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Abstract 
The global market competition has drawn the manufacturer’s attention on automated 

manufacturing processes using condition monitoring systems. These systems have 

been used for improving product quality, eliminating inspection, and enhancing 

manufacturing productivity. Fixtures are essential devices in machining processes to 

hold the tool or workpiece, hence they are influenced directly by the stability of the 

cutting tool. Therefore, tool and fixturing faults play an important part in the 

inaccuracy of the machining processes causing deterioration of surface roughness. 

For the above mentioned reasons, and the limited work in this domain, this thesis 

develops an experimental investigation to evaluate the effect of fixturing quality on 

the design of condition monitoring systems. The proposed monitoring system 

implements multisensors and signal processing methods able to analyse the sensory 

information and make an appropriate decision. Therefore, several sensors namely 

force, vibration, acoustic emission, eddy current, power, strain and sound, are 

combined with a newly suggested approach, named Taylor’s Equation Induced 

Pattern (TIP), and neural networks to detect tool wear and tool breakage. It also 

evaluates the monitoring system to provide valuable data to show the effect of 

fixturing quality. Surface roughness of the workpiece has been measured and 

compared with the sensitivity of the monitoring system, which reflects the state of 

tool and fixturing conditions. 

A novel approach, termed ASPSF, (Automated Sensor and Signal Processing 

Selection for Fixturing) has been implemented to select the most sensitive sensors 

and signal processing method. The aim is to reduce the number of sensors needed in 

the overall system and reduce the cost. New automated detection methods (Principal 

Component Analysis (PCA), Fuzzy logic, correlation coefficients) have been 

implemented to prove the capability of the approach. A cost reduction is performed 

based on removing least utilised sensors without losing the performance of the 

condition monitoring system. The results prove that the ASPSF is capable of 

detection the effect of fixturing quality on the design of the condition monitoring 

system and the trend in surface roughness. Consequently, the findings of this thesis 

prove that the change in the fixturing quality could have significant effect on the 

design of the condition monitoring system and the behaviour of the system. 

Therefore, continuous condition monitoring design process will be needed regularly 

for every machine, to allow compensation in the change in the characteristics. 
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Nomenclature 

 
Sensory Signals and Sensors 

 
Fx = Cutting force in the x direction measured by a dynamometer (N). 

Fy = Cutting force in the y direction measured by a dynamometer (N). 

Fz = Cutting force in the z direction measured by a dynamometer (N). 

AE = Acoustic Emission Signal/Sensor (V). 

AE_RMS = Root Mean Square of the AE signal (V). 

Strain= Strain sensor (N). 

Mic = Sound Signal (dB). 

Vwx = Vibration Signal in the x direction measured by accelerometer attached to 

workpiece table (V). 

Vwy = Vibration Signal in the y direction measured by accelerometer attached to 

workpiece table (V ). 

Vsx = Vibration Signal in the x direction measured by accelerometer attached to 

spindle case (V ). 

Vsy = Vibration Signal in the y direction measured by accelerometer attached to 

spindle case (V ). 

Vsz = Vibration Signal in the z direction measured by acidometer attached to spindle 

case (V ). 

Pwr= Machine Motor Voltage by the Power sensor (V). 

Edx= Power of the eddy current sensor in x direction. 

Edy= Power of the eddy current sensor in y direction 

DOC = Depth of Cut (mm). 

Ra= Surface roughness of the machined part (µm). 

 

Signal Processing Methods 

 
std = Standard deviation. 

FFT (f1,f2) = Average value of the FFT between frequencies f1and f2. 

FFT1= FFT (20 Hz, 2.5 KHz) 

FFT2= FFT (2.501 KHz, 5 KHz) 

FFT3= FFT (5.001 KHz, 7.5 KHz) 

FFT4= FFT (7.501 KHz, 10 KHz) 

FFT5= FFT (10.001 KHz, 12.5 KHz) 

FFT6= FFT (12.501  KHz, 15 KHz) 

FFT7= FFT (15.001 KHz, 17.5 KHz) 

FFT8= FFT (17.501 KHz, 20  KHz) 

FFT9= FFT (20.001 KHz, 22.5  KHz) 

FFT10= FFT (22.501.001 KHz, 25 KHz) 

 

Wav_i = Standard deviations of the ith level of the wavelet analysis. 

S = Sensor. 

SP = Signal Processing Method. 
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ASPSF Terminology 

 
ASPSF = Automated Sensory and Signal Processing Selection System for Fixturing. 

SCF = Sensory Characteristic Feature. 

SFM = Sensory Feature Matrix 

ASM = Association Matrix 

LR= Linear Regression Detection Method. 

PCA= Principal Component Analysis Detection Method 

RV= Range Value Detection Method. 

SCIV = Sudden Change In Value Detection Method. 

CCX3= Correlation Coefficient (X3) Detection Method. 

CCX20= Correlation Coefficient (X20) Detection Method. 

FL= Fuzzy Logic Evaluation and Detection Method. 

SU = Sensor Utilisation coefficient (%). 

SUA = Overall average utilisation of a monitoring system (%). 

S= Number of SCFs used from the sensor. 

T= Total number of features in the system. 

P= Number of signals produced by the sensor. 

ASPK = Average sensitivity of the kth signal processing method. 

ASP = Average sensitivity of all signal processing methods implemented in a system. 

ASK = Average sensitivity of the kth sensor (or sensory signals). 

AS = Average sensitivity of all sensors (or sensory signals) implemented in a system. 

Ac = Average of the summation of sensitivity coefficients of the ASM matrix. 

dij = Sensitivity coefficient of a SCF obtained using the machining signal of the ith 

sensor and the jth signal processing method. 

fij = The SCF obtained using the machining signal of the ith sensor and the jth signal 

processing method. 

EVSM= Eigenvalue Sensory Matrix. 

PCF= Principal Component Feature. 

Ec= Eigenvalue coefficients. 

Aev = The average eigenvalue of the kth signal. 

 

 

 

 

Classification Systems 

 
LVQ = Learning Vector Quantisation Neural Networks. 
TIP = Taylor’s Equation Induced Pattern. 
BPNN = Back Propagation Neural Network. 
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Chapter 1   Introduction 
 

1.1 Brief  Introduction 

 
Manufacturing industries are facing significantly changing market competition 

driven by customer demands. To survive and remain competitive in a prominent 

position in the global market, tremendous efforts have been taken to improve 

product quality. Condition monitoring system of manufacturing processes has 

gained considerable importance in the manufacturing industry over the preceding 

last decades. It is one of the essential technologies with a competitive advantage, 

which is capable of providing means to reduce cost, increase productivity, prevent 

damage to the machine or workpiece, and significantly influences process efficiency 

and machined part quality. Machining such as milling, turning, grinding and drilling 

are material removal processes which have been widely used since the industrial 

revolution. The performance of machining operations depends on many parameters 

such as machine, workpiece, tool and fixture. Fixturing technology has been 

considered as one of the main problems to improve flexibility, productivity and part 

quality. It is one of the most direct threats to cost effectiveness and operational 

efficiency, but it is still lagging behind in machining [1]. 

