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Abstract 

This paper provides the most fully comprehensive evidence to date on whether or not monetary 

aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of 

different definitions of money, including different methods of aggregation and different collections of 

included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, 

recurrent neural networks and kernel recursive least squares regression - techniques that are new to 

macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the 

kernel regression technique is a finite memory predictor. The two methodologies compete to find the best 

fitting US inflation forecasting models and are then compared to forecasts from a naive random walk 

model. The best models were non-linear autoregressive models based on kernel methods. Our findings do 

not provide much support for the usefulness of monetary aggregates in forecasting inflation.  
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1. Introduction 

It is a widely held belief among macroeconomists that there exists a long-run relationship 

between the growth rate of the money supply and the growth rate of prices (i.e., inflation). This belief 

forms the foundation for monetary policymaking at the world’s central banks, and hence is extraordinarily 

important for the conduct of public policy. Its importance makes it one of the most commonly tested 

hypotheses in economics. Yet, the mechanism through which money affects an economy’s overall, 

average price level is necessarily complex – as complex as the economies themselves. The mechanism 

almost surely is not linear, and the short-run dynamics may disguise the long-run relationship, confusing 

tests of the relationship. Linkages need not be univariate, and fluctuations in other variables (including the 

growth rate of productivity, and international economic conditions) may affect the near- and medium-

term correspondence between money growth and inflation. Such interactions raise the possibility that the 

correspondence may be both nonlinear and time-varying, perhaps with complexity beyond capture in 

parametric frameworks. In a recent paper, Bachmeier, Leelahanon, and Li (2007), for example, soundly 

reject both linear autoregressive (univariate) and vector-autoregressive (multivariate) models. 

If indeed there exists a dynamic, long-run relationship between the money supply and increases in 

prices, then it is a reasonable proposition that the near-term growth of the money supply might have 

predictive power for inflation. This study explores that relationship. In this paper, we investigate a wide 

range of measures of the money supply (i.e., monetary aggregates) for the United States, and evaluate 

their usefulness as leading indicators for inflation in the early to mid 2000s. We derive inflation forecasts 

using two nonlinear techniques with varying degrees of input memory, namely, recurrent neural network 

operating with potentially unbounded input memory, and a kernel regression technique with finite input 

memory.   

  

1. Monetary Aggregates and Monetary Policymaking 

 Policymakers worldwide seek to foster economic conditions of robust economic activity and low, 

stable rates of inflation. In that regard, it is important to identify indicators of macroeconomic conditions 

that will alert policy makers to impending inflationary pressures sufficiently early to allow the necessary 

actions to be taken to control and remedy the problem. Equally important, such indicators must not falsely 

signal future increases in inflation that cause policymakers to slow the pace of economic output in vain 

efforts to temper inflation. Given the widely held belief in the existence of a long-run relationship 

between money and prices, monetary aggregates would seem to hold much promise as indicator variables 
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for central banks. The European Central Bank (ECB), for example, employs a “two pillared” approach, 

which includes monetary analysis. Specifically, ECB (2003) states that “…the [President’s Introductory] 

statement will [after identifying short to medium-term risks to price stability] proceed to monetary 

analysis to assess medium to long-term trends in inflation in view of the close relationship between 

money and prices over extended horizons.” Evidence to date has not provided strong support for the 

proposition that monetary aggregates assist forecasting inflation for the United States; see, for example, 

Stock and Watson (1999a, 2007). Moreover, as noted by Federal Reserve Board chairman Ben Bernanke, 

monetary aggregates have not played a central role in the formulation of US monetary policy, since 1982. 

He further states (Bernanke, 2006): “Why have monetary aggregates not been more influential in U.S. 

monetary policymaking, despite the strong theoretical presumption that money growth should be linked to 

growth in nominal aggregates and to inflation? In practice, the difficulty has been that, in the United 

States, deregulation, financial innovation, and other factors have led to recurrent instability in the 

relationships between various monetary aggregates and other nominal variables.”   

Recently, some economists have issued cautionary notes on the importance of money. See, for 

examples, Nelson (2002), Nelson (2003) and Leeper and Rouch (2003). In particular, Carlstrom and 

Fuerst (2004) state “…we think the current de-emphasis on the role of money may have gone too far. It is 

important to think seriously about the role of money and how money affects optimal policy.” In a similar 

vein, the Governor of the Bank of England Mervyn King (2002) stated “My own belief is that the absence 

of money in the standard models which economists use will cause problems in future, and that there will 

be profitable developments from future research into the way in which money affects risk premia and 

economic behavior more generally. Money, I conjecture, will regain an important place in the 

conversation of economists.”  

Linkages between money and inflation have become increasingly important during the recent 

financial crisis as in a number of countries, the instrument of monetary policy has shifted towards the 

quantity of money and away from overnight interest rates (for example, Bank Rate in the U.K.; the federal 

funds rate in the United States). A complicating factor in this debate is that money measurement is a 

complex problem. There are two key questions. First, which monetary assets are to be included in a 

particular aggregate? And, second, how are these assets to be aggregated together?       

Economists generally classify a financial asset as “money” if it is medium-of-exchange (that is, 

may be used for the purchase or sale of goods and services without being converted into any other form), 

or if the asset may be converted into medium of exchange at almost any time, and at low cost. This 

classification scheme admits a wide range of candidate assets. The most obvious is currency. “Narrow” 
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monetary aggregates include currency and bank deposits transferable by cheque.  Somewhat broader 

aggregates include the assets of narrow aggregates but, in addition, assets that are not medium of 

exchange but have little or no cost of conversion into medium of exchange; in the United States, these 

include savings deposits and shares in money market mutual fund. “Broad” monetary aggregates, in 

addition, include assets with higher conversion costs into medium of exchange; many of these assets have 

contractual fixed terms to maturity and financial penalties for withdrawal prior to contract expiration. 

Among these are small-denomination time deposits.  Typically, the assets in narrow aggregates earn zero, 

or relatively low, interest rates. Broader aggregates, in contrast, include a wide range of assets with higher 

returns, such as money market mutual funds.  

