varied predicted 

difficulties of the scenario, where the predicted difficulty was measured in four ways:  

 The average difference values of the sub-chain lengths, 1, 2 and 3, figure 10.4. 

 The total number of identifying states which distinguish the valid object from 

the object to be ignored divided by the total number of states, figure 10.5. 

 The average number of time-steps it took to complete the same scenario when 

there was no restriction on the amount of time-steps, figure 10.6. 

 The difference in the total number of identifying states for the valid and the 

invalid object shape, divided by the total number of states, figure 10.7. 
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Figure 10.4: The predicted difficulty due to the average difference in the sub-chain length against the 

measured difficulty of the genetic algorithm to solve the relevant scenario. 

Considering the average calculated difference values of a pair of object shapes for all 

three different length sub-chains a coefficient of correlation equal to 0.70 (p<0.02) was 

found, figure 10.4. This correlation suggests that a lower difference value for the sub-

chains of the data-chain present a scenario which is more difficult to find a suitable 

solution for. The correlation was more significant for sub-chain length 1, 0.79 (p<0.01), 

and decreases for sub-chain length 3 and 5, where the correlation coefficient is 0.71 

(p<0.02) and 0.20 respectively. These results show that sub-chain lengths 1 and 3 have 

the greatest influence on the difficulty of the task. There are only four of the eleven 

scenarios where the object shapes can be differentiated with a single hBot, which is 

relative to sub-chain length 1. In these four cases the data-chain of the valid object 

shapes, ID6 and ID10, have a single 3 in their data-chain, where invalid object shapes 

do not. All eleven scenarios can be solved with three hBots in the correct place, 

represented by the difference value at sub-chain length 3. As there is no need to have 

five hBots cooperating to solve the scenarios there is no significant correlation between 

the perceived difficulty and the difference value at sub-chain length 5.  
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Figure 10.5: The expected difficulty due to the total number of distinguishing states at each state-level 

against the measured difficulty of the genetic algorithm to solve the relevant scenario. 

The number of identifying states for the valid object shape to be found at the different 

state-levels gave a more significant correlation with the perceived difficulty of finding 

the solutions to the scenarios. Considering all state-levels at once gave a correlation 

coefficient equal to 0.69 (p<.02), shown in figure 10.5. As the number of identifying 

states decreases the number of generations required to solve the scenario increases. At 

state-levels 1, 2 and 3 the correlations are 0.79 (p<.01), 0.75 (p<.01) and 0.63 (p<.05) 

respectively. These results relate to those of the sub-chain length difference values, 

where the state-levels represent how many hBots are required for that level to be 

achieved. state-levels 1 and 2 are more significant than state-level 3, this is due to the 

decreased probability of reaching state-level 3 as the object shape may already have been 

removed or due to the interaction required by five hBots.  
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Figure 10.6: The expected difficulty due to average number of time-steps to complete the scenarios in an 

unbounded test  against the measured difficulty of the genetic algorithm to solve the relevant scenario.  

The relative difficulty of completing the task scenario given the solution was known has 

a correlation with the difficulty of finding the solution with a value of -0.96 (p<.01), 

figure 10.6. This correlation is likely because a more difficult task will take longer to 

complete, therefore there is less time for the hBots to reach the higher state-levels 

required, through their interactions with each other. If the candidate solution was not 

ideal the hBots may require more time-steps than allotted in the test to complete the 

task. This would lead to less distinction between the fitness values of the solutions that 

could potentially perform well, given more time, and those that are unable to distinguish 

between the object shapes. As long as suitable solutions can be found within the 

allotted amount of time-steps this is less of an issue. 
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Figure 10.7: The expected difficulty due to the difference in number of distinguishing states at each 

state-level against the measured difficulty of the genetic algorithm to solve the relevant scenario. 

By considering the difference in the number of identifying states for both the valid and 

invalid object shape a clearer relationship of the difficulty of finding a suitable solution 

relative to finding a solution that removes the invalid object shapes instead. Figure 10.7 

shows the difference between the identifying states of both object shapes for different 

scenarios at each level against the measured difficulty of finding a suitable solution 

through a GA. 

A significant correlation coefficient of 0.78 (p<.01) is found when considering the 

difference in the number of identifying states over all three state-levels. A similar trend 

to the previous difficulty predictors is found where the lower level states have more 

significant correlation coefficients is found for this method too. The coefficients are 

0.91 (p<.01), 0.78 (p<.01) and 0.74 (p<.01) for the differences of state-level 1, 2 and 3 

respectively. These are the most significant correlation across the measures with the 

exception of the number of time-steps taken. 

A further discussion of all the correlation coefficients for both the GA and the random 

methods is included in section 10.3. 
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10.2 The Results for the Random Search Method 

For each of the eleven scenarios 900 randomly generated candidate solutions were 

tested, in the same manner as the GA. The results of the eleven test scenarios are 

shown as boxplots in figure 10.8, where the blue box shows the first and third quartile 

and the red line the median, the whiskers indicate the maximum and minimum fitness 

values for that test scenario. There is little variation between the first, second and third 

quartile, showing that the majority of the results were similar for each of the scenarios. 

The same definition of a suitable scenario is used as in the GA method. 

Considering all three tests runs, suitable solutions were found for eight of the eleven 

scenarios. There were three candidate solutions where a suitable solution was not found: 

F5I6, F5I9 and F8I10.  

The candidate solution that has the maximum fitness value for scenario F5I6 removed 

all of the valid object shapes but also removed a mean of 1.13 invalid object shapes. 

Similarly, for scenario F5I9 the best performing candidate solution removed all six valid 

object shapes but removed a mean of 1.67 invalid object shapes. In the case of scenario 

F8I10 the candidate solution with the highest fitness value, removed a mean of 1.13 

valid object shapes whilst removing a mean of 0.4 invalid object shapes. In these three 

scenarios candidate solutions were found where the opposite task was solved, the valid 

shape was left untouched whilst all the invalid object shapes were removed.   
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Figure 10.8: Box and whisker plots of the fitness values calculated for each of the 11 scenarios when a 

random search method was used to find 900 candidate solutions. Each scenario was repeated three times. 

The maximum and minimum values are shown by the whiskers. 
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10.2.1 Comparison to Predicated Difficulty Metric of Scenario 

 To determine the observed difficulty the random method had in finding a suitable 

solution from the experiments the following method was utilised: 

 The average number of successful candidate solutions over the three repeats for 

each of the eleven scenarios. 

The same three predicted difficulty factors were considered as in the GA case. These 

included: 

 The average difference values of the sub-chain lengths, 1, 2 and 3, figure 10.9. 

 The total number of identifying states which distinguish the valid object to be 

found from the object to be ignored divided by the total number of states, 

figure 10.10. 

 The average number of time-steps it took to complete the same scenario when 

there was no restriction on the amount of time-steps, figure 10.11. 

 The difference in the total number of identifying states for both the valid object 

shape and the invalid object shape, divided by the total number of states, figure 

10.12. 
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Figure 10.9: The expected difficulty due to the average difference in the sub-chain length against the 

measured difficulty of the random method to find a solution to the relevant scenario, measured by the 

average fitness value.  

Considering the different lengths of sub-chain and their relative difference values in 

relation to the average fitness of the random results for the different scenarios showed a 

general positive correlation, figure 10.9. The results started with significant correlation 

coefficient of 0.69 (p<.02) where the sub-chain length is 1 or 2 and this decreased as the 

sub-chain length increased to length 5 which had correlation coefficient of 0.12, 

showing no significant correlation. These results showed that the scenarios that can be 

completed with low state-levels that had large difference values were relatively easy to 

solve using the random search method. As the sub-chain lengths get longer, the number 

of hBots required to react with an appropriate portion of the object shape increases. 

Therefore, this is less likely to occur, reducing the correlation with the outcome.  
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Figure 10.10: The expected difficulty due to the total number of distinguishing states at each state-level 

against the measured difficulty of the random method to find a solution to the relevant scenario, 

measured by the average fitness value. 

Looking only at the number of identifying states available for potential candidate 

solutions gave a high positive correlation at low state-levels, 0.69 (p<.02), 0.72 (p<.02) 

for state-levels, 1 and 2 respectively and 0.58 (p<.1) for state-level 3, figure 10.10. 

Interestingly, in this measurement there is a marginally stronger correlation for state-

level 2 than state-level 1, where in the difference value measurement the results were the 

same. This outcome is due to the difference in the two measurements. The difference 

value considers which and how many of the features of the data-chains are different 

from each other, even if those differences are identical to each other. In the case of the 

number of identifying states, this considers the number of unique identifying features of 

the valid object shape. This number of unique features relates to the identifying states, 

which if there are more of them, it is more likely that they can be found by the random 

method. 

The measurement of difficulty at state-level 3 is equivalent to the difference value at 

sub-chain length 5, as both require five hBots neighbouring each other. However, 

where the number of identifying states is concerned there is a more significant 

correlation where there was none for the difference values. This is due to lack of 

variation of sub-chain length 5 when compared to the identifying states at state-level 3.  
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Figure 10.11: The expected difficulty due to average number of time-steps to complete the scenarios in 

an unbounded test  against the measured difficulty of the random method to find a solution to the 

relevant scenario, measured by the average fitness value  

The number of time-steps required to complete the task has a relatively high correlation 

coefficient with a value of -0.84 (p<.01), figure 10.11. The reason are the same as for 

the GA method, see section 10.1.1. However, this correlation was marginally less 

significant than the GA relationship with the number of time-steps. 

 

Figure 10.12: The expected difficulty due to the difference in number of distinguishing states at each 

state-level against the measured difficulty of the random method to find a solution to the relevant scenario. 

Figure 10.12 shows the difference in the number of identifying states for the valid and 

invalid object shapes. The correlation coefficient whilst considering all three state-levels 
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is 0.70 (p<.02). As with the GA method the correlations are more significant for lower 

state-levels than higher state-levels, 0.77 (p<.01), 0.74 (p<.01) and 0.65 (p<.05) for 

state-levels 1, 2 and 3 respectively. 

10.3 Correlation of Difficulty Measurements to Scenario Difficulty 

All the correlation coefficients for all the different measurements of difficulty against 

the perceived difficulty for both the random and the GA method are collated in table 

10.3. 

 
Random 
Method 

Genetic 
Algorithm 

Sub-chain length 1 difference value 0.688757 0.786602 

Sub-chain length 3 difference value 0.68721 0.706011 

Sub-chain length 5 difference value 0.118016 0.201136 

Average sub-chain length difference value 0.633661 0.704133 

Number of identifying states at state-level 1 0.696835 0.79023 

Number of identifying states at state-level 2 0.719364 0.749145 

Number of identifying states at state-level 3 0.57913 0.627301 

Total Number of identifying states at state-levels 1, 2 and 3 0.648998 0.697743 

Number of time-steps to complete the task with baseline 
solution 

-0.84215 -0.95553 

Difference in number of identifying states at state-level 1 0.767571 0.907736 

Difference in number of identifying states at state-level 2 0.740281 0.778752 

Difference in number of identifying states at state-level 3 0.651904 0.739804 

Total difference in number of identifying states at all state-
levels 

0.698914 0.777003 

Table 10.3: The correlation coefficients for all methods of predicting the difficulty of different scenarios 

when compared with the measured results from the random method and the genetic algorithm. 

In general the correlations for predicting the difficulty of finding the solutions were 

more significant for the GA method when compared to the random method of 

determining the solutions. This is perhaps due to the feedback present in a GA. 

Candidate solutions that have a higher fitness are recombined, producing new solutions 

sharing their traits. The feedback in the method means that the suitable solutions will 

produce more suitable solutions. This means that the ease or difficulty of finding a 

suitable solution is magnified relative to the random method where there is no 

relationship between the different candidate solutions. 

In both methods the most significant measurement of difficulty was the amount of 

time-taken to complete the task with the given generic solution without time restrictions. 

Given an ideal solution takes more time-steps to solve for a more difficult task, the 
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effect for less than ideal solutions should be the same. There is a gradient of fitness 

between where these less ideal candidate solutions are only part capable of completing 

the scenario and not capable of completing the scenario in the allotted number of time-

steps. The point at which this occurs will relate to the difficulty of the task scenario. 

Therefore, the amount of time-steps taken for the generic solution provides a clear 

indication of how difficult it is for all other partial candidate solutions to complete the 

scenarios. However, of all the measurements this is the most time consuming test to 

find values for by a significant margin. 

After the time-steps the most significant group of measurements was the difference in 

the number of identifying states, followed by the number of identifying states for the 

valid object shape and finally the difference values for each of the sub-chain lengths. 

The reason being is that the difference in the number of identifying states not only 

considers how easy it is to find a suitable solution but how easy it would be to find the 

opposite, where the invalid object shapes are removed. It is by considering these two 

opposing views at the same time that a clearer difficulty measurement of the scenarios is 

found. The difference values which were found in section 8.3.2, do not give the most 

ideal solution when the consideration of finding the solution is added to situation. The 

difficulty values of the scenarios do not consider the many possible suitable solutions of 

completing the scenario there are or the difficulty of finding those solutions, but simply 

the task of removing the object shapes that the hBots perform.   

Over these three group measurement types which considered the interaction of one, 

three and five hBots, either through state-level or sub-chain length, there was more 

significant coefficients when this was one, decreasing through three and five hBots. The 

reason for this is both because it is less likely that more hBots will be interacting with 

each other around the object shape with the current amount of hBots and that if the 

hBots correctly identify the valid object shape at lower states they will remove it 

meaning there is less need for the higher state-level states.  
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10.4 Comparison of Fittest Solutions 

To determine the overall capability of the cooperative object recognition GA it was 

compared to the solutions with the highest fitness from both the randomly derived 

solutions and those from the generic solutions for each scenario. Figure 10.13 shows 

the maximum fitness values of the two different solution deriving methods and the 

generic solution, and figure 10.14 shows a more detailed view of the upper fitness 

values. The average improvement of the GA over the random method and the generic 

method were approximately 0.001 and 0.003 respectively where a suitable solution was 

found. Despite what at first may appear like a small difference it was in fact a significant 

improvement in efficiency. Given that at this level of fitness, excluding the cases where 

the random method failed to find a solution, only the six correct object shape types are 

removed. Therefore, the comparison between the scores is based solely on the amount 

time-steps it took to remove the first and last correct object shape. These two factors 

have a total effect of up to 7000 time-steps, which translates to approximately 0.010 of 

the fitness value. 

 

Figure 10.13: The maximum fitness of the random and GA method of finding solutions compared to 

the generic method for each of the eleven scenarios. 
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Figure 10.14. A detailed view of the upper fitness values of the random and GA method of finding 

solutions compared to the generic method for each of the eleven scenarios. 

An interesting outcome was that the GA method found better solutions for all the 

different scenarios than both the generic solutions and the random solutions. In seven 

of the eleven scenarios the random solution had a higher fitness value than the generic 

solution fitness value. This improvement showed the capability of the two systems to 

find solutions that are more tailored to the specific scenarios than the general method 

derived to form the generic solutions to the scenarios.  
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Table 10.4: Fittest candidate solution genomes for the three methods for the eleven scenarios. The 

achievable states are noted with an 'A'. Each instance where a state-behaviour 1 could remove the 

wrong object shape is highlighted. 
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Through looking closely at the solutions derived by the different methods, table 10.4, an 

understanding of what made the GA method perform better than both the random 

method and the baseline generic method could be gained. The most important 

behaviour to consider is behaviour 1, this is the behaviour that determined that an 

object shape should be removed. If this behaviour was applied to the wrong hBot state 

then the wrong object shapes could be removed and the incorrect object shapes could 

be left alone. This behaviour had the largest effect on the fitness values achieved by the 

different potential solutions. However, just looking at this behaviour alone did not give 

a clear indication as to why the GA achieved a higher fitness score than the generically 

derived solution. From table 10.4 it can be seen that not only did the GA not find all 

the instances where it could have had a behaviour 1 (i.e. where the object shape to be 

found has a potential state that the object shape to be ignored does not) it has them in 

the opposite case which could allow the incorrect object shapes to be removed if given 

enough time. The frequency that this occurs is discussed in section 10.4.2. 

The reason that these, errors in state-behaviours, did not affect the overall fitness of 

these high performing solutions was due to their high state-levels. In all the cases where 

the hBots could potentially remove the wrong shape the state-level of the relative 

behaviour was always level 3, the most unlikely level to be reached. Also there is further 

complexity, as to reach this state-level there was another issue, what are the likely hoods 

of the hBots staying in place to reach those results. It was this point where behaviours 2 

and 3 come into play, where they represent a low and high probability of moving away 

from an object shape respectively. 

Taking for example the solution with the highest fitness from the GA method for the 

scenario F8I10. In this instance there was state-rule-behaviour which states remove the 

object, where it would remove the object shape that should be ignored. This behaviour 

was found in this instance at state 104. In order for a hBot to reach state 104 it had to 

be in state 10 and have neighbours in states 5 and 7. Of these three states the hBots 

need to reach, in this specific solution all three of them have behaviour 2, which is stay 

in place with a low probability. These three states, 10, 5 and 2 all require three hBots in 

states 1 and 2 to be reached. Both states 1 and 2 have the stay in place with a low 

probability behaviours. Therefore, there is a lower likelihood of the needed number of 

hBots staying in the same place to reach this state-level 3 state which would perform the 

wrong action, compared to these being state-behaviour 3.  
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10.4.1 Testing the Fittest Solutions 

For each of the eleven scenarios the best performing candidate solutions both the 

random method and the GA method were allowed to run for an extended amount of 

time-steps. The environment is identical to that used in section 8.4, however the 

maximum number of time-steps allowed for the test is increased to 50000. This increase 

allows the swarm to potentially act on states which may remove the incorrect object 

shape if reached.  

    Fraction of attempts where a specific number of invalid 
object shapes were removed.     

Number of Invalid 
Removed 

1 2 3 4 5 6 

F5I6 GA 1.00 0.96 0.88 0.80 0.58 0.40 

  Random 1.00 1.00 1.00 1.00 0.98 0.90 

F5I9 GA 1.00 0.92 0.80 0.68 0.50 0.24 

  Random 1.00 1.00 1.00 1.00 1.00 1.00 

F8I10 GA 0.94 0.74 0.50 0.24 0.12 0.02 

  Random 0.98 0.96 0.90 0.78 0.60 0.40 

F10I5 GA 1.00 1.00 1.00 0.98 0.94 0.54 

F10I14 GA 1.00 0.96 0.90 0.78 0.40 0.16 

Table 10.5: In solutions where an error is present in the genome, the fraction of the 50 tests that 

removed a specific number of the six invalid object shapes for the relative scenarios. 

The fraction of invalid object shapes removed for each of the scenarios where there was 

a potential error in the genome is presented in table 10.5. From this it is shown that in 

situations where the hBots are allowed to run for a longer time they have opportunity to 

act on errors in their state-behaviours and remove invalid object shapes. With the 

exceptions of F10I5 and F10I14, where the random method does not remove any 

invalid object shapes, the fittest GA solution removes incorrect object shapes less often 

than the fittest random solution.  

Table 10.6 shows the ratio of time-steps between the last valid object shape removed 

and the first invalid object shape removal. This gives an indication of how long it takes 

the hBot swarm to start removing the incorrect object shape after it has accomplished 

the task of removing the valid object shapes. In each instance where both methods have 

errors in their genome, the GA outperforms the random solutions, taking longer to 

remove the invalid object shapes relative the valid object shapes.  
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  Random GA 

F5I6 2.77 4.62 

F5I9 1.62 5.93 

F8I10 0.52 7.03 

F10I5 - 7.67 

F10I14 - 11.65 

Table 10.6: The ratio of time-steps taken to remove the first invalid object shape relative to the last 

valid object shape. 

This analyses shows that despite the higher state-levels of the states that have this errors 

and the state-relationships that lead to them, if given enough time they are acted upon. 

Showing that these are not as optimal a solution as hoped.  

10.4.2 Assessing the Suitable Solutions 

Considering all of the suitable solutions found from each method shows a potential 

solution to this problem. Figure 10.15 and figure 10.16 show the number of suitable 

solutions out of the 900 candidate solutions and the number of those that had an error 

in them, for both the GA method and random method respectively. 

Figure 10.15: The number of successful solutions and the number of those with errors in their genomes, 

for each scenario test out of the 900 candidate solutions for the GA method. 
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Figure 10.16: The number of successful solutions and the number of those with errors in their genomes, 

for each scenario test out of the 900 candidate solutions for the Random method. 

Out of all the suitable solutions found through the GA method, the majority of them 

do not have errors in their genome which would cause them to incorrectly remove the 

invalid object shape. This suggests that variations could be implemented on the GA that 

would account for this behaviour. For example this could be achieved allowing the 

hBots more time-steps in later generations. Alternatively, increasing the amount of 

hBots in the system would increase the interaction of the hBots around the object 

shapes making these higher level state-behaviours more likely to occur. 

10.5 Summary 

Across all eleven of the scenarios the GA method found solutions with higher fitness 

values than both the generic method and the random method. More suitable solutions, 

which removed only the six valid object shapes in the 7000 time-steps, were found 

when using the GA rather than the random search method. A number of the fittest 

solutions for both methods had potential errors in them where the genome would have 

the hBots remove the invalid object shapes if they reached certain states. These states 

were commonly at state-level 3 and had related lower level states with behaviours that 

were more likely to have the hBot move from that specific cell. It was found through 

further testing that despite the lower probability the behaviours would be acted on if 

given enough run time. The number of time-steps between the last removed valid 

object shape and the first invalid object shape was greater for the GA than the random 

search method. This problem could be reduced in the GA method by having longer 

runs in later generations or using more hBots for training increasing the interaction with 

the object shapes. This will need to be considered in future experimentation. 
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Of the metrics that determine the difficulty of finding a suitable solution, the number of 

time-steps it takes to solve has the highest significance, followed by the difference in the 

number of identifying states between the valid and invalid object shape. This is the most 

suitable measure of difficulty as it can be found without having to run simulations. 

Overall the GA method outperformed the random search method in determining 

suitable behaviours for the hBots at different states, although there is further research 

required in tailoring the specifics of the GA. 
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Chapter 11: Discussion 

From the investigation it was found that a genetic algorithm was capable of generating 

suitable solutions for the state-behaviours of hBots such that they could solve a range 

of cooperative object recognition task scenarios. Furthermore, metrics of the scenarios‟ 

difficulty were found that will allow future experiments, using similar methods, to 

determine the relative difficulty for agents to solve a specific cooperative recognition 

task scenario. This chapter identifies and discusses the strengths and weaknesses of the 

research undertaken and the implication that the findings have on cooperative object 

recognition research. 

11.1 Task and Application 

A task was envisioned which involves distinguishing one type of object shape from 

another and then removing that object shape. The distinction between object shapes 

was made by their size and shape as there were no other marks or unique characteristics. 

Removing an object shape was achieved by either pushing it from the search space or 

destroying it completely, depending on the specific test. 

This type of cooperative object recognition had previously being completed with multi-

agents systems. It was hoped that by initiating the development in swarm robotic 

techniques for cooperative object recognition the task could be undertaken by 

individual simpler agents who have no need for complex sensors for viewing the 

outside world, eliminating the processes of stitching multiple images together in two or 

three-dimensional spaces or, depending on the application, have no need for motors or 

actuators to move them, as they could move randomly through Brownian motion. 

These simplifications in the individual agents would, in addition, allow them to be 

produced smaller and smaller as technical advances continue.  

The limitation of using this method for cooperative object recognition is that it requires 

the agents to physically interact with the boundary of the object shape which depending 

on the medium the agents exist in, could increase the complexity of the real world 

robots when produced. However, it is believed that the potential benefits outweigh 

these issues especially if a suitable application is found to implement the strategies in. In 

the experiments for the research for this thesis the agents move through a random walk 
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which is akin to Brownian motion which suggests applications in fluids to be the most 

ideal. 

The capability to reduce the size of the agents due to their simplicity could open 

potential medical applications. A system is envisioned where a swarm of cooperative 

agents could be injected into a human body to find potential threats to the body and 

either remove them directly or mark them for removal. The swarm would travel around 

the body interacting with the contours of different entities, possibly viruses, germs, 

bacteria, cancers or tumours and distinguishing them through their shape. To do this 

the swarm would initially have to be trained through a GA or other method to identify 

that type of object shape. This could be done without a shape analysis of the entity as 

long as a suitable training environment was given to the agents with sufficient feedback. 

The behaviours found could be replicated from the small scale test group for any scale 

swarm. The major limitation to these medical applications is the relative size of the 

items to be identified and the size of the robotic agents.  

A less distant application for which a cooperative object recognition swarms could be 

used for includes cooperative construction tasks. In these scenarios the swarm could 

analyse the current state of the constructed item or the assembled system and determine 

the next action to take. This would give the swarm larger information about the 

structure whilst still only using local communication.  

11.2 A Suitable Task for a Swarm Robotic Approach 

Swarm robotic tasks often mimic the behaviours of social insect groups directly. In this 

research on cooperative object recognition it was not the direct mimicking of a specific 

social insects behaviour that inspired the method only the general idea of social 

intelligence and swarm behaviours that give guidance. Taking indirect inspiration opens 

up new areas for potential uses for those core behaviours found at the risk of not 

having a system to mimic directly to compare to. 

Three noted attributes of tasks suitable for swarm robotics are those that cover a region, 

change scale and require redundancy in the swarm. As the object shapes are distributed 

in space they cover a region. The identified shapes are removed or destroyed changing 

the scale of the problem to solve. As the number of object shapes in the search space is 

reduced some of the agents of the swarm become redundant. 
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These points in addition to the analyses of the current cooperative object recognition 

techniques showed that there was an opportunity for a novel swarm robotics approach 

to the problem. 

11.3 The Outcomes 

11.3.1 The State-Behaviours of hBot Swarms 

Through this research it was found that it was possible to complete a varied range of 

cooperative object recognition tasks with a swarm of agents that were, homogeneous, 

anonymous, had limited recall, had no common sense of direction and had a sensor 

range that was considerably smaller than the area they inhabited. In order to complete 

this task a state-behaviour system was employed. The agents would change their states 

based on what they perceived directly next to them. These changing states caused a 

feedback loop of agents perceiving each other and changing their states accordingly. As 

the agents states were also affected by a small portion of the object shapes they were in 

contact with, this would allow them to eventually determine what shape type they were 

next to.  

The number of states used was limited to 264 states at three state-levels, this allowed 

any hBot to potentially gather the same amount of information as five hBots at their 

first state-level. This was enough information for the hBots to be able to distinguish all 

of the object shapes used in the experiments. The number of object shapes used was 

initially reduced to a set of four celled object shape pairs. However, from the 

investigation it was shown that these scenarios had a range of difficulty to complete 

both in terms of solving their state-behaviours and completing the task once the state-

behaviours are known. 