During manufacturing operations, the role of the operator is mainly to supervise the 

machine and inspect the process product. But, the operator’s reaction time to 

monitor a problem will not be sufficient for the fast speed at which machining 

processes take place on recent machine tools [2, 3]. This reason considerably leads 

to find automated methods to detect the faults of the production process. 

Currently, modern automated machining processes have become one of the most 

promising advanced manufacturing technologies in the industry. In order to fully 

recognise the potential of these systems, it is essential to monitor and control the 

performance of the machine intelligently. Among the parameters to be monitored, is 

tool condition (wear or breakage) which is clearly one of the most significant faults.  

Tool condition monitoring is to prevent tool failure and reduce down-time [4]. 

Consequently, there is a real need to design online monitoring system to control the 

influencing parameters to quality of the machined parts.  



Chapter  1  Introduction 

2 

 

This brief introduction clearly highlights the importance of monitoring system, 

fixtures and tool conditions on the process outcome and the performance of a 

production system. Therefore, this thesis investigates the effect of fixturing quality 

on the design of condition monitoring system. The hypothesis is that the collet 

fixturing quality will change the dynamics of the system introducing different 

variables and parameters which makes the design of tool condition monitoring a 

complex task. These aspects of the research work will be described throughout this 

thesis. 

1.2  Problem Definition 

Fixtures are essential devices in production systems as they are required in most of 

the automated manufacturing, inspection, and assembly operations. Fixtures locate 

precisely a workpiece or a cutting tool in a given orientation and position to allow 

the machining or measuring process to be accurately performed. There are many 

standard work holding devices such as jaw chucks, machine holder, drill chucks, 

collets, which are usually used in workshops for general applications such as 

manufacturing and measuring [5].  

Collets have proven to be as useful on today’s CNC equipment, with state-of-the-art 

control systems, as they were on the early engine lathes and multi-spindle automatic 

machines since the 1920s [6]. Surprisingly, after more than nine decades of 

successful applications, there is still no better fixturing element for the new high-

technology, high speed spindles than the fixturing collet. Collet remains a proven 

solution for most metal-working applications, and 90% of machining operations use 

fixture chucks while the other 10% use hydraulic chucks [7]. However, the field of 

the fixturing has only recently started to receive the attention and needed to more 

investigation [8]. 

For any manufacturer, accuracy of machined components is one of the most critical 

aspects. Faults in machining can be defined as any deviation in the position of the 

cutting edge from the theoretically required value to produce a workpiece of a 

specified tolerance. This is because of the significant changes in the fixturing 

rigidity or the tool conditions during the manufacturing process [9]. In milling 

operation, there are four main sources of faults which are kinematics faults, heat 
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faults, fixturing faults and tool faults. These faults have been shown in Figure 1.1, 

which produced based on the information from [10]. 
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Figure 1.1: Error in machine tool and the factors affecting it [10]. 

 

The correct installation of the tool in the collet is important to prevent unnecessary 

strain on the collet and to ensure a proper fit. Engineers should use a collet designed 

to fit the tool shank diameter and the tool’s flute should not extend into the collet; 

doing so can score the inside of the surface, as well as force debris into the collet, 

putting the entire assembly off-balance and potentially damaging the spindle. These 

errors will affect the stability of machining operation [11]. Consequently, the cutting 

tool and the collet, which holds it, are a major source of error; in addition to the tool 

deflection, tool wear, vibration and burr formation.   

Although advances in fixture design have significantly improved fixturing accuracy 

and repeatability, fixture faults (or errors) are still a major reason of quality 

variation. Where most of the literature on fixture analysis has emphasised the 

positions of fixture elements on the workpiece rather than the contact condition 

between the mating surfaces. For machining and assembly processes, fixtures have 

been developed to provide precise, reliable workpiece location and present rigid 

collet chucks to reduce the workpiece loose during the machining operation. 

Therefore, it is very important investigation to search the relationship between 

clamp performance with product quality and the monitoring system [12]. In addition, 

considerable investigation has been conducted in the area of machine fault 
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detection/diagnosis, but relatively little has been done on fixture fault detection and 

monitoring [13]. The effect of fixturing systems on the design of condition 

monitoring systems is an area which is not significantly covered in the literature.  

Significant research has covered condition monitoring design in the literature. 

Studies performed in industry have shown that the main causes of downtime are end 

of tool life (wear) and tool breakage and they account for 40 to 45% of downtime in 

milling, turning and drilling operations [14]. Hence, condition monitoring is 

normally used as a strategy to detect or prevent such faults using Tool Condition 

Monitoring (TCM) [15]. Manufacturers who used TCM systems have documented 

savings of 3 to 5% of manufacturing costs [16]. Three essential elements are used to 

create a condition monitoring system, namely sensory devices, statistical methods, 

determine the tool status systems. Two parameters have affected the performance of 

the TCM system, which are the quality of the collected data by the sensors and the 

analysis algorithm that used to evaluate the sensory signals and detect tool status 

[17].  

Much research has been performed concerning the development of reliable TCM. 

However, several factors have obstructed advances in the development of TCM 

including inappropriate choice of sensor signals and their utilisation [18]. In order to 

address the drawbacks in condition monitoring, reference [19] presented a novel 

approach, termed (ASPS), to deal with these problems. Automated Sensor and 

Signal Processing selection approach (ASPS) in selecting the sensors and signal 

processing techniques is implemented for monitoring the tool conditions in milling 

processes. The sensitivity to tool wear is extracted for each sensory signal based on 

the absolute slopee of the Linear Regression (LR) method. The aim is to reduce the 

number of sensors needed in the overall system and reduce the cost. Another 

researcher [20] has employed this approach to develop an effective sensor fusion 

model for turning processes for the detection of tool wear. Despite the ASPS 

approach can provide a solution for monitoring the fixturing system, there are some 

limitations in relation to the sensory sensitivity detection. These limitations will be 

described in Chapter 6. 

So far, however, there has been little discussion about the effect of fixturing type 

and quality on machining signals and hence the design of the condition monitoring 
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system [1]. Also, there is limited research to address the relationship between the 

online condition monitoring system and the fixturing quality (either fixturing type or 

fixturing material). The key question with this research is that; what is the effect of 

the fixturing setup on the efficiency of the condition monitoring system? can the 

monitoring system detect the changes of the fixturing system which also influence 

the tool condition?  

Therefore, the domain of this research is in implementing a novel approach, termed 

ASPSF (Automated Sensor and Signal Processing Selection for Fixturing) for 

selecting the sensors and signal processing techniques essential for monitoring the 

setup and conditions of fixturing system in milling processes. As will be described 

later, the ASPSF approach utilises the ASPS approach and modifies it to investigate 

the effect of fixturing system on the design of condition monitoring system. Through 

the ASPSF approach, a wide range of novel signal analysis and simplification 

techniques is used to confirm and assess the research methodology for selecting 

sensors and signal processing methods and detect the relationship between the 

changes of the process setup and the design of condition monitoring system as 

shown in Figure 1.2. 