This study uses monetary aggregates for the United States; the aggregates are defined in 

Appendix 1.In practice, both the definitions and roles of monetary aggregates in U.S. policymaking have 

changed through time in response to financial innovation and deregulation. Prior to 1980, both academic 

researchers and policymakers focused on M1, containing currency and checkable deposits. Following 

significant deregulation in 1980, attention shifted toward the broader M2 monetary aggregate (Simpson, 

1980; Moore, Porter and Small, 1990). Yet, the initial stability of its demand (at least, in linear parametric 

models) proved ephemeral: Subsequent studies traced its instability to innovations that changed the 

behavior of small-denomination time deposits (Carlson, Hoffman, Keene and Rasche, 2000).  During both 

the 1970s and 1980s, the repeated introduction of new substitute financial products caused some analysts 

to explore the “MZM” aggregate, consisting of currency plus those financial assets issued by banks and 

money market mutual funds that could be converted to checkable deposits without cost (that is, all 

financial assets with zero maturity). Duca and VanHoose (2004) state that one response to the instability 

of M2 demand, at least by researchers if not policymakers, was a renewed focus on MZM, consistent with 

the view that it was heightened substitution between small time deposits and bond mutual fund assets that 

largely accounted for the instability of velocity—yet, demand for MZM also encountered instability in the 

early 2000’s. By the mid-1990s, the Federal Reserve largely had abandoned monetary aggregates as an 

important policy guide. In 1994, the policymaking Open Market Committee began announcing its policy 

objective to the public after each meeting solely in terms of a desired level of the federal funds rate; in 

2001 the Committee ceased publishing annual monitoring ranges for growth of monetary aggregates.   

We examine several monetary aggregates because the choice between the various monetary 

aggregates is far from clear cut. The M1 monetary aggregate used in this study differs from the M1 

aggregate published by the Federal Reserve’s Board of Governors on its H.6 statistical release in that we 

add to the published M1 the amount of transaction deposits that banks are allowed, under Federal Reserve 

regulations, to report as saving deposits. The latter reclassification of deposits is referred to as “retail 
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deposit sweeping” (Anderson and Rasche, 2001; Jones et al., 2005). Hence, our M1 aggregate 

corresponds to the “M1RS” aggregate as defined by Dutkowsky et al. (2006). Data are obtained from the 

web site of the Federal Reserve Bank of St. Louis (research.stlouisfed.org). 

Above, we addressed the uncertainty regarding which financial assets to include within the 

definition of money. But, there is a second issue: How should the selected financial assets be aggregated 

together?  There are two candidate methods of aggregation. The first is unweighted (simple) summation. 

Traditional monetary aggregates (including M1, MZM, M2 and M3) are constructed by simple 

summation; that is adding together the amounts of assets as different as currency, saving deposits, time 

deposits with fixed maturities, and money market mutual fund shares.  

A second method of aggregation is by the application of Divisia index number formula, an 

approach to monetary construction propounded by Barnett (1980, 1982). Such monetary aggregates draw 

on both statistical index number and consumer demand theory and are, therefore, theoretically preferable 

to simple sum monetary aggregates. Barnett argues that we should treat money as a durable good 

rendering its owner a flow of services. Components of monetary aggregates, when treated so, differ in 

their liquidity properties and hence usability for transactions. The Divisia indexes allow for the varying 

transactions and liquidity properties of the components of a monetary aggregate by giving them different 

weights; the weight of each component depends on its expenditure share relative to the other components 

of the monetary aggregate and on its user cost. Consequently, currency and non-interest bearing deposits 

receive the highest weights because they are highly liquid assets and (correspondingly) have high user 

costs (in terms of interest foregone). Interest-bearing time deposits by contrast pay a relatively high rate 

of interest and are less liquid, attracting a lower weight than might be expected from the size of such 

deposits alone. To the extent that these weights reflect the differences in transaction services provided by 

various monetary assets, the resulting Divisia monetary aggregates should be more closely related to the 

overall level of liquidity in the economy (and therefore to total spending in the economy) than 

conventional monetary aggregates.  

We investigate the forecasting performance of both Divisia and simple sum monetary aggregates 

at various levels of aggregation ranging from narrow to broad. For comparison purposes, we also explore 

several interest rate variables. Our forecasting experiment builds on several recent papers including 

Schunk (2001), Drake and Mills (2005), Elger et al. (2006) and Bachmeier et al. (2007), but is novel in 

several aspects.  
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Despite their grounding in index number theory, measurement issues arise with Divisia monetary 

aggregate measures. As previously noted, Divisia monetary aggregates weight the growth rates of the 

component assets by their expenditure shares. Measuring these expenditure shares depends on measuring 

the opportunity cost of a particular monetary asset, that is, the spread between the own rate of return on 

the monetary asset and the rate of return on a benchmark asset that does not provide any monetary 

services. In practice, a proxy must be chosen for the benchmark rate and this choice may affect the 

properties of the aggregate; see, for example, Hancock (2005). Drake and Mills (2005) suggest that the 

relatively poor forecasting performance of Divisia M2 in their study may be due to the choice of 

benchmark rate used by the Federal Reserve Bank of St. Louis in its construction.  Hence, a novel feature 

of our study is that we investigate how the choice of benchmark rate affects the forecasting performance 

of Divisia aggregates over a range of different levels of aggregation. A second novel aspect of the paper 

lies in our use of nonlinear techniques to examine the recent experience of inflation in the U.S. Our 

previous experience in inflation forecasting using state of the art approaches gives us confidence to 

believe that significant advances in macroeconomic forecasting and policymaking are possible using 

techniques such as those employed in this paper. As in our earlier work, Binner et al. (2005), results 

achieved using artificial intelligence techniques (i.e., Neural Networks and Kernal Methods) are 

compared with those using a baseline naïve predictor. 

Finally, we note that technically, Divisia indexes are defined in continuous time; the most 

common discrete time approximation is the Törnqvist-Theil (TT) index (Törnqvist [1936] and Theil 

[1967]). It is a chained superlative (Diewert [1974, 1976]) index. Barnett et al. (1992) and Anderson et al. 

(1997) provide surveys of the relevant literature, whilst Drake et al. (1997) review the construction of 

Divisia indices and associated problems. 

 Index numbers provide parameter- and estimation-free approximations of aggregator functions 

and are therefore independent of the researcher’s choice of theoretical and empirical model. The quality 

of an index number is dependent on how well it tracks the unknown aggregator function. Since the 

Divisia index is directly derived from the utility maximization problem it can track the unknown 

underlying aggregator function exactly. The continuous time Divisia index is directly derived from the 

rational individuals (current period) blockwise weakly separable sub-utility function over monetary 

assets. Hulten (1973) has shown that the Divisia line integral is path independent under weak separability. 