Despite the capability of these strategies, these are early endeavours in cooperative 

object recognition with swarm robotic techniques. This observation is made apparent 

by the system that was used to initially implement the experiments, the Simplified 

Hexagonal Model. The potential issue with using a grid based system rather than a 

physical platform or a more realistic simulation technique was that the methods derived 

cannot be transferred directly. The hBots also have perfect communication with each 

other as there is currently no noise in the system.  
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Reverting to a simplistic model allowed the focus of the research to be on the strategies 

used rather than the designing and implementation of hardware or complex physical 

simulations. The intentions of the research are to place the ground work leading 

towards the implementation of the strategies on a physical platform where modular 

robotic systems are used. The benefits the state-behaviour method provides are ones 

that will allow much simpler and therefore smaller agents, with limited capabilities, 

which have been shown in a simulation to be capable of distinguishing between object 

shapes.  

11.3.2 The Training of hBots 

In considering the applications of a swarm that could cooperatively identify objects 

through their shape a more interesting aspect than creating a state-behavioural rule-set 

from the known geometrics of the object shapes would be allowing the hBots to derive 

their own state-behaviours through a GA. The basic conduct of the hBots remained 

unaffected by the GA, they moved and changed between states as previously. However, 

which one of the three behaviours that they exhibit at those states would be determined 

by the GA, where the behaviours were; move with low probability, move with high 

probability and remove object shape. Eleven scenarios were selected to give a range of 

perceived difficulties from differences in the object shape, discussed further in section 

11.3.3.  

Running a GA is a computationally heavy task to derive solutions. To determine if the 

GA was beneficial the best performing solution of the GA for each scenario was 

compared to the best performing solutions from both a group of 900 random solutions 

and the previously generated generic solutions. In all scenarios the GA out-performed 

both other methods. This improvement, although minor in appearance could, 

depending on the size of the task given to the swarm, make a large difference to the 

overall efficiency. One interesting anomaly arose. The behaviours rules that the GA had 

determined would on occasion include the remove behaviour for states that are 

common to the invalid object shape, i.e. the wrong object shape. These errors in the 

state-behaviours of the hBots could occur as the number of time-steps were relatively 

low in the GA, and due to them being behaviours at the highest state-level they would 

not be acted upon during the testing phase of the GA. 

A further investigation was carried out using the fittest members of both the GA and 

random method in order to determine the effect of the errors in the state-behaviours. It 
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was found that given enough time, despite the lower probability of them occurring, the 

behaviours would be acted upon. In the case of the GA solutions where similar random 

solutions were available the difference between the last valid and first invalid being 

removed was greater, showing that the GA solutions performed better. For the GA 

solutions there are also a larger amount of solutions which were deemed suitable, where 

a suitable solution is one that removes all six valid object shapes leaving the six invalid 

object shapes during the GA testing. Upon analyses a larger portion of these suitable 

solutions did not have errors in their state-behaviours that would allow them to ever 

remove invalid object shapes. Extending the test duration once a certain percentage of  

solutions found are deemed suitable would reduce this problem in future GA training 

and would improve the agents state-behaviours and minimise the effect on the overall 

run time. Another option is to run two parallel sets of tests in order to determine the 

fitness value, one with a high amount of agents to increase interaction, the other with 

the standard amount to increase efficiency with the correct distribution of agents 

relative to arena space. 

Overall the results and analyses show that the most optimal GA was not used. It was 

shown, however, that the GA method outperformed both of the other methods. 

Therefore, improving the GA would only further improve the efficiency of the GA 

relative to the other methods. Other methods could be used to train the hBots to 

distinguish between to object shapes but these need considering in further research. 

Additionally, any further study with the GA will have to consider the increasing length 

of genome with the increase of object shapes and the effect that this will have on the 

efficiency of the training method. 

Overall, a training method would provide a way to have the hBots learn the difference 

between object shapes without those shapes having to be analysed and compared 

beforehand. The GA results show that it is possible to derive the state-behaviours 

required. This will in the future allow far simpler calibration of the agents to any specific 

object recognition task. 

11.3.3 The Metric of Scenario Difficulty 

The initial experiments that were carried out only used two types of object shape. For 

the investigation to be an insightful examination of the hBots capability a study into the 

possible object shapes that could be produced from hexagonal cells needed to be 
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carried out. This allowed a range of different scenarios of cooperative object 

recognition to be produced and a metric of their difficulty to be defined. 

Object shapes were created for each combination of different number of hexagonal 

object cells up to and including nine object cells. Using this method 16673 different 

object shapes were found. Each object shape was described without considering 

placement or orientation by using their data-chain. A data-chain was formed by 

observing all of the empty cells around the object shape, and counting how many object 

cells they were in contact with, then going round the shape in a clockwise order 

recording all these values. It is the data-chain of an object shape that allows its 

difference value from another object shape to be calculated, by considering different 

length sub-chains. 

It was found that in some circumstances two different object shapes could be described 

by the same data-chain. These involved object shapes that had concaved sections with a 

single cell thickness. This is due to the way the data-chains are made and could 

potentially be resolved with a different system. However, the system was implemented 

as it reflects the way which the hBots see the boundary of the object shapes and interact 

with each other, and other systems would not. As the limitation is only apparent in 

cases where there is a tunnel in the object shape of equal width to the hBots this is a 

limitation at the cusp of the physical dimensions of the hBots. In any real world system 

there would be a limitation of the fidelity that the agents could respond to. This 

circumstance of the object shapes having a common data-chain is an example of this 

limitation seen in the simulation. 

As the hBots do not consider the position of their neighbours and only their state, for 

each sub-chain length the states the hBots can reach is determined to find the difference 

value. However, this choice in the state relationship rules means that object shapes that 

are identical when one of them is rotated on the x or y axis, as if mirrored, appear the 

same to the hBots. These shapes can be noted by their data-chains being the reverse of 

each other. This limitation in ability was deemed acceptable for the research, as it would 

also mean that any hBot that was rotated in the same way would still function 

successfully. 

By comparing two object shapes' data-chain, where one is classed as valid and the other 

invalid, a difference value can be determined which varies with the length of sub-chain 
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considered. The more the object shapes had in common with each other, the lower 

their difference value, and the harder they would be for the swarm to distinguish from 

each other. It was found that the difference value of shape A from shape B is not the 

same as shape B from shape A. This is because the boundary features that shape A has 

that makes it distinguishable from shape B are different to those which make shape B 

distinguishable from shape A. 

The difference values calculated showed a correlation with the amount of time-steps it 

took a hBot group to complete a cooperative object recognition task. Therefore a 

metric of the difficulty of completing a scenario can be determined by the two object 

shapes that are being distinguished from one another. The results showed that there 

were a range of difficulties in completing different task scenarios when a working state-

behavioural rule-set had been given to the hBots. The difficulty ranged, where object 

shapes with up to four cells are considered, from pairs of object shapes that can be 

differentiated with a single hBot and those that could not even be differentiated with 

five hBots cooperating. 

The training scenarios required a different metric of difficulty, one that  would not 

depend solely on how hard it would be to complete the task of removing the correct 

object shapes, but on how difficult it would be to find suitable solutions‟ state-

behaviours. Of the four measurements the difference in the number of identifying states 

for both the valid and invalid object shape provided the best overall correlation 

coefficient with the measured difficulties from the averaged GA results. This was 

because it gave an indication of how easy it was to find a solution whilst avoiding 

solutions that removed the invalid object shapes as well. A high coefficient was also 

found for the number of time-steps taken to complete a preliminary task, however this 

is a less efficient way of determining the difficulty as it requires running the initial tests 

with a pre-determined solution, multiple times. 

The major limitations to the investigation into the comparison of object shapes for the 

training methods was the reduction of which object shapes could be used. Reducing the 

object shapes so that they only contained ones, twos and threes in their data-chain 

removed a large aspect of potential shapes. This could be amended in future research by 

reassessing the hBots state relationships, although it would increase the number of 

states by a considerable factor. This increase would have caused a time delay that was 

too long for this research increasing the cost of completing the GA. 
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Given this is an initial investigation, the range of pairs of object shapes chosen was 

deemed acceptable, as they were shown to have a range of difficulties indicated by the 

different metrics available. The metrics identified here will allow future research to 

identify specific object shape pairs which have a broader range of difficulty when 

considering both training and task scenarios. 

11.4 Future Work 

Further work is required for the Simplified Hexagonal Model. More complex shapes 

need to be considered whilst noting the effects on the amount of states and therefore 

the number of state-levels required for the hBots. There should also be consideration to 

the relative difficulty of distinguishing object shapes from one another where their 

similarities and differences change with the complexity of the individual object shapes. 

Although work was carried out on reducing the number of redundant states in the 

system, further analyses would be required as the number of state-levels increased to 

reduce the amount of redundant states, which all take up memory for each of the agents. 

This consideration is increasingly important as the size of the agents in the physical 

world decrease. There needs to be further consideration regarding how the hBots sense 

each other and the object shape. Currently the agents can sense how many object cells 

they are next to and this informs the first state-levels. However, it may be possible to 

reduce this sensor ability to, „am I next to an object cell or not‟ thus reducing the 

required external sensor capabilities of the future physical robotic agents. The focus 

would be more on the relationships between the position and states of the agents that 

are neighbouring each other, this would be far more controllable than multiple sensors 

devised for external purposes. To do this strategy in practice would require knowledge 

of the neighbouring agents positions relative to each other, this in fact should give a 

very similar output to the current state rules, although would require testing and 

clarifying. 

Currently the simulation deals with objects in a two-dimensional lattice, it would be 

interesting to find if the same strategies could be implemented into a three-dimensional 

grid-world allowing for the differentiation of shapes that have width, depth and height. 

This move into three-dimensions would be a massive step towards real world 

applications which are more varied. The potential problems to overcome is the ever 

increasing size of the state relationship rules as the potential object shapes become 

increasingly complicated and this is exacerbated by the move into three dimensions. 
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The object shapes used in all the experiments were also static whilst been identified by 

the swarm of agents. It was mentioned that by utilising quicker state relation reactions 

and by not relying on building up an image of an object shape would allow for the 

agents to deal with object shape that are moving.  This hypothesis requires testing.   

Finally further development could be carried out for the GA. All of the variables for the 

GA remained static. Changing the parent selection mechanism, survivor selector system 

or mutation rate could have interesting effects of the GA. All of the tests that were 

carried out using the hBots considered only two object shapes both with a cell 

allowance of four. It is likely that real world applications will have more than two object 

shape types where it would be possible to have multiple wanted shapes and multiple 

unwanted shapes. The relationship between the differences of these multiple object 

shapes would include further complications to the scenarios and test the limitations of 

the GA further. This would then reflect back into the need to improve the effectiveness 

of the GA itself.  

An additional area of research which shares a number of similarities with the current 

task scenarios are invader detection tasks. The agents could be trained to monitor an 

area of known object shapes and act on any unknown object shapes. The precise details 

of the action the agents take would depend on the specific task. 

11.4.1 Moving to a Physical Platform 

There are a number of areas that need to be considered to move the strategies 

developed in the SHM to a physical platform. These include how the agents move 

around their environment, how they interact with object shapes and how they interact 

with each other. One of the initial goals of the research was to create individually simple 

agents in the hope that their size could be reduced opening the number of applications 

available for cooperative object recognition systems. The testing of variations of these 

simple agents on similar physical scenarios will provide useful insight into what is 

possible and how simple the agents can actually be made. In a situation where a specific 

task or scenario is determined it will be possible to choose the most important elements 

from the system and change the others as necessary to complete the task. The 

behaviours and reactions the hBots have used will need reconsidering when completing 

this conversion from simulation to physical platform. 
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11.4.1.1 Movement of the Agents 

The agents could use Brownian motion to move within a liquid environment causing 

the interactions with each other and the object shapes to occur at random. This, 

however, does not consider when the agents are required to stay still next to an object 

shape. In the later experimentation the agents had two different probabilities of staying 

near an object shape. For this to work in a physical system the agents would need a way 

to halt their movement. Being near an object shape may reduce the chance of 

movement but in an uncontrolled manner. If it were to be done with a physical system 

the agents would either require grippers to hold onto the object shape, which may limit 

the type of objects used, or find a way to reduce their random movement. Giving the 

agents either a propulsion system or changing their shape in some manner would 

increase their complexity moving away from the ideal of a simple agent without 

mechanical actuation. 

A situation or task may exist where a more traditional mobile agent is used, in this 

situation it would clearly be possible to have the agents stop their movement as required. 

Although this would most likely be at the sacrifice to the minimum size of the agents.  

11.4.1.2 Sensing Object Shapes 

In the SHM the agents are aware if they neighbour an object shape on one, two or three 

of their sides. It is believed that this capability could be reduced to having the agent 

aware of if it is against an object shape or not. This reduction in object shape 

knowledge would require that the agents are aware of the position of their neighbouring 

agents as well as their state. To determine the position of an object or an agent requires 

multiple sensors, one for each side, that can then determine where the physical contact 

is made. This sensor could use switches controlled by whiskers or pressure pads, or  a 

conductive material. Whichever system is used the agents need to know when it is 

touching an object shape as opposed to an agent, and the state of any agent it contacts. 

The simplest test is that if the side that is contact with an object or agent is not 

receiving state information then by reduction it must be part of an object shape. This 

will lead to testing and research with fault tolerance, and the consideration of how an 

agent that is not transmitting a state will appear to another agent.  

11.4.1.3 Sensing other agents and describing states 

The hBots were capable of reaching and communicating 264 states. Any neighbouring 

agent is required to be capable of understanding each of those different states at six 
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different positions around their perimeter. The distance this information is required to 

travel is short as the agents would be in contact with each other.  For the physical 

agents to achieve this they would need hardware to both transmit and receive this 

information. A suitable system could involve nano scale radio transmitters and receivers. 

The current method of constant communication may need to be reconsidered as it 

would potentially cause a large drain on the power source.  

11.4.1.4 Power, storage and gathering 

One final and major consideration is the source of power for the agents‟ actions and 

calculations. The more hardware and capabilities that are added to the individual agents 

the more energy they will require to run. As this requirement increases the need for 

larger batteries or a method for directly converting energy from the environment for 

use by the agents. All of these issues will likely influence the minimum size limitations 

of the individual agents.  

11.5 Closing Statement 

The research presented here demonstrates a novel approach to a cooperative object 

recognition tasks for distinguishing between objects through their shape using a swarm 

of individually simplistic agents, inspired by the techniques utilised in swarm robotics. 

This approach provides a grounding for further research on the subject area by 

providing a strategy of states-relationships and state-behaviours that allow the agents to 

cooperate in a simulated arena. These strategies are suitable for further development 

considering small scale robotic applications. The metric of difficulty of both scenario 

task and finding the suitable behaviours will allow continued research of increasingly 

complex and varied problems to be analysed with consideration of their relative 

difficulties.   
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Appendices 

Appendix A: The Simplified Hexagonal Model for Initial 

Investigation 

This program, written in Processing, is used in the initial investigation. The variables for 

each of the experiments are manipulated by changing the text. Results from this set of 

experiments influenced the later design of the SHM which was re-written for the later 

experiments. The results from this program are discussed in Chapter 6 of the current 

research project. 

////////////////////////////////////////////////////////// 

// Simplified Hexagonal Model for Initial Investigation // 

////////////////////////////////////////////////////////// 

 

PrintWriter output; 

 

// variables /////////////////////////////////////////// 

float probabilityOfMovingAway = 0.0;  // between 0 and 1 

float hexWidth = 10;           //width of each hexagon 

int cols = 45;// 55;           // number of columns (odd number) 

int numberOfBots = 10;        // number of hBots with centre hole = 5,  

                               // (30,66,108,156,210,270) 

int[] randOrder; 

                               

int pushers = 4;               // number of hBots required to move object 

 

int noOfTriangles = 3; 

int triSize = 6;               //number of hexagons making up triangle 6,10 

int noOfHexagons = 3; 

int hexSize = 7;               // number of hexagons making up hexagon 7,19 

int largestSize = 7;           // the largest number of hexagons in either a triangle or hexagon 

boolean triObjValid = false; 

boolean hexObjValid = !triObjValid; 

String validType; 

 

int centreHoleConst = 5;            // change size of centre hole (top line size) 

 

 

float hexHeight = 4 * (0.5 * hexWidth) * (tan((radians(30)))); 

int rows = cols; 

int centreSpot = (cols-1)/2; 

 

int noOfShapes = noOfTriangles + noOfHexagons; 

 

// 6 Positions for objects (left to right, top to bottom) 

int x0 =   ((cols-1)/2); 

int y0 =   int(((cols)/4)-(centreHoleConst/2));     

int x1 =   int(((3*cols)/4)+(centreHoleConst/2));            

int y1 =   int(((cols)/4)-(centreHoleConst/2));     

int x2 =   int(((cols)/4)-(centreHoleConst/2));              

int y2 =   ((cols-1)/2); 

int x3 =   int(((3*cols)/4)+(centreHoleConst/2));  

int y3 =   ((cols-1)/2); 

int x4 =   int(((cols)/4)-(centreHoleConst/2));    

int y4 =   int(((3*cols)/4)+(centreHoleConst/2));  

int x5 =   ((cols-1)/2); 

int y5 =   int(((3*cols)/4)+(centreHoleConst/2)); //cols-17;       

 

color white = color(255,255,255);    // empty cell 

color black = color(60,60,60);       // object 

color darkGrey = color(1,1,1);       // wall 

color grey = color(120,120,120);     // hBot state 0 

color green = color(0,200,0);        // hBot state 1 

color blue = color(0,0,200);         // hBot state 2 

color red = color(200,0,0);          // hBot state 3, identified triangle 

color purple = color(200,0,200);     // hBot state 4, identified hexigon 

 

 

// calculate the window size based on the number and size of grid 

int xWindow = int((1.5*cols*hexWidth)-(12*hexWidth)); 

int yWindow = int((cols*hexHeight*0.75)+(hexHeight*0.25)); 

 

int steps = 0; // number of steps taken to complete the task 

 

Cell[][] grid;   // the hexagonal grid is made up of individual cells 

Wall[] wall;   // the walls of the arena 

Bot[] hBot;      // the bots move around from cell to adjacent cell 

 

ObjectCell[][] oCell; // a single hexagon making part of an object 

TriangularObject[] triObj; 

HexagonalObject[] hexObj; 

 

int maxTests = 50; // 50 
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int currentTest = 0; 

int results[] = new int[3]; 

int noTimeCouldNotMove = 0; 

int noOfValidRemoved = 0; 

int maxNumberOfBots = 200; // 200 

 

int maxTimeSteps = 15000; 

 

boolean useGraphicDisplay; 

boolean first = true; 

 

void setup() {   

  //frameRate(1); 

   

  if(hexObjValid){ 

    validType = "HexValid-";  

  } 

  if(triObjValid){ 

    validType = "TriValid-"; 

  } 

   

  size(xWindow,yWindow); 

  rectMode(CENTER); 

  background(0); 

     

  // create arena, grid of cells 

  grid = new Cell[cols][rows]; 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < rows; j++) { 

      // xPosition,yPosition,colour 

      grid[i][j] = new Cell(i*hexWidth,j*hexHeight*0.75,white); 

    } 

  } 

   

  // create walls (remove top left triangle of rhombus to create hexagon) 

  for (int j = 0; j < cols/2; j++) 

    for (int i = 0; i < (cols/2)+2 - j; i++){ 

      grid[i][j] = null;    

    } 

   

  // create walls (remove bottom right triangle of rhombus to create hexagon) 

  for (int j = 0; j < (cols-1)/2; j++) 

    for (int i = cols - j; i < cols; i++){ 

      grid[i - 2][j + ((cols-1)/2)] = null;    

    } 

     

  // create walls (provide border round edges) 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < cols; j++) { 

      if (i < 2 || i > cols-3 || j < 2 || j > cols-3)  

        grid[i][j] = null; 

    } 

  } 

  

  // create centre hole (for valid objects to be collected 

  int centreHole = centreHoleConst; 

  int jSwitch = 0; 

  for (int j = 0; j < (centreHole*2)-1; j++) { 

    if (j == centreHole) 

      jSwitch +=2;     

    if (j > centreHole) 

      jSwitch += 2;  

       

      for (int i = 0; i < centreHole+j-jSwitch; i++){ 

        int xPos = i+((cols-1)/2)-j; 

        int yPos = j+((cols-1)/2)+ 1 - centreHole; 

         

        if (j > centreHole-2){ 

          xPos += j - centreHole+1; 

                

        } 

        grid[xPos][yPos] = null; 

      } 

  } 

         

  // create robots (surrounding centre hole) 

  hBot = new Bot[numberOfBots]; 

  int xStart = 0; 

  int yStart = 0; 

  int deleteAmount = 0; 

      

    for (int j = 0; j < numberOfBots; j++) { 

      int i = j - deleteAmount;                          

       

      if (i == (centreHole*6)){                

        deleteAmount += (centreHole*6); 

        i = i - (centreHole*6); 

        centreHole++;                  

      }             

       

      xStart = (cols-1)/2 + (i);            // across top 

      yStart = ((cols-1)/2)-centreHole; 

       

      if (i > (centreHole)){ // top right side 

        xStart = xStart - (i - centreHole); 

        yStart = yStart + (i - centreHole); 

      } 

       

      if (i > (centreHole*2)) { // bottom right side 

        xStart = xStart - (i - (centreHole*2)); 

      } 

       



 

208 
 

      if (i > (centreHole*3)) { // bottom side 

        xStart = ((cols-1)/2) - (i - (centreHole*3)); 

        yStart = ((cols-1)/2)+centreHole; 

      } 

       

      if (i > (centreHole*4)) { // bottom left side 

        xStart = xStart + (i - (centreHole*4)); 

        yStart = yStart - (i - (centreHole*4));     

      } 

       

      if (i > (centreHole*5)) { // top left side 

        xStart = xStart + (i - (centreHole*5)); 

      } 

       

      hBot[j] = new Bot(xStart,yStart); 

    } 

 

   

  // create objects 

  oCell = new ObjectCell[noOfShapes][largestSize]; 

  triObj = new TriangularObject[noOfShapes];   

    int position = 0; 

    triObj[0] = new TriangularObject(0); 

    //triObj[1] = new TriangularObject(1); 

    //triObj[2] = new TriangularObject(2); 

    triObj[3] = new TriangularObject(3); 

    triObj[4] = new TriangularObject(4); 

    //triObj[5] = new TriangularObject(5); 

 

  hexObj = new HexagonalObject[noOfShapes];   

    //hexObj[0] = new HexagonalObject(0); 

    hexObj[1] = new HexagonalObject(1); 

    hexObj[2] = new HexagonalObject(2); 

    //hexObj[3] = new HexagonalObject(3); 

    //hexObj[4] = new HexagonalObject(4); 

    hexObj[5] = new HexagonalObject(5); 

   

  for(int i = 0; i < 3; i++){ 

    results[i] = 0; 

  } 

   

  output = createWriter(validType + numberOfBots + "hBots_" + probabilityOfMovingAway + 

"probabilityOfMoving.txt"); 

  output.println(validType + numberOfBots + "hBots_" + probabilityOfMovingAway + "probabilityOfMoving"); 

  output.println("Removed 1st;Removed 2nd;Removed 3rd;Number of times could not move;Number of Valid Removed"); 

} 

 

void draw() { 

   

  if(!first){ 

    ////// start this is for initial tests only 

    // Objects tally number of hBots trying to move them 

    for (int i = 0; i < noOfShapes; i++) { 

      for (int j = 0; j < largestSize; j++) {   

        if (oCell[i][j] != null)  { 

          oCell[i][j].senseSurroundings(); 

          oCell[i][j].sumUp();  

        } 

      } 

    } 

     

    // Objects Moved off Arena are Deleted 

    for (int i = 0; i < noOfShapes; i++) { 

      int tallyForDelete = 0; 

      // delete hexagonal objects when a certain amount of parts are over the edge 

      if (hexObj[i] != null){ 

        for (int j = 0; j < hexSize; j++){ 

          if (grid[oCell[i][j].x][oCell[i][j].y] != null){ 

            tallyForDelete++; 

          }  

        } 

        if (tallyForDelete < 5){ 

          hexObj[i].delete(); 

          hexObj[i] = null; 

          displayData(true); // true for hexagon       

        } 

      } 

      // delete triangular objects when a certain amount of parts are over the edge 

      if (triObj[i] != null){ 

        for (int j = 0; j < triSize; j++){ 

          if (grid[oCell[i][j].x][oCell[i][j].y] != null){ 

            tallyForDelete++; 

          }  

        } 

        if (tallyForDelete < 4){ 

          triObj[i].delete(); 

          triObj[i] = null;  

          displayData(false); // false for triangle     

        } 

      }     

    }  

     

    // Objects are moved 

    for (int i = 0; i < noOfShapes; i++) { 

      if (hexObj[i] != null){      

        hexObj[i].tally(); // number of correct colour contacts 

        if (hexObjValid == true)  

          hexObj[i].move();      

      }        

   

      if (triObj[i] != null) { 

        triObj[i].tally(); 
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        if (triObjValid == true)  

          triObj[i].move();  

      } 

    } 

    ///// end this is for initial tests only 

    ///////////////////////////////////////     

     

    // refresh and check 

    checkCurrentCellStates(); 

    

    //// HBOTS SENSE then MOVE 

    randomiseOrder(); 

     

    // SENSE hBot SURROUNDINGS 

    for (int i = 0; i < numberOfBots; i++) {     

      hBot[i].senseSurroundings(); 

      hBot[i].changePosition(i);   // hBots in state 1 or 2 revert to state 0 when    //moved 

    } 

    //// end HBOTS SENSE then MOVE 

     

    // refresh and check 

    checkCurrentCellStates(); 

     

    /////// CHANGING HBOT STATE 

    // HBOTS SENSE SURROUNDINGS 

    for (int i = 0; i < numberOfBots; i++) {     

      hBot[i].senseSurroundings();     

    } 

   

    // hBot change state 

    for (int i = 0; i < numberOfBots; i++) {      

      hBot[i].changeState();     

    } 

    //// end CHANGE HBOT STATE 

  }   

   

  // refresh and check 

  checkCurrentCellStates(); 

   

  //// DISPLAY GRID OF CELLS 

  if(useGraphicDisplay){ 

    for (int i = 0; i < cols; i++) { 

      for (int j = 0; j < rows; j++) { 

        if (grid[i][j] != null) 

          grid[i][j].display(j); 

      } 

    } 

  } 

  //// end DISPLAY GRID OF CELLS  

 