Fixturing Setup

Tool condition

Fresh Tool Worn Tool 

FailuresMilling  Process

Fixturing Setup Failures

(Perfect and imperfect clamping)

Tool wear, Tool breakage

Sensory Signals

and

Signal Processing  Methods

ASPSF

Broken Tool 

 

Figure 1.2: Schematic of ASPSF approach for monitoring the fixturing set-up and 

tool conditions.       
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Briefly, this research will provide the designer of monitoring systems with the 

details of the next stage for operating the system if any change in machining 

characteristics (i.e. fixturing status, tool conditions) has occurred in the machining 

process. This system allows for the detection of subtle changes from normal to 

abnormal conditions as illustrated in Figure 1.3. The key question is does the change 

in machining system characteristics have an effect on the behaviour of condition 

monitoring system? 

The fixturing system is the main parameter of the machining characteristics, and will 

be investigated throughout this thesis. 

Machine 
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Tool 

breakage 

b

Tool 

wear

Environment 
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Machine 
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Tool 

breakage 

b

Tool 
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and external 
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Collision 
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Domain  B

Condition  Monitoring  System

(A)

Condition  Monitoring  System

(B)
 

Figure 1.3: The change of machining characteristics of milling process. 
 

 

As seen from the previous discussion, it can be concluded the following issues: 

1. There is limited literature on the relationship between fixture type, material and 

other design parameters on the quality of the manufacturing operation and efficiency 

of the fixturing system.  

2. Most researchers have used one type of fixture (i.e. collet) in the investigation of 

monitoring system in machining operation, while the effect of variation of tool 

holder with workpiece material on performance of the monitoring system is still a 

weak point in this area of research. The application of sensor fusion is also very 

limited in this area. 
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3. Fixturing capability depends on unautomated evaluations which are relatively 

imprecise in the complex manufacturing processes (as milling and drilling). This 

depends mostly on the information and skill of the operator and is both time-

consuming and costly. Computers are used to support manufactures in evaluating the 

fixture performance. Therefore, the required approach will be created in this 

research to study the parameters which are included in the experimental work.          .                                                

4. Most studies in the industry have only been carried out in developing the 

monitoring system to detect the faults and abnormalities of the machine tool and the 

tool. However, little investigation has been done on fixture fault detection and 

monitoring.  Therefore, there is a real need to create an effective detecting system to 

deal with the fixturing problems.                                                                                                                                                                           

5. Generally, the real surface roughness does not consistent with that obtains from 

theoretical calculation. Also, the monitoring of surface finish is often done by 

manual inspection of workpiece surface using profilometer which is time consuming 

and very costly. Therefore, surface roughness monitoring in industry needs to a new 

approach to predicate it continually.  

1.3  Research Aims and Objectives 

The main aim of this research is to investigate the effect of the fixturing system on 

the design of the monitoring system in order to classify tool conditions regarding to 

the collected data. The investigation, as a result, will address the following issues:  

•    Address the limitation of literature about the tool holder and then study the effect 

of the fixturing system (type or material) on the efficiency of monitoring system. 

•   Detect any faults or abnormalities that may occur during the machining operation 

using sensor fusion which is designed to monitor the health of the manufacturing 

process with regard to changing tool conditions.  

• Evaluate the stability of the fixturing system and the efficiency of the monitoring 

system regarding to the surface roughness of the work piece. 

• Since the manual measuring method for the surface roughness is time consuming 

and relatively expensive, part of the proposed monitoring system will be 
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employed to predict the roughness of the machined surface using the output of 

the force sensor. 

The aim of the research is supported by the following objectives: 

 

1.  Conduct literature review in relation to fixturing system, milling process, tool                                                                                                                                          

wear and surface roughness, condition monitoring and applications.            

                 

2.   Investigate, in detail, the limitation in current condition monitoring system.  

                      

3.  Propose an experimental setup to investigate the effect of collet design/type on 

machining operations.     

                                                                      

4.  Conduct experimental work to evaluate the effect of fixture type/material on 

product quality and the capability of the condition monitoring system using 

different materials, machining parameters and collet types.    

                                                                                                                 

5. Perform the experiment work on the appropriate and available equipment to             

achieve more accurate and precise results.    

                                                                                                            

6. Select the sensitive and applicable sensors to build the fusion model and                   

cover the most important parameters which affect the machining process.    

                                                                                               

7. Analyse the data needed to simplify the complex signal to obtain the                      

useful information.      

                                         

8.  Use the accurate and reliable methods to determine the most sensitive sensor           

and concentrate on how to reduce the cost of the proposed system.   

                                

9.  Investigate the relationship between the surface roughness of workpiece and the             

sensitivity of the sensory signals to assess the capability of the proposed 

monitoring system.    

                                                                                                                    

10. Test the validation of sensitivity measuring methods to measure their efficiency 

to detect the most sensitive features using an independent evaluation method.  

   

11. Investigate current condition monitoring design systems, including the ASPS 

approach [19]; and evaluate their suitability to study the effect of fixturing 

system on the design of condition monitoring system.                                                                       

                                                                                                                                

12. Create a new technique to improve the detection of the classification of the tool                               

status and design a general target more correlate to the pattern recognition.                                                                                        

1.4 Thesis  Structure 

The structure of thesis is organised in 11 chapters to cover the whole aspects and 

problems and the suggested approach, which are presented by the author as 
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illustrated in Figure 1.4. This structure is carefully built to keep the flow and the 

sequence of ideas related to the subject. 

 

*Chapters 2: Fixture 

Design

Chapter 1:

Introduction

Chapter 6:

Methodology

Chapter 7:

Experimental Setup

Chapter  11:

Conclusion

Chapter  8: Initial 

Evaluation of 

ASPSF Approach

*Chapters 3: Tool Life 

and Wear in End Milling 

Operations

*Chapters 5: A Review 

of the Implementation of  

Tool Condition 

Monitoring in Milling 

Operations

Chapter  9: The 

Applications of  

ASPSF Approach 

Using Pattern 

Recognition Systems

Chapter  10: The 

Evaluation of ASPSF 

Using Broken Teeth

of  Cutting Tool

* Literature review chapters

*Chapters 4: Fundamental

Principles of Condition 

Monitoring Systems in 

Milling Operations

 

Figure 1.4: The schematic diagram for the structure of the thesis. 

 

A brief description of the content of each chapter is presented below: 

Chapter 1 presents the real need to create a fully automated manufacturing system 

and the effect of fixturing system on this demand which depends on the condition 

monitoring system. The aim and objectives of this thesis are also introduced in this 

chapter.  

Chapter 2 looks at the literature concerning fixture design and provides the 

fundamentals of the fixturing work and application. It presents the discussion of the 

details of using rubber as elastic material in the fixturing system. Therefore, this 
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chapter totally aims to address the limitation of the research about the fixturing 

systems.  

Chapter 3 aims to introduce the concept of tool life and wear in end milling 

operations. It is generally given the principles of end milling processes and tools. 