Since real world data is collected in discrete time, the above definition of the Divisia index (or aggregator 

function, since the index is exact) is unproductive.  
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2. Data and Forecasting Framework 

Two aspects of the data must be discussed: the choice of an inflation measure and the choice of a 

monetary aggregate. The choices are substantive because we cannot pre-test for invariance (with respect 

to the measure of money and inflation) of the nonlinear and potentially time-varying relationships that 

connect a specific monetary aggregate and an inflation measure.  

Choice of Inflation Measure 

A number of inflation measures are available for the United States, including the chain-price 

index for gross domestic product, the chain-price index for personal consumption expenditures both 

including and omitting food and energy, the implicit price deflator for gross domestic product, and several 

variants of the consumer price index for urban workers and wage earners (CPI-U and CPI-W). The CPI-U 

is perhaps the best known among households and businesses. Although the Federal Reserve’s 

policymaking Federal Open Market Committee monitors the chain-price index for personal consumption 

expenditures omitting food and energy (“core PCE price index”) on the belief that it best measures the 

underlying inflation trend affected by monetary policy, the Committee’s underlying concern, as 

summarized by a former Federal Reserve governor, is the path of headline CPI inflation: “I have no 

qualm in stating that controlling headline inflation, not core inflation, is—along with maintaining 

maximum sustainable employment—the ultimate aim of monetary policy.” (Mishkin, 2007) Similarly, 

inflation-targeting central banks worldwide focus on the behavior of headline CPI measures, regardless of 

their intermediate price index targets (Mishkin and Schmidt-Hebbel, 2001). Annual cost-of-living 

adjustments for Social Security recipients, as well as federal government and military retirees, are based 

on the CPI-U, as are annual adjustments of federal income tax brackets and the payments to holders of the 

Treasury’s inflation-protected (indexed) bonds. 

In its construction, the CPI-U is a compromise between rapid evolution of expenditure weights so 

as to accurately track changing consumer expenditure patterns and the more sluggish adjustment required 

to measure cost-of-living changes relative to a set of base-period reference expenditure shares. In the 

event, CPI-U expenditure weights are updated every two years, based on consumer surveys. At finer 

levels of disaggregation, goods and services are aggregated using geometric means so as to minimize 

substitution bias; at more aggregate levels, aggregation is via Laspeyres formulas so as to avoid 

understating the impact of rising prices on households’ cost of living. The CPI has a careful process for 

quality adjustment, partially based on hedonics that seeks to include inevitable changes in available goods 

and services. Housing is treated via a rental equivalence approach that both collects actual spending 
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through the Consumer Expenditure Survey and market data regarding the rental prices of apartments and 

houses. Greenlees and McClelland (2008) provide an accessible discussion of these and other issues. 

An alternative index used in some studies, and also available monthly, is the chain-price index for 

PCE. This index is closely related to the CPI in that both indexes are built from the same underlying price 

and quantity data furnished by the U.S. Bureau of the Census, and both in their current versions measure 

the user cost of housing services consumed by households rather than the purchase prices of houses, 

utility services, etc. Yet, there are substantive differences between the indexes, including the formula used 

for upper-level aggregation (the CPI uses a Laspeyres formula, the PCE chain-price index uses a Fisher-

Ideal superlative formula), the weights (the CPI uses weights from a monthly consumer expenditure 

survey, the PCE index uses weights from monthly business surveys including the survey of retail sales), 

the updating of the weights (CPI weights are updated every two years, PCE index weights are updated 

each year based on a ratio of the preceding two years),  quality adjustments (mandated changes due to 

safety or environmental concerns generally appear as price increases in the CPI but as quality adjustments 

in the PCE index), and scope (the CPI includes only out-of-pocket payments by consumers, while the 

PCE includes payments made by firms on behalf of employees). For the period considered in this study 

(1960-2005), the two indexes behave similarly: average monthly year-over-year inflation measured by the 

CPI-U and PCE index is 4.3 percent and 3.8 percent, respectively, and the differences between the 

measure in almost all months is less than 1 percent except for periods in 1979-1981 when CPI inflation 

exceeded 10 percent due to elevated mortgage interest rates. In empirical studies, use of the PCE price 

index is not obviously to be preferred to the CPI. Clark (1999) argues that the CPI is preferable because 

the data are more timely and better quality. Although his analysis is a decade old, it seems the situation 

has changed little since; see McCully et al. (2007) and Garner et al. (2006).  

Price indexes at lower frequencies also are available but we do not consider them in this study.1 

The chain-price index for GDP is available quarterly, but with a longer lag than the CPI; the first 

observation for a quarter is published late in the third month following the end of the measured quarter,  

revised values are published late in each of the following two months, and a further value is published the 

following year. Its delayed availability and tendency to be revised make the GDP price index less 

informative to policymakers and infrequently used in contracts. The GDP price index both contains items 

excluded from the CPI and includes additional items. Excluded items include prices of used consumer 

goods and prices of imported goods. Many of the included items are intermediate products, including 

                                                      

1. Nakamura (2005), for example, studies the quarterly GDP implicit deflator.  
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consumer goods in distribution and producers’ durable equipment and structures. Changes in such prices 

are only weakly linked to changes in consumer goods’ prices and the cost of living.2     

Inflation in this paper is measured monthly as the year over year percentage change in the CPI-U. 

We prefer the CPI due its wide-spread public recognition and timely data availability. In the interests of 

brevity, we do not explore alternative measures here but leave them as a subject of future research.  

Monetary Aggregates 

We employ the full range of monetary aggregates for the US, which vary in terms of the range of 

monetary assets included in each aggregate and the method of aggregation. First, we explore monetary 

aggregates for four different groupings of monetary assets: M1, which consists of currency, demand 

deposits, and other checkable deposits; MZM, which consists of all M1 assets plus savings deposits 

including money market deposit accounts (MMDA), and retail-type money market mutual funds; M2, 

which consists of MZM assets plus small-denomination time deposits; and M3, which consists of M2 

assets plus institutional-type money market mutual funds, repurchase agreements, Eurodollar accounts, 

and large denomination time deposits.  

Second, we explore different methods of aggregating the included monetary assets. We obtained 

simple sum and Divisia monetary aggregates for each of the four levels of aggregation (M1, MZM, M2, 

and M3) from online databases maintained by the Federal Reserve Bank of St Louis; see Anderson et al. 