  //// UPDATE TEST 

  // increase number of steps taken 

  first = false; 

  steps++; 

   

  if(noOfValidRemoved == 3 || steps == maxTimeSteps){    

    currentTest++; 

    println(results[0] + ";" + results[1] + ";" + results[2] + ";" + noTimeCouldNotMove + ";" + noOfValidRemoved); 

    output.println(results[0] + ";" + results[1] + ";" + results[2] + ";" + noTimeCouldNotMove + ";" + 

noOfValidRemoved); 

     

    if(currentTest == maxTests){ 

       

      output.flush(); 

      output.close(); 

       

      if(numberOfBots == maxNumberOfBots){         

        exit(); 

      } 

      else{ 

        currentTest = 0; 

        numberOfBots += 10; 

        output = createWriter(validType + numberOfBots + "hBots_" + probabilityOfMovingAway + 

"probabilityOfMoving.txt"); 

        output.println(validType + numberOfBots + "hBots_" + probabilityOfMovingAway + "probabilityOfMoving"); 

        output.println("Removed 1st;Removed 2nd;Removed 3rd;Number of times could not move;Number of Valid 

Removed"); 

      } 

    } 

    reset();  

  } 

  //// end UPDATE TEST 

} 

 

void checkCurrentCellStates(){ 

  // REFRESH CELLS 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < rows; j++) { 

      if (grid[i][j] != null) 

        grid[i][j].colour = white; 

    } 

  } 

 

  // CHECK FOR HBOT POSITION AND STATE TO UPDATE DISPLAY CELLS 

  for (int i = 0; i < numberOfBots; i++) { 

    // change square colour where hBot is based on the state of the hBot 

    if (grid[hBot[i].x][hBot[i].y] != null) 

      grid[hBot[i].x][hBot[i].y].colourChange(hBot[i].currentState); 

  } 

   

  // CHECK FOR OBJECT POSITIONS 

  for (int i = 0; i < noOfShapes; i++) { 
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    for (int j = 0; j < largestSize; j++) {   

      if (oCell[i][j] != null && grid[oCell[i][j].x][oCell[i][j].y] != null)  

        grid[oCell[i][j].x][oCell[i][j].y].colourChange(10);  

    } 

  }   

} 

 

void randomiseOrder(){ 

  // initialise randOrder for movement 

  randOrder = new int[numberOfBots]; 

   

  for(int i = 0; i < numberOfBots; i++){ 

    randOrder[i] = i; 

  } 

   

  for(int i = 0; i < numberOfBots; i++) 

  { 

    int posA = (int) random(numberOfBots); 

    int posB = (int) random(numberOfBots); 

    int tempA = randOrder[posA]; 

    int tempB = randOrder[posB]; 

     

    randOrder[posA] = tempB; 

    randOrder[posB] = tempA; 

  } 

} 

 

void mouseClicked(){ 

    useGraphicDisplay = !useGraphicDisplay; 

} 

 

///////////////////////////////////////////////////////////////////////////////// 

// A Cell Object Class  

 

class Cell { 

  // A cell object knows about its location in the grid 

  float x,y; //x,y location 

  color colour; 

   

  // Cell Constructor 

  Cell(float tempX, float tempY, color tempColour){ 

    x = tempX; 

    y = tempY; 

    colour = tempColour;     

  } 

   

  //colour change 

  void colourChange(int tempState) { 

    if (tempState == 0) 

        colour = grey; 

    if (tempState == 1) 

        colour = green;     

    if (tempState == 2) 

        colour = blue;       

    if (tempState == 3) 

        colour = red;               

    if (tempState == 4) 

        colour = purple;            

       

    // solid object 

    if (tempState == 10) 

      colour = black; 

     

    // wall object 

    if (tempState == 11) 

      colour = darkGrey; 

  }  

   

  void display(int j) { 

    translate(0.5*hexWidth,0.5*hexHeight); //start with first cell fully in window 

     

    noStroke(); 

    strokeWeight(2); 

    fill(colour); 

     

     

    ellipse(x+(j*0.5*hexWidth),y,hexWidth,hexWidth); // speeds up display 

    translate(-0.5*hexWidth,-0.5*hexHeight); //reset centre co-ordinate 

     

  } 

} 

 

///////////////////////////////////////////////////////////////////////////////////// 

// Display Data Function 

 

void displayData(boolean hexagonal) { 

  if (hexagonal == true && hexObjValid == true)  { 

    //Valid hex removed   

    results[noOfValidRemoved] = steps; 

    noOfValidRemoved++; 

  } 

  if (hexagonal == false && triObjValid == true) {  

    // Valid tri removed 

    results[noOfValidRemoved] = steps;  

    noOfValidRemoved++; 

  } 

} 

 

/////////////////////////////////////////////////////////////////////////////////////// Function to CREATE A GROU

P OF HEXAGON CELLS INTO TRIANGLE SHAPE 

 

void triCreate(int xPos, int yPos, int i) { 
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  oCell[i][0] = new ObjectCell(xPos,yPos); 

  oCell[i][1] = new ObjectCell(xPos-1,yPos+1); 

  oCell[i][2] = new ObjectCell(xPos,yPos+1); 

   

  if (triSize > 3) { 

    oCell[i][3] = new ObjectCell(xPos-2,yPos+2); 

    oCell[i][4] = new ObjectCell(xPos-1,yPos+2); 

    oCell[i][5] = new ObjectCell(xPos,yPos+2);   

  } 

   

  if (triSize > 6) { 

    oCell[i][6] = new ObjectCell(xPos-3,yPos+3); 

    oCell[i][7] = new ObjectCell(xPos-2,yPos+3); 

    oCell[i][8] = new ObjectCell(xPos-1,yPos+3); 

    oCell[i][9] = new ObjectCell(xPos,yPos+3);   

  } 

 

} 

 

/////////////////////////////////////////////////////////////////////////////////////// Function to CREATE A GROU

P OF HEXAGON CELLS INTO HEXAGON SHAPE 

void hexCreate(int xPos, int yPos, int i) { 

   

  oCell[i][0] = new ObjectCell(xPos,yPos); 

   

  oCell[i][1] = new ObjectCell(xPos+1,yPos-1); 

  oCell[i][2] = new ObjectCell(xPos+1,yPos); 

  oCell[i][3] = new ObjectCell(xPos,yPos+1); 

  oCell[i][4] = new ObjectCell(xPos-1,yPos+1); 

  oCell[i][5] = new ObjectCell(xPos-1,yPos); 

  oCell[i][6] = new ObjectCell(xPos,yPos-1); 

   

  if (hexSize > 7) { 

  oCell[i][7] = new ObjectCell(xPos+1,yPos-2); 

  oCell[i][8] = new ObjectCell(xPos+2,yPos-2); 

  oCell[i][9] = new ObjectCell(xPos+2,yPos-1); 

  oCell[i][10] = new ObjectCell(xPos+2,yPos); 

  oCell[i][11] = new ObjectCell(xPos+1,yPos+1); 

  oCell[i][12] = new ObjectCell(xPos,yPos+2); 

  oCell[i][13] = new ObjectCell(xPos-1,yPos+2); 

  oCell[i][14] = new ObjectCell(xPos-2,yPos+2); 

  oCell[i][15] = new ObjectCell(xPos-2,yPos+1); 

  oCell[i][16] = new ObjectCell(xPos-2,yPos); 

  oCell[i][17] = new ObjectCell(xPos-1,yPos-1); 

  oCell[i][18] = new ObjectCell(xPos,yPos-2); 

   

  } 

} 

 

///////////////////// 

// reset 

 

void reset(){ 

// create robots (surrounding centre hole) 

  hBot = new Bot[numberOfBots]; 

  int xStart = 0; 

  int yStart = 0; 

  int deleteAmount = 0; 

  int centreHole = centreHoleConst; 

      

  for (int j = 0; j < numberOfBots; j++) { 

    int i = j - deleteAmount;                          

     

    if (i == (centreHole*6)){                

      deleteAmount += (centreHole*6); 

      i = i - (centreHole*6); 

      centreHole++;                  

    }             

     

    xStart = (cols-1)/2 + (i);            // across top 

    yStart = ((cols-1)/2)-centreHole; 

     

    if (i > (centreHole)){ // top right side 

      xStart = xStart - (i - centreHole); 

      yStart = yStart + (i - centreHole); 

    } 

     

    if (i > (centreHole*2)) { // bottom right side 

      xStart = xStart - (i - (centreHole*2)); 

    } 

     

    if (i > (centreHole*3)) { // bottom side 

      xStart = ((cols-1)/2) - (i - (centreHole*3)); 

      yStart = ((cols-1)/2)+centreHole; 

    } 

     

    if (i > (centreHole*4)) { // bottom left side 

      xStart = xStart + (i - (centreHole*4)); 

      yStart = yStart - (i - (centreHole*4));     

    } 

     

    if (i > (centreHole*5)) { // top left side 

      xStart = xStart + (i - (centreHole*5)); 

    } 

     

    hBot[j] = new Bot(xStart,yStart); 

  } 
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  // create objects 

  oCell = new ObjectCell[noOfShapes][largestSize]; 

  triObj = new TriangularObject[noOfShapes];   

    int position = 0; 

    triObj[0] = new TriangularObject(0); 

    //triObj[1] = new TriangularObject(1); 

    //triObj[2] = new TriangularObject(2); 

    triObj[3] = new TriangularObject(3); 

    triObj[4] = new TriangularObject(4); 

    //triObj[5] = new TriangularObject(5); 

 

  hexObj = new HexagonalObject[noOfShapes];   

    //hexObj[0] = new HexagonalObject(0); 

    hexObj[1] = new HexagonalObject(1); 

    hexObj[2] = new HexagonalObject(2); 

    //hexObj[3] = new HexagonalObject(3); 

    //hexObj[4] = new HexagonalObject(4); 

    hexObj[5] = new HexagonalObject(5); 

   

  for(int i = 0; i < 3; i++){ 

    results[i] = 0; 

  } 

   

  // 

  steps = 0; 

  noTimeCouldNotMove = 0; 

  noOfValidRemoved = 0; 

   

} 

 

////////////////////////////////////////////////////////////////////////////////// 

// A Bot object class   

 

class Bot { 

  // A Bot object knows about its location in the grid, it's current state and the  

  // state of surrounding grid. 

  int x,y;   // x,y grid location 

  int currentState; // state, determins action 

  color[] sensed = {white,white,white,white,white,white}; // NE E SE SW W NW 

   

  // Bot constructor 

  Bot(int tempX, int tempY) { 

    x = tempX; 

    y = tempY; 

    currentState = 0; 

     

    // inner ring sensor  

    for(int i = 0; i < sensed.length; i++){ 

      sensed[i] = white; 

    }  

  } 

   

  // Change state based on sensed data 

  void changeState() { 

     

    int noOfObjContacts = 0; 

    int noOfGreenContacts = 0; 

    int noOfBlueContacts = 0; 

     

    // checks for objects (black) 

    for(int i = 0; i < sensed.length; i++){ 

      if(sensed[i] == black){ 

        noOfObjContacts++; 

      } 

    }     

       

    // set current state to 0 (no contact) when there is no contact 

    if (noOfObjContacts == 0) 

      currentState = 0;         

     

    // check for states 3 and 4 

    if (currentState != 0){    

      for(int i = 0; i < sensed.length; i++){      

        // checks for state 3 (red) 

        if (sensed[i] == red && noOfObjContacts > 0){ 

          if (currentState != 4) // blue (2) or green (1) changes to red (3) 

            currentState = 3; 

          if (currentState == 4) // purple (4) changes to grey (0) temporarily 

            currentState = 0; 

        } 

        // checks for state 4 (purple) 

        if (sensed[i] == purple && noOfObjContacts > 0){ 

          if (currentState != 3) // blue (2) or green (1) changes to purple (4) 

            currentState = 4; 

          if (currentState == 3) // red (3) changes to grey (0)  

            currentState = 0; 

        } 

         

      }     

    } 

      

     

    if (currentState != 3 && currentState != 4) { 

      // if contact is with object, change state 

      if (noOfObjContacts == 1) 

        currentState = 1; 

      if (noOfObjContacts == 2) 

        currentState = 2; 
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      // checks for state 1 contacts (green)  

      for(int i = 0; i < sensed.length; i++){ 

        if (sensed[i] == green) 

          noOfGreenContacts++; 

        if (sensed[i] == blue) 

          noOfBlueContacts++; 

      } 

       

      if (noOfObjContacts == 1 && noOfBlueContacts == 2 && noOfGreenContacts == 0) 

        currentState = 4;       

       

      if (noOfObjContacts == 1 && noOfBlueContacts == 1 && noOfGreenContacts == 1) 

        currentState = 3; 

         

    } 

  

      

    // change to zero state when near edge 

    for(int i = 0; i < sensed.length; i++){ 

      if (sensed[i] == darkGrey) 

        currentState = 0;  

    }     

  } 

   

  // Sense surroundings 

  void senseSurroundings() { 

    // reset sensed values to white   

    for(int i = 0; i < sensed.length; i++){ 

      sensed[i] = white; 

    } 

     

    if (grid[x + 1][y - 1] != null) 

      sensed[0] = grid[x + 1][y - 1].colour; // NE looks at colour value of cell to determine colour 

    if (grid[x + 1][y] != null) 

      sensed[1] = grid[x + 1][y].colour; // E 

    if (grid[x][y + 1] != null) 

      sensed[2] = grid[x][y + 1].colour; // SE     

    if (grid[x - 1][y + 1] != null) 

      sensed[3] = grid[x - 1][y + 1].colour; //SW      

    if (grid[x - 1][y] != null) 

      sensed[4] = grid[x - 1][y].colour;   //W 

    if (grid[x][y - 1] != null) 

      sensed[5] = grid[x][y - 1].colour; //NW 

       

    // sets sensed value to darkGrey (wall/hole) if value is null 

    if (grid[x + 1][y - 1] == null) 

      sensed[0] = darkGrey; 

    if (grid[x + 1][y] == null) 

      sensed[1] = darkGrey; 

    if (grid[x][y + 1] == null) 

      sensed[2] = darkGrey;     

    if (grid[x - 1][y + 1] == null) 

      sensed[3] = darkGrey;       

    if (grid[x - 1][y] == null) 

      sensed[4] = darkGrey;    

    if (grid[x][y - 1] == null) 

      sensed[5] = darkGrey;       

  } 

   

   

  // change position of bot based on surroundings and probability 

  void changePosition(int currentBot) { 

    int xOld = x; 

    int yOld = y; 

                              // NE,  E,  SE,  SW,  W,   NW 

    boolean possDirections[] = {true,true,true,true,true,true}; 

    int direction = -1; 

     

    // check possible directions (don't move into object shape or arena boundary 

    for(int i = 0; i < sensed.length; i++){ 

      if (sensed[i] == black || sensed[i] == darkGrey) { 

        possDirections[i] = false; 

      }       

    }     

     

    int[] checkAll = {0,0,0,0,0,0}; 

    boolean leaveLoop = false; 

     

    do{ 

      direction = (int)(random(6)); // pick random direction 

      checkAll[direction] = 1; // note direction has been selected 

      int totalCheck = 0; 

      for (int i = 0; i < checkAll.length; i++){ 

        totalCheck += checkAll[i]; // tally the number of directions selected 

      } 

       

      if (totalCheck == 6){ // if all directions selected 

        leaveLoop = true; 

        direction = -1; // if all directions are not possible stay still 

      } 

       

    }while (leaveLoop == false && possDirections[direction] == false); // if direction not possible loop 

     

    if(direction != -1 && possDirections[direction] == false){ 

      println("bad move by hBot"); 

      exit(); 

    }   

     

    if((currentState == 1 || currentState == 2) && (random(1) > probabilityOfMovingAway)){ 

      x = xOld; 

      y = yOld; 

    }     
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    // if next to valid object and in state 3 or 4 as appropriate stay still 

    else if((currentState == 3 && triObjValid) || (currentState == 4 && hexObjValid)){ 

      // stay still 

      x = xOld; 

      y = yOld; 

    } 

    else{ 

      // move in the selected direction 

      if (direction == 0){ // NE 

        x += 1; 

        y -= 1; 

      } 

      else if (direction == 1){ // E 

        x += 1; 

      } 

      else if (direction == 2){ // SE 

        y += 1; 

      } 

      else if (direction == 3){ // SW 

        x -= 1; 

        y += 1; 

      } 

      else if (direction == 4){ // W 

        x -= 1; 

      } 

      else if (direction == 5){ // NW 

        y -= 1; 

      } 

      else{ 

        x = x; 

        y = y; 

        // stay still 

        //println("Stay still"); 

      } 

    } 

     

    // if movement isn't possible because of other hBot stay still 

    // check for bots on top of each other 

    for (int i = 0; i < numberOfBots; i++){ 

      if(i != currentBot){ // is this another hBot 

        if(hBot[i].x == x && hBot[i].y == y){ // is there an agent in this cell 

          //println("hBot in that cell!   " + direction); // move back to original possition  

          x = xOld; 

          y = yOld;       

        } 

      } 

    } 

    

    // when a state 1 or 2 hBot moves change it to state zero  

    if ((xOld != x || yOld != y) && (currentState == 1 || currentState == 2)) 

        currentState = 0;        

  }     

} 

 

/////////////////////////////////////////////////////////////////////////////////////// An Object Cell Class  

class ObjectCell { 

   

  int x,y; 

  int sumPurple, sumRed; 

  color[] sensed = {white,white,white,white,white,white};  

   

  ObjectCell(int tempX, int tempY) { 

    x = tempX; 

    y = tempY; 

     

    sumPurple = 0; 

    sumRed = 0; 

 

    // inner ring sensor  

    for(int i = 0; i < sensed.length; i++){ 

      sensed[i] = white; 

    } 

  } 

 

  // Sense surroundings 

  void senseSurroundings() { 

    // reset sensed values to white   

    for(int i = 0; i < sensed.length; i++){ 

      sensed[i] = white; 

    } 

     

    // make sure sensed value is within range. 

    if (x-1 > 0 && y - 1 > 0 && x+1 < cols && y + 1 < cols) {     

      if (grid[x + 1][y - 1] != null) 

        sensed[0] = grid[x + 1][y - 1].colour; // looks at colour value of cell to determine colour 

      if (grid[x + 1][y] != null) 

        sensed[1] = grid[x + 1][y].colour; 

      if (grid[x][y + 1] != null) 

        sensed[2] = grid[x][y + 1].colour;     

      if (grid[x - 1][y + 1] != null) 

        sensed[3] = grid[x - 1][y + 1].colour;       

      if (grid[x - 1][y] != null) 

        sensed[4] = grid[x - 1][y].colour;    

      if (grid[x][y - 1] != null) 

        sensed[5] = grid[x][y - 1].colour;     

   

      // sets sensed value to darkGrey (wall/hole) if value is null 

      if (grid[x + 1][y - 1] == null) 

        sensed[0] = darkGrey; 

      if (grid[x + 1][y] == null) 
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        sensed[1] = darkGrey; 

      if (grid[x][y + 1] == null) 

        sensed[2] = darkGrey;     

      if (grid[x - 1][y + 1] == null) 

        sensed[3] = darkGrey;       

      if (grid[x - 1][y] == null) 

        sensed[4] = darkGrey;    

      if (grid[x][y - 1] == null) 

        sensed[5] = darkGrey; 

    } 

  } 

   

  // sum up total red and purple hexagons. 

  void sumUp() { 

    sumRed = 0; 

    sumPurple = 0; 

     

    for(int i = 0; i < sensed.length; i++){ 

      if (sensed[i] == purple) 

        sumPurple++; 

      if (sensed[i] == red) 

        sumRed++;  

    }    

  } 

 

} 

 

// A triangular object 

class TriangularObject { 

 

  int x,y; 

  int object; 

  int totalRed, totalPurple; 

   

  TriangularObject(int tempPos) { 

     

    if (tempPos == 0) { 

      x = x0 + 1; 

      y = y0 - 1; 

    } 

    else if (tempPos == 1) { 

      x = x1; 

      y = y1 - 1; 

    } 

    else if (tempPos == 2) { 

      x = x2 + 1; 

      y = y2 - 1; 

    } 

    else if (tempPos == 3) { 

      x = x3; 

      y = y3 - 1; 

    } 

    else if (tempPos == 4) { 

      x = x4; 

      y = y4 - 1; 

    } 

    else if (tempPos == 5) { 

      x = x5 + 1; 

      y = y5 - 1; 

    } 

     

    object = tempPos; 

    totalRed = 0; 

    totalPurple = 0; 

     

    triCreate(x,y,object); 

  } 

   

  void delete() { 

    for (int j = 0; j < triSize; j++) { 

      oCell[object][j] = null; 

    } 

  }         

   

  void tally() { 

    totalRed = 0; 

    totalPurple = 0; 

     

    for (int j = 0; j < triSize; j++) { 

       totalRed = totalRed + oCell[object][j].sumRed; 

       totalPurple = totalPurple + oCell[object][j].sumPurple; 

    } 

  } 

   

  void move() { 

    boolean testForMove = true; 

     

    for (int i = 0; i < numberOfBots; i++) { 

      //check of hBot contact with object 

      if (   (hBot[i].x == x     && hBot[i].y == y - 1)  

          || (hBot[i].x == x + 1 && hBot[i].y == y - 1)  

          || (hBot[i].x == x + 1 && hBot[i].y == y)  

          || (hBot[i].x == x + 1 && hBot[i].y == y + 1) 

          || (hBot[i].x == x + 1 && hBot[i].y == y + 2) 

          || (hBot[i].x == x     && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 1 && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 2 && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 3 && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 3 && hBot[i].y == y + 2) 

          || (hBot[i].x == x - 2 && hBot[i].y == y + 1) 

          || (hBot[i].x == x - 1 && hBot[i].y == y)){ 
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            //is there a nearby robot in state 1 

            for(int j = 0; j < 6; j++){ 

              if(hBot[i].sensed[j] == grey) 

                testForMove = false; 

            } 

      } 

    } 

 

    if(testForMove == false){ 

      //println("CANNOT MOVE TRIANGULAR OBJECT"); 

      noTimeCouldNotMove++; 

    }     

     

    for (int j = 0; j < largestSize; j++) { 

      if(oCell[object][j] != null){ 

        for(int k = 0; k < 6; k++){   

          if(oCell[object][j].sensed[k] == grey) 

            testForMove = false; 

        } 

      } 

    } 

     

    if (testForMove == true){ 

      int xMove = 0; 

      int yMove = 0; 

       

      // check for suitable number of contacts 

      if (totalRed > pushers + 1) { 

         

        if (object == 0){ 

          yMove = 1; 

        } 

        if (object == 1) { 

          yMove = 1; 

          xMove = -1; 

        }   

        if (object == 2) { 

          xMove = 1; 

        } 

        if (object == 3) { 

          xMove = -1; 

        } 

        if (object == 4) { 

          yMove = -1; 

          xMove = 1; 

        } 

        if (object == 5) { 

          yMove = -1; 

        }  

 

        // switch direction if object invalid 

        if (triObjValid == false) { 

           yMove = -yMove; 

           xMove = -xMove; 

        } 

         

       

        for (int j = 0; j < triSize; j++) { 

          oCell[object][j].x += xMove; 

          oCell[object][j].y += yMove; 

        } 

         

        // if a hBot surrounds the triangle it should move with it 

        for (int i = 0; i < numberOfBots; i++) { 

          if (   (hBot[i].x == x     && hBot[i].y == y - 1)  

              || (hBot[i].x == x + 1 && hBot[i].y == y - 1)  

              || (hBot[i].x == x + 1 && hBot[i].y == y)  

              || (hBot[i].x == x + 1 && hBot[i].y == y + 1) 

              || (hBot[i].x == x + 1 && hBot[i].y == y + 2) 

              || (hBot[i].x == x     && hBot[i].y == y + 3) 

              || (hBot[i].x == x - 1 && hBot[i].y == y + 3) 

              || (hBot[i].x == x - 2 && hBot[i].y == y + 3) 

              || (hBot[i].x == x - 3 && hBot[i].y == y + 3) 

              || (hBot[i].x == x - 3 && hBot[i].y == y + 2) 

              || (hBot[i].x == x - 2 && hBot[i].y == y + 1) 

              || (hBot[i].x == x - 1 && hBot[i].y == y)){ 

   

                 hBot[i].x += xMove; 

                 hBot[i].y += yMove; 

              } 

        } 

        x += xMove; // update current object position 

        y += yMove; 

      } 

    }      

  } 

   

} 

 

// A hexagonal object 

class HexagonalObject { 

 

  int x,y; 

  int object; 

  int totalRed, totalPurple; 

   

  HexagonalObject(int tempPos) { 

 

    if (tempPos == 0) { 

      x = x0; 

      y = y0; 

    } 
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    else if (tempPos == 1) { 

      x = x1; 

      y = y1; 

    } 

    else if (tempPos == 2) { 

      x = x2; 

      y = y2; 

    } 

    else if (tempPos == 3) { 

      x = x3; 

      y = y3; 

    } 

    else if (tempPos == 4) { 

      x = x4; 

      y = y4; 

    } 

    else if (tempPos == 5) { 

      x = x5; 

      y = y5; 

    } 

     

    object = tempPos; 

    totalRed = 0; 

    totalPurple = 0; 

     

    hexCreate(x,y,object); 

  } 

   

  void delete() { 

    for (int j = 0; j < hexSize; j++) { 

      oCell[object][j] = null; 

    } 

  }   

   

  void tally() { 

    totalRed = 0; 

    totalPurple = 0; 

     

    for (int j = 0; j < hexSize; j++) { 

       totalRed = totalRed + oCell[object][j].sumRed; 

       totalPurple = totalPurple + oCell[object][j].sumPurple; 

    } 

  } 

   

  void move() { 

    boolean testForMove = true; 

     

    for (int i = 0; i < numberOfBots; i++) { 

      //check of hBot contact with object 

      if (   (hBot[i].x == x     && hBot[i].y == y - 1)  

          || (hBot[i].x == x + 1 && hBot[i].y == y - 1)  

          || (hBot[i].x == x + 1 && hBot[i].y == y)  

          || (hBot[i].x == x + 1 && hBot[i].y == y + 1) 

          || (hBot[i].x == x + 1 && hBot[i].y == y + 2) 

          || (hBot[i].x == x     && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 1 && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 2 && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 3 && hBot[i].y == y + 3) 

          || (hBot[i].x == x - 3 && hBot[i].y == y + 2) 

          || (hBot[i].x == x - 2 && hBot[i].y == y + 1) 

          || (hBot[i].x == x - 1 && hBot[i].y == y)){ 

 

            //is there a nearby robot in state 1 

            for(int j = 0; j < 6; j++){ 

              if(hBot[i].sensed[j] == grey) 

                testForMove = false; 

            } 

      } 

    }       

     

    if(testForMove == false){ 

      //println("CANNOT MOVE HEXAGONAL OBJECT"); 

      noTimeCouldNotMove++; 

    }  

     

    for (int j = 0; j < largestSize; j++) { 

      if(oCell[object][j] != null){   

        for(int k = 0; k < 6; k++){ 

          if(oCell[object][j].sensed[k] == grey) 

            testForMove = false; 

        } 

      } 

    } 

     

    if (testForMove == true){ 

     

      int xMove = 0; 

      int yMove = 0; 

       

      // check for suitable number of contacts 

      if (totalPurple > pushers + 1) { 

         

        if (object == 0){ 

          yMove = 1; 

        } 

        if (object == 1) { 

          yMove = 1; 

          xMove = -1; 

        }   

        if (object == 2) { 

          xMove = 1; 

        } 
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        if (object == 3) { 

          xMove = -1; 

        } 

        if (object == 4) { 

          yMove = -1; 

          xMove = 1; 

        } 

        if (object == 5) { 

          yMove = -1; 

        } 

         

        // switch direction if object invalid 

        if (hexObjValid == false) { 

           yMove = -yMove; 

           xMove = -xMove; 

        } 

         

        for (int j = 0; j < hexSize; j++) {          

          oCell[object][j].x += xMove; 

          oCell[object][j].y += yMove;       

        } 

         

        // if a hBot surrounds the hexagon it should move with it 

        for (int i = 0; i < numberOfBots; i++) { 

          if (   (hBot[i].x == x     && hBot[i].y == y - 2)  

              || (hBot[i].x == x + 1 && hBot[i].y == y - 2)  

              || (hBot[i].x == x + 2 && hBot[i].y == y - 2)  

              || (hBot[i].x == x + 2 && hBot[i].y == y - 1) 

              || (hBot[i].x == x + 2 && hBot[i].y == y) 

              || (hBot[i].x == x + 1 && hBot[i].y == y + 1) 

              || (hBot[i].x == x     && hBot[i].y == y + 2) 

              || (hBot[i].x == x - 1 && hBot[i].y == y + 2) 

              || (hBot[i].x == x - 2 && hBot[i].y == y + 2) 

              || (hBot[i].x == x - 2 && hBot[i].y == y + 1) 

              || (hBot[i].x == x - 2 && hBot[i].y == y) 

              || (hBot[i].x == x - 1 && hBot[i].y == y - 1)){ 

              

                hBot[i].x += xMove; 

                hBot[i].y += yMove; 

              } 

        } 

        x += xMove; // update current object position 

        y += yMove; 

      } 

    }     

  } 

   

} 

 

/////////////////////////////////////////////////////////////////////////////////// 

// A Wall Object ///////////////////////////////////////////////////////////////// 

 

class Wall { 

   

  int x,y; 

   

  Wall(int tempX, int tempY) { 

    x = tempX; 

    y = tempY; 

  } 

   

} 
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Appendix B: Initial Experiment Results 

The results from the initial experiment regarding cooperative object recognition with 

both a hexagonal and triangular object shape are contained here. The tests considered 

the number of hBots in the swarm, ranging from 10 – 200, and the probability that a 

hBot in state 1 or state 2 would move away from the object shape, 0.0 – 1.0. The 

number of valid object shapes removed was recorded along with the number of time-

steps to complete the task. Each test was repeated 50 times and the mean average, 

minimum, maximum and standard deviation are included on the plots.  