This chapter shows also the effect of the fixtures on tool wear and surface 

roughness. 

Chapter 4 describes the concept of condition monitoring systems which is applied 

in the industry. It explains the basic information for the application of the 

monitoring technology related to the current area of research. 

Chapter 5 demonstrates the application of implementing tool condition monitoring 

in the milling process to monitor tool condition and fixturing systems. This chapter 

shows an overview of the studies implemented in condition monitoring and outlines 

the problems and limitations of these studies.  

Chapter 6 introduces the overall methodology of the thesis. It introduces the new 

ASPSF approach and explains its technicalities. It presents the objectives of the 

research, and also provides a brief description of the steps of implementing the 

proposed approach. The chapter defines the structure of the following chapters of the 

thesis. 

Chapter 7 describes technically the experimental set-up. It states the equipment 

used to implement the proposed system and also defines the software used to collect 

the data. The equipment includes CNC milling machine, condition signals devices, 

fixtures to hold the sensor, surface roughness measuring apparatus and data 

acquisition system. In this chapter, a brief description for the sensors and signal 

processing methods will be presented. Following this, the techniques to address the 

pattern recognition of data are outlined. 

Chapter 8 presents the initial evaluation of ASPSF. It explains the fully details of 

application the ASPSF (Automated Sensor and Signal Processing Selection System 

for Fixturing) approach and how this approach can achieve the requirements of the 

condition monitoring system. In this chapter, the ASPSF approach is implemented 

through the tool wear with changing the fixturing system. Furthermore, a novel 

approach will be presented to predict the surface roughness.  

Chapter 9 describes the applications of the ASPSF approach using pattern 

recognition systems.  In this chapter, more applications of the proposed approach 

and more extended sensors and fixturing systems are presented to show the practical 
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validation of the monitoring system. Roughness of the machined surface is measured 

to assess the approach. Also, a suggested method will be used in conjunction with 

pattern recognition systems. 

Chapter 10 introduces the evaluation and a new application of ASPSF using tools 

with broken teeth and investigates the surface roughness. A wide range of the 

sensitivity measuring methods are applied with more experimental work. Here the 

ASPSF approach is implemented through the tool with broken teeth to investigate 

the phenomena of tool breakage. A novel approach is presented to define the pattern 

of the tool conditions. Surface roughness measurements, also investigated here with 

the procedures of collecting sensory signals. 

Chapter 11 summarises the overall findings of the thesis. It presents the research 

objectives and discussion the results of the ASPSF approach. The main contribution 

to knowledge with the conceptual and technical has been described. Finally, it 

presents the final conclusion, suggestion and limitation in relation to the research 

presented in this thesis.  

1.5  Summary 

This Chapter has highlighted the current problems related to fixturing systems and 

their effects on the design of the condition monitoring systems. The structure of this 

thesis has also been presented. 
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Chapter 2   Fixture Design 
 

 

2.1  Introduction 

Since this thesis addresses the relationship between condition monitoring design and 

fixturing system, the author feels it is essential to highlight the basic principles, 

applications and problems in these systems. Therefore, this chapter will introduce 

the main aspects to consider in fixture design, the main parameters which affect 

performance and limitations of the fixture device as a weak point in the 

manufacturing system. The limitation of literature on fixture is also addressed here. 

The main types of the fixturing system are described with focus on collet fixture as a 

main tool holder in the milling process. This chapter also presents a new technology 

of using flexible material in fixturing system. 

2.2  Fixturing System 

In process planning, the correct selection of fixturing type represents an important 

specification in addition to cutting tool requirements. This is to ensure that products 

meet the market needs and are capable of being produced and mounted in a cost 

effective and reliable way. The arrival at an appropriate fixture design traditionally 

consists of several stages including the detailed study of a workpiece specification, 

searching for any existing similar designs, and manual selection of fixture elements 

based on catalogues and items available in the shop. This procedure depends largely 

on the knowledge and experience of a tool designer and is both time-consuming and 

expensive [21]. 

Fixtures have significant effect on manufacturing quality, productivity, and the cost 

of products. Practically, the manufacturer could be consumed a 10–20% of the total 

cost of a manufacturing system as the costs associated with fixture design. Therefore 

the appropriate fixture design is vital to improve the product quality in terms of 

precision, accuracy and finish of the machined part [22]. 

The fixturing development is considered as particularly difficult procedures, since it 

is included in different concepts of product improvement set: design, process 

planning, machining and assessment. The most of fixtures designs are performed for 

a particular workpiece, as dedicated fixtures.  Currently, many companies need the 
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fixturing systems to be more multi-use because of the trend in manufacturing 

supporting a larger component diversity, dimensions and quality. They can allow a 

variety of parts to be held during machining and assembly, thus minimising cost for 

dedicated fixtures and reducing the inventory of a multiplicity of fixtures [23].  

2.3  Principles of Fixture Design 

A usual fixture design for workpices consists of three essential elements: locators, 

clamps and supporters. Locators are used to place the workpiece in equilibrium. 

Hence, the main duty is to remove all degrees of freedom. However, clamps are 

employed to hold the workpiece strongly against the locators during the machining 

process. The primary design factors of fixture clamps comprising external cutting 

force and tool direction have to be taken into account during a fixture design 

process. Supporters are added to improve the stability of the workpiece. The 

function of these fixturing elements can be determined manually or analytically [24]. 

An unconstrained workpiece will have 12 degrees of freedom in three dimensional 

spaces, because its movements can follow along the positive and negative directions 

l.of the X, Y and Z axes in addition to the clockwise and counter-clockwise rotations 

around the three axes as clarified in Figure 2.1. During the machining process, the 

degrees of freedom of movement of the workpiece must be controlled by the 

locators and clamps. 
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Figure 2.1: Twelve degrees of freedom for prismatic workpiece. 



Chapter 2  Fixture  Design 

     14 

The main guidelines with respect to the determination of locating and clamping 

locations have been described as follows [24]: 

1. The datum of the fixture which is normally defined as the surfaces with the largest 

area should be made precisely to achieve the higher percentage of parallel and 

perpendicular. This is to avoid the error in holding the parts. 

2. The locators should be placed in maximised of the contact area to achieve a 

higher stability and to grip most of the part body. 

3. It is mostly better that the locators are fixed on the interior points of the fixture to 

reduce deflection of the workpiece. 

4. The vertical locators are advised to form a triangle shape to keep the centre of 

workpiece gravity in the middle point to avoid instability.  

5. The clamping forces should be directed to opposite the corresponding vertical and 

horizontal locators to prevent extreme torque. 

6. The layout of the locator must be prepared to against the highest cutting force 

applied by manufacturing process [25]. 

7. For the general fixtures, the angle between perpendicular surfaces should be 

between 90◦ and  120◦ to avoid presence over-located. 

8. For providing a higher stability, it is recommended to use the available holes 

which are existed in the workpiece; therefore the locators with the fitting dimension 

can be used.  

9. Unfixed locators or the supports with floating mechanism could be applied to   

prevent the deflection or instability due to increase the cutting forces [26]. 