(1997). This provides us with eight monetary aggregates.  In addition to these publicly available Divisia 

monetary aggregates, we also used Divisia monetary aggregates from Elger et al. (2006). The main 

difference between these alternative Divisia aggregates and the ones maintained by the Federal Reserve 

Bank of St. Louis is choice of the benchmark rate that is used in measurement of assets’ opportunity 

costs. Elger et al. (2006) choose the benchmark rate as the upper envelope of the returns in M3, that is, in 

each time period the benchmark rate is measured as the maximum own-interest rate on the assets included 

in the M3 level of aggregation. The St. Louis Fed’s aggregates are based on an upper envelope that also 

includes a long-term bond rate (the Baa rate). There are some other differences between the indexes as 

described by Elger et al. (2006 pp. 432-3), an important one being that Elger et al. (2006) set to zero the 

own-rate of return on non-interest bearing demand deposits, while the St. Louis Fed’s indexes include an 

implicit return. We use the Elger at al Divisia aggregates at all four levels of aggregation (M1, MZM, M2, 

                                                      

2 See for example Nakamura (2008) who concludes that variation in retail prices arises primarily from retail-level 
demand and supply shocks rather than manufacturer-level price fluctuations. 
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and M3).  For this study, we constructed an additional set of Divisia aggregates that follow the 

construction method of Elger et al. (2006) except that the Baa corporate bond rate is included in the upper 

envelope selection process for the benchmark rate.  

In total, we thus consider sixteen monetary aggregates.  Out of the sixteen measures of money, 

we restricted the choice of monetary aggregate to just one for each of our model selections.  

Separately, we also experimented with the inflation forecasting potential of interest rates in our 

study. In that regard, we explored two different interest rate measures: a short interest rate, on three-

month Treasury bills, and the Baa corporate bond rate.  We allowed each model to include short and long 

rates alongside or instead of the chosen measures of money or to exclude interest rates. Lags of each 

variable and orders of differencing of each variable were permitted and left to our discretion. Interest rates 

in no cases improved the performance of the models. 

3. Methodologies 

In our experiments, two forecasting techniques—recurrent neural networks and kernel recursive 

least squares—compete to predict the year-over-year inflation rate that will prevail 6 months in the future. 

For each technique, we begin with a competition in which a large number of models are fit to the training 

dataset; we retain the four best models for each technique judged on their performance on the hold-out 

validation dataset. Next, we compare the forecasting performance of the four models (and their flat 

ensembles) for out-of-sample forecasting on the test set. Of the 541 data points available, the first 433 

were used for training (model fitting), (January 1960 - February 1997), the next 50 data points were used 

for validation, (March 1997 – April 2001) and the next 46 data points were used for forecasting (May 

2001 – February 2005). We also consider a “naïve” random walk model for comparison. 

Forecasting macroeconomic data using nonlinear, nonparametric methods such as in this analysis 

confronts a number of special issues, including low signal/noise ratios and nonstationarity, which have 

been addressed by a number of authors; see for example Moody (1995), Zhang (1998), or Giles, 

Lawrence and Tsoi (2001). Our economic framework is the quantity theory of money which argues that, 

in the medium- to long-run, the economy’s inflation rate equals the growth rate of money (suitably 

defined) minus the growth rate of real economic output, or tt tp M y 
  

. (The relationship is 

approximate because technological innovation or changes in social practices may affect the precise 

relationships between money growth and the growth of income, referred to by economists as velocity.)  
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Not all input series are required to be stationary, but to be sensible statistically a dynamic statement of 

this relationship must admit a stationary disturbance t : 

   ( ) ( ) ( )t t tA L p B L M C L y    , 

where ( ), ( ), ( )A L B L C L are polynomials in the lag operator jL defined as j
t t jL x x  . Our nonlinear, 

nonparametric statistical framework, which might be denoted ( , , )p M y , is agnostic regarding 

contemporaneous and dynamic (lagged) interdependencies among tp , tM , and ty , for all t, including 

differencing when necessary. As such, it is inherently robust to nonstationarity. We assume that real 

output, at least approximately, follows an exogenous stochastic process such that changes in the price 

level during current and future periods are highly correlated with changes in the supply of money 

(correctly measured) during periods preceding the change in the price level. Our tests, therefore, are joint 

tests of, first, the maintained hypothesis that the evolution of real economic activity over medium- to 

long-run time periods is (largely) independent of the growth of money and, second, that the growth of 

prices (that is, inflation) over similar lengths of time is largely governed by the growth of money. 

Although both hypotheses are accepted in modern macroeconomics, empirical investigations with 

parametric linear methods have found it difficult to provide supporting evidence. 

Multi-recurrent Neural Networks 

Recurrent neural networks (RNNs) are typically adaptations of the traditional feed-forward multi-

layered perceptron (FF-MLP) trained with gradient-descent learning algorithms (see Pearlmutter, 1995, 

and Rumelhart et al., 1986). This class of RNN extends the FF-MLP architecture to include recurrent 

connections that allow network activations to feedback as inputs to units within the same or preceding 

layer(s). Such internal memories enable the RNN to construct dynamic internal representations of 

temporal order and dependencies which may exist within the data.  Units that receive feedback values are 

often referred to as context or state units.  Also, assuming non-linear activation functions are used, the 

universal function approximation properties of FF-MLPs naturally extends to RNNs. These properties 

have led to wide appeal of RNNs for modeling time-series data, Moshiri, et al. (1999); Tenti (1996); 

Ulbricht (1994); Binner et al. (2004); Jordan (1986).3 

                                                      

3 Previous studies have found little forecasting improvement from feed-forward networks. Stock and Watson 
(1999b) hypothesize that recurrent networks might do better.  
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We build upon our previous successes with RNNs, (Binner et al., 2004; 2006) for modeling 

financial time-series data and extend our RNN models to a subset of RNNs referred to as multi-recurrent 

networks (MRNs), Ulbricht (1994) and Dorffner (1996). The MRN architecture combines several types of 

feedback and delay to form a state-based model whose state transitions are modeled as an extended non-

linear auto-regressive moving average (ARMA) process, Dorffner (1996). The architecture employs three 

levels of feedback allowing recurrent connections from: i) the output layer back to the input layer, as 

found in Jordan networks, Dorffner (1996); ii) the hidden layer back to the input layer, as found in Elman 

(1990) Simple Recurrent Networks (SRNs) and finally iii) from the context units within the input layer 

back to themselves (self-recurrent links).  