 

220 
 

B.1: Number of Hexagonal Object Shapes Removed when Valid 
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B.2: Number of Triangular Object Shapes Removed when Valid 
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B.3: Time-steps Required to Remove Three Valid Hexagonal Object Shapes 
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Hexagon Valid, 0.6 Probability of 
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B.4: Time-steps Required to Remove Three Valid Triangular Object Shapes 
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Triangular Valid, 0.6 Probability of 
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B.5: Energy Consumed to Remove Three Valid Hexagonal Object Shapes 
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B.6: Energy Consumed to Remove Three Valid Triangular Object Shapes 
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Appendix C: Object Shape Creator and Data-Chain Inspector 

This program, written in Processing, is used to create a series of object shapes starting 

with a single cell and an increasing number of cells, tried in multiple combinations. 

Data-Chains for each of the object shapes are created to determine if they are simple or 

complex object shapes.  

/////////////////////////////////////////////////// 

// Creates Object Shapes and Data-Chains         // 

/////////////////////////////////////////////////// 

 

PrintWriter output; 

 

// runComparison 

int maxCells = 10; 

 

boolean showDisplay = false; 

 

// Cell variables 

Cell[][] cell; 

int cols = 31;//objectsPerRow + ((objectsPerRow+1)*gapsize);//21; 

int rows = 31;//objectsPerRow + ((objectsPerRow+1)*gapsize);//21; 

float hexWidth = 15; 

int cX = ((cols-1)/2); 

int cY = ((rows-1)/2); 

 

// types of shapes 

int[] numberOfEachShape = new int[30]; 

boolean checkForHollow = true; 

 

// general 

int locationsX[]; // stores the x-coordinates of the spiral location value relative to the centre cell 

int locationsY[]; // stores the y-coordinates of the spiral location value relative to the centre cell 

int noOfRings = 12; 

int lowestCellInRing[]; // stores to the lowest spiral location value for each ring 

int falseCounter = 0; // counts the times that a false result is returned (to many falses force an update of 

previous object cell) 

int displayColour = 0; 

 

ObjectShape[] objectShape; 

int currentCell = 0; 

int globalID = 0; 

int currentRing = 0; 

 

TempShape tempShape; 

 

boolean newBaseObjShape = false; 

boolean firstNewObject = true; 

int baseID = 0; 

 

boolean updateHighestCellPosition = false; 

 

boolean halt = false; 

 

int fileNumber = 1; 

int limitID = 1000; 

 

void setup(){ 

  output = createWriter("DataChainsCheckedPart" + fileNumber + ".txt"); 

  output.println("Object Shape ID; Number of Cells; Length of Data-Chain; Base Shape ID; Data-Chain;Number of 

Branches;Number of valid Rep-Chains;Rep-Chains;Simple or Complex Shape;Required Visits to First Empty Cell in 

forming data-chain"); 

   

  size(arenaWidth(),arenaHeight()); // function is in Cell 

  background(0); 

     

  // create cells (x,y) 

  cell = new Cell[cols][rows]; 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < rows; j++) { 

      cell[i][j] = new Cell(i,j); 

    } 

  } 

   

  // calculate relative spiral locations 

  locationsX = new int[1000]; 

  locationsY = new int[1000]; 

  findXSpiralLocations(); 

  findYSpiralLocations(); 

   

  locationsX[0] = ((cols-1)/2); // x coordinate of 1st cell 

  locationsY[0] = ((rows-1)/2); // y coordinate of 1st cell 

   

  // calculate lowest cell number in each ring 

  lowestCellInRing = new int[noOfRings]; 

  lowestCellInRing[0] = 0; 

  for (int i = 1; i < lowestCellInRing.length; i++){ 

    lowestCellInRing[i] = (3*i*i) - (3*i) + 1; 

  } 
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  // create objectShape 

  objectShape = new ObjectShape[100000]; 

  objectShape[0] = new ObjectShape(0,0); 

   

  tempShape = new TempShape(globalID,currentCell); 

   

  // fill numberOfEachShape array 

  for (int i = 0; i < numberOfEachShape.length; i++){ 

    numberOfEachShape[i] = 0; 

  } 

   

} 

 

void draw(){ 

   

  if(globalID == limitID){ 

    limitID += 10000; 

    fileNumber++; 

    output.flush(); // Writes the remaining data to the file 

    output.close(); // Finishes the file 

    output = createWriter("DataChainsCheckedPart" + fileNumber + ".txt");  

  } 

   

  if(halt){ 

    //delay(250); 

    halt = false; 

  } 

   

  refreshCells(); 

  tempShape.markCells(0,currentCell); 

   

   

  // is object valid 

  if (tempShape.validObject(currentCell)){ 

    ////////////////////////////////////////////////////////////////////////// VALID OBJECT 

    falseCounter = 0; 

     

    refreshCells(); 

    tempShape.markCells(0,currentCell);     

    objectCode();// create objectCode 

     

    // does shape already exist 

    if (tempShape.compare()){      

      // update highest cell position 

      updateHighestCellPosition = true; 

       

      // display 

      displayTheCells(3); // orange (exising shape) 

    } 

    else{ 

      // Display 

      displayTheCells(1); // green (valid shape) 

      halt = true; 

       

      ////////////////////////////////////////////////////////////////////// SAVE SHAPE 

      // save shape to object shapes 

      objectShape[globalID] = new ObjectShape(globalID, currentCell); 

      objectShape[globalID].copyTempShape(); 

        

      /////////////// check the data-chain 

      objectShape[globalID].checkDataChain(); 

       

      // record number of shapes for each cell allowance 

      numberOfEachShape[currentCell+1]++; 

       

      // increase globalID 

      globalID++; 

       

      // update base shape and reset cell position 

      tempShape = new TempShape(globalID,currentCell); 

      tempShape.copyObjectShape(baseID); 

      tempShape.ID = globalID; 

      tempShape.numberOfCells = currentCell+1; 

       

      tempShape.locations[currentCell] = 0; 

       

      tempShape.locations[currentCell] = objectShape[globalID-1].locations[currentCell]+1; 

          

    } 

     

  } 

  /////////////////////////////////////////////////////////////////////// INVALID OBJECT 

  else{ 

    // update highest cell position 

    updateHighestCellPosition = true;  

   

    displayTheCells(2);  // red (invalid shape) 

  } 

   

  // update highest cell position 

  if (updateHighestCellPosition){ 

    updateHighestCellPosition = false; 

     

    if (falseCounter == (lowestCellInRing[currentRing+1] - lowestCellInRing[currentRing])){ 

      // load new base object shape 

      newBaseObjShape = true; 

      falseCounter = 0; 

    } 

     

    tempShape.locations[currentCell]++; 

         

    // update currentRing 
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    for (int i = 0; i < noOfRings; i++){ 

      if(tempShape.locations[currentCell] >= lowestCellInRing[i]){ 

        currentRing = i; 

      } 

    }       

     

    // check current ring number, if move to next ring reset false counter 

    if (tempShape.locations[currentCell] == lowestCellInRing[currentRing]){ //lowestCellInRing[currentRing + 1] 

      falseCounter = 0; 

    } 

     

    falseCounter++;    

  } 

   

  ////////////////////////////////////////////////////////////////////////////// CREATE NEW BS 

  if(newBaseObjShape){ 

    if (!firstNewObject){ 

      baseID++; 

    } 

    else{ 

      firstNewObject = false; 

    } 

     

    newBaseObjShape = false;   

    tempShape.copyObjectShape(baseID);      

    tempShape.numberOfCells++;  

    currentCell = tempShape.numberOfCells-1; 

    tempShape.locations[currentCell] = 0;     

    tempShape.ID = globalID; 

     

  } 

   

  // compare the shapes 

  if (currentCell == maxCells){ 

    println("FLUSH with currentCell: " + currentCell); 

    output.flush(); // Writes the remaining data to the file 

    output.close(); // Finishes the file 

    exit(); 

  }    

} 

 

void refreshCells(){ 

  // REFRESH CELLS 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < rows; j++) { 

        cell[i][j].cellState = -1; 

    } 

  } 

} 

 

void displayTheCells(int displayColour){   

  if(showDisplay){ 

    refreshCells(); 

    tempShape.markCells(displayColour,currentCell); 

     

    // DISPLAY GRID OF CELLS 

    for (int i = 0; i < cols; i++) { 

      for (int j = 0; j < rows; j++) { 

        if (cell[i][j] != null) 

          cell[i][j].display(j); 

      } 

    }   

   

     

    refreshCells(); 

    tempShape.markCells(0,currentCell); 

  } 

} 

///////////////////////////////////////////////////////////////////////////////// 

// A Cell Object //////////////////////////////////////////////////////////////// 

class Cell { 

  // A cell object knows about its location in the grid 

  float x,y; //x,y location of centre point 

  //color colour = cWhite; 

  int cellState = -1; 

  float hexHeight = 4 * (0.5 * hexWidth) * (tan((radians(30))));   

   

  // Cell Constructor 

  Cell(float tempX, float tempY){   

    x = (tempX*hexWidth)+2; 

    y = (tempY*hexHeight*0.75)+1;   

  } 

   

  void display(int j) { 

    rectMode(CENTER); 

    translate(0.5*hexWidth,0.5*hexHeight); //start with first cell fully in window 

     

    noStroke(); 

    strokeWeight(2); 

    fill(colourFromNumber(cellState)); // change colour based on cell state 

     

    translate(j*0.5*hexWidth,0); // shift right for each new line 

    //ellipse(x,y,hexWidth,hexWidth); 

     

    translate(x,y); 

    for (int i = 0; i < 3; i++) { 

      rect(0,0,hexWidth,0.5*hexHeight); // draw rectangle 

      stroke(0); 

      line(-0.5*hexWidth,-0.25*hexHeight,-0.5*hexWidth,0.25*hexHeight); 

      line(0.5*hexWidth,-0.25*hexHeight,0.5*hexWidth,0.25*hexHeight); 

      noStroke(); 

      rotate(PI/3); 
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    } 

     

    rotate(PI); // reset rotation     

    translate(-x,-y); //reset centre co-ordinate 

     

    translate(-j*0.5*hexWidth,0); //reset centre co-ordinate 

     

    translate(-0.5*hexWidth,-0.5*hexHeight); //reset centre co-ordinate 

     

  } 

} 

 

// which states are which colours 

int colourFromNumber(int tempNumber){ 

  // Colours 

  color cRed = color(255,0,0); 

  color cOrange = color(255,165,0); 

  color cGreen = color(50,205,50); 

   

  color cWhite = color(255,255,255); // empty cell 

  color cBlack = color(0,0,0); 

   

  // Colours  

  if (tempNumber == 1)  // valid and new 

    return(cGreen); 

  else if (tempNumber == 2) // invalid 

    return(cRed); 

  else if (tempNumber == 3) // valid but repeats 

    return(cOrange); 

 

  else if (tempNumber == -1) 

    return(cWhite);  

   

  else 

    return(cBlack); 

} 

 

// calc arena size based on size and number of cells 

int arenaWidth(){ 

  return((int)(1.5*hexWidth*(cols-0.2))); 

} 

int arenaHeight(){ 

  return((int)(0.75*4*(0.5*hexWidth)*(tan((radians(30))))*(rows+0.5))); 

} 

 

class ObjectShape{ 

  int[] objectCode = new int[50]; 

  int codeLength; 

  int ID; 

  int numberOfCells; 

  int[] locations; 

   

  int visitsToFirstEmpty = 0; 

   

  ObjectShape(int tempID, int tempNumberOfCells){ 

    for (int i=0; i < objectCode.length; i++){ 

      objectCode[i] = 0; 

    }  

    

    numberOfCells = tempNumberOfCells+1; 

    ID = tempID;  

     

    locations = new int[20]; 

     

    for (int i = 0; i < locations.length; i++){ 

      locations[i] = -100; 

    } 

     

    locations[0] = 0; 

  } 

   

  // copy temp shape data 

  void copyTempShape(){ 

    ID = tempShape.ID; 

    numberOfCells = tempShape.numberOfCells; 

    codeLength = tempShape.codeLength; 

    visitsToFirstEmpty = tempShape.visitsToFirstEmpty; 

     

    for(int i = 0; i < objectCode.length; i++){ 

      objectCode[i] = tempShape.objectCode[i]; 

    } 

     

    for(int i = 0; i < locations.length; i++){ 

      locations[i] = tempShape.locations[i]; 

    }    

  } 

  

  void checkDataChain(){ 

    dataChainChecker();  

  }  

} 

// given an initial centre co-ordinate of the 1st object cell 

// find the x,y coordinate for each spiral location 

// spiral location starts with 0 in the centre and spirals out increasing in value 

 

void findXSpiralLocations(){ 

  int xTrack = cX;//((cols-1)/2); // relative x-coordinate based on current spiral location value 

  int addJ = 0; 

   

  for (int i = 1; i <= noOfRings; i++){ // i is ring number 
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    //boolean xAA;  // first value +2 rather than +1 

    int xA = i;       // number of times to +1 to x-tracker 

    int xB = i;   // number of times to +0 to x-tracker 

    int xC = 2*i; // number of times to -1 from x-tracker 

    int xD = i;   // number of times to +0 to x-tracker 

    int xE = i;       // number of times to +1 to x-tracker 

   

    for (int j = 1; j <= xA; j++){ 

      xTrack = xTrack+1;       

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA+1; j <= xA + xB; j++){ 

      xTrack = xTrack; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA + xB + 1; j <= xA + xB + xC; j++){ 

      xTrack = xTrack-1; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA + xB + xC + 1; j <= xA + xB + xC + xD; j++){ 

      xTrack = xTrack; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA + xB + xC + xD + 1; j <= xA + xB + xC + xD + xE; j++){ 

      xTrack = xTrack+1; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    addJ = xA + xB + xC + xD + xE + addJ; 

  } 

} 

 

void findYSpiralLocations(){ 

  int yTrack = cY; //((rows-1)/2); // relative y-coordinate based on current spiral location value 

   

  int addJ = 0; 

   

  for (int i = 1; i <= noOfRings; i++){ // ring number 

    int yA = 1;    // number of times to -1 from y-tracker 

    int yB = i-1;        // number of times to +0 to y-tracker 

    int yC = i*2;  // number of times to +1 to y-tracker 

    int yD = i;    // number of times to +0 to y-tracker 

    int yE = i*2;  // number of times to -1 from y-tracker 

     

    for (int j = 1; j <= yA; j++){ 

      yTrack = yTrack-1; // -1 to tracker yA times 

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA+1; j <= yA + yB; j++){ 

      yTrack = yTrack; // +0 to tracker yB times 

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA + yB + 1; j <= yA + yB + yC; j++){ 

      yTrack = yTrack+1; // +1 to tracker yC times    

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA + yB + yC + 1; j <= yA + yB + yC + yD; j++){ 

      yTrack = yTrack;    // +0 to tracker yD times   

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA + yB + yC + yD + 1; j <= yA + yB + yC + yD + yE; j++){ 

      yTrack = yTrack-1;  // -1 from tracker yE times 

      locationsY[j + addJ] = yTrack; 

    } 

     

    addJ = yA + yB + yC + yD + yE + addJ; 

  } 

} 

 

void dataChainChecker(){ 

  DataChain dataChain = new DataChain(); 

   

  do{ 

    dataChain.checkDataChain(); 

  }while (dataChain.stop == false); 

   

} 

 

class DataChain{ 

  Sets[] sets; 

  int maxSets = 1; 

  int totalSets = 1; 

  int currentSet; 

 

  int[] dataChainNumbers;  

  

  int lengthOfChain; 

  int currentLink = 0; 

  int numberWaiting = 0; 

  int numberFound = 0; 

   

  // Output information 
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  int noOfValidRepChains = 0; 

  int[][] repChain; 

   

  boolean stop = false; 

   

  DataChain(){ 

    dataChainNumbers = new int[objectShape[globalID].codeLength]; 

     

    for(int i = 0; i < dataChainNumbers.length; i++){ 

      dataChainNumbers[i] = objectShape[globalID].objectCode[i]; 

    } 

     

    orderDataChain(); 

   

    for(int i = 0; i < dataChainNumbers.length; i++){ 

      if(dataChainNumbers[i] == 2){ 

        maxSets++; 

        totalSets *= 2; 

      } 

      if(dataChainNumbers[i] == 3){  

        maxSets += 2; 

        totalSets *= 3; 

      } 

      if(dataChainNumbers[i] == 4){  

        maxSets += 3; 

        totalSets *= 4; 

      } 

    } 

     

    println("Max sets: " + maxSets + "   Total sets: " + totalSets + "    Number of Links: " + 

dataChainNumbers.length);  

     

    lengthOfChain = dataChainNumbers.length; 

     

    sets = new Sets[maxSets]; 

    sets[maxSets-1] = new Sets(false, 0, 0, lengthOfChain); // boolean additional, int interpretedValue, int 

copyThis, int lengthOfChain 

    currentSet = maxSets-1; 

     

    repChain = new int[10][lengthOfChain]; 

     

  } 

   

  ///////////////////////////////////////////////////////////////////////////////// 

  void checkDataChain(){ 

    int valueOfLink = dataChainNumbers[currentLink]; 

     

    if(valueOfLink == 1){ 

      sets[currentSet].positiveMove();  

       

      sets[currentSet].believedDataChain[currentLink] = 1;  

    } 

    else if (valueOfLink == 2){ 

      // new potential set (1/1) 

      sets[numberWaiting++] = new Sets(true,1,currentSet,lengthOfChain); 

           

      sets[currentSet].negativeMove(); 

      sets[currentSet].positiveMove(); 

       

      sets[currentSet].believedDataChain[currentLink] = 2; 

    } 

    else if (valueOfLink == 3){  

      // new potential set (1/1/1) and (1/2) 

      sets[numberWaiting++] = new Sets(true,1,currentSet,lengthOfChain); 

       

      // new potential set (2/1) 

      sets[numberWaiting++] = new Sets(true,2,currentSet,lengthOfChain); 

       

      sets[currentSet].negativeMove(); 

      sets[currentSet].negativeMove(); 

      sets[currentSet].positiveMove(); 

       

      sets[currentSet].believedDataChain[currentLink] = 3; 

    } 

    else if (valueOfLink == 4){     

      // new potnetial set (2/2) 

      sets[numberWaiting++] = new Sets(true,2,currentSet,lengthOfChain); 

       

      // new potential set (1/3) 

      sets[numberWaiting++] = new Sets(true,1,currentSet,lengthOfChain); 

       

      // new potential set (3/1) 

      sets[numberWaiting++] = new Sets(true,3,currentSet,lengthOfChain); 

       

      sets[currentSet].negativeMove(); 

      sets[currentSet].negativeMove(); 

      sets[currentSet].negativeMove(); 

      sets[currentSet].positiveMove(); 

       

      sets[currentSet].believedDataChain[currentLink] = 4; 

    } 

    else if (valueOfLink == 5){ 

      sets[currentSet].negativeMove(); 

      sets[currentSet].negativeMove(); 

      sets[currentSet].negativeMove(); 

      sets[currentSet].negativeMove(); 

      sets[currentSet].positiveMove(); 

       

      sets[currentSet].believedDataChain[currentLink] = 5; 

    } 

    else { 

      // invalid data-Chain 
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      println("ERROR dataChainChecker"); 

      exit();  

    } 

     

    currentLink++; 

       

    // sets[currentSet] formed 

    if(currentLink == dataChainNumbers.length){ 

      //      

      sets[currentSet].printBelievedDataChain(); 

       

      // calc convexity value   

      if(sets[currentSet].calculateConvexityValue() == 6){ 

        // check for repeating points (excluding last point) 

        if(sets[currentSet].areThereRepeatPoints() == false){         

          // calc if returns to start [0,0,0] 

          if(sets[currentSet].checkForReturnToStart() == true){ 

            // VALID DATA-CHAIN 

            println("VALID DATA-CHAIN"); 

             

            for(int i = 0; i < lengthOfChain; i++){ 

              repChain[noOfValidRepChains][i] = sets[currentSet].believedDataChain[i]; 

            } 

             

            noOfValidRepChains++; 

          } 

          else{ 

            // invalid data-chain as does not return to start 

            //println("INVALID: does not return to start"); 

          } 

        } 

        else{ 

          // invalid data-chain due to repeating points on trace 

          //println("INVALID: repeating points on trace");  

        } 

      } 

      else{ 

        // invalid data-chain due to convexity 

        //println("INVALID: convexity != 6");   

      } 

       

      numberFound++; 

       

      if(numberWaiting - 1 < 0){ 

        println("FINISHED, numberFound: " + numberFound); 

         

        println("Number of valid rep-chains " + noOfValidRepChains);        

         

        output.print(globalID + ";" + baseID + ";" + objectShape[globalID].numberOfCells + ";" + lengthOfChain + 

";"); 

         

        output.print("{"); 

        for(int i = 0; i < dataChainNumbers.length-1; i++){ 

          output.print(dataChainNumbers[i] + ","); 

        }         

        output.print(dataChainNumbers[dataChainNumbers.length-1] +"};"); 

         

        output.print(numberFound + ";" + noOfValidRepChains + ";"); 

         

        for(int i = 0; i < noOfValidRepChains; i++){ 

          output.print("{"); 

          for(int j = 0; j < lengthOfChain-1; j++){ 

            output.print(repChain[i][j] + ","); 

          } 

          output.print(repChain[i][lengthOfChain-1] +"}"); 

        } 

         

        output.print(";"); 

         

        boolean differentChain = false; 

        for(int i = 0; i < dataChainNumbers.length; i++){ 

          if(dataChainNumbers[i] != repChain[0][i]){ 

            differentChain = true;  

          } 

        } 

        if(differentChain){ 

          output.print("Complex;"); 

        } 

        else{ 

          output.print("Simple;"); 

        } 

         

        output.println(objectShape[globalID].visitsToFirstEmpty); 

         

        stop = true;  

      } 

      else { 

        //println("                             shift"); 

         

        // shift previous set to last slot       

        sets[currentSet].currentDirection = sets[numberWaiting-1].currentDirection; 

        sets[currentSet].linkWhenMade = sets[numberWaiting-1].linkWhenMade; 

        sets[currentSet].currentCheck = sets[numberWaiting-1].currentCheck; 

         

        for(int i = 0; i < sets[currentSet].totalNumbersOfDataChain; i++){ 

          sets[currentSet].aCheck[i] = sets[numberWaiting-1].aCheck[i]; 

          sets[currentSet].bCheck[i] = sets[numberWaiting-1].bCheck[i]; 

          sets[currentSet].cCheck[i] = sets[numberWaiting-1].cCheck[i]; 

        } 

         

        for(int i = 0; i < 6; i++){ 

          sets[currentSet].directionValues[i] = sets[numberWaiting-1].directionValues[i]; 
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        } 

         

        for(int i = 0; i < dataChainNumbers.length; i++){ 

          sets[currentSet].believedDataChain[i] = sets[numberWaiting-1].believedDataChain[i];  

        } 

         

        numberWaiting = numberWaiting - 1; 

         

        sets[currentSet].isValid = false; 

        sets[currentSet].isTested = false; 

         

        currentLink = sets[currentSet].linkWhenMade+1; 

        //println(numberWaiting); 

      } 

       

    } 

  } 

   