2.4  Type of Fixtures 

A fixture is mostly fastened to a machine head or machine table in a fixed position. 

It does not contain special arrangements for guiding the cutting tool, if so; it will be 

called a Jig. There are many standard work holding devices such as vice, jaw 

chucks, drill chucks, collets, which are commonly used in workshops and are usually 

kept in stocks for general applications. The production of collets at Harding (New 

York) occurred in the 1890s, with many of the applications at that time focusing on 

the watch making and adjusting the position of a large body attached to a column or 

shaft. They are used as an alternative to the nut-screw combination due to the screw 
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thread can result in a considerable reduction of the effective diameter of the column 

and therefore of its strength [27]. 

Generally, it is possible to divide the type of the fixturing system according to the 

stage of the application development in the industry as briefly described [8]: 

2.4.1 Dedicated Fixtures 

 

This form of fixturing is possibly the oldest fixturing method. They are called 

dedicated because they are designed for fixturing one particular workpiece and, 

probably, one workpiece for only one stage of the manufacturing process. This lack 

of flexibility is the main disadvantage of dedicated fixtures. Therefore, when 

multiple fixtures are used, the expected change-over from one fixture to the next 

during the manufacturing cycle introduces an extra bottleneck and increases the 

production down-time. Despite these drawbacks, dedicated fixtures are still used in 

large- and small-batch production sites, where increased accuracy is the prerequisite 

for the final result. Efforts are therefore focused on developing alternative fixturing 

concepts or tools that assist the fixture designer and accelerate the design process. 

Consequently, several Computer Aided Fixture Design (CAFD) tools for rapid 

concept generation and verification have been proposed. 

2.4.2 Modular Fixtures 

 

Modular fixtures are perhaps the first method to tackle the drawbacks of dedicated 

fixtures and may be the most industrially applicable and flexible fixturing method 

available. The dates of concept of modular fixtures were proposed and back to the 

Second World War. Modular fixturing systems are fixtures that consist of a number 

of standard elements, called modules, which can be used in various combinations to 

create fixture assemblies that can accommodate different workpieces. The modules 

include various forms of clamps, locators, supports, base plates and connections.  

The main advantage of modular fixtures is that standard elements can be re-used to 

build a large variety of different set-ups. This renders modular fixtures most 

appropriate for highly-flexible manufacturing environments, such as workshop 

facilities. However, the main shortcoming of these fixtures is large amount of 

knowledge and time needed for fixture planning and difficulty to hold parts with 

very complicated geometry. 
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2.4.3  Conformable Fixtures 

 

Conformable fixture is another flexible fixturing method which is commonly 

referred to as pin-array fixtures or pin-type fixtures. In principle, they comprise a 

bed of independently adjustable pins that either manually or automatically conforms 

to the surface of the workpiece, providing support and localization to the workpiece. 

The part is then clamped from the opposing side. The clamping mechanism can vary 

from a simple structure to another pin-array formation that is pneumatically or 

hydraulically actuated. Another concept of reconfigurable fixtures that has received 

considerable research attention is based on phase-change materials. The term 

“phase-change” involves the utilisation of the transition from one material state to 

another, usually from liquid to solid. In detail, these fixtures arrange a bed filled 

with a material, which constitutes the fixturing medium. When the medium is in 

liquid state, the workpiece can be inserted and localised. Clamping takes place 

through solidification of the medium [8]. 

2.4.4  Numerically Controlled Fixtures  

 

Numerically-controlled (NC) fixtures belong to a classification of fixturing concepts 

that meanings away from the traditional static methods and moves towards the idea 

of a gripper. These fixtures are possibly the first step towards more intelligent 

methods. The flexibility here lies within the ability to automatically adjust the layout 

of the fixture, in order to grasp parts with different geometrical features. 

Numerically-controlled fixtures are identified by their ability to automatically 

reposition their locating, clamping or supporting elements. In general, the clamping 

elements of this NC fixture are situated at the side of the workpiece and are 

positioned on slides with vertical orientation. 

Collets have proven to be as useful on today’s CNC equipment, with state-of-the-art 

control systems, as they were on the early engine lathes and multi-spindle automatic 

machines from the 1920s. Unpredictably, it might be noticed that when checking 

back what has developed with machining and equipment technology, it is as though 

the basic collet was suspended in design time and space. However everything around 

it was required to engage to productivity improvements [28]. In addition, there is a 

common misconception that collets are limited to hold multi- shaped products. 

Currently, and after around 100 years of successful applications there is still no 
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better fixturing element for the modern automated technology, high speed spindles 

machine than the fixturing collet. Collet remains a verified solution for most 

machining applications [29]. 

Reference [30] presented a novel approach to improve the quality of machined 

surfaces on wood cutting machine by presenting additional cutter head movement. It 

is shown that changing slightly the position of the tool reduces waviness height 

significantly. This approach could be a further development of NC fixturing (i.e. 

dynamic changing of tool position for smooth machining).  

2.4.5  Memory Shaped Alloy Fixture  

 

In developing micro-spindle units, a critical problem is miniaturisation of the tool 

clamp. As an interesting study, reference [31] developed a novel tool clamp based on 

shape memory alloy (SMA), which allows further miniaturization. An SMA that is 

deformed in a low-temperature phase can recover its original shape upon heating to 

the reverse transformation temperature. The tool clamp can be simplified by using 

an SMA ring consists of only two parts: a tool holder in the end of the spindle, and a 

closed SMA ring as shown in Figure 2.2. The SMA ring is placed around the outside 

of the tool holder.  A serious weakness with this method is that it needs a heating 

source to use the SMA ring, which may be affected by the changing of the 

temperature. 

Interference-fit

Tool holder

Slot

Tool

SMA  ring

 

Figure 2.2: Configuration of a tool clamp based on a shape memory alloy.    

                                                                

The prediction of contact forces in a frictional workpiece-fixture system is an 

important problem that has been addressed in [32]. They presented an elastic contact 

model to describe the non-linear coupling between the contact forces and elastic 
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deformations at the contact point. The results indicated that all contact forces can be 

accurately predicted in the frictional workpiece-fixture system. 

 

2.5  Fixturing  Collet 

 

Nowadays, complex manufacturing environment and maintaining operations at 

optimum levels will require a significant degree of attention, effort and priority. This 

is particularly accurate of the higher technology elements such as machine controls, 

hardworking mechanical structures, programming and general equipment reliability. 

On the other hand, there are certain manufacturing components that are robust and 

consistent yielding a long life time of usage. This attention it is not certain when the 

first collets were employed, but it has been established that fixturing collets were 

available before the turn of the last century. Collet is an essential component of 

fixturing in workshop which holds tool or workpiece in machining operations. 

Collet is described as a cone shaped sleeve which generally used for holding circular 

or rod such as pieces in various machines typically in most machining process [33]. 