As described in Section 2, the external input vector )(tx  consists of between one to four input 

variables representing combinations of previous inflation rates, one of the measures of money and zero, 

one or two of the interest rate measures. We do not permit recurrent or self-recurrent connections from 

external input units. We extend each allowable feedback by additional banks of context units (memory 

banks) on the input layer. The number of additional memory banks relates directly to the degree of 

granularity at which past and current information is integrated and stored. Following Ulbricht (1994), we 

use   memory banks where 4   as past experience has shown that moving beyond this does not lead 

to enhanced performance. Rather, it is the number of units within each bank that is pivotal to the 

performance of the network and that is determined on the validation set. The MRN architecture is shown 

in figure 1 and can be expressed generally as:  

 c x W Wˆ( ) ( ( ( ), ( ), ( )), ( ))f gy t g f t t t t     (1) 

where ˆ( )y t   denotes the predicted value of inflation (the target for  is ( )y t  where =6 for our 

purposes and refers to the value of inflation 6 months ahead); c( )t  (the context vector) is the 

concatenation of the previous hidden state vector with four delays of varying strength and summation of 

elements of previous output vector with four delays of varying strength; x( )t is the external vector of 

input variables; W ( )f t  is the weight matrix connecting the input layer to the hidden layer, W ( )g t  is the 

weight matrix connecting the hidden layer to the output layer and, finally, vector function  f and function 

g return the activation vectors from the hidden and output layers, respectively.  We apply the hyperbolic 

tangent function to the inner products performed for f and the binary sigmoid function to the inner 

products performed for g. We also use an internal output unit to provide an estimate, ˆ( )t +  , for the 
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noise term ( )t +   where ˆ ˆ( ) ( ) ( )t + y t + y t +     .  For the inner products associated with ˆ( )t +   

we use the identity function for g.     

Figure 1. Architecture for the Multi-recurrent Network. 

 

After a number of preliminary experiments to determine the most useful information to feedback 

from the output layer, it was clearly evident that feeding back the target value, ( )y t + , produces superior 

models (with respect to performance on the validation set) compared to feeding back either the predicted 

forecast, ˆ( )y t + , or the estimated noise value, ˆ( )t +  . This method, however, is unrealistic as, for the 

current prediction task, the target values would not be available for use during estimation. It was therefore 

decided to assess whether we could estimate the target, for feedback purposes, by simply summing the 

predicted forecast with the estimated noise value to form an internal target, ˆ'( )y t + . This consistently 

produced superior models (with respect to performance on the validation set) compared to those which 

fed back either the predicted forecast or the estimated noise term and was therefore selected as the 

information to feedback from the output layer. As shown in figure 1, we return ˆ'( )y t +  as the network’s 

prediction value. 
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The context vector, c( )t , represents an internal memory of varying rigidity – that is some context 

units will represent information from very recent time steps and thus change rapidly whilst others will 

represent information further back in time and change much more slowly. To achieve this, the unit values 

fed back from the hidden and output layers are combined, to varying degrees, with their respective 

context units, c ( )i t , in the input layer (as determined by the weighting values applied to their recurrent 

links). The influence of the previous context unit values are determined by the weighting values applied 

to the self-recurrent links.  When the weighting on the recurrent links are greater than those on the self-

recurrent links then more flexible memories are formed storing more recent information at the expense of 

historical information stored in the context units. Conversely, if the weighting values on the self-recurrent 

links are greater than those on the recurrent links then more rigid memories are formed since more 

historical information is preserved in the context units at the expense of the more recent information being 

fed back from subsequent layers. This can be generally expressed as follows: 

 ( ) ( ( ) ( ) )i j j i ic t = f a t ‐ 1 v + c t ‐ 1 z  (2) 

where ic (t)  refers to context unit i at time t; ja (t ‐ 1)  denotes either an internal output target value or a 

hidden unit activation value at time t-1; jv  refers to the connection strength of the recurrent link from ja  

to ic  where  
1

jv j


  where 1,2,...,j  ; ( 1)ic t  refers to context unit i at time t-1; and finally iz  

refers to the connection strength of the self-recurrent link for ic  where 
1

iz i


  where 1,2,...,i  .  The 

number of hidden units, and thus size of the recurrent layer, is a significant hyper-parameter for this 

model and is determined by performance on the validation set. 

 We use back propagation-through-time (Werbos, 1990; Williams and Peng, 1990), an efficient 

gradient-descent learning algorithm for training RNNs. Input data were scaled to zero mean and unit 

variance. To facilitate convergent learning, the ‘search and converge’ learning rate schedule as defined by 

Darken et al. (1992) was used for all training experiments with an initial learning rate, 0  of  0.0054. 

This provides an effective time varying learning rate that guarantees convergence of stochastic 

approximation algorithms and has proven effective for temporal domains, for example see Lawrence et al. 

(2000).  The momentum term is fixed at 0.95 due to the low learning rates. To identify the onset of over-

fitting during training we use the decline in performance on the hold-out validation set as the basis for 

terminating the training process.  We generate independent training sequences directly from the time-
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series using a time window, whose lag size is determined by performance on the validation set. The MRN 

context units are initialized to known values at the beginning of each sequence of data and each element 

within a sequence is processed sequentially by the network. Although this restricts the MRN to behaving 

as a finite memory model and also means that the MRN must first learn to ignore the first context values 

of each sequence, it allows for efficient randomized learning. 

Although such RNNs and variants thereof have enjoyed some success for time-series problem 

domains we tread with cautious optimism. Due to the additional recurrency, such models inherently 

contain large degrees of freedom (weights) which may require many training cases to constrain. Also, 

gradient descent-based learning algorithms are notoriously difficult at finding the optimum solution the 

architecture is theoretically capable of representing: Bengio et al. (1994) and Sharkey, et al. (2000). 

Kernel-based Regression Techniques 

Kernel methods (sometimes known as “kernel machines”) are a popular class of learning 

algorithms based on a simple idea: it is possible to produce non-linear versions of traditional linear 

learning techniques by formulating them in a (so-called) feature space H (as opposed to working directly 

in the input space X where the inputs come from). Given a kernel function      K: XXR (satisfying 

Mercer conditions), there exists a Hilbert space H where K acts as a dot product. In kernel machines, the 

feature space associated with kernel K is such a Hilbert space H. Now, because many linear learning 

algorithms can be written purely in terms of dot products of inputs, it is easy to formulate their non-linear 

versions using the “kernel trick”: simply substitute dot products of inputs by dot products of images of 

inputs in H, which can be calculated directly using the kernel function K. Kernel machines were shown in 

numerous studies to be able to achieve competitive state-of-art performances. There is one prominent 

problem with kernel machines though: they typically scale rather unfavorably with the number of training 

examples, as this is directly related to the number of degrees of freedom. Numerous approaches for 

achieving sparsity of kernel machines have been suggested. For more information on kernel machines we 

refer the interested reader to Engel et al. (2004). 