  ///////////////////////////////////////////////////////////////////////////////////// 

  void orderDataChain(){ 

    // does dataChain have at least one 1 

    int noOfOnes = 0; 

    int lastOne = dataChainNumbers.length; 

     

    for(int i = 0; i < dataChainNumbers.length; i++){ 

      if(dataChainNumbers[i] == 1){ 

        noOfOnes++; 

        lastOne = i; 

      } 

    } 

     

     

    if(noOfOnes < 1){ /// could this be 6? 

      print("invalid DataChain"); 

       

      print("{"); 

      for(int i = 0; i < dataChainNumbers.length-1; i++){ 

        print(dataChainNumbers[i] + ","); 

      }         

      println(dataChainNumbers[dataChainNumbers.length-1] +"};"); 

       

      println("Obect Shape Infomation"); 

      println("datachainLength " + objectShape[globalID].codeLength); 

      println("GlobalID" + globalID); 

      println("BaseShape " + baseID); 

       

      print("{"); 

      for(int i = 0; i < dataChainNumbers.length; i++){ 

        print( objectShape[globalID].objectCode[i] + ","); 

      } 

      println("}"); 

       

      for(int i = 0; i < objectShape[globalID].locations.length; i++){ 

        print( objectShape[globalID].locations[i] + ","); 

      } 

       

      exit(); 

    }   

    else if(dataChainNumbers[dataChainNumbers.length-1] != 1){ 

      println("Reorder dataChain to end with a 1"); 

      // convertDataChain so there is a one at the end     

      int[] tempChain = new int[dataChainNumbers.length]; 

      int shift = (dataChainNumbers.length-1) - lastOne; 

      int newPos; 

       

      for(int i = 0; i < dataChainNumbers.length; i++){ 

        if(shift + i > dataChainNumbers.length-1){ 

          newPos = shift + i - (dataChainNumbers.length);    

        } 

        else{ 

          newPos = shift + i; 

        } 

         

        tempChain[newPos] = dataChainNumbers[i]; 

         

      } 

       

       

      print("Reordered dataChain: {"); 

      for(int i = 0; i < dataChainNumbers.length-1; i++) { 

        print(tempChain[i] + ", ");   

      } 

      println(tempChain[dataChainNumbers.length-1] + "}"); 

       

       

       

      for(int i = 0; i < dataChainNumbers.length; i++){ 

        dataChainNumbers[i] = tempChain[i]; 

      } 

    } 

  } 

 

 

  ///////////////////////////////////////////////////////////////////////////////////////////////////////////////

//// 

  class Sets{ 

   

    int[]directionValues = {0,0,0,0,0,0}; 

    int currentDirection; 

    int linkWhenMade; 

    boolean isValid; 

    boolean isTested; 
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    int[] believedDataChain; 

     

    // Checkset variables 

    int totalNumbersOfDataChain = 100; 

    int[] aCheck = new int[totalNumbersOfDataChain]; 

    int[] bCheck = new int[totalNumbersOfDataChain]; 

    int[] cCheck = new int[totalNumbersOfDataChain]; 

    int currentCheck = 1;   

     

    Sets(boolean additional, int interpretedValue, int copyThis, int lengthOfChain){ 

      believedDataChain = new int[lengthOfChain]; 

      for(int i = 0; i < lengthOfChain; i++){ 

        believedDataChain[i] = 0; 

      } 

       

      currentDirection = 0; 

      isValid = false; 

      isTested = false; 

       

      if(additional){ 

        // copy root set 

        //println("                             COPY"); 

        currentDirection = sets[copyThis].currentDirection; 

        currentCheck = sets[copyThis].currentCheck; 

         

        for(int i = 0; i < lengthOfChain; i++){ 

          believedDataChain[i] = sets[copyThis].believedDataChain[i]; 

        } 

         

        for(int i = 0; i < directionValues.length; i++){ 

          directionValues[i] = sets[copyThis].directionValues[i];  

        } 

         

        for(int i = 0; i < totalNumbersOfDataChain; i++){ 

          aCheck[i] = sets[copyThis].aCheck[i]; 

          bCheck[i] = sets[copyThis].bCheck[i]; 

          cCheck[i] = sets[copyThis].cCheck[i]; 

        } 

         

        // perform alternate move 

        if(interpretedValue == 1){ 

          positiveMove(); 

           

          believedDataChain[currentLink] = 1; 

           

        } 

        else if (interpretedValue == 2){ 

          negativeMove(); 

          positiveMove(); 

           

          believedDataChain[currentLink] = 2; 

        } 

        else if (interpretedValue == 3){ 

          negativeMove(); 

          negativeMove(); 

          positiveMove(); 

          

          believedDataChain[currentLink] = 3;  

        } 

        

        linkWhenMade = currentLink; 

         

         

        // Check set only 

        aCheck[0] = 0; 

        bCheck[0] = 0; 

        cCheck[0] = 0; 

         

      } 

     

    } 

     

    void printNow(){ 

      print("  CurrentDirection: " + currentDirection + "  ");  

       

      for(int i = 0; i < directionValues.length; i++){ 

        print(directionValues[i] + " "); 

      } 

      println(" ");   

    } 

     

    void printBelievedDataChain(){ 

      //print("{"); 

      //for(int i = 0; i < believedDataChain.length-1; i++){ 

        //print(believedDataChain[i] + ","); 

      //}         

      //print(believedDataChain[believedDataChain.length-1] +"};"); 

    } 

     

    int calculateConvexityValue(){ 

      int convexityValue = 0; 

       

      for(int i = 0; i < believedDataChain.length; i++){ 

        if(believedDataChain[i] == 1) 

          convexityValue += 1; 

        if(believedDataChain[i] == 3) 

          convexityValue -= 1; 

        if(believedDataChain[i] == 4) 

          convexityValue -= 2; 

        if(believedDataChain[i] == 5) 

          convexityValue -= 3; 
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      } 

       

      //println("Convexity Value: " + convexityValue); 

      return convexityValue; 

    } 

     

    boolean areThereRepeatPoints(){ 

      for(int i = 0; i < currentCheck-1; i++){ // need to ignore final point 

        //println(aCheck[i] + " " + bCheck[i] + " " + cCheck[i]); 

        for(int j = 0; j < i; j++){ 

          println("     " + aCheck[j] + " " + bCheck[j] + " " + cCheck[j]); 

          if(aCheck[i] == aCheck[j] && bCheck[i] == bCheck[j] && cCheck[i] == cCheck[j]){ 

            //println("Repeated Point"); 

            return true; 

          } 

        } 

      } 

      return false; 

    } 

     

    boolean checkForReturnToStart(){ 

      if(aCheck[currentCheck-1] == 0 && bCheck[currentCheck-1] == 0 && cCheck[currentCheck-1] == 0){ 

        //println("Has returned to start"); 

        return true; 

      } 

      else{ 

        //println("Did not return to start"); 

        return false; 

      } 

    } 

     

    void positiveMove(){ 

      directionValues[currentDirection]++; 

      currentDirection++; 

       

      if(currentDirection == directionValues.length){ 

        currentDirection = 0; 

      } 

     

      // find difference in direction values 

      aCheck[currentCheck] = directionValues[0] - directionValues[3]; 

      bCheck[currentCheck] = directionValues[1] - directionValues[4]; 

      cCheck[currentCheck] = directionValues[2] - directionValues[5]; 

      currentCheck++;  

      //println("Current check: " + currentCheck);  

    } 

   

    void negativeMove(){ 

      directionValues[currentDirection]++; 

      currentDirection--; 

       

      if(currentDirection < 0){ 

        currentDirection = 5; 

      } 

       

      // find difference in direction values 

      aCheck[currentCheck] = directionValues[0] - directionValues[3]; 

      bCheck[currentCheck] = directionValues[1] - directionValues[4]; 

      cCheck[currentCheck] = directionValues[2] - directionValues[5]; 

      currentCheck++;   

     

      //println("Current check: " + currentCheck);   

    } 

  } 

} 

void objectCode(){ 

  int currentCellX; 

  int currentCellY; 

  int order = 0; 

  int tally = 0; 

  boolean stay; 

  CellBit[][] cellBit; 

  cellBit = new CellBit[cols][rows]; 

  int firstEmptyX=0; 

  int firstEmptyY=0; 

   

  int visitsToFirst=1; 

  int maxVisitsToFirst=0; // this number is affected when the first cell is a shared-link if; 2 then twice; 3 

twice or thrice; 4 twice;  

   

  //start at centre location 

  currentCellX = cX; 

  currentCellY = cY; 

 

  // reset all code bit values on tempShape to 0; 

  for (int i = 0; i < tempShape.objectCode.length; i++){ 

    tempShape.objectCode[i] = 0; 

  } 

   

  // check in direction 1 till empty cell occurs 

  do{ 

    stay = true; 

    int checkX = find2X(0,currentCellX); 

    int checkY = find2Y(0,currentCellY);    

     

    if(cell[checkX][checkY].cellState == -1){ // cell is empty 

      cellBit[checkX][checkY] = new CellBit(checkX,checkY,order); // create first surrounding cell 

       

      // note locations of first empty cell 

      firstEmptyX = checkX; 

      firstEmptyY = checkY; 
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      visitsToFirst = 1; 

       

      // determine if first empty cell is a shared-link 

      // check each of the six surrounding cells to determine if object cells or not 

      int[] surroundingFirstEmpty = {0,0,0,0,0,0}; 

      if(cell[checkX + 1][checkY - 1].cellState == -1) // is empty 

        surroundingFirstEmpty[0] = 1;  

      if(cell[checkX + 1][checkY    ].cellState == -1) // -1 is empty 

        surroundingFirstEmpty[1] = 1;  

      if(cell[checkX    ][checkY + 1].cellState == -1) // -1 is empty 

        surroundingFirstEmpty[2] = 1;  

      if(cell[checkX - 1][checkY + 1].cellState == -1) // -1 is empty 

        surroundingFirstEmpty[3] = 1;  

      if(cell[checkX - 1][checkY    ].cellState == -1) // -1 is empty 

        surroundingFirstEmpty[4] = 1;  

      if(cell[checkX    ][checkY - 1].cellState == -1) // -1 is empty 

        surroundingFirstEmpty[5] = 1; 

      // compare each cell to the next cell including first to last 

      for(int i = 0; i < surroundingFirstEmpty.length; i++){ 

        if(surroundingFirstEmpty[i] != surroundingFirstEmpty[(i+1)%6]){ 

          maxVisitsToFirst++; // add up the number of times this changes 

        }         

      } 

       

      // divide this number by two, this is the maxVisitsToFirst 

      maxVisitsToFirst = maxVisitsToFirst / 2; 

       

      // update tempShape 

      int contacts = cellBit[checkX][checkY].contacts; 

      tempShape.update(order,contacts); 

       

      order++; 

      stay = false; 

    } 

    else{ 

      currentCellX = checkX; 

      currentCellY = checkY; 

    } 

  }while(stay); 

   

  // check next direction of currentCell 

  int checkDirection = 0; 

  do{ 

    stay = true; /// new bit 

    int checkX = find2X(checkDirection,currentCellX); 

    int checkY = find2Y(checkDirection,currentCellY); 

     

    // if cell is empty 

    if (cell[checkX][checkY].cellState == -1){ 

      if (cellBit[checkX][checkY] != null){ // has already been marked  

       

        if (cellBit[checkX][checkY].order == order - 1){ // if cell is the cell marked exactly previously               

          checkDirection++; //check next direction 

        } 

        else if (checkX == firstEmptyX && checkY == firstEmptyY){ 

          if(visitsToFirst == maxVisitsToFirst){ 

            stay = false; // gets back to first checked empty cell after completion, the shape has been been 

marked 

          } 

          else{// add new cell as the first cell is a shared link and the search is not completed 

            cellBit[checkX][checkY] = new CellBit(checkX,checkY, order); 

             

            // update tempShape 

            int contacts = cellBit[checkX][checkY].contacts; 

            tempShape.update(order,contacts); 

            order++; 

            checkDirection++; 

            visitsToFirst++;  

          } 

        } 

        else { // add new cell 

          cellBit[checkX][checkY] = new CellBit(checkX,checkY, order); 

           

          // update tempShape 

          int contacts = cellBit[checkX][checkY].contacts; 

          tempShape.update(order,contacts); 

          order++; 

          checkDirection++;         

        } 

         

      } 

      else { 

        cellBit[checkX][checkY] = new CellBit(checkX,checkY, order); 

         

        // update tempShape 

        int contacts = cellBit[checkX][checkY].contacts; 

        tempShape.update(order,contacts); 

        order++; 

        checkDirection++; 

      } 

    } 

    else{ // if cell is part of the object 

      currentCellX = checkX; // make this the currentCell 

      currentCellY = checkY; 

       

      checkDirection+=4; // update check direction 

    } 

     

    if (checkDirection > 5) 

      checkDirection-=6; // make sure check direction is in range 

     

    //tally++; 
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  }while(stay);//(tally <100); // this needs to be done in a better way 

 

  // Check to see if code is new 

  tempShape.visitsToFirstEmpty = maxVisitsToFirst; 

  tempShape.findLength(); 

  tempShape.compare(); 

 

} 

   

 

// temporary store for data 

class CellBit{ 

  int contacts; 

  int order; 

  int x; 

  int y; 

  boolean valid = false; 

   

  CellBit(int tempX, int tempY, int tempOrder){ 

    x = tempX; 

    y = tempY; 

    order = tempOrder; 

    valid = true; 

    

    contacts = 0; 

     

    if (cell[x+1][y-1].cellState == 0) // NE 

      contacts++; 

    if (cell[x+1][y  ].cellState == 0) // E 

      contacts++; 

    if (cell[x  ][y+1].cellState == 0) // SE 

      contacts++; 

    if (cell[x-1][y+1].cellState == 0) // SW 

      contacts++; 

    if (cell[x-1][y  ].cellState == 0) // W 

      contacts++; 

    if (cell[x  ][y-1].cellState == 0) // NW    

      contacts++;  

  } 

   

} 

 

////////////////// 

int find2X(int i, int x){ 

  int tempX = 0; 

   

  if (i == 0) 

   tempX = x+1; 

  else if (i == 1) 

   tempX = x+1; 

  else if (i == 2) 

   tempX = x; 

  else if (i == 3) 

   tempX = x-1; 

  else if (i == 4) 

   tempX = x-1; 

  else // (i == 5) 

   tempX = x; 

    

  return(tempX); 

} 

 

int find2Y(int i, int y){ 

  int tempY = 0; 

   

  if (i == 0) 

   tempY = y-1; 

  else if (i == 1) 

   tempY = y; 

  else if (i == 2) 

   tempY = y+1; 

  else if (i == 3) 

   tempY = y+1; 

  else if (i == 4) 

   tempY = y; 

  else // (i == 5) 

   tempY = y-1; 

    

  return(tempY); 

} 

 

class TempShape{ 

  int[] objectCode = new int[50]; 

  int codeLength; 

  int ID; 

  int numberOfCells; 

  int[] locations; 

   

  int visitsToFirstEmpty = 0; 

   

  TempShape(int tempID, int tempNumberOfCells){ 

    for (int i=0; i < objectCode.length; i++){ 

      objectCode[i] = 0; 

    }  

    

    numberOfCells = tempNumberOfCells+1; 

    ID = tempID;  

     

    locations = new int[20]; 
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    for (int i = 0; i < locations.length; i++){ 

      locations[i] = -100; 

    } 

     

    locations[0] = 0; 

  } 

   

  // change the states of the cells that contain a object cell up to 

  // a certain point (the locations not updated do not appear)  

  void markCells(int markColour, int upto){ 

    int xPlace; 

    int yPlace; 

     

    //cell[cX][cY].cellState = markColour; 

     

    for (int i = 0; i <= upto; i++){ 

      if (locations[i] == -100){ 

        println("TempShape ERROR"); 

        exit(); // ERROR 

      } 

       

      xPlace = locationsX[locations[i]]; 

      yPlace = locationsY[locations[i]]; 

      cell[xPlace][yPlace].cellState = markColour;   

    }     

  } 

   

  // find length of object code 

  void findLength(){ 

    int count = 0; 

     

    for (int i = 0; i < objectCode.length; i++){ 

      if (objectCode[i] != 0){ 

        count++; 

      } 

    } 

    codeLength = count; 

  } 

   

  // UPDATE //////////////////////////////////////////////////////////// 

  // update each bit of code 

  void update(int codePosition, int value){ 

    objectCode[codePosition] = value; 

  } 

   

  // VALID OBJECT ///////////////////////////////////////////////////////////// 

  // is object shape valid (are all pieces touching, are any pieces overlapping) 

  boolean validObject(int cellCheck){ 

    if (globalID <= 0){ 

      return(true); 

    }  

     

    if (locations[0] != 0){ 

      // Nothing at centre 

      return(false);   

    } 

       

    // is any empty group of empty cells completely surrounded by shape cells 

///////////////////////////////////////// 

    if (checkForHollow){ 

      // refresh all cells 

      for (int i = 0; i < cols; i++) { 

        for (int j = 0; j < rows; j++) { 

          cell[i][j].cellState = -1;      // -1 empty 

        } 

      } 

       

      // mark object shape cells 

      markCells(-2,cellCheck);            // -2 object 

       

      // infect corner cells 

      if (cell[0][0].cellState != -2) 

        cell[0][0].cellState = 0; 

      if (cell[cols-1][0].cellState != -2) 

        cell[cols-1][0].cellState = 0;       

      if (cell[0][rows-1].cellState != -2) 

        cell[0][rows-1].cellState = 0; 

      if (cell[cols-1][rows-1].cellState != -2) 

        cell[cols-1][rows-1].cellState = 0;       

       

      // spread infection 

      boolean stable = false; 

      int numberInfected = 0; 

      int oldNumberInfected = 0; 

      do{ 

        // check all cells (excluding outermost rows and columns 

        for (int i = 1; i < cols-1; i++){ 

          for (int j = 1; j < rows-1; j++){ 

            //if cell is empty 

            if (cell[i][j].cellState == -1){ 

              // check surroundings 

              int[] sensed = new int[6]; 

              int tempCount = 0; 

               

              sensed[tempCount++] = cell[i+1][j-1].cellState; // NE 

              sensed[tempCount++] = cell[i+1][j  ].cellState; // E 

              sensed[tempCount++] = cell[i  ][j+1].cellState; // SE 

              sensed[tempCount++] = cell[i-1][j+1].cellState; // SW 

              sensed[tempCount++] = cell[i-1][j  ].cellState; // W 

              sensed[tempCount++] = cell[i  ][j-1].cellState; // NW   

              

              for (int k = 0; k < sensed.length; k++){ 
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                if(sensed[k] == 0 && cell[i][j].cellState == -1){ // if sense infected AND not currently infected 

                  cell[i][j].cellState = 0; // become infected 

                  numberInfected++; // count infected                   

                } 

              } 

            }  

          } 

        } 

       

      // compare to old infected   

      if (numberInfected == oldNumberInfected){ 

        // constant amount of infected 

        stable = true; 

      } 

       

      oldNumberInfected = numberInfected; 

       

      // when stable are any cells left un-infected and not object cells 

      if (stable){ 

        // count number of empty (-1) cells 

        for (int i = 1; i < cols-1; i++){ 

          for (int j = 1; j < rows-1; j++){ 

            //if cell is empty 

            if (cell[i][j].cellState == -1){ 

              // shape is hollow and therefore invalid 

              return(false); 

            } 

          } 

        }         

      } 

         

        //stable = true; 

      }while(!stable); 

 

    } 

        

    // is current cell touching other cell 

    int xTemp = locationsX[tempShape.locations[cellCheck]]; 

    int yTemp = locationsY[tempShape.locations[cellCheck]]; 

    int contacts = 0; 

     

    // REFRESH CELLS 

    for (int i = 0; i < cols; i++) { 

      for (int j = 0; j < rows; j++) { 

        cell[i][j].cellState = -1; 

      } 

    } 

       

    // mark cells up to but not including the current object cell 

    markCells(-2,cellCheck); 

     

    // does the current cell touch one of these lower numbered object cells 

    if (cell[xTemp+1][yTemp-1].cellState == -2)  // NE 

      contacts++; 

    if (cell[xTemp+1][yTemp  ].cellState == -2) // E 

      contacts++;     

    if (cell[xTemp  ][yTemp+1].cellState == -2) // SE 

      contacts++;     

    if (cell[xTemp-1][yTemp+1].cellState == -2) // SW 

      contacts++;     

    if (cell[xTemp-1][yTemp  ].cellState == -2) // W 

      contacts++;     

    if (cell[xTemp  ][yTemp-1].cellState == -2) // NW   

      contacts++; 

       

    // if sharing a cell return false 

    for(int i = 0; i < cellCheck; i++){ 

      if (locations[i] == locations[cellCheck]){ 

         // sharing cell - false shape 

        return(false); 

      } 

    } 

    

    if (contacts > 0){ 

      return(true); 

    } 

    else{ 

      return(false);        

    }  

     

  } 

   

  // COMPARE///////////////////////////////////////////////////////////////// 

  // compares current shape to any previous object shapes 

  boolean compare(){ 

    boolean sameAs = false; 

     

    for (int i = ID-1; i >= 0; i--){ 

      //if(numberOfCells != objectShape[i].numberOfCells){ 

        // does not match 

        // check next object 

      //} 

       

      if (codeLength != objectShape[i].codeLength){ 

        // does not match 

        // check next object 

      } 

      else {  // number of cells match and code length match 

        // compare chains 

        int[] tempA = new int[codeLength]; 

        int[] tempB = new int[codeLength]; 
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        // transfer to tempA and tempB 

        for (int j = 0; j < tempA.length; j++){ 

          tempA[j] = objectCode[j]; 

          tempB[j] = objectShape[i].objectCode[j]; 

        } 

         

        // compare tempA to tempB 

        int shiftCount = 0; 

        for (int k = 0; k < tempA.length; k++){ 

          int similarity = 0; 

          for (int j = 0; j < tempA.length; j++){ 

            if(tempA[j] == tempB[j]){ 

              // check next 

              similarity++; 

            } 

            else{ 

              // shift tempB and re-check 

              // leave loop 

              similarity = 0; 

              j = tempA.length; // force to leave loop 

            } 

          } 

           

          // check similarity 

          if (similarity == tempA.length){ 

            // not new shape 

            sameAs = true; 

          } 

          else { // shift the tempB array 

            if(shiftCount == tempA.length){ 

              // checked every combination with existing object 

              // check next object 

            } 

            else { 

              int tempFirst = tempB[0]; 

               

              for (int j = 0; j < tempB.length-1; j++){ 

                tempB[j] = tempB[j+1]; 

              } 

              tempB[tempB.length-1] = tempFirst; 

              shiftCount++; 

               

            } 

          } 

           

        }// shift 

      }// equal number of cells  

    }// next object 

     

    // if it does not match any previous shapes the ID is increased 

    if (sameAs){       

      return(true); 

    } 

    else { 

      return(false);  

    } 

      

  }   

   

  // COPYOBJECTSHAPE ////////////////////////////////////////////////////////////// 

  // copy temp shape data 

  void copyObjectShape(int tempID){ 

    ID = objectShape[tempID].ID; 

    numberOfCells = objectShape[tempID].numberOfCells; 

    codeLength = objectShape[tempID].codeLength; 

     

    for(int i = 0; i < objectCode.length; i++){ 

      objectCode[i] = objectShape[tempID].objectCode[i]; 

    } 

     

    for(int i = 0; i < locations.length; i++){ 

      locations[i] = objectShape[tempID].locations[i]; 

    }    

  } 

 

} 
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Appendix D: Possible States for hBots and State-Relationships 

Each of the first fifteen object shapes are listed, with the exception of object shape ID 

11 which is omitted as it includes a number five in its data-chain. The state relationships 

are also included. By looking at a hBots own state, and the states of its lowest state 

neighbour and highest state neighbours the original hBots new state can be found. For 

each of the new states there is indication whether or not this state is achievable with a 

hBot in contact with a specific object shape. If the state is achievable it is market with a 

tick. 
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3 1 2 17 
         





 

3 1 3 18 
              

3 2 2 19 
              

3 2 3 20 
              

3 3 3 21 
              

4 4 4 22 
             

4 4 5 23 
              

4 4 6 24 
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5 4 4 28 
              

5 4 5 29 
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5 4 10 31 






    

 


 


5 4 11 32 
   




 
 









5 4 12 33 
         





 

5 5 5 34 
              

5 5 6 35 
              

5 5 10 36 
 


 

  
      

5 5 11 37 
     

 
      

5 5 12 38 
              

5 6 6 39 
              

5 6 10 40 
     

 
      

5 6 11 41 
              

5 6 12 42 
              

5 10 10 43 
              

5 10 11 44 
              

5 10 12 45 
              

5 11 11 46 
              

5 11 12 47 
              

5 12 12 48 
              

6 4 4 49 
              

6 4 5 50 
              

6 4 6 51 
              

6 4 16 52 
  


 

   
  




6 4 17 53 
         





 

6 4 18 54 
              

6 5 5 55 
              

6 5 6 56 
              

6 5 16 57 
     

 
      

6 5 17 58 
              

6 5 18 59 
              

6 6 6 60 
              

6 6 16 61 
              

6 6 17 62 
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6 6 18 63 
              

6 16 16 64 
              

6 16 17 65 
              

6 16 18 66 
              

6 17 17 67 
              

6 17 18 68 
              

6 18 18 69 
              

7 10 10 70 
  





        

7 10 11 71 
         





 

7 10 12 72 
              

7 11 11 73 
              

7 11 12 74 
              

7 12 12 75 
              

8 10 10 76 
              

8 10 11 77 
              

8 10 12 78 
              

8 10 16 79 
        


  




8 10 17 80 
              

8 10 18 81 
              

8 11 11 82 
              

8 11 12 83 
              

8 11 16 84 
              

8 11 17 85 
              

8 11 18 86 
              

8 12 12 87 
              

8 12 16 88 
              

8 12 17 89 
              

8 12 18 90 
              

8 16 16 91 
              

8 16 17 92 
              

8 16 18 93 
              

8 17 17 94 
              

8 17 18 95 
              

8 18 18 96 
              

9 16 16 97 
              

9 16 17 98 
              

9 16 18 99 
              

9 17 17 100 
              

9 17 18 101 
              

9 18 18 102 
              

10 5 5 103 


 
  

 
      

10 5 7 104 
  





   





 

10 5 8 105 
        


  




10 7 7 106 
              

10 7 8 107 
              

10 8 8 108 
              

11 5 5 109 
              

11 5 7 110 
              

11 5 8 111 
              

11 5 11 112 
   




 
 





 

11 5 13 113 
             



11 5 14 114 
              

11 7 7 115 
              

11 7 8 116 
              

11 7 11 117 
         





 