It has usually a cylindrical inside and a conical outside and has slit edges extend its 

length to allow it to enlarge and contract. Therefore, to achieve the clamping, the 

collets are designed that either to be pulled or pushed into a matching conical 

housing. When it is inserted into the housing, it contracts and holds the surface of 

the inner cylinder. Collet is an adjustable metal part that is used to tightly grip a tool 

or any workpiece. Collets enlarge spindle applications as shown in Figure 2.3.  
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Figure 2.3: A schematic of collet parts. 
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This capability of the continuing power of the collet is recognised to do the fixturing 

function in spite of the simplicity of the device. The collet is a small but powerful 

component for the machine tool industry, including all of the following features: 

 The ability to accurately hold a workpiece or a tool, resisting both rotational 

forces and multi-directional cutting loads [34].  

 The ability to increase the actuation force, converting it into workpiece or 

tool clamping.  

 The essential ability to rapidly release the workpiece or the tool.  

 The capability to work at high repetition levels without loss of accuracy or 

material failure.  

 The capability to work at a different range of rotational speeds with minimal 

loss of gripping force.  

 

2.5.1  Types  of  Collets 

 

There are two basic types of collets used on milling machines. 

2.5.1.1 Solid Collets 

 

The solid collet is the most rigid type of tool holding collet. The solid type of collet 

is usually stated to an end mill holder. This collet type has a precision ground shank 

which fits accurately into the spindle of the milling machine. The collet is held in the 

machine using a draw-in bolt which runs through the centre of the spindle. 

Furthermore, to adapt the shank of the cutter, the solid collet also has a precision 

ground hole in it. The cutting tool, in a solid collet, is fixed strongly by using a set 

screw which is constricted on the ground or cast into the shank of the tool. Solid 

collets are especially used in the probability that the cutting forces could be caused 

the tool to slip in case of using a less rigid type of tool holder. Typically, the 

applications for the solid collet would be clamped carbide cutter and performed a 

hard machining using the T-slot or dovetail tools [35]. Solid collets made in many 

different sizes, each size is including a precision ground to take different size of tool 

holder shanks and cutters as shown in Figure 2.4. 
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Figure 2.4: The solid collet. 

2.5.1.2  The Split Collet 

 

Split collets are the most popular and widely used on vertical milling machines. The 

first type of split collet as shown in Figure 2.4a, the tapered neck of the collet is 

pulled into the spindle taper of the machine using the draw bar or draw bolt on the 

machine spindle. The pulling in of the collet reasons the split collet to contract down 

onto the shank of cutter. Split collets are a very effective tool clamping method, 

however under heavy cutting forces; they may have a trend to slip. Figure 2.5b is 

shown another type of split collet system where the tool slippage phenomena could 

be minimised due to the slots in this type is provided the holding system to work 

effectively [36]. Moreover, the adjustable element (Lock nut in the Figure 2.5b) 

improves the ability of the collet to adjust and grip the tool firmly. 

Split  Collet

(a)

Collet Chuck 

Adapter

Spring  Collet Lock  Nut

(b) 

 

Figure 2.5: (a) The split collet (b) Collet chuck system. 

 

2.5.2  Mechanism of Collet 

Recently, collets have been used in a variety of applications in automated machines. 

These collets are too large for trial and error methods of manufacture; therefore it is 

essential to find quantitative expressions for their properties if they are to be 

included as predictable elements in a detailed design. A major  particular concern is 
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the capability of a collet to hold a tool stationary opposite to axial forces in either 

direction and yet be able to relief its hold with a minimum of force. Also it is 

important to find the distance which the collet must move into its housing in order to 

secure the tool.  

The achievement of a collet has been developed based on a theory of using the 

normal laws of friction to present the requirement of the control of grip, the 

simplicity of relief and the interface stresses on the cone angle, the interface 

coefficients of friction and the practical axial forces.                                   

Figure 2.6a shows the schematic model of the theory, since the block A is held 

against base B with applied force N. When the force F forms up from zero, the 

frictional force M forms up to become equal and opposite to F, therefore no 

movement follows. This remains until M ranges its limiting value of μN where μ is 

the coefficient of friction at the interface of mating surfaces AB.  The sliding takes 

place when F > μN, however if F is reduced, correspondingly M is reduced. There is 

no sliding taken place until F <−μN. Thus, M is a self-adjusting force which is 

always just enough to avoid or stop the motion, until it increases over limiting value. 

The collet is assumed to contain a set of axial slots accordingly that it is designed by 

a set of slices held together weakly by slight bridges at their ends. Consequently, 

therefore it is characterised by a slice B of angle θ in a tapered housing A and build 

against a tool C as exemplified in Figure 2.6b. Forces F push B into A whereas 

forces f challenge to slide C through B. μ1 and μ2 are the interface coefficients of 

friction, meanwhile M1 and M2 are frictional forces against motion. The balancing 

of the effective forces N1 and N2 performing on A and C is ensured by the axial 

symmetry of fixturing collet [37]. 
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Figure 2.6: (a) Frictional force M created at the interface between two mating                                              

bodies A and B (b) Model of a collet (reproduced from [37]). 
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The criteria for an effective collet are as follows: 

1. No slipping at BC with F fixed at Fa and with ƒ up to the design maximum of 

±ƒmax.                                                                                                                                                     

2. Easy relief when F is declined from Fa to zero, i.e. Slippage of the tool is 

achieved with small negative values of  f. 

3. Normal interface stress ranges when Fa and fmax acting together. 

2.5.3 Limitations of Collet 

 

The tool holding collet is the standard work holding device for most CNC machine 

users and it is versatile enough to be used in a wide range of machining applications. 

However, it is not the best fixturing chuck for all types of work. The jaw chuck is an 

alternative fixturing device that also uses mechanical force to hold the part being 

machined especially in drilling operations. 

Numerous factors are considered into the determination of which type of fixture 

would work better. When evaluating a collet chuck against a jaw chuck for a given 

industrial application, take all of the following parameters into consideration [38]: 

1. Spindle Load Capacity and speed. 

2. Operation to be performed. 

3. Workpiece Dimensions. 

4. Types of Materials. 

 

2.5.3.1 Spindle Load Capacity and Speed 

 

The allowable spindle weight is based on bearing load capacity. Therefore, if the 

combination of the collet and the workpiece designs are overloaded, there is a risk of 

exceeding this limit. However, jaw chucks tend to be more massive than comparable 

collet chucks, making the collet chuck an appropriate choice where weight control is 

needed. A collet chuck is considered a better choice for milling process especially at 

high ranges of the spindle speed due to the mass of the collet which provided the 

same spindle horsepower and fast to accurate up to the required speed. This will 

reduce the cycle time and increase the productivity.  

2.5.3.2    Operations to be performed 

There is increasing concern that collet fixture is being more advantages due to the 

fact that holding forces all around the circumference of the workpiece instead of just 
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at the selected contact area as in other fixtures. This will lead to the tight 

concentricity, which is important particularly for the second machining process 

when the accuracy and precession are of significance. A jaw chuck generally 

obtained a tool runout within 0.0006 to 0.0012 inch, while a collet usually obtained 

0.0005 inch or less. The collet fixture can be also adjusted for concentricity during 

setting to further develop secondary process accuracy. 