Kernel machines have shown great promise in financial forecasting, Haykin (1999), Kim (2003) 

and Wang and Zu (2008). In this paper, we use the “kernelized” version of the linear recursive least 

squares technique, termed Kernel Recursive Least Squares (KRLS) Engel et al. (2004). This 

particular approach is an example of a kernel machine with on-line constructive sparsification 

methodology.  Loosely speaking, a training input is allowed to enter construction of the kernel machine 

only if its image in the feature space H cannot be “approximately” represented as a linear combination of 
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images in H of previously admitted training inputs. This makes sense, since there is no nonlinearity in the 

model formulation once we transform the inputs into the feature space H. Of course, the resulting model 

will be non-linear, because the mapping of inputs to their images in H is nonlinear.  The amount of 

tolerance in allowing the image in H of  the currently considered input not to lie exactly in the linear 

subspace spanned by  images in H of the previously admitted training inputs is quantified by a parameter 

 >0. The greater the value of parameter, , the more sparse will be the resulting model.  On top of this 

methodology, a kernel based version of the recursive least squares algorithm operates, enabling it to solve 

efficiently in a recursive manner nonlinear least squares prediction tasks.  

The input vector )(tx  at time step t  consists of lagged past inputs 1 2( , ,... )Lx x x , where L is the 

input lag and , 1,2,...,jx j L  is the value of input variable at time 1t ‐ j  .  The resulting (trained) 

model returns for each input x( )t  a real valued output x( ( ))f t R  (predicted inflation rate at time 

t  ) that takes the typical form of a kernel regression machine: 

x x x
1

ˆ( ) ( ( )) ( ( ))
N

j
i

i

y t f t w K , t


       (3) 

where N is the number of admitted training inputs ijx ,  Ni ,...2,1 , and (.,.)K is the kernel 

function. Given the set of training input-output pairs Mjy j
j ,...,2,1),,( x ,  due to the model 

sparsity, N  is typically (much) smaller than the number of training inputs M.  We used spherical 

Gaussian kernels, defined as:  

 
x ‐ x

x,x

2

2

'
( ') exp( )

2
K


   (4) 

where 0   determines the kernel width (KW) and 
2

is the squared Euclidean norm in the input 

space X. Small kernel widths   yield more “flexible” models (that are more prone to possible over fitting 

of training data). 

Given the training data, the collinearity threshold, , and the kernel width,  , the KRLS returns 

a (potentially) sparse model that can be tested on the hold-out validation set.  The most appropriate values 

for   and   are given by the best performing model on the validation set.  



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 17

 We also considered Kernel Partial Least Squares (KPLS), Rosipal and Trejo (2001). This is a 

kernelized version of the Partial Least Squares technique. Again, spherical Gaussian kernels were used. 

Kernel width as well as the number of latent factors were set on the validation set. 

Naïve model - Random walk hypothesis 

Our baseline Naïve predictor operates as follows: if the prediction horizon is  months (in our  

case =6), predict that in  months we will observe the current inflation rate ( )y t . In other words, we 

predict that the inflation rate at time t   will be ( )y t , i.e., ( ) ( )y t y t  . This model corresponds to 

the random walk (RW) hypothesis with moves governed by a symmetrical zero-mean density function, 

and thus measures “the degree to which the efficient market hypothesis applies.” 

 

4. Results  

Before reporting results of individual prediction techniques, we briefly describe performance 

measures that form the basis of our model evaluation and comparison. 

Performance measures 

The actual and predicted inflation rates at time t are denoted ( )y t  and ˆ( )y t  respectively. 

Given a sample of T test times 1 2, ,..., Tt t t , we calculate the root mean square error (RMSE) of the 

model predictions  

 2

1

1
ˆ( ( ) ( ))

T

n n
n

RMSE y t y t
T 

   (5) 

However, it may be difficult to appreciate the value of RMSE for model M on its own. 

Therefore, we also report the rate (in percent) of improvement in RMSE of the tested model M 

with respect to the baseline random walk (RW) assumption: 

 
( ) ( )

( )
( )

RMSE RW RMSE M
IORW M

RMSE M


  (6) 
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where RMSE(M) and RMSE(RW) are the RMSE of the model M and RW baseline, respectively. 

Negative values of  IORW(M) indicate the case where model predictions are worse than baseline 

prediction capabilities. 

Multi-recurrent neural networks 

To determine the combination of allowable input variables which have the most influence on 

predicted inflation values, a simple selection scheme was followed. First, experiments with only past 

inflation rates were performed. Past inflation rates are naturally used in all other input variable 

combinations. Second, experiments with one or both of the interest rate measures (TB, Baa) were 

performed.  Finally, to determine the influence of money measures, a measure of money was included as 

an input variable with zero, one or both of the interest rates.  For each of the above variable combinations, 

time-lags of 6, 12, 18, 24 and 32 months were examined. The MRN architecture and training regime 

described in Section 3 was used in all experiments. The number of allowable free parameters (and thus 

hidden nodes) was limited to a percentage of the number of training patterns.  

After training the MRNs with the above variable combinations, the four best models obtained are 

shown in table 1 and were all achieved with a time-lag of 24 months which generated a training set of 

9,864 patterns (411 sequences).  MRN models were selected based on performance on the hold-out 

validation set.  It can be seen that in two of the best performing models, models 1 and 3, measures of 

money and an interest rate did appear to influence predicted inflation values. However, the level of 

influence is unclear as superior performance is evident without a measure of money, namely model 4, 

which only used both interest rates and past inflation rates.  

 
 

MRN 

 
MoneyMeasure 

 
Treasury Bill 
Interest Rate 

Baa 
Interest Rate 

Past Inflation 
Rate 

1 Divisia M1 –Baa Envelope Yes No Yes 

2 No No Yes Yes 

3 Simple Sum M3 Yes No Yes 

4 No Yes Yes Yes 

Table 1:  Four best MRN models and input variables used by each model. 
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After repeating experiments with model 4 configuration, it was clear that over the 6-month forecast 

horizon, superior performance is consistently obtained when using no measure of money, both interest 

rates and past inflation rates.   

Table 2 shows the number of free parameters and resulting performance on the test set for each 

winning model. Model 1 required substantially more free parameters than other “winning” models. 

Although this model performed best on the validation set, it performed worst on the test set.  Generally, 

however, very good performance can be obtained on the test set with MRN models that have as low as 

5% of the number of free parameters of model 1. We also averaged predicted inflation values across all 

four MRN models to obtain ensemble MRN performance. The resulting RMSE for the validation set 

proved superior to each of the individual MRN models.  An illustration of model 4 MRN predictions over 

the test period is presented in figure 2. The solid and dashed lines correspond to the real and predicted 

inflation rates respectively. 