11 7 13 118 
              

11 7 14 119 
              

11 8 8 120 
              

11 8 11 121 
              

11 8 13 122 
              

11 8 14 123 
              

11 11 11 124 
              

11 11 13 125 
              

11 11 14 126 
              

11 13 13 127 
              

11 13 14 128 
              

11 14 14 129 
              

12 5 5 130 
              

12 5 7 131 
              

12 5 8 132 
              

12 5 17 133 
         





 

12 5 19 134 
              

12 5 20 135 
              

12 7 7 136 
              

12 7 8 137 
              

12 7 17 138 
              

12 7 19 139 
              

12 7 20 140 
              

12 8 8 141 
              

12 8 17 142 
              

12 8 19 143 
              

12 8 20 144 
              

12 17 17 145 
              

12 17 19 146 
              

12 17 20 147 
              

12 19 19 148 
              

12 19 20 149 
              

12 20 20 150 
              

13 11 11 151 
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13 11 13 152 
              

13 11 14 153 
              

13 13 13 154 
              

13 13 14 155 
              

13 14 14 156 
              

14 11 11 157 
              

14 11 13 158 
              

14 11 14 159 
              

14 11 17 160 
              

14 11 19 161 
              

14 11 20 162 
              

14 13 13 163 
              

14 13 14 164 
              

14 13 17 165 
              

14 13 19 166 
              

14 13 20 167 
              

14 14 14 168 
              

14 14 17 169 
              

14 14 19 170 
              

14 14 20 171 
              

14 17 17 172 
              

14 17 19 173 
              

14 17 20 174 
              

14 19 19 175 
              

14 19 20 176 
              

14 20 20 177 
              

15 17 17 178 
              

15 17 19 179 
              

15 17 20 180 
              

15 19 19 181 
              

15 19 20 182 
              

15 20 20 183 
              

16 6 6 184 
  


 

  
     

16 6 8 185 
        


  




16 6 9 186 
              

16 8 8 187 
              

16 8 9 188 
              

16 9 9 189 
              

17 6 6 190 
              

17 6 8 191 
              

17 6 9 192 
              

17 6 12 193 
         





 

17 6 14 194 
              

17 6 15 195 
              

17 8 8 196 
              

17 8 9 197 
              

17 8 12 198 
              

17 8 14 199 
              

17 8 15 200 
              

17 9 9 201 
              

17 9 12 202 
              

17 9 14 203 
              

17 9 15 204 
              

17 12 12 205 
              

17 12 14 206 
              

17 12 15 207 
              

17 14 14 208 
              

17 14 15 209 
              

17 15 15 210 
              

18 6 6 211 
              

18 6 8 212 
              

18 6 9 213 
              

18 6 18 214 
              

18 6 20 215 
              

18 6 21 216 
              

18 8 8 217 
              

18 8 9 218 
              

18 8 18 219 
              

18 8 20 220 
              

18 8 21 221 
              

18 9 9 222 
              

18 9 18 223 
              

18 9 20 224 
              

18 9 21 225 
              

18 18 18 226 
              

18 18 20 227 
              

18 18 21 228 
              

18 20 20 229 
              

18 20 21 230 
              

18 21 21 231 
              

19 12 12 232 
              

19 12 14 233 
              

19 12 15 234 
              

19 14 14 235 
              

19 14 15 236 
              

19 15 15 237 
              

20 12 12 238 
              

20 12 14 239 
              

20 12 15 240 
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20 12 18 241 
              

20 12 20 242 
              

20 12 21 243 
              

20 14 14 244 
              

20 14 15 245 
              

20 14 18 246 
              

20 14 20 247 
              

20 14 21 248 
              

20 15 15 249 
              

20 15 18 250 
              

20 15 20 251 
              

20 15 21 252 
              

20 18 18 253 
              

20 18 20 254 
              

20 18 21 255 
              

20 20 20 256 
              

20 20 21 257 
              

20 21 21 258 
              

21 18 18 259 
              

21 18 20 260 
              

21 18 21 261 
              

21 20 20 262 
              

21 20 21 263 
              

21 21 21 264 
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Appendix E: Advance SHM Program with GA 

This is the program, written in Processing, that was utilised for the experimentation in 

Chapter 8 and Chapter 9. In the tests for Chapter 8, the aspects regarding the GA were 

ignored by changing the variables. In Chapter 9 the complete program was used 

including the genetic algorithm to solve the state rule behaviours problem for 11 

different scenarios involving two different object shape types. The same program is 

used for the base-line generic method and the random method by adjusting the 

variables to suit. 

/////////////////////////////////////////////////// 

// Creates Object Shapes and Data-Chains         // 

/////////////////////////////////////////////////// 

 

PrintWriter output; 

 

// runComparison 

int maxCells = 10; 

 

boolean showDisplay = false; 

 

// Cell variables 

Cell[][] cell; 

int cols = 31;//objectsPerRow + ((objectsPerRow+1)*gapsize);//21; 

int rows = 31;//objectsPerRow + ((objectsPerRow+1)*gapsize);//21; 

float hexWidth = 15; 

int cX = ((cols-1)/2); 

int cY = ((rows-1)/2); 

 

// types of shapes 

int[] numberOfEachShape = new int[30]; 

boolean checkForHollow = true; 

 

// general 

int locationsX[]; // stores the x-coordinates of the spiral location value relative to the centre cell 

int locationsY[]; // stores the y-coordinates of the spiral location value relative to the centre cell 

int noOfRings = 12; 

int lowestCellInRing[]; // stores to the lowest spiral location value for each ring 

int falseCounter = 0; // counts the times that a false result is returned (to many falses force an update of 

previous object cell) 

int displayColour = 0; 

 

ObjectShape[] objectShape; 

int currentCell = 0; 

int globalID = 0; 

int currentRing = 0; 

 

TempShape tempShape; 

 

boolean newBaseObjShape = false; 

boolean firstNewObject = true; 

int baseID = 0; 

 

boolean updateHighestCellPosition = false; 

 

boolean halt = false; 

 

int fileNumber = 1; 

int limitID = 1000; 

 

void setup(){ 

  output = createWriter("DataChainsCheckedPart" + fileNumber + ".txt"); 

  output.println("Object Shape ID; Number of Cells; Length of Data-Chain; Base Shape ID; Data-Chain;Number of 

Branches;Number of valid Rep-Chains;Rep-Chains;Simple or Complex Shape;Required Visits to First Empty Cell in 

forming data-chain"); 

   

  size(arenaWidth(),arenaHeight()); // function is in Cell 

  background(0); 

     

  // create cells (x,y) 

  cell = new Cell[cols][rows]; 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < rows; j++) { 

      cell[i][j] = new Cell(i,j); 

    } 

  } 

   

  // calculate relative spiral locations 

  locationsX = new int[1000]; 

  locationsY = new int[1000]; 

  findXSpiralLocations(); 

  findYSpiralLocations(); 

   

  locationsX[0] = ((cols-1)/2); // x coordinate of 1st cell 

  locationsY[0] = ((rows-1)/2); // y coordinate of 1st cell 
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  // calculate lowest cell number in each ring 

  lowestCellInRing = new int[noOfRings]; 

  lowestCellInRing[0] = 0; 

  for (int i = 1; i < lowestCellInRing.length; i++){ 

    lowestCellInRing[i] = (3*i*i) - (3*i) + 1; 

  } 

   

  // create objectShape 

  objectShape = new ObjectShape[100000]; 

  objectShape[0] = new ObjectShape(0,0); 

   

  tempShape = new TempShape(globalID,currentCell); 

   

  // fill numberOfEachShape array 

  for (int i = 0; i < numberOfEachShape.length; i++){ 

    numberOfEachShape[i] = 0; 

  } 

   

} 

 

void draw(){ 

   

  if(globalID == limitID){ 

    limitID += 10000; 

    fileNumber++; 

    output.flush(); // Writes the remaining data to the file 

    output.close(); // Finishes the file 

    output = createWriter("DataChainsCheckedPart" + fileNumber + ".txt");  

  } 

   

  if(halt){ 

    //delay(250); 

    halt = false; 

  } 

   

  refreshCells(); 

  tempShape.markCells(0,currentCell); 

   

   

  // is object valid 

  if (tempShape.validObject(currentCell)){ 

    ////////////////////////////////////////////////////////////////////////// VALID OBJECT 

    falseCounter = 0; 

     

    refreshCells(); 

    tempShape.markCells(0,currentCell);     

    objectCode();// create objectCode 

     

    // does shape already exist 

    if (tempShape.compare()){      

      // update highest cell position 

      updateHighestCellPosition = true; 

       

      // display 

      displayTheCells(3); // orange (exising shape) 

    } 

    else{ 

      // Display 

      displayTheCells(1); // green (valid shape) 

      halt = true; 

       

      ////////////////////////////////////////////////////////////////////// SAVE SHAPE 

      // save shape to object shapes 

      objectShape[globalID] = new ObjectShape(globalID, currentCell); 

      objectShape[globalID].copyTempShape(); 

        

      /////////////// check the data-chain 

      objectShape[globalID].checkDataChain(); 

       

      // record number of shapes for each cell allowance 

      numberOfEachShape[currentCell+1]++; 

       

      // increase globalID 

      globalID++; 

       

      // update base shape and reset cell position 

      tempShape = new TempShape(globalID,currentCell); 

      tempShape.copyObjectShape(baseID); 

      tempShape.ID = globalID; 

      tempShape.numberOfCells = currentCell+1; 

       

      tempShape.locations[currentCell] = 0; 

       

      tempShape.locations[currentCell] = objectShape[globalID-1].locations[currentCell]+1; 

          

    } 

     

  } 

  /////////////////////////////////////////////////////////////////////// INVALID OBJECT 

  else{ 

    // update highest cell position 

    updateHighestCellPosition = true;  

   

    displayTheCells(2);  // red (invalid shape) 

  } 

   

  // update highest cell position 

  if (updateHighestCellPosition){ 

    updateHighestCellPosition = false; 

     

    if (falseCounter == (lowestCellInRing[currentRing+1] - lowestCellInRing[currentRing])){ 

      // load new base object shape 
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      newBaseObjShape = true; 

      falseCounter = 0; 

    } 

     

    tempShape.locations[currentCell]++; 

         

    // update currentRing 

    for (int i = 0; i < noOfRings; i++){ 

      if(tempShape.locations[currentCell] >= lowestCellInRing[i]){ 

        currentRing = i; 

      } 

    }       

     

    // check current ring number, if move to next ring reset false counter 

    if (tempShape.locations[currentCell] == lowestCellInRing[currentRing]){ //lowestCellInRing[currentRing + 1] 

      falseCounter = 0; 

    } 

     

    falseCounter++;    

  } 

   

  ////////////////////////////////////////////////////////////////////////////// CREATE NEW BS 

  if(newBaseObjShape){ 

    if (!firstNewObject){ 

      baseID++; 

    } 

    else{ 

      firstNewObject = false; 

    } 

     

    newBaseObjShape = false;   

    tempShape.copyObjectShape(baseID);      

    tempShape.numberOfCells++;  

    currentCell = tempShape.numberOfCells-1; 

    tempShape.locations[currentCell] = 0;     

    tempShape.ID = globalID; 

     

  } 

   

  // compare the shapes 

  if (currentCell == maxCells){ 

    println("FLUSH with currentCell: " + currentCell); 

    output.flush(); // Writes the remaining data to the file 

    output.close(); // Finishes the file 

    exit(); 

  }    

} 

 

void refreshCells(){ 

  // REFRESH CELLS 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < rows; j++) { 

        cell[i][j].cellState = -1; 

    } 

  } 

} 

 

void displayTheCells(int displayColour){   

  if(showDisplay){ 

    refreshCells(); 

    tempShape.markCells(displayColour,currentCell); 

     

    // DISPLAY GRID OF CELLS 

    for (int i = 0; i < cols; i++) { 

      for (int j = 0; j < rows; j++) { 

        if (cell[i][j] != null) 

          cell[i][j].display(j); 

      } 

    }   

   

     

    refreshCells(); 

    tempShape.markCells(0,currentCell); 

  } 

} 

 

class ActionRules{ 

  // for each state the hBot can be in (other than 0) it has three options 

  // 1. disolve object 

  // 2. HIGH probability of moving away from object (revert to state zero) 

  // 3. LOW probability of moving away from object (revert to state zero) 

  int[] actionRuleList = new int[stateRules.levelThreeMax]; 

   

  // the 41 state rules in the order that they appear in the genome. 

  // see StateRelationshipsPoosible spreadsheet 

  int[] geneToStateRule = 

{1,4,22,25,26,27,5,31,32,33,36,37,40,6,52,53,57,7,70,71,8,79,2,10,103,104,105,11,112,113,117,12,133,13,151,3,16,1

84,185,17,193}; 

   

  ActionRules(){ 

    for(int i = 0; i < actionRuleList.length; i++){ 

      actionRuleList[i] = -1000; 

    } 

     

    for(int i = 0; i < geneToStateRule.length; i++){ 

      actionRuleList[geneToStateRule[i]] = genome[curSamp].bitList[i]; 

    } 

  } 

   

  void updateActionRules(){ 

    for(int i = 0; i < actionRuleList.length; i++){ 

      actionRuleList[i] = -1000; 
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    } 

     

    for(int i = 0; i < geneToStateRule.length; i++){ 

      actionRuleList[geneToStateRule[i]] = genome[curSamp].bitList[i]; 

    }   

  } 

   

  void allUpdateActionRules(){ 

    for(int i = 0; i < maxPopulation; i++){ 

      for(int j = 0; j < geneToStateRule.length; j++){ 

        actionRuleList[geneToStateRule[j]] = genome[i].bitList[j]; 

      } 

    } 

  } 

   

   

  int callRule(int state){ 

    if(state == 0) 

      return(0); 

    else { 

      if(actionRuleList[state] == -1000){ 

        println("Error in call rule, action rules"); 

        exit(); 

        return(-1000); 

      } 

      return(actionRuleList[state]); 

    } 

  } 

} 

 

///////////////////////////////////////////////////////////////////////////////// 

// A Cell Object //////////////////////////////////////////////////////////////// 

class Cell { 

  // A cell object knows about its location in the grid 

  float x,y; //x,y location of centre point 

  //color colour = cWhite; 

  int cellState = -1; 

  float hexHeight = 4 * (0.5 * hexWidth) * (tan((radians(30))));   

   

  // Cell Constructor 

  Cell(float tempX, float tempY){   

    x = (tempX*hexWidth)+2; 

    y = (tempY*hexHeight*0.75)+1;   

  } 

   

  void display(int j) { 

     

    rectMode(CENTER); 

     

     

    noStroke(); 

    //strokeWeight(2); 

    fill(colourFromNumber(cellState)); 

     

     

     

    float altTransX = x + (j*0.5*hexWidth) + (0.5*hexWidth); 

    float altTransY = y + (0.5*hexHeight); 

     

    ellipse(altTransX,altTransY,0.8*hexHeight,0.8*hexHeight); // draw circle (quicker)     

  } 

} 

 

// which states are which colours 

int colourFromNumber(int tempNumber){ 

  // Colours 

  color cRed = color(255,0,0); 

  color cOrange = color(255,165,0); 

  color cYellow = color(255,255,0); 

  color cGreen = color(50,205,50); 

  color cBlue = color(0,0,255); 

  color cPurple = color(128,0,128); 

   

  color cWhite = color(255,255,255); // empty cell 

  color cGrey = color(47,79,79); // object 

  color cSilver = color(135,135,135); //agent 

  color cBlack = color(0,0,0); 

   

  // Colours 

  if (tempNumber == 0) // state 0 

    return(cSilver);  

  else if (tempNumber == 1)  // state 1 

    return(cGreen); 

  else if (tempNumber == 2) // state 2 

    return(cBlue);  

  else if (tempNumber == 3) 

    return(cRed); 

  else if (tempNumber == 4)  

    return(cOrange); 

  else if (tempNumber == 5) 

    return(cYellow);  

  else if (tempNumber == 6)  

    return(cPurple); 

   

  else if (tempNumber == -1) 

    return(cWhite);  

  else if (tempNumber == -2)  

    return(cGrey); 

  else if (tempNumber == -3)  

    return(cBlack); 

   

  else 
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    return(cPurple); 

} 

 

// calc arena size based on size and number of cells 

int arenaWidth(){ 

  return((int)(1.5*hexWidth*(cols-0.2))); 

} 

int arenaHeight(){ 

  return((int)(0.75*4*(0.5*hexWidth)*(tan((radians(30))))*(rows+0.5))); 

} 

 

void createBoundary(){ 

  // create walls (remove top left triangle of rhombus to create hexagon) 

  for (int j = 0; j < cols/2; j++){ 

    for (int i = 0; i < (cols/2)+2 - j; i++){ 

      cell[i][j].cellState = -3;    

    } 

  } 

   

  // create walls (remove bottom right triangle of rhombus to create hexagon) 

  for (int j = 0; j < (cols-1)/2; j++){ 

    for (int i = cols - j; i < cols; i++){ 

      cell[i - 2][j + ((cols-1)/2)].cellState = -3;    

    } 

  } 

   

  // create walls (provide boarder round edges) 

  for (int i = 0; i < cols; i++) { 

    for (int j = 0; j < cols; j++) { 

      if (i < 2 || i > cols-3 || j < 2 || j > cols-3)  

        cell[i][j].cellState = -3; 

    } 

  } 

   

} 

// create parent pool through tournament ranking 

void createParentPool(){ 

  PrintWriter checkingGA; 

  checkingGA = createWriter("check/checkingGA" + curGen + ".txt"); 

   

  boolean[] selectedAsParent =  new boolean[maxPopulation]; 

   

  for(int i = 0; i < selectedAsParent.length; i++){ 

    selectedAsParent[i] = false; 

  } 

   

  int[] randomForRank = new int[4]; 

   

  // start 

  for(int curParent = 0; curParent < maxPopulation/2; curParent++){ 

    // select four different random values 

    do { 

      randomForRank[0] = (int)random(0,maxPopulation);     

    } while(selectedAsParent[randomForRank[0]] == true); 

     

    do { 

      randomForRank[1] = (int)random(0,maxPopulation); 

    } while(selectedAsParent[randomForRank[1]] == true || randomForRank[1] == randomForRank[0]);  

   

    do { 

      randomForRank[2] = (int)random(0,maxPopulation); 

    } while(selectedAsParent[randomForRank[2]] == true || randomForRank[2] == randomForRank[0] || randomForRank[2] 

== randomForRank[1]);    

   

    do { 

      randomForRank[3] = (int)random(0,maxPopulation); 

    } while(selectedAsParent[randomForRank[3]] == true || randomForRank[3] == randomForRank[0] || randomForRank[3] 

== randomForRank[1] || randomForRank[3] == randomForRank[2]); 

     

     

    // calculate fitness value 

    float[] fitness = new float[4]; 

     

    for(int i = 0; i < fitness.length; i++){ 

      int temp = randomForRank[i];                                // (59+58)-(57+56) 

      float firstLastFirstLast = (readAndWrite.collectedData[temp][59] + readAndWrite.collectedData[temp][58]) - 

(readAndWrite.collectedData[temp][57] + readAndWrite.collectedData[temp][56]); 

      float diffCorrectIncorrect = readAndWrite.collectedData[temp][45] - readAndWrite.collectedData[temp][50]; 

      float allOrSome = 0; // 1 if only correct removed, -1 if only incorrect removed, 0 otherwise 

       

      if(readAndWrite.collectedData[temp][45] > 0 && readAndWrite.collectedData[temp][50] == 0){ 

        allOrSome = 1; 

      } 

      if(readAndWrite.collectedData[temp][50] > 0 && readAndWrite.collectedData[temp][45] == 0){ 

        allOrSome = -1; 

      } 

      fitness[i] = (504000 * allOrSome) + (84000 * diffCorrectIncorrect) + firstLastFirstLast; 

       

      // temp for check 

      checkingGA.print("Random" + i + ":" + randomForRank[i]); 

      checkingGA.print("  fitness: " + fitness[i]); 

      checkingGA.println(" allOrSome: " + allOrSome + "  diffCorrectIncorrect: " + diffCorrectIncorrect + "  

firstLastFirstLast: " + firstLastFirstLast); 

    } 

 

     

    // rank fitness values 

    int selectThisLineForPool = 0; 

     

    float maxFitness = max(fitness); 

     

    for(int i = 0; i < fitness.length; i++){ 
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      if(fitness[i] == maxFitness){ 

        selectThisLineForPool = randomForRank[i]; 

        selectedAsParent[selectThisLineForPool] = true; 

        i = fitness.length; // make sure only a single value is updated in the case that two or more share the 

same fitness  

      } 

    } 

     

    checkingGA.println("Parent selected: " + selectThisLineForPool); 

     

    // copy selected sample 

    for(int i = 0; i < 41; i++){ 

       

      println("curParent: " + curParent); 

      println("i: " + i); 

      println("selectThisLineForPool: " + selectThisLineForPool); 

       

 

      println("A: " + parents[curParent][i]); 

       

      parents[curParent][i] = readAndWrite.collectedData[selectThisLineForPool][i]; 

      checkingGA.print(readAndWrite.collectedData[selectThisLineForPool][i] + ","); 

    } 

    checkingGA.println(""); 

    checkingGA.println(""); 

     

     

  }   

  // end 

  checkingGA.flush(); // Writes the remaining data to the file 

  checkingGA.close(); // Finishes the file   

} 

 

void createOffspring(){ 

  PrintWriter checkCrossover; 

  checkCrossover = createWriter("check/checkingCrossover" + curGen + ".txt"); 

   

  int[] timesSelected = new int[maxPopulation/2]; 

   

  for(int i = 0; i < timesSelected.length; i++){ 

    timesSelected[i] = 0; 

  } 

   

  int parentA = -1;  

  int parentB = -1; 

  int[] viableList = new int[maxPopulation/2]; // list of currently viable parents 0,1,2,3,4,5,6,7,8,9 

  int numberOfViable = maxPopulation/2; // number of parents that are viable 

  int countNoUses; // count number of 0 uses of parent 

   

  for(int i = 0; i < viableList.length; i ++){ 

    viableList[i] = i; 

  } 

  viableList = sort(viableList); 

  viableList = reverse(viableList); 

   

   

  // start 

  for(int currentGenomeToUpdate = 0; currentGenomeToUpdate < maxPopulation; currentGenomeToUpdate = 

currentGenomeToUpdate + 2){ 

     

    // pick two different parents at random 

    // check parents have not been used twice already     

     

    // count number with no uses as parent 

    // Parent A 

    countNoUses = 0; 

     

    for(int i = 0; i < maxPopulation/2; i++){ 

      if(timesSelected[i] == 0){ 

        countNoUses++;  

      } 

    } 

     

    if(numberOfViable == 3 && countNoUses == 1){ // stop a single parent been left to breed with itself 

      for(int i = 0; i < maxPopulation/2; i++){ 

        if(timesSelected[i] == 0){ 

          parentA = i; 

          timesSelected[parentA]++;  

        } 

      } 

    } 

    else{ 

      parentA = viableList[(int)random(0,numberOfViable)]; // select random parent from available list 

      println("ParentA: " + parentA); 

      timesSelected[parentA]++; // count the number of times the parent has been used 

       

      if(timesSelected[parentA] == 2){ // if the parent has been used twice, remove it from the available list 

        // remove from list 

        for(int i = 0; i < viableList.length; i++){ 

          if(viableList[i] == parentA){ 

            viableList[i] = -1; // set the unviable option to -1 

          } 

        } 

         

        numberOfViable--; // reduce the number of viable options 

        viableList = sort(viableList); 

        viableList = reverse(viableList); // arrange list so unviable options (those with -1) are listed last 

         

        for(int i = 0; i < viableList.length; i++){ 

          print(viableList[i] + ","); 

        } 

        println(""); 
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        println("numberOfViable " + numberOfViable); 

      } 

    } 

     

    //Parent B 

    countNoUses = 0; 

     

    for(int i = 0; i < maxPopulation/2; i++){ 

      if(timesSelected[i] == 0){ 

        countNoUses++;  

      } 

    } 

     

    if(numberOfViable == 3 && countNoUses == 1){ // stop a single parent been left to breed with itself 

      for(int i = 0; i < maxPopulation/2; i++){ 

        if(timesSelected[i] == 0){ 

          parentB = i; 

          timesSelected[parentB]++;  

        } 

      } 

    }     

    else{ 

      do{ 

        parentB = viableList[(int)random(0,numberOfViable)]; 

      }while(parentB == parentA); // check parent B is not the same as parent A 

       

      println("ParentB: " + parentB); 

      timesSelected[parentB]++; 

       

      if(timesSelected[parentB] == 2){ 

        // remove from list 

        for(int i = 0; i < viableList.length; i++){ 

          if(viableList[i] == parentB){ 

            viableList[i] = -1; 

          } 

        } 

        numberOfViable--; 

        viableList = sort(viableList); 

        viableList = reverse(viableList); 

         

        for(int i = 0; i < viableList.length; i++){ 

          print(viableList[i] + ","); 

        } 

        println(""); 

        println("numberOfViable " + numberOfViable); 

      }     

    } 

     

    // select two different random points, for cross over 

    int crossoverA; 

    int crossoverB; 

     

    crossoverA = (int)random(0,genome[0].bitList.length-2); // bitListLength - 2, cross over happens after this 

value 

    

    do{ 

      crossoverB = (int)random(0,genome[0].bitList.length-2); 

    } while (crossoverB == crossoverA); // cross over A and B cannot be the same 

       

    // produce two offspring and store 

    boolean switchFirstParent = false; 

     

    for(int i = 0; i < genome[0].bitList.length; i++){ 

      if(switchFirstParent == false){ 

        genome[currentGenomeToUpdate   ].bitList[i] = (int)parents[parentA][i]; 

        genome[currentGenomeToUpdate +1].bitList[i] = (int)parents[parentB][i]; 

      } 

      else{ 

        genome[currentGenomeToUpdate   ].bitList[i] = (int)parents[parentB][i]; 

        genome[currentGenomeToUpdate +1].bitList[i] = (int)parents[parentA][i];  

      }  

       

      if(i == crossoverA || i == crossoverB){ 

        // switch 

        if(switchFirstParent == false){ 

          switchFirstParent = true; 

        } 

        else{ 

          switchFirstParent = false; 

        } 

      }     

    } 

     

    // tempory print out check below 

    checkCrossover.println("ParentA: " + parentA); 

     

    for(int i = 0; i < genome[0].bitList.length; i ++){ 

      checkCrossover.print(parents[parentA][i] + ","); 

    } 

    checkCrossover.println(""); 

     

     

    checkCrossover.println("ParentB: " + parentB); 