2.5.3.3   Workpiece Dimensions 

 

Collet fixtures are limited in the variety of workpiece sizes, and can be used on since 

they are suited to workpiece diameter less than 3 inches. They may also impose a 

limitation on the tool length, especially in the range of the z axis, therefore sometime 

this situation dictated to use the jaw chuck. Therefore, in the case of the smaller size 

of the workpiece, it is preferred to use the collet as actuation stroke is shorter and his 

action faster, while using the jaw chuck for the workpiece with vary significant size 

[38].  

The collet chuck considerably decreases the idle time that is used to change the 

holder in case of the change between very large and very small lot sizes due to the 

collet can be in a quick changed in 15-20 seconds. In contrast, the swapping of the 

jaw for the standard jaw chucks takes around 15-20 minutes.  

2.5.3.4 Types of Materials 

For hot rolled steel, castings, forgings and extrusions, the standard jaw chuck tends 

to work better than the collet because of the diameter variations essentially in all of 

these types of workpices. However, cold rolled material could be more consistent in 

size and therefore better appropriate to collet chucks. The collet designed for non-

round cross sections can be used for the extruded bars [39]. 

 

2.5.4 Parameters Influence Fixtures Performance 

2.5.4.1 Clamping Force 

 

The main factor to the success of any machining operation is the clamping the 

workpiece in the best state condition. A serious design factor with regard to fixturing 

the workpiece is the selection of the clamping force. 
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Practically, the clamping loads are mostly setting to more 10 times than that need to 

prevent the slipping of the workpiece. This is due to the inaccessibility of the 

analytical tools to evaluate and computing the minimum clamping load. Therefore, 

more flexible and higher performance fixturing systems are required to improve the 

accuracy of machined components [40]. However, there has been little research 

reported with regard to the development of models to predict minimum required 

clamp pre-loads in light of fixture-workpiece system. Therefore, reference [41] 

presents a linear clamp pre-load model to compute the minimum required pre-loads 

needed to avoid the workpiece slip at the fixture-workpiece joints opposite to a 

variety of external loads. 

The minimum clamping forces to secure a workpiece are changed continuously 

during the machining processes. Therefore, the reference [42] attempted to design an 

Intelligent Fixturing System (IFS) to provide dynamic clamping forces during the 

entire machining and fixturing process. The clamping force distribution between a 

jaw chuck and a cylindrical workpiece had been measured by references [43, 44]. 

Measuring techniques for the contact pressure between elastic bodies are developed. 

For instance, ultrasonic method has been used to measure the contact pressure in 

bolted joints, in which it is extended up to 50MPa [45]. However, it is difficult to 

find a small ultrasonic transducer which can be built in a tool shank. A new 

technique [46] using strain gauge is designed to detect the contact pressure in the 

collet chuck holder by using cylindrical bar similar to a hob to cut spur gear teeth. 

2.5.4.2 Coefficient of Friction  

To assist the selection of proper clamping forces, analytical methods [47] have been 

developed to predict fixture-workpiece reaction forces and/or determine the 

minimum clamping forces necessary to keep the workpiece from slipping within the 

fixture during machining. These models assumed that the forces at the joints of 

fixture-workpiece observe Coulomb's law of friction. This law states that the friction 

force is proportional to the normal load, the force perpendicular to the sliding 

surface which presses the two solids together. The proportionality factor is called 

friction coefficient. 

Furthermore, the predictions provided by these models are very sensitive to the 

assumed coefficients of friction. Consequently, in order for these models to be used 
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with confidence, the coefficients of friction for the fixture-workpiece joints 

modelled must be identified further with their expected ranges of variation. 

Typically, the main source of the coefficient of friction data is handbooks. In 

general, accurate values of coefficients of friction for fixture-workpiece joints can be 

obtained through experimentation that investigates the geometric-tribological-

loading conditions of the joints. 

2.5.4.3 Number of Contact Point 

 

The machining and clamping forces significantly affect the workpiece location 

accuracy and hence the machined part quality, therefore the workpiece motion 

arising from localised elastic deformation at the contact point of the workpiece-

fixture. Generally, the contact problems with friction are complex in terms of the 

contact surface can encourage slipping, sliding, and rolling or tension relief 

depending on the amount of the normal and tangential forces at the contact interface. 

Although, the literature is significant of research on friction and its application, but it 

lacks research that investigates the contact between workpiece-fixture systems. 

However, it is noticed that many joints in machine tools and their characteristics 

have direct effect upon the static and dynamic performance of the machine tool. 

Reference [45] classified the joints into three kinds according to the joints stiffness 

including open, semi closed and closed type. A bolted joint and a sliding joint 

belong to an open type, and a tapered joint is a closed type. A joint between a 

workpiece and three jaw chuck is a semi-closed type. The form of closure grasp is 

needed to constrain a rigid workpiece by surrounding the part surface with 

mechanical fingers. Reference [48] reported a new and convenient synthetic 

procedure to develop an efficient algorithm for examining the form closure grasp 

conditions by applying linear programming techniques. Fingertip locations are 

determined to achieve the form of closure grasp specified the geometry of a 

workpiece as illustrated in Figure 2.7.  
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Figure 2.7: Rigid body and constraint points [48]. 

 

For simple workpiece geometries, designers mostly depend on the self-experience to 

ensure that constraint requirements are implemented. Nevertheless, for complex 

workpieces, it is virtually incredible to validate total restraint without prototyping 

the fixture. An alternative to prototyping is full constraint analysis if a workpiece is 

totally clamped by contact area geometry. Reference [49] demonstrated that 

algebraic analysis has been providing that a minimum of seven points of contact are 

needed to form close a workpiece in three dimensions, and as extended to this 

analysis, by adding friction.  

2.5.4.4  Modelling 

To ensure the dynamic stability of a fixtured workpiece during machining, reference 

[50] presented a model-based structure for determining the minimum required 

clamping forces. As shown in Figure 2.8, three types of contact status are possible 

including full stick, macro-slip, and lift-off.  Since full constraint of the workpiece by 

the fixture must be satisfied during the machining operation, lift-off of the workpiece 

from any fixture element and macro-slip of the workpiece at any contact at any 

instant are indicators of an unstable workpiece. The developed approach exposes that 

the minimum required clamping forces for dynamically stable fixturing are 

significantly affected by the fixture-workpiece system dynamics. The main limitation 

with this explanation is that it does not explain what the role of the clamping force to 

keep the stability between the matting surfaces of workpice and the fixture.                 
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Figure 2.8: Dynamic contact interaction between the workpiece and fixture.. Figure 2. 

 

2.5.4.5  Slip  

Reference [51] addressed the influence of the partial slip phenomenon on the dynamic 

motion of a spherical workpiece held in a fixture with application to machining 

fixture design. The model studies the effect of interfacial slip damping arising from 

partial slip at a spherical-planar frictional contact exposed to a constant normal load 

and oscillating tangential load. The model designed to search both single and multiple 

contact probabilities. Experimental results agree with those predicted by the model, 

and the effect of the partial slip phenomenon on workpiece dynamic motion is 

significant and should not be ignored.                                                                              

2.5.4.6 Force/deformation 

Deformation of the workpiece may cause dimensional problems in machining. 