MRN 
Number of Hidden 

Layers 
Number of Parameters RMSE 

1 
25 2,752 0.0072 

2 5 147 0.0077 

3 10 502 0.0070 

4 10 502 0.0064 

Ensemble n/a n/a 0.0065 

Table 2: Number of hidden layers, parameters and RMSE on test set for the four best RNN models. 
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Figure 2: The best predicted inflation rates by the MRN. 
 

MRN Method, for US Inflation Rate 
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Kernel machines 
 

In general, over the 6-month forecast horizon performance of KRLS and KPLS were comparable; 

for brevity only results for KRLS are reported. The best performing KRLS model candidates on 

validation set were consistently (non-linear) autoregressive models on inflation rates alone (see table 3). 

Input data was normalized to zero mean and unit standard deviation (the mean and variance are 

determined on the training set alone).  As table 4 shows, the best 4 candidates from the KRLS model 

class used lags of 10 and 12 months. The kernel width   varied between 1.2 and 1.5 and the 

collinearity threshold  ranged between 0.21 and 0.28. 

 
 
 

KRLS 

 
Money 

Measure 

 
Treasury Bill 
Interest Rate 

Baa 
Interest 

Rate 

Lagged Inflation  
Rate 

1 No No No Yes 
2 No No No Yes 
3 No No No Yes 
4 No No No Yes 

Table 3: Four best Kernel models and input variables used by each model. 
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KRLS Inflation Rate 
Lag 

KW  RMSE 

1 12 1.2 0.27 0.0050 
2 10 1.2 0.27 0.0053 
3 10 1.2 0.28 0.0057 
4 10 1.5 0.21 0.0082 

Ensble n/a n/a n/a 0.0055 

Table 4: Model structure and test set performance of the best four Kernel recursive least squares models. 

 

The rather limited range of values of structural parameters for the KRLS class indicates that a 

stable regime within which the KRLS class yields a satisfying performance on the given problem. It 

seems that having historical monthly inflation rates roughly a year into the past and a spherical kernel of 

width slightly larger than standard deviation of input data, with modest model sparsity induced by 

0.27v   yields the best performance. An illustration of KRLS predictions over the test period is 

presented in figure 3. The solid and dashed lines correspond to the real and predicted inflation rates, 

respectively. 

 

KRLS Method, for  US Inflation Rate 
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Observed inflation          Predicted inflation  
 

Figure 3: The best predicted inflation rates by the KRLS. 
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 Model comparison 

A summary of results showing the best fitting model for each approach are reported in table 5.    

The kernel based regression provides the biggest improvement (43.4%) over the random walk, with the 

recurrent neural network in second place.  

 MRN KRLS 
Model 4 1 
RMSE 0.0064 0.0050 
IORW 27.5 43.4 

Money? No No 
Table 5: Results summary 

Our early indications suggest that the kernel method appears to implement a more efficient 

feature extraction method that is well suited to the problem. It appears that using the “kernelized” version 

of the linear least squares technique provides an effective mechanism for constructing efficient feature 

domains well suited to the task of prediction. One key difference between the two techniques employed in 

this paper is the treatment of the input variables. The kernel based regression methods treat the inputs as 

inherently static, whilst the recurrent neural networks treat the inputs as dynamic due to the internal state 

memory being formed and fed back at each time step.  

Since the validation and test sets are only samples, the performance of the best model on the test 

set may overestimate the typical performance one would expect from the corresponding model class.  The 

average performance of the few best performing models, however, gives an indication of the expected 

performance, if sound model selection techniques are used. The average IORW measures of the best four 

models were 19.9% and 29.7% for the MRN and KRLS model classes respectively.  This gives a strong 

positive indication of the predictive capacity of the model classes considered in this inflation prediction 

task. 

With respect to the question ‘does money matter?’ simple sum money and a Divisia money 

constructed using the upper envelope approach are among the best performing models in the MRN model 

class.  Nevertheless, the best model in that class did not contain any money but did contain interest rates.  

Overall the best models are the nonlinear autoregressive models based on kernel methods. It is felt that 

further improvements in the construction of the money supply might help to obtain improvements in the 

inflation forecasting performance of the monetary aggregates. 

We also considered all the monetary aggregates together as 16-dimesional input time series based 

on which the future inflation rate was predicted. To base the prediction on the dominant factors (in the 
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variance maximization sense) in the 16 monetary aggregates, we decomposed the 16-dimensional input 

series using Principal Component Analysis (PCA) 4. We discovered that when using PCA to reduce the 

signal dimensionality, similar large-scale trends in the monetary aggregates tend to mask the time-

conditional differences between them that, however, may be crucial for inflation prediction. There was 

only a single dominant eigenvalue of the monetary aggregates covariance matrix, corresponding to the 

eigenvector of roughly equal terms across all 16 monetary aggregates. Projection onto this eigenvector 

roughly corresponds to computing the mean of the 16 monetary aggregates. Hence, PCA performed 

smoothing of the monetary aggregates into a single average aggregate. Predictions based on such average 

aggregate were comparable to (or worse than) predictions based on the individual monetary aggregates. 

This approach, commonly termed Principal Component Regression (PCR), is known to be suboptimal 

when only concentrating on dominant eigen-directions (Jolliffe, 1982). We tried various combinations of 

the major component with the minor ones (or minor components only), but the performance did not 

improve5.   

5. Discussion, Conclusions and Future Work 

Our findings provide the most comprehensive evidence to date that neither the aggregation 

method nor level of aggregation has a significant impact on the performance of our model, in contrast to 

the results reported by Schunk (2001). To the contrary, our results lend more support to the conclusion 

that the use of monetary aggregates lead, at most, to marginal improvements in forecasting inflation and 

are of limited value in that context. With continual innovation in financial markets, the impact on the 

measurement of monetary aggregates will continue to present problems in the form of monetary control. 