     

    for(int i = 0; i < genome[0].bitList.length; i ++){ 

      checkCrossover.print(parents[parentB][i] + ","); 

    } 

    checkCrossover.println(""); 

     

     

    checkCrossover.println("crossoverA: " + crossoverA + "  crossoverB: " + crossoverB); 
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    checkCrossover.println("ChildA: "); 

     

    for(int i = 0; i < genome[0].bitList.length; i ++){ 

      checkCrossover.print(genome[currentGenomeToUpdate   ].bitList[i] + ","); 

    } 

    checkCrossover.println(""); 

     

     

    checkCrossover.println("ChildB: "); 

     

    for(int i = 0; i < genome[0].bitList.length; i ++){ 

      checkCrossover.print(genome[currentGenomeToUpdate +1].bitList[i] + ","); 

    } 

    checkCrossover.println("");     

    checkCrossover.println(""); 

    checkCrossover.println(""); 

    // end temporary print out 

  } 

  // end 

  checkCrossover.flush(); // Writes the remaining data to the file 

  checkCrossover.close(); // Finishes the file       

} 

 

void mutation(){ 

  PrintWriter checkMutation; 

  checkMutation = createWriter("check/checkMutation" + curGen + ".txt"); 

   

  int mutationRate = genome[0].bitList.length; 

   

  // each bit in each genome has a probability of mutating to one of the other option   

  for(int i = 0; i < maxPopulation; i++){ 

     

    // printold 

    for(int j = 0; j < genome[0].bitList.length; j++){ 

      checkMutation.print(genome[i].bitList[j] + ","); 

    } 

    checkMutation.println(""); 

     

    for(int j = 0; j < genome[0].bitList.length; j++){ 

      // check if mutation happens 

      if(random(mutationRate) < 1){ 

        // if mutation happens, check current value of bit 

        int currentBitValue = genome[i].bitList[j]; 

        int newBitValue; 

        do{ 

          // switch bit with an equal probability to on the other other bit values. 

          newBitValue = (int)random(1,4); // returns 1,2,3 

         

        }while (newBitValue == currentBitValue); 

         

        genome[i].bitList[j] = newBitValue; 

         

        // print change 

        checkMutation.println("Change bit: " + j + " from " + currentBitValue + " to " + newBitValue); 

      }  

    } 

     

    // print new 

    for(int j = 0; j < genome[0].bitList.length; j++){ 

      checkMutation.print(genome[i].bitList[j] + ","); 

    } 

    checkMutation.println("");  

    checkMutation.println("");    

  } 

  checkMutation.flush(); // Writes the remaining data to the file 

  checkMutation.close(); // Finishes the file    

} 

 

class Genome{ 

  int ID; 

  int parentA; 

  int parentB; 

  int mutationRate; 

   

  int totalCorrect; 

  int totalWrong; 

  int medianCorrect; 

  int medianWrong; 

   

  int[] bitList = new int[41]; 

   

  Genome(){ 

    if(typeOfTest == 1) {// hand solved solutions 

      handSolutionList(); 

    } 

    else if(typeOfTest == 2){ // random 

      for(int i = 0; i < bitList.length; i++){ 

        bitList[i] = (int)(random(1,4)); // insert random 1,2,3 

      } 

    } 

    else if(typeOfTest == 3){ // genetic algorithm 

      for(int i = 0; i < bitList.length; i++){ 

        bitList[i] = (int)(random(1,4)); // insert random 1,2,3 

      }     

    } 

  } 

 

 

  void handSolutionList(){ 

     

    if(findThisShape == 5 || findThisShape == 6 || findThisShape == 8 || findThisShape == 9 || findThisShape == 

10 || findThisShape == 14){ 
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    } 

    else{ 

      println("Error wrong shape type"); 

      exit();     

    } 

    if(ignoreThisShape == 5 || ignoreThisShape == 6 || ignoreThisShape == 8 || ignoreThisShape == 9 || 

ignoreThisShape == 10 || ignoreThisShape == 14){ 

 

    } 

    else{ 

      println("Error wrong shape type"); 

      exit(); 

    } 

     

    int[] find5Ignore6   = {3,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,1,1,2,2,2,3,3,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2};     

    int[] find5Ignore8   = {3,2,2,2,2,2,1,2,2,2,1,2,2,2,2,2,2,1,1,2,2,2,1,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}; 

    int[] find5Ignore9   = {3,2,2,2,2,2,3,2,2,2,1,2,2,2,2,2,2,1,1,2,2,2,3,3,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}; 

    int[] find5Ignore10  = {3,2,2,2,2,2,3,2,2,2,1,2,2,2,2,2,2,3,1,2,2,2,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}; 

    int[] find5Ignore14  = {3,2,2,2,2,2,3,2,2,2,1,2,2,2,2,2,2,1,1,2,2,2,3,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}; 

     

    int[] find6Ignore5   = {3,1,2,2,1,2,3,2,1,2,2,1,1,1,1,2,1,2,2,2,2,2,3,3,1,2,2,1,1,2,2,2,2,2,2,1,1,1,2,2,2}; 

    int[] find6Ignore8   = {3,3,2,2,1,2,1,2,1,2,1,1,1,3,2,2,1,2,2,2,2,2,1,1,1,2,2,1,1,2,2,2,2,2,2,3,3,2,2,2,2}; 

    int[] find6Ignore9   = {3,3,2,2,2,2,3,2,1,2,1,1,1,3,2,2,1,2,2,2,2,2,3,3,1,2,2,1,1,2,2,2,2,2,2,3,3,1,2,2,2}; 

    int[] find6Ignore10  = {3,3,2,2,2,2,3,2,2,2,1,1,1,3,1,2,1,2,2,2,2,2,3,3,1,2,2,3,2,2,2,2,2,2,2,3,1,1,2,2,2}; 

    int[] find6Ignore14  = {3,3,2,2,1,2,3,2,2,2,1,1,1,1,1,2,1,2,2,2,2,2,3,1,1,2,2,3,1,2,2,2,2,2,2,1,1,1,2,2,2}; 

 

    int[] find8Ignore5   = {3,1,2,2,2,1,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,2,2,2}; 

    int[] find8Ignore6   = {3,3,2,2,2,1,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,2,2,2,2}; 

    int[] find8Ignore9   = {3,3,2,2,2,1,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,1,2,2,2}; 

    int[] find8Ignore10  = {3,3,2,2,2,1,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,1,1,2,2,2}; 

    int[] find8Ignore14  = {3,3,2,2,2,1,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,2,2,2}; 

 

    int[] find9Ignore5   = {3,1,2,2,1,2,3,1,2,2,2,2,2,1,1,2,2,2,2,2,1,1,3,3,2,2,1,2,2,2,2,2,2,2,2,1,1,2,1,2,2}; 

    int[] find9Ignore6   = {3,3,2,2,2,2,3,1,2,2,2,2,2,3,2,2,2,2,2,2,1,1,3,3,2,2,1,2,2,2,2,2,2,2,2,3,3,2,1,2,2}; 

    int[] find9Ignore8   = {3,3,2,2,1,2,1,1,2,2,2,2,2,3,2,2,2,2,2,2,1,1,1,1,2,2,1,2,2,2,2,2,2,2,2,3,3,2,1,2,2}; 

    int[] find9Ignore10  = {3,3,2,2,2,2,3,2,2,2,2,2,2,3,1,2,2,2,2,2,1,1,3,3,2,2,1,2,2,2,2,2,2,2,2,3,1,2,1,2,2}; 

    int[] find9Ignore14  = {3,3,2,2,1,2,3,1,2,2,2,2,2,1,1,2,2,2,2,2,1,1,3,1,2,2,1,2,2,2,2,2,2,2,2,1,1,2,1,2,2}; 

 

    int[] find10Ignore5  = {3,1,2,1,1,2,3,1,1,1,2,2,2,1,2,1,2,3,2,1,2,2,3,3,2,2,2,1,1,2,1,1,1,2,2,1,2,2,2,1,1}; 

    int[] find10Ignore6  = {3,3,2,1,2,2,3,1,2,1,2,2,2,3,2,1,2,1,2,1,2,2,3,3,2,1,2,3,2,2,1,1,1,2,2,3,2,2,2,1,1}; 

    int[] find10Ignore8  = {3,3,2,1,1,2,1,1,1,1,2,2,2,3,2,1,2,1,2,1,2,2,1,1,2,1,2,1,1,2,1,1,1,2,2,3,2,2,2,1,1}; 

    int[] find10Ignore9  = {3,3,2,1,2,2,3,2,1,1,2,2,2,3,2,1,2,1,2,1,2,2,3,3,2,1,2,1,1,2,1,1,1,2,2,3,2,2,2,1,1}; 

    int[] find10Ignore14 = {3,3,2,2,1,2,3,1,2,1,2,2,2,1,2,1,2,1,2,1,2,2,3,1,2,1,2,3,1,2,1,1,1,2,2,1,2,2,2,1,1}; 

 

    int[] find14Ignore5  = {3,1,2,1,2,2,3,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,1,2,1,2,2,2,1,1,2,2,2,2,2,2}; 

    int[] find14Ignore6  = {3,3,2,1,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,3,2,1,2,2,2,1,1,2,2,2,2,2,2}; 

    int[] find14Ignore8  = {3,3,2,1,2,2,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,1,2,1,2,2,2,1,1,2,2,2,2,2,2}; 

    int[] find14Ignore9  = {3,3,2,1,2,2,3,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,1,2,1,2,2,2,1,1,2,2,2,2,2,2}; 

    int[] find14Ignore10 = {3,3,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,3,2,1,2,2,2,1,1,2,2,2,2,2,2}; 

 

     

    if(findThisShape == 5){ 

      if(ignoreThisShape == 6){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find5Ignore6[i]; 

        } 

      } 

       

      else if(ignoreThisShape == 8){          

       for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find5Ignore8[i]; 

        } 

      } 

      else if(ignoreThisShape == 9){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find5Ignore9[i]; 

        } 

      } 

      else if(ignoreThisShape == 10){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find5Ignore10[i]; 

        } 

      } 

      else if(ignoreThisShape == 14){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find5Ignore14[i]; 

        } 

      } 

       

    } 

   

    if(findThisShape == 6){ 

      if(ignoreThisShape == 5){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find6Ignore5[i]; 

        }   

      } 

      else if(ignoreThisShape == 8){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find6Ignore8[i]; 

        }  

      } 

      else if(ignoreThisShape == 9){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find6Ignore9[i]; 

        }  

      } 

      else if(ignoreThisShape == 10){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find6Ignore10[i]; 

        }  
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      } 

      else if(ignoreThisShape == 14){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find6Ignore14[i]; 

        }  

      } 

    } 

   

    if(findThisShape == 8){ 

      if(ignoreThisShape == 5){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find8Ignore5[i]; 

        }  

      } 

      else if(ignoreThisShape == 6){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find8Ignore6[i]; 

        }  

      } 

      else if(ignoreThisShape == 9){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find8Ignore9[i]; 

        }  

      } 

      else if(ignoreThisShape == 10){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find8Ignore10[i]; 

        }  

      } 

      else if(ignoreThisShape == 14){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find8Ignore14[i]; 

        }  

      } 

    } 

   

    if(findThisShape == 9){ 

      if(ignoreThisShape == 5){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find9Ignore5[i]; 

        }  

      } 

      else if(ignoreThisShape == 6){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find9Ignore6[i]; 

        } 

      } 

      else if(ignoreThisShape == 8){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find9Ignore8[i]; 

        } 

      } 

      else if(ignoreThisShape == 10){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find9Ignore10[i]; 

        } 

      } 

      else if(ignoreThisShape == 14){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find9Ignore14[i]; 

        } 

      } 

    } 

    if(findThisShape == 10){ 

      if(ignoreThisShape == 5){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find10Ignore5[i]; 

        } 

      } 

      else if(ignoreThisShape == 6){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find10Ignore6[i]; 

        } 

      } 

      else if(ignoreThisShape == 8){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find10Ignore8[i]; 

        } 

      } 

      else if(ignoreThisShape == 9){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find10Ignore9[i]; 

        } 

      } 

      else if(ignoreThisShape == 14){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find10Ignore14[i]; 

        } 

      } 

    } 

    if(findThisShape == 14){ 

      if(ignoreThisShape == 5){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find14Ignore5[i]; 

        } 

      } 

      else if(ignoreThisShape == 6){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find14Ignore6[i]; 

        } 

      } 

      else if(ignoreThisShape == 8){ 
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        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find14Ignore8[i]; 

        } 

      } 

      else if(ignoreThisShape == 9){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find14Ignore9[i]; 

        } 

      } 

      else if(ignoreThisShape == 10){ 

        for(int i = 0; i < bitList.length; i++){ 

          bitList[i] = find14Ignore10[i]; 

        } 

      } 

    }   

  } 

} 

 

class HBot{ 

  int x,y; 

  int xOld, yOld; 

  int state = 0; 

  int actionState = 0; 

  int nextState = 0; 

  int stateLevel = 0; 

  int[] sensed = new int[6]; 

  boolean[] possDirections = new boolean[6]; // is it possible to move in this direction 

   

  int lowMoveProb = 1; // random(100) < value then do 

  int highMoveProb = 10;//10; // random(100) < value then do 

   

  /* 

        |5|0| 

       |4|x|1| 

        |3|2| 

  */ 

   

  HBot(int tempA){ 

    x = locationsX[tempA]; 

    y = locationsY[tempA]; 

     

    for(int i = 0; i < sensed.length; i++){ 

      sensed[i] = 0; 

    } 

  } 

   

  void move(int currentBot){ 

    if(state == 0){ 

      xOld = x; 

      yOld = y; 

       

      // all directions are possible 

      for (int i = 0; i < 6; i++){ 

        possDirections[i] = true; 

      } 

       

      // stop travel in direction of any object cell in inner sensor ring 

      for(int i = 0; i < 6; i++){ 

        if (sensed[i] == -2 || sensed[i] == -3){ // if object cell or boundary cell 

          possDirections[i] = false; 

        } 

      } 

       

      int direction = 0; 

      int[] checkAll = {0,0,0,0,0,0}; 

      boolean leaveLoop = false; 

       

      do{ 

        direction = (int)(random(6)); // pick random direction 

        checkAll[direction] = 1; // note direction has been selected 

        int totalCheck = 0; 

        for (int i = 0; i < checkAll.length; i++){ 

          totalCheck += checkAll[i]; // tally the number of directions selected 

        } 

         

        if (totalCheck == 6){ // if all directions selected 

          leaveLoop = true; 

          direction = -1; // if all directions are not possible stay still 

        } 

         

      }while (leaveLoop == false && possDirections[direction] == false); // if direction not possible loop 

       

      if(direction != -1 && possDirections[direction] == false){ 

        println("bad move by hBot"); 

        exit(); 

      } 

       

      // move in the selected direction 

      if (direction == 0){ // NE 

        x += 1; 

        y -= 1; 

      } 

      else if (direction == 1){ // E 

        x += 1; 

      } 

      else if (direction == 2){ // SE 

        y += 1; 

      } 

      else if (direction == 3){ // SW 

        x -= 1; 

        y += 1; 

      } 
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      else if (direction == 4){ // W 

        x -= 1; 

      } 

      else if (direction == 5){ // NW 

        y -= 1; 

      } 

      else{ 

        x = x; 

        y = y; 

        // stay still 

        //println("Stay still"); 

      } 

       

      // if movement isn't possible because of other hBot stay still 

      // check for bots on top of each other 

      for (int i = 0; i < noOfBots; i++){ 

        if(i != currentBot){ // is this another hBot 

          if(hBot[i].x == x && hBot[i].y == y){ // is there an agent in this cell 

            //println("hBot in that cell!   " + direction); // move back to original possition  

            x = xOld; 

            y = yOld;       

          } 

        } 

      } 

    } 

  } 

   

  void sense(){ 

    int tempCount = 0; 

     

    sensed[tempCount++] = cell[x+1][y-1].cellState; // NE 

    sensed[tempCount++] = cell[x+1][y  ].cellState; // E 

    sensed[tempCount++] = cell[x  ][y+1].cellState; // SE 

    sensed[tempCount++] = cell[x-1][y+1].cellState; // SW 

    sensed[tempCount++] = cell[x-1][y  ].cellState; // W 

    sensed[tempCount++] = cell[x  ][y-1].cellState; // NW        

  } 

   

  void findNextState(){ 

   // if in contact with another agent change to state 1 

    //state = 0; 

    int noOfObjCont = 0; 

    int noOfhBotCont = 0; 

    int stateContA = -1; 

    int stateContB = -1; 

    boolean switchAB = false; 

     

    // count object side contacts 

    for(int i = 0; i < 6; i++){ 

      if (sensed[i] == -2){ // -2 is object 

        noOfObjCont++; 

      } 

    } 

     

    // update state relative to number of side contacts allowed by rule system 

    if (state == 0){ 

      if (noOfObjCont == 1) 

        nextState = 1; 

      else if (noOfObjCont == 2 && stateRules.levelOneMax >= 2) 

        nextState = 2;  

      else if (noOfObjCont == 3 && stateRules.levelOneMax >= 3) 

        nextState = 3;  

      else if (noOfObjCont == 4 && stateRules.levelOneMax >= 4) 

        nextState = 4;  

      else if (noOfObjCont == 5 && stateRules.levelOneMax >= 5) 

        nextState = 5;  

    }    

     

    // check for neighbouring agents and their states relative to the hBots current level 

    for(int i = 0; i < 6; i++){ 

      if (sensed[i] != -2 && sensed[i] != -1 && sensed[i] != 0 && state != 0 && state < maximumState){ 

        if (findLevelFromState(sensed[i]) == stateLevel){ 

          if (switchAB == false){ 

            stateContA = sensed[i]; 

            switchAB = true; 

            noOfhBotCont++; 

          } 

          else { 

            stateContB = sensed[i];  

            noOfhBotCont++;  

          } 

        }         

        else if (findLevelFromState(sensed[i]) > stateLevel){ 

          if (switchAB == false){ 

            stateContA = findStateAtSameLevel(stateLevel,sensed[i]); 

            switchAB = true; 

            noOfhBotCont++; 

          } 

          else { 

            stateContB = findStateAtSameLevel(stateLevel,sensed[i]);  

            noOfhBotCont++;  

          } 

        } 

      } 

    } 

     

    if (state != 0 && (stateContA != -1 || stateContB != -1)){ 

      if (noOfhBotCont == 2){ 

        if (stateContA <= stateContB){ 

          nextState = stateRules.ruleList[state][stateContA][stateContB]; 

        } 

        else{ 
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          nextState = stateRules.ruleList[state][stateContB][stateContA]; 

        } 

      } 

    } 

     

    // reverts to zero state (search) if not touching an object 

    if (noOfObjCont == 0){ 

      nextState = 0; 

    } 

     

 

  } 

   

  void changeState(){ 

    state = nextState; 

    stateLevel = findLevelFromState(state);  

    //if(stateLevel > 0){  

    //  print(state + "[" + stateLevel + "]");   

    //} 

    actionState = actionRules.callRule(state);  

    //if(stateLevel > 0){ 

    //  print("(" + actionState + "),"); 

    //} 

  } 

   

  void act(){ 

    if(actionState == 0){ 

      //do nothing 

    } 

    else if (actionState == 1){ 

      //remove object in contact with 

      removeObject(x,y); 

    } 

    else if (actionState == 2){ 

      // revert to state 0 

      // high probability of state 0 

      if (random(100) < highMoveProb) 

        state = 0; 

    } 

    else if (actionState == 3){ 

      // Slim chance to revert to state 0) 

      // low probability of state 0 

      if (random(100) < lowMoveProb) 

        state = 0; 

    } 

    else{ 

      println("ERROR in act, hBot"); 

    } 

  } 

} 

 

class Objects{ 

  int x,y; //location 

  int noOfCells; 

  int type; // each type is a different possible parter based on the number of cells used 

  int rotation; // each object has 6 different rotations 

  int otherXY[]; // 0 - 18 the cells that surround any central cell 

  boolean deleted = false; 

   

  int osID; // object shape identifying number 

   

  Objects(int ID){ 

    x = (int)(cols/2); 

    y = (int)(cols/2); 

     

    //x = tempX; 

    //y = tempY; 

     

    // find x and y positions 

    if(ID < 6){ 

      x = locationsX[(3*outerObjRing*outerObjRing) + (3*outerObjRing) - (outerObjRing*ID)]; 

      y = locationsY[(3*outerObjRing*outerObjRing) + (3*outerObjRing) - (outerObjRing*ID)]; 

    } 

    else{ 

      x = locationsX[(3*innerObjRing*innerObjRing) + (3*innerObjRing) - (innerObjRing*(ID-6)) + (innerObjRing/2)]; 

      y = locationsY[(3*innerObjRing*innerObjRing) + (3*innerObjRing) - (innerObjRing*(ID-

6)) + (innerObjRing/2)];       

    } 

     

    // change shape on odd and even 

    if(ID%2 == 0){ 

      osID = findThisShape; 

    } 

    else{ 

      osID = ignoreThisShape; 

    } 

     

    noOfCells = noOfCellsFromOsID(osID); // number of cells in object 

     

    rotation = (int)(random(6)); 

         

    //cellLocations 

    otherXY = new int[noOfCells-1]; 

    cellLocations(); 

    rotation(); 

  } 

   

  void markCells(){ 

    cell[x][y].cellState = -2; // -2 is cGrey object 

     

    for (int i = 0; i < noOfCells - 1; i++){ 

      int tempX = findX(otherXY[i]); 
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      int tempY = findY(otherXY[i]); 

      cell[tempX][tempY].cellState = -2; 

    } 

  } 

 

  //////////////////////////// 

  void cellLocations(){ 

    // one cell allowance 

    if (osID == 0){ 

        // no other cells 

        // object shape ID 0 

    } 

    // two cell allowance 

    else if (osID == 1){ 

        //objectShape ID 1 

        otherXY[0] = 0; 

    } 

    // three cell allowance 

    else if (osID == 2){ // cluster 

      // object shape ID 2 

      otherXY[0] = 0; 

      otherXY[1] = 1; 

    } 

    else if (osID == 3){ // curve 

      // object shape ID 3 

      otherXY[0] = 0; 

      otherXY[1] = 4; 

    } 

    else if (osID == 4){ // straight 

      // object shape ID 4 

      otherXY[0] = 0; 

      otherXY[1] = 3; 

    } 

     

    // 4 four cell allowance 

    else if (osID == 14){ // straight 

      // object shape ID 14 

      otherXY[0] = 0; 

      otherXY[1] = 3; 

      otherXY[2] = 13; 

    } 

    else if (osID == 12){ // clockwise kink 

      // object shape ID 12 

      otherXY[0] = 0; 

      otherXY[1] = 2; 

      otherXY[2] = 11; 

    } 

    else if (osID == 10){ // anti-clockwise kink 

      // object shape ID 10 

      otherXY[0] = 0; 

      otherXY[1] = 4; 

      otherXY[2] = 15; 

    } 

    else if (osID == 13){ // wiggle 1 

      // object shape ID 13 

      otherXY[0] = 0; 

      otherXY[1] = 2; 

      otherXY[2] = 12; 

    } 

    else if (osID == 9){ // wiggle 2 

      // object shape ID 9 

      otherXY[0] = 0; 

      otherXY[1] = 4; 

      otherXY[2] = 14; 

    } 

    else if (osID == 6){ // cherry left 

      // object shape ID 6 

      otherXY[0] = 0; 

      otherXY[1] = 3; 

      otherXY[2] = 4; 

    }  

    else if (osID == 7){ // cherry right 

      // object shape ID 7 

      otherXY[0] = 0; 

      otherXY[1] = 2; 

      otherXY[2] = 3; 

    } 

    else if (osID == 5){ // cluster 

      // object shape ID 5 

      otherXY[0] = 0; 

      otherXY[1] = 1; 

      otherXY[2] = 5; 

    } 

    else if (osID == 11){ // curve 

      // object shape ID 11 

      otherXY[0] = 0; 

      otherXY[1] = 2; 

      otherXY[2] = 10; 

    }     

    else if (osID == 8){ // three-way 

      // object shape ID 8 

      otherXY[0] = 0; 

      otherXY[1] = 2; 

      otherXY[2] = 4; 

    }  

  } 

   

  // RotateObjects 

  void rotation(){ 

    for (int i = 0; i < noOfCells-1; i++){ 

      if (otherXY[i] < 6){ // inner ring 

        otherXY[i] += rotation; 
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        if (otherXY[i] >= 6) 

          otherXY[i] -= 6; // keep within inner ring 

      } 

      else if (otherXY[i] >= 6){ 

        otherXY[i] += (rotation*2); 

         

        if (otherXY[i] >= 18) 

          otherXY[i] -= 12; 

      } 

    } 

  } 

   

  ////////////////// 

  int findX(int i){ 

    int tempX = 0; 

     

    if (i == 0) 

     tempX = x+1; 

    else if (i == 1) 

     tempX = x+1; 

    else if (i == 2) 

     tempX = x; 

    else if (i == 3) 

     tempX = x-1; 

    else if (i == 4) 

     tempX = x-1; 

    else if (i == 5) 

     tempX = x; 

      

    else if (i == 6) 

     tempX = x+1; 

    else if (i == 7) 

     tempX = x+2; 

    else if (i == 8) 

     tempX = x+2; 

    else if (i == 9) 

     tempX = x+2; 

    else if (i == 10) 

     tempX = x+1; 

    else if (i == 11) 

     tempX = x; 

    else if (i == 12) 

     tempX = x-1; 

    else if (i == 13) 

     tempX = x-2; 

    else if (i == 14) 

     tempX = x-2; 

    else if (i == 15) 

     tempX = x-2;    

    else if (i == 16) 

     tempX = x-1; 

    else //(i == 17) 

     tempX = x;  

      

    return(tempX); 

  } 

   

  int findY(int i){ 

    int tempY = 0; 

     

    if (i == 0) 

     tempY = y-1; 

    else if (i == 1) 

     tempY = y; 

    else if (i == 2) 

     tempY = y+1; 

    else if (i == 3) 

     tempY = y+1; 

    else if (i == 4) 

     tempY = y; 

    else if (i == 5) 

     tempY = y-1; 

      

    else if (i == 6) 

     tempY = y-2; 

    else if (i == 7) 

     tempY = y-2; 

    else if (i == 8) 

     tempY = y-1; 

    else if (i == 9) 

     tempY = y; 

    else if (i == 10) 

     tempY = y+1; 

    else if (i == 11) 

     tempY = y+2; 

    else if (i == 12) 

     tempY = y+2; 

    else if (i == 13) 

     tempY = y+2; 

    else if (i == 14) 

     tempY = y+1; 

    else if (i == 15) 

     tempY = y;    

    else if (i == 16) 

     tempY = y-1; 

    else //(i == 17) 

     tempY = y-2;  

      

    return(tempY); 

  } 

} 
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int noOfCellsFromOsID(int id){ 

  int temp = 0; 

   

  if (id <= 0) 

    temp = 1; 

  else if (id <= 1) 

    temp = 2; 

  else if (id <= 4) 

    temp = 3; 

  else if (id <= 14) 

    temp = 4; 

    

  return(temp);  

} 

 

void removeObject(int hX, int hY){ 

  boolean checkIt = false; // make sure shape hasn't already been deleted this time step 

  int IDofDeletedObj = -1; 

   

  // finds which object to remove when hBot is trying to remove an object 

  for(int i = 0; i < noOfObjects; i++){ 

    // first check object's central x,y position 

    for(int k = 0; k < 6; k++){ 

      if(find2Y(k,hY) == objects[i].y && find2X(k,hX) == objects[i].x){ 

        //println("remove " + i); 

        if(objects[i].deleted == false){ 

          objects[i].deleted = true; 

          halt = true; 

          checkIt = true; 

          IDofDeletedObj = objects[i].osID; // get the object shape type 

        } 

      } 

    } 

    

    for(int j = 0; j < objects[i].otherXY.length; j++){ 

      int position = objects[i].otherXY[j]; 

      int posY = objects[i].findY(position); 

      int posX = objects[i].findX(position); 

       

      for(int k = 0; k < 6; k++){ 

        if(find2Y(k,hY) == posY && find2X(k,hX) == posX){ 

          if(objects[i].deleted == false){ 

            //println("remove " + i); 

            objects[i].deleted = true; 

            halt = true; 

            checkIt = true; 

            IDofDeletedObj = objects[i].osID; // get the object shape type 

          } 

        } 

      } 

    } 

  } 

  if(checkIt){ 

    if(IDofDeletedObj == findThisShape){ 

      println("CORRECT SHAPE REMOVED"); 

      //outputCheckFind.print(timeSteps + ","); 

     

      if(correctRemoved == 0){ 

        firstCorrectRemoved = timeSteps; 

      }       

      lastCorrectRemoved = timeSteps;    

       

      noOfObjRemoved++; 

      correctRemoved++; 

    } 

    else if(IDofDeletedObj == ignoreThisShape){ 

      println("INCORRECT SHAPE REMOVED"); 

      //outputCheckIgnore.print(timeSteps + ",");  

      

      if(incorrectRemoved == 0){ 

        firstIncorrectRemoved = timeSteps; 

      }       

      lastIncorrectRemoved = timeSteps;       

       

      noOfObjRemoved++; 

      incorrectRemoved++; 

    } 

    else{ 

      println("ERROR Non-existant shape removed"); 

      exit(); 

    } 

  } 

  //println("NoOfObjectsRemoved: " + noOfObjRemoved);   

} 

 

////////////////// 

int find2X(int i, int x){ 

  int tempX = 0; 

   

  if (i == 0) 

   tempX = x+1; 

  else if (i == 1) 

   tempX = x+1; 

  else if (i == 2) 

   tempX = x; 

  else if (i == 3) 

   tempX = x-1; 

  else if (i == 4) 

   tempX = x-1; 

  else // (i == 5) 

   tempX = x; 
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  return(tempX); 

} 

 

int find2Y(int i, int y){ 

  int tempY = 0; 

   

  if (i == 0) 

   tempY = y-1; 

  else if (i == 1) 

   tempY = y; 

  else if (i == 2) 

   tempY = y+1; 

  else if (i == 3) 

   tempY = y+1; 

  else if (i == 4) 

   tempY = y; 

  else // (i == 5) 

   tempY = y-1; 

    

  return(tempY); 

} 

 

class ReadAndWrite{ 

  PrintWriter output; 

  int numberOfLines; 

  int numberOfColumns; 

   

  float[] eachNumber;// = new int[numberOfColumns]; // length of numbers i.e. 100 would be 3, 4567 would be 4. 

   

  float[][] collectedData;// = new int[numberOfLines][numberOfColumns]; //[number of lines][number of columns] 

   

  ReadAndWrite(){ 

    numberOfLines = maxPopulation; 

    numberOfColumns = 60; 

   

    eachNumber = new float[numberOfColumns]; // length of numbers i.e. 100 would be 3, 4567 would be 4. 

   

    collectedData = new float[numberOfLines][numberOfColumns]; //[number of lines][number of columns]  

  

    collectedData[curSamp][0] = 20;  

  } 

   

  void readFile(){ 

    ///////////////////////////////////////////////////// 

    //INPUT   

    String name; 

    if(typeOfTest == 1) 

      name = "baseline"; 

    else if(typeOfTest == 2) 

      name = "random"; 

    else //(typeOfTest == 3) 

      name = "geneticAlgorithm"; 

     

    String inputFile = "results/Find" + findThisShape + "Ignore" + ignoreThisShape + name + "Generation" + curGen 

+ ".txt"; 

     

    // clean out each number 

    for(int j = 0; j < eachNumber.length; j++){ 

      eachNumber[j] = 0; 

    } 

     

    // read from current file 

    String lines[] = loadStrings(inputFile); 

     

    //println(lines.length); 

     

    for(int i = 0; i < numberOfLines; i++){ 

      // convert string into a char array 

      char[] eachChar = new char[lines[i].length()]; 

       

       

      for (int j = 0; j < lines[i].length(); j++){ 

        eachChar[j] = lines[i].charAt(j); 

      } 

       

      // find the numbers 

      int currentDigit = 0; 

      int[] tempHold = new int[30]; 

      int tempHoldPosition = 0; 

      int decimalAt = -1; 

      int commaAt = 0; // must start at 0 

       

      for (int j = 0; j < eachChar.length; j++){ 

         

        if(eachChar[j] == ','){ 

          commaAt = j; // update latest comma position 

           

          //output collected 

          int tempValue = 0; 

           

          for(int k = 0; k < tempHoldPosition; k++){   

            //println("tempHoldPosition = " + j + "    tempHold[j] = " + tempHold[j]); 

            float temp = pow(10,decimalAt - k - 1); // 0.1, 1, 10, 100 etc based on where the digit is 

            tempValue += (temp * tempHold[k]); 

          } 

          //println("Total " + tempValue); 

          eachNumber[currentDigit] = tempValue; 

          currentDigit++; 

          tempHoldPosition = 0; 

        } 

        else{ 
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          if(eachChar[j] == '.'){ 

            // there is a decimal point 

            decimalAt = j - commaAt - 1; // find the relative position of decimal point 

          } 

          else{ 

            tempHold[tempHoldPosition] = (int)eachChar[j] - 48; 

            tempHoldPosition++; 

          } 

        } 

      } 

       

      for (int j = 0; j < eachNumber.length; j++){ 

        collectedData[i][j] = eachNumber[j]; 

      } 

    

      // problem reading first value, possible solution 

      collectedData[i][0] = (int)eachChar[0] - 48;    

     

    } 

     

  } 

   

  void writeFile(){   

    // print to currentfile 

    for(int i = 0; i < eachNumber.length; i++){ 

      output.print(collectedData[curSamp][i] + ","); 

    } 

    output.println("");      

  } 

 

  void writeAllFile(){   

    // print to currentfile 

    for(int i = 0; i < numberOfLines; i++){ 

      for(int j = 0; j < eachNumber.length; j++){ 

        output.print(collectedData[i][j] + ","); 

      } 

      output.println("");  

    }     

  } 

   

  void startFile(){ 

    // set up text file 

    String name; 

    if(typeOfTest == 1) 

      name = "baseline"; 

    else if(typeOfTest == 2) 

      name = "random"; 

    else //(typeOfTest == 3) 

      name = "geneticAlgorithm"; 

     

    String outputFile = "results/Find" + findThisShape + "Ignore" + ignoreThisShape + name + "Generation" + 

curGen + ".txt"; 

    output = createWriter(outputFile);   

  } 

   

  void finishFile(){ 

    // Write a list of the variables used 

     

    output.println(" "); 

     

    for(int i = 0; i < genome[0].bitList.length; i++){ 

      output.print("Bit " + i + ","); 

    } 

     

    output.print("totalCorrect,maxCorrect,minCorrect,meanCorrect,medianCorrect");  

    output.print(",totalIncorrect,maxIncorrect,minIncorrect,meanIncorrect,medianIncorrect"); 

    output.print(",totalSteps,maxSteps,minSteps,meanSteps,medianSteps"); 

    output.println(",meanFirstCorrectRemoved,meanLastCorrectRemoved,meanFirstIncorrectRemoved,meanLastIncorrectRe

moved"); 

     

    output.println(" "); 

    output.println("Variables"); 

    output.println("Find Object Shape: " + findThisShape); 

    output.println("Ignore Object Shape: " + ignoreThisShape); 

    output.println("Max number of time-steps: " + maxTimeSteps); 

    output.println("Number of test repeats: " + maxTests); 

    output.println("Number of hBots: " + noOfBots); 

    output.println(hour() + ":" + minute() + " " + day() + "/" + month() + "/" + year()); 

     

     

    // close current file 

    output.flush(); // Writes the remaining data to the file 

    output.close(); // Finishes the file     

     

  } 

   

  void convertDataForOutput(){ 

    // steps 

    // total, max, min, mean, median 

    float totalCorrect = 0; 

    float totalIncorrect = 0; 

    float totalSteps = 0; 

     

    float totalFirstCorrectRemoved = 0; 

    float totalLastCorrectRemoved = 0; 

    float totalFirstIncorrectRemoved = 0; 

    float totalLastIncorrectRemoved = 0; 

     

    int maxCorrect = 0; 

    int maxIncorrect = 0; 

    int maxSteps = 0; 
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    int minCorrect = 6; 

    int minIncorrect = 6; 

    int minSteps = maxTimeSteps; 

     

    int[] tempCorrect = new int[maxTests]; 

    int[] tempIncorrect = new int[maxTests]; 

    int[] tempSteps = new int[maxTests]; 

     

    // calculate total time steps (number 2) 

    for (int i = 0; i < maxTests; i++){ 

      // find totals 

      totalCorrect = totalCorrect + records[i][0]; 

      totalIncorrect = totalIncorrect + records[i][1]; 

      totalSteps = totalSteps + records[i][2]; 

      totalFirstCorrectRemoved = totalFirstCorrectRemoved + records[i][3]; 

      totalLastCorrectRemoved = totalLastCorrectRemoved + records[i][4]; 

      totalFirstIncorrectRemoved = totalFirstIncorrectRemoved + records[i][5]; 

      totalLastIncorrectRemoved = totalLastIncorrectRemoved + records[i][6]; 

       

      // find maximums 

      if(records[i][0] > maxCorrect){ 

        maxCorrect = records[i][0]; 

      } 

      if(records[i][1] > maxIncorrect){ 

        maxIncorrect = records[i][1]; 

      } 

      if(records[i][2] > maxSteps){ 

        maxSteps = records[i][2]; 

      } 

 

      // find minimums 

      if(records[i][0] < minCorrect){ 

        minCorrect = records[i][0]; 

      } 

      if(records[i][1] < minIncorrect){ 

        minIncorrect = records[i][1]; 

      } 

      if(records[i][2] < minSteps){ 

        minSteps = records[i][2]; 

      } 

       

      // copy across values to be sorted 

      tempCorrect[i] = records[i][0]; 

      tempIncorrect[i] = records[i][1]; 

      tempSteps[i] = records[i][2]; 

       

    } 

     

    float meanCorrect = totalCorrect/maxTests; 

    float meanIncorrect = totalIncorrect/maxTests; 

    float meanSteps = totalSteps/maxTests; 

     

    float meanFirstCorrectRemoved = totalFirstCorrectRemoved / maxTests; 

    float meanLastCorrectRemoved = totalLastCorrectRemoved / maxTests; 

    float meanFirstIncorrectRemoved = totalFirstIncorrectRemoved / maxTests; 

    float meanLastIncorrectRemoved = totalLastIncorrectRemoved / maxTests; 

     

    float medianCorrect = -1; 

    float medianIncorrect = -1; 

    float medianSteps = -1; 

     

    // sort arrays 

    tempCorrect = sort(tempCorrect); 

    tempIncorrect = sort(tempIncorrect); 

    tempSteps = sort(tempSteps); 

     

    // median correct 

    if(maxTests %2 == 0) {// even 

      float tempA = tempCorrect[(maxTests/2)-1]; 

      float tempB = tempCorrect[(maxTests/2)]; 

       

      medianCorrect = (tempA+tempB)/2; 

    } 

    else{ // odd 

      medianCorrect = tempCorrect[((maxTests-1)/2)]; 

    } 

     

    // median incorrect 

    if(maxTests %2 == 0) {// even 

      int tempA = tempIncorrect[(maxTests/2)-1]; 

      int tempB = tempIncorrect[(maxTests/2)]; 

       

      medianIncorrect = (tempA+tempB)/2; 

    } 

    else{ // odd 

      medianIncorrect = tempIncorrect[((maxTests-1)/2)]; 

    } 

 

    // median steps 

    if(maxTests%2 == 0) {// even 

      int tempA = tempSteps[(maxTests/2)-1]; 

      int tempB = tempSteps[(maxTests/2)]; 

       

      medianSteps = (tempA+tempB)/2; 

    } 

    else{ // odd 

      medianSteps = tempSteps[((maxTests-1)/2)]; 

    } 

 

     

    // copy across values 

    // add genome bit list (length 41) 
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    for(int i = 0; i < genome[curSamp].bitList.length; i++){ 

      collectedData[curSamp][i] = genome[curSamp].bitList[i]; 

    } 

     

    int counterTemp = genome[curSamp].bitList.length; 

     

    collectedData[curSamp][counterTemp++] = totalCorrect; 

    collectedData[curSamp][counterTemp++] = maxCorrect; 

    collectedData[curSamp][counterTemp++] = minCorrect; 

    collectedData[curSamp][counterTemp++] = meanCorrect; 

    collectedData[curSamp][counterTemp++] = medianCorrect; 

     

    collectedData[curSamp][counterTemp++] = totalIncorrect; 

    collectedData[curSamp][counterTemp++] = maxIncorrect; 

    collectedData[curSamp][counterTemp++] = minIncorrect; 

    collectedData[curSamp][counterTemp++] = meanIncorrect; 

    collectedData[curSamp][counterTemp++] = medianIncorrect; 

 

    collectedData[curSamp][counterTemp++] = totalSteps; 

    collectedData[curSamp][counterTemp++] = maxSteps; 

    collectedData[curSamp][counterTemp++] = minSteps; 

    collectedData[curSamp][counterTemp++] = meanSteps; 

    collectedData[curSamp][counterTemp++] = medianSteps;   

   

    collectedData[curSamp][counterTemp++] = meanFirstCorrectRemoved;  

    collectedData[curSamp][counterTemp++] = meanLastCorrectRemoved;  

    collectedData[curSamp][counterTemp++] = meanFirstIncorrectRemoved;  

    collectedData[curSamp][counterTemp++] = meanLastIncorrectRemoved;   

    //println("CounterTemp: " + counterTemp); 

     

  } 

     

} 

int[][] records = new int[maxTests][7]; // 7 is for correctRemoved, incorrectRemoved, timeSteps, first and last 

etc 

 

void resetTest(){ 

  // hBots back to starting position 

 

  for(int i = 0; i < noOfBots; i++){     

    hBot[i].x = locationsX[i]; 

    hBot[i].y = locationsY[i]; 

     

    for(int k = 0; k < 6; k++){ 

      hBot[i].sensed[k] = 0; 

    } 

  } 

   

   

  // shapes reset 

  for(int i = 0; i < objects.length; i++){ 

    objects[i].deleted = false; 

     

    objects[i].rotation = (int)(random(6)); 

    objects[i].rotation(); 

  } 

   

  // Record Results for averaging later 

  // correctRemoved,incorrectRemoved,timeSteps 

  records[currentTest][0] = correctRemoved; 

  records[currentTest][1] = incorrectRemoved; 

  records[currentTest][2] = timeSteps-1; // need to minus one as time-step is added before this is run 

   

  records[currentTest][3] = firstCorrectRemoved; 

  records[currentTest][4] = lastCorrectRemoved; 

  records[currentTest][5] = firstIncorrectRemoved; 

  records[currentTest][6] = lastIncorrectRemoved; 

   

  // other 

  currentTest++; 

  timeSteps = 0; 

  noOfObjRemoved = 0; 

  correctRemoved = 0; 

  incorrectRemoved = 0; 

   

  firstCorrectRemoved = maxTimeSteps; 

  firstIncorrectRemoved = maxTimeSteps; 

  lastCorrectRemoved = 0; 

  lastIncorrectRemoved = 0;   

   

  first = true; // check this 

  //outputCheckFind.println(""); 

  //outputCheckIgnore.println(""); 

  //println("Current Test " + currentTest); 

} 

 

class Rule{ 

  int id = 0; 

  int own = 0; 

  int neighbourLow = 0; 

  int neighbourHigh = 0; 

  //int outputState = 0; 

   

  int stateLevel = 0; 

   

  Rule(int tempID){ 

    id = tempID; 

    //outputState = id + 4;   

  } 

   

  void update(int i, int j, int k){ 

    own = i; 
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    neighbourLow = j; 

    neighbourHigh = k; 

    //stateLevel = levelTemp; 

  } 

} 

 

// given an initial centre co-ordinate of the 1st object cell 

// find the x,y coordinate for each spiral location 

// spiral location starts with 0 in the centre and spirals out increasing in value 

int[] locationsX = new int[(3*outerObjRing*outerObjRing) + (3*outerObjRing)+1]; 

int[] locationsY = new int[(3*outerObjRing*outerObjRing) + (3*outerObjRing)+1]; 

int noOfRings = outerObjRing; 

 

 

void findXSpiralLocations(){ 

  int xTrack = ((cols-1)/2); // relative x-coordinate based on current spiral location value 

  int addJ = 0; 

  locationsX[0] = xTrack; // set first 

 

   

  for (int i = 1; i <= noOfRings; i++){ // i is ring number 

    //boolean xAA;  // first value +2 rather than +1 

    int xA = i;       // number of times to +1 to x-tracker 

    int xB = i;   // number of times to +0 to x-tracker 

    int xC = 2*i; // number of times to -1 from x-tracker 

    int xD = i;   // number of times to +0 to x-tracker 

    int xE = i;       // number of times to +1 to x-tracker 

   

    for (int j = 1; j <= xA; j++){ 

      xTrack = xTrack+1;       

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA+1; j <= xA + xB; j++){ 

      xTrack = xTrack; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA + xB + 1; j <= xA + xB + xC; j++){ 

      xTrack = xTrack-1; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA + xB + xC + 1; j <= xA + xB + xC + xD; j++){ 

      xTrack = xTrack; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    for (int j = xA + xB + xC + xD + 1; j <= xA + xB + xC + xD + xE; j++){ 

      xTrack = xTrack+1; 

      locationsX[j + addJ] = xTrack; 

    } 

     

    addJ = xA + xB + xC + xD + xE + addJ; 

  } 

} 

 

void findYSpiralLocations(){ 

  int yTrack = ((rows-1)/2); // relative y-coordinate based on current spiral location value 

  locationsY[0] = yTrack; // set first 

   

  int addJ = 0; 

   

  for (int i = 1; i <= noOfRings; i++){ // ring number 

    int yA = 1;    // number of times to -1 from y-tracker 

    int yB = i-1;        // number of times to +0 to y-tracker 

    int yC = i*2;  // number of times to +1 to y-tracker 

    int yD = i;    // number of times to +0 to y-tracker 

    int yE = i*2;  // number of times to -1 from y-tracker 

   

    //println(yA +" "+ yB +" "+ yC +" "+ yD +" "+ yE); 

     

    for (int j = 1; j <= yA; j++){ 

      yTrack = yTrack-1; // -1 to tracker yA times 

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA+1; j <= yA + yB; j++){ 

      yTrack = yTrack; // +0 to tracker yB times 

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA + yB + 1; j <= yA + yB + yC; j++){ 

      yTrack = yTrack+1; // +1 to tracker yC times    

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA + yB + yC + 1; j <= yA + yB + yC + yD; j++){ 

      yTrack = yTrack;    // +0 to tracker yD times   

      locationsY[j + addJ] = yTrack; 

    } 

     

    for (int j = yA + yB + yC + yD + 1; j <= yA + yB + yC + yD + yE; j++){ 

      yTrack = yTrack-1;  // -1 from tracker yE times 

      locationsY[j + addJ] = yTrack; 

    } 

     

    addJ = yA + yB + yC + yD + yE + addJ; 

  } 

} 

 

class StateRules{ 
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  Rule[] rule; 

   

  int[] possibleList = {1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // 0 is empty 

  int nMin = 1; // the lowest in the possible list 

  int nMax = max(possibleList); // the highest in the possible list  

  int countRule = 4; // start at 4 because rule 1,2 and 3 are pre-defined 

   

  int[][][] ruleList = new int[21+1][21+1][21+1]; // own, low, high (rules start at one) 

   

   

  int maxVal = 22;  

   

  int levelOneMax = 3; // maximum number of side contacts permisable for single hBot 

  int levelTwoMax = 21; // max state for centre hBot of three 

  int levelThreeMax = 264; // max state for centre hBot of five 

   

  StateRules(){ 

    rule = new Rule[264+1]; // plus 1 as rule list starts at 1 and not 0       

 

     

    for (int i = 4; i < rule.length; i++){ 

      rule[i] = new Rule(i); 

    } 

     

    int own = 1; // the hBots current state 

    int nLow = 1; // the lowest neighbour 

    int nHigh = 1; // the highest value neighbour 

   

    while(countRule < rule.length){  

      boolean highCheck = true; 

      boolean lowCheck = true; 

     

      if (nLow <= nHigh){     

        rule[countRule++].update(own,nLow,nHigh); 

        println("[" + own + "][" + nLow + "][" + nHigh + "]  new: " + rule[countRule-1].id); 

      } 

       

      nHigh++; 

       

      while(highCheck){ 

        if (nHigh > nMax){ 

          nLow++; 

          nHigh = nLow; 

          highCheck = false; 

        } 

        else{ 

          // is nHigh on the possibleList 

          boolean onList = false; 

          for (int i = 0; i < possibleList.length; i++){ 

            if(possibleList[i] == nHigh){ 

              onList = true; 

            } 

          } 

          if (!onList){ 

            nHigh++; 

          } 

          else{ 

            highCheck = false; 

          } 

        } 

      } 

       

      while(lowCheck){ 

        if(nLow > nMax){ 

          own++; 

           

          updatePossibleList(own); 

                

          nLow = nMin; 

          nHigh = nMin; 

          lowCheck = false; 

        }   

        else{ 

          // is nLow on the possibleList 

          boolean onList = false; 

          for (int i = 0; i < possibleList.length; i++){ 

            if(possibleList[i] == nLow){ 

              onList = true; 

            } 

          } 

          if (!onList){ 

            nLow++; 

          } 

          else{ 

            lowCheck = false; 

          }         

        } 

      } 

    } 

     

     

    // create rules reference list 

    // set all rules to 0 

    for(int i = 0; i < 22; i++){ 

      for(int j = 0; j < 22; j++){ 

        for(int k = 0; k < 22; k++){ 

          ruleList[i][j][k] = -100; 

        } 

      } 

    } 
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    for(int i = 0; i < rule.length; i++){ 

      if(rule[i] != null){ 

        ruleList[rule[i].own][rule[i].neighbourLow][rule[i].neighbourHigh] = rule[i].id; 

      } 

      else{ 

        int a = 0; 

        //println("This is null " + i); 

      } 

    } 

     

       

   

  } // end of setup 

   

  //////////////////////////////////////////////////////////////////////////////// 

  int returnNewState(int tOwn, int tLow, int tHigh){ 

    if(ruleList[tOwn][tLow][tHigh] != -100){ 

      return(ruleList[tOwn][tLow][tHigh]); 

    } 

    else{ 

      println("ERROR with returnNewState"); 

      exit(); 

      return(0); 

    } 

  } 

   

  //////////////////////////////////////////////////////////////////////////////// 

  void updatePossibleList(int ownTemp){ 

    int pointer = 0; 

    if (ownTemp >= 4){ 

       

      // reset possible list 

      for (int i = 0; i < possibleList.length; i++){ 

        possibleList[i] = 0; 

      }  

   

      // find root state, and neighbour values 

      int root = rule[ownTemp].own; 

      int nOne = rule[ownTemp].neighbourLow; 

      int nTwo = rule[ownTemp].neighbourHigh;       

       

      // check rules to see if the root matches either neighbour of the other rule 

      for (int i = 4; i < rule.length; i++){ 

        if(root == rule[i].neighbourLow || root == rule[i].neighbourHigh){ 

          if (nOne == rule[i].own || nTwo == rule[i].own){ 

                // this is an acceptable option 

                possibleList[pointer++] = rule[i].id; // add to list           

          } 

        } 

      }         

       

      nMin = possibleList[0]; 

      nMax = max(possibleList); // the highest in the possible list 

       

      if (nMin == 0){ 

        println("ERROR min can't be zero"); 

        exit(); 

      } 

      if (possibleList[possibleList.length-1] != 0){ 

        println("ERROR last in list must be zero"); 

        exit();       

      } 

    } 

  } 

} 

 

int findStateAtSameLevel(int levelRequired, int stateAt){ 

  int counter = 0; 

  boolean leave = false; 

  

  

  do{  

    for(int i = 0; i < stateRules.maxVal; i++){ 

       for(int j = 0; j < stateRules.maxVal; j++){ 

         for(int k = 0; k < stateRules.maxVal; k++){ 

           if(stateRules.ruleList[i][j][k] != -100){ // undefined rules are minus one-hundred 

             if(stateRules.ruleList[i][j][k] == stateAt){ 

               stateAt = i; 

             } 

           } 

         } 

       } 

     } 

     counter++; 

     if(counter > 10){ 

       leave = true; 

     } 

  } while((findLevelFromState(stateAt) != levelRequired) && leave == false); 

   

  if (leave){ 

      println("Error Stuck In Do While Loop Find State at Same Level"); 

      exit();     

  } 

   

  return(stateAt);     

} 

 

int findLevelFromState(int stateAt){ 

  if (stateAt <= 0) 

    return(0); 

  else if (stateAt <= stateRules.levelOneMax) 

    return(1); 
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  else if (stateAt <= stateRules.levelTwoMax) 

    return(2); 

  else if (stateAt <= stateRules.levelThreeMax) 

    return(3); 

   

  else{ 

    println("Error in findLevelFromState"); 

    exit(); 

    return(0); 

  } 

  

} 

 
 

 