Aggregates that have been adjusted to take account of financial innovations and the riskiness of the assets, 

along the lines proposed recently by Barnett and Wu (2005), have the potential to make a valuable 

contribution to the future development of monetary policy and is likely to be a fruitful area for future 

research. Having established the preferred monetary aggregate construct for forecasting purposes, a next 

vital question to ask is how best to incorporate our chosen aggregate into a composite leading indicator of 

                                                      

4 We thank an anonymous reviewer for this suggestion 
5 We also tried to break down the dominance of the large-scale common trend in monetary aggregates (in 
comparison to their smaller scale profiles) by differencing the monetary aggregates and repeating the PCR approach 
on such de-trended data. The models predicted the change in inflation rate 6 months ahead, and the predicted 
difference was then added to the current inflation rate. Even though the clear dominance of the averaging 
eigenvector was weakened, the prediction performance did not improve.  
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inflation for detecting early warning signs of upturns and downturns in inflation, along the lines outlined 

in Binner et al. (1999, 2005) and Binner and Wattam (2003). The construction of a composite leading 

indicator of US inflation along with a detailed timing classification of the cycles is recommended for 

future study. 

How should we interpret our finding that monetary aggregates are not helpful in forecasting US 

inflation? There are several possible explanations for these findings. As Stock and Watson (2007) point 

out, beginning in the mid-1980s inflation has become more difficult to forecast; in the sense that it has 

become more difficult for an inflation forecaster to provide value added relative to a univariate model. 

This is not unique to monetary aggregates, but is a more general phenomenon; see, for example, Atkeson, 

and Ohanian (2001). Another explanation, more specific to money, is that monetary aggregates may be 

less informative when inflation is low and stable than during periods of high and volatile inflation. The 

reason is that one can think of money demand shocks as noise that obscures the signal from the monetary 

aggregates. Thus, in periods when inflation and money growth are both subdued, the signal to noise ratio 

of the monetary aggregates is likely to be low; see Estrella and Mishkin (1997). 

The “market is efficient” in the sense that it is difficult to beat the naïve RW model. The IORW 

measure is best suited for our purposes, because rather than worrying about the precise RMSE values, we 

should be concerned about by how much we can beat the rather obvious RW strategy. In other 

experiments (not reported here) we found that the longer the prediction horizon, the harder it is to 

accurately predict the inflation rate.  It seems that inclusion of historical inflation rates alone works quite 

well for the KRLS model class. We may speculate that the value of money is implicitly represented in the 

inflation rates and thus their explicit inclusion as input variables does not help, rather, it can actually 

make things worse because of the under sampling problems.  

The validation set is just a sample; therefore we cannot rely solely on picking the best model on 

the validation set. Slightly worse models on the validation set may be slightly better on the test set. 

Therefore we constructed flat ensembles of several best performing models on the validation set. We 

tested such ensembles on the test set but their performance was inferior to that of the single winner picked 

on the validation set.  

We also noted an interesting fact that the IORW measures did not change drastically with 

increasing prediction horizon. This indicates that for longer prediction horizons, it is more difficult to 

predict the inflation rates, but the naïve model is less suited as well, so things cancel out.  
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The class of recurrent neural networks used for this problem domain appeared to have offered 

some advantages over simple recurrent networks. Although the additional feedback connections used 

increases the complexity of the model, the improvement in performance appears to outweigh the negative 

effect of increased number of parameters. Also, the success of the MRNs is largely dependent on the 

hyper-parameters used, most of which have to be empirically established. There is no universal rule to 

determine the level and nature of recurrent and self-recurrent connections. A key problem with the 

approach taken is the use of gradient-descent based learning algorithms. The problems with back-

propagation through time, for example, are well documented Bengio et al. (1994) and Haykin (1999). 

Bengio et al. (1994) in particular has shown that the error gradient vanishes exponentially for dependent 

observations that are separated by intervening non-related observations, where greater number of 

intervening observations yields poorer generalization performance. Although the MRN offers 

modifications to the architecture which may alleviate some of the problems posed by gradient-descent 

learning methods (i.e., through the formation of sluggish state-spaces), we will also investigate other 

learning algorithms that are better able to find solutions the architecture is theoretically capable of 

representing (see Siegelmann and Sontag, 1991; Gers et al., 2001; Jaeger and Haas, 2004). 

In the case of the kernel based regression method, further investigation is required to understand 

and improve the stability of the model with respect to the addition of further input variables (e.g., 

measures of money). It may be that other compound measures of money may be more useful however this 

is likely to be model dependent. Further investigation into controlling model complexity (e.g., 

determining the number of kernels) may provide additional improvement and insight into the efficacy of 

this approach to inflation forecasting. This will require more sophisticated versions of cross-validation 

than the one employed in this paper. 

Future work will need to address the problem of why the kernel models break down when 

measures of money are added.  It seems that this issue is related to over fitting. When we tried using 

money alone, we could (after some work) get an excellent fit on the training set,  but the models were 

inferior on the validation (and test) set. In other words, the learnt relationships by KRLS between past 

measures of money and future inflation were not representing anything real. Indeed, we experimented 

with another class of non-linear predictors, namely evolutionary neural networks Yao (1999), Stanley and 

Miikkulainen (2002) (results not reported here).  This framework can produce powerful predictors, but 

controlling complexity in the evolutionary setting becomes more challenging. Most models tended to over 

fit the training sample, leading to inaccurate out-of-sample forecasts. 
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We noted that, using KRLS, a good fit on the training set was obtained more naturally and easily 

when only past inflation rates were considered. This would suggest that, conditional on the kernel 

machine class used, there is little mutual information between past bulk measures of money and future 

inflation. Of course, future work will need to validate or refute this hypothesis.  
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Appendix 1 

US Monetary Aggregates 

Definition  Source / Construction 

  

M1 St Louis Federal Reserve Bank, Fred database, USA 

M2 St Louis Federal Reserve Bank, Fred database, USA 

MZM St Louis Federal Reserve Bank, Fred database, USA 

M3 St Louis Federal Reserve Bank, Fred database, USA 

Divisia (MSI) M1 St Louis Federal Reserve Bank, Fred database,  USA 

Divisia (MSI) M2 St Louis Federal Reserve Bank, Fred database, USA 

Divisia (MSI) MZM St Louis Federal Reserve Bank, Fred database, USA 

Divisia (MSI) M3 St Louis Federal Reserve Bank, Fred database, USA 

Divisia (MSI) M1 Upper Envelope Benchmark Rate 

Divisia (MSI) M2 Upper Envelope Benchmark Rate 

Divisia (MSI) MZM Upper Envelope Benchmark Rate 

Divisia (MSI) M3 Upper Envelope Benchmark Rate 

Divisia (MSI) M1 Baa Benchmark Rate 

Divisia (MSI) M2 Baa Benchmark Rate 

Divisia (MSI) MZM Baa Benchmark Rate 

Divisia (MSI) M3 Baa Benchmark Rate 
 