Supporters and locators are used in order to reduce the error caused by elastic 

deformation of the workpiece. The optimization of support, locator and clamp 

locations is a critical problem to reduce the geometric error in workpiece machining. 

A genetic algorithm based approach is developed to optimize fixture layout through 

integrating a finite element code to compute the objective function values for each 

generation [52]. Based on the fixturing principle there are two locating planes for 

accurate location containing two and one locators shown in Figure 2.9. Therefore, 

there are two sides clamping against each locating plane. The results show that the 

optimized designs do not have any apparent similarities although they provide very 

similar performances. One of the explanations tends to overlook all the effected 

parameters in the design of the model, such as the friction between the locators and 

the surface of the workpiece.                                          .                                               
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Figure 2.9: Locating layout for 2D prismatic workpiece. 

 

2.6  Elastic Materials  Fixture 

 
Recently, under the influences of globalisation, manufacturing companies are 

required to qualify continuously changing demands in terms of product volume, a 

wide range and rapid response. The elastic grippers become one of the influenced 

factors on direct contacts with the product especially in the robotic technology 

applications. In the past, most grippers were designed for dedicated functions, and 

could not be revised for other shape, size and weight conditions. Currently, a variety 

of elastic gripper designs were proposed to overcome such limitations. But, the high 

cost is an obstacle in addition to maintenance concerns and restrictions to few 

materials and applications. Despite these drawbacks, cost effective elastic gripper 

designs have been always required as for the automated manufacturing system [53].  

The requirements for the preferred elastic gripper system can be summarised as 

follows [54]:  

 Ability to handle parts with different shapes, sizes and weights by changing 

the rubber-pocket pressure. 

 Robust and highly precise and repeatable in terms of location positioning by 

multiple pins embedded into the upper plate are envisioned.  

 Effective cost, and simple to employ and maintain. 

Rubber material is employed in a wide range of technical applications. These 

elastomers are the essential component of tyres, pneumatic springs or rail brakes, 

and recently used in the fixturing application. Generally, due to the importance of 

elastomer components in engineering applications, the accurate prediction of the 
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mechanical behaviour under effective conditions is a related subject in industry. 

Therefore, an appropriate approach has to present for dissipative features and large 

deformation of the material. Reference [55] used the industrial components to 

improve the performance of the fixturing systems. These components are made of 

the filled rubber material which is combined from: natural rubber and polybutadiene 

rubber (NR+BR) filled with 36% carbon black. These fixtures mounted to reduce the 

transmitted energy to receive structures, consequently the rubber materials prove 

their efficiency to provide insulation and to meet fixturing requirements.  

The particular mechanical characteristics of rubbers influenced their frictional 

behaviour, as rubber has low elastic modulus and high elongation. Therefore, its 

microscopic contact area is large as the rubber adjusts to the shape of the surface 

asperities of the counter material, presenting in consequence high friction in dry 

conditions as shown in Figure 2.10. In contrast, the main statement of Coulomb's 

model is that the friction coefficient is independent of the vertical load and the 

macroscopic area of contact. In detail, the ratio of real area of contact (Ar-interaction 

between the asperities of the two bodies in contact) to apparent area of contact (Ap- 

macroscopic area) remains constant when the vertical load increases [56]. In the case 

of rubbers, this ratio of real to apparent area of contact (Ar/Ap) varies when the 

vertical load and therefore the contact pressure increases.  

Counter material

Rubber sphere 

 

Figure 2.10: Contact area at (a) macroscopic level and (b) microscopic level [56]. 
 

Reference [57] presents a methodology for obtaining pressure dependent friction 

laws from experimental tribometer tests on rubber-metal contacts. Tribometer 

experiments are simulated for investigating the area of contact and producing an 

estimation to the contact pressure distribution in the test. The material chosen for the 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V36-4Y7NJGV-1&_mathId=mml61&_user=2471587&_cdi=5722&_pii=S0168874X09001607&_rdoc=6&_ArticleListID=1422147972&_issn=0168874X&_acct=C000057461&_version=1&_userid=2471587&md5=e6197830bcfbbcb9e6b58f9576d1d5ec
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rubber–metal tribometer tests was 75°IRHD (EPDM type) for the rubber and 6262-

T9 aluminium alloy for the counter material. The proposed methodology is applied to 

evaluate of experimental results from tribometer tests running either in flat on flat or 

flat on cylinder structures. The result indicates that the flat and cylindrical counter 

materials have been produced very similar surface morphologies and, therefore, this 

result is agreement with theoretical pressure-dependent friction law.  

In this thesis, the elastic material (rubber, for instance) will be investigated by using 

elastic fixturing systems to investigate the influence of using these materials on the 

efficiency of the fixturing system and the proposed monitoring system.  

2.7  Conclusion 

The fixtures are considered as main parts which are used to support and ensure the 

constraint the workpiece or tool during the manufacturing processes. There many 

types of fixturing systems employed in industry. One of these fixtures is the collet; a 

very important device to clamp the parts effectually, but with many limitations of 

use when it comes to spindle speed and workpiece material and size. Some 

parameters can influence the efficiency of the fixture or collet such as clamping 

force, coefficient of friction, number of contact points and material. Although 

significant research has been done in developing different fixturing systems based 

on different techniques, the influence of fixturing design and its instability on 

condition monitoring system is extremely limited. 
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Chapter 3   Tool Life and Wear in End Milling 

Operations 
 

3.1   Introduction 

Tool wear has a great influence on the economics of the machining operations. 

Therefore, knowledge of their mechanisms and capability of predicting tool life are 

important and necessary in metal cutting. This chapter focuses on the gradual tool 

wear formation and tool breakage, in the milling operation, associated with the 

effects of tool and tool holder dynamics and materials as a fixturing system. 

Moreover, surface roughness is significantly influenced by changing the conditions 

of the cutting tool. Therefore, this chapter presents the concept of tool wear in 

milling process and its relation to fixturing and surface roughness.  

3.2   Parameters Influencing Tool Wear 
 

The practical parameters that affect the wear of a cutting tool are illustrated in 

Figure 3.1 and can be summarised in four major groups, as follows:  

1. The material of the workpiece and its physical properties (mechanical and thermal 

properties, hardness, microstructure, etc.), which can determine cutting forces and 

energy for the applied machining conditions.  

2. The interface conditions: in 80% of the industrial manufacturing applications, 

coolants are used to decrease cutting temperatures and to be expected to reduce tool 

wear [58].  

3. The cutting tool: tool parameters such as tool material, tool coatings, and tool 

geometric design need to be correctly chosen for different processes (roughing, 

semi-roughing, and finishing). The optimal performance of a cutting tool requires an 

accurate combination of the above tool parameters and machining conditions 

(cutting speed, feed rate, depth of cut, etc.).  

4. The dynamic features of the machine tool, affected by the machine tool structure 

and all the components taking part in the manufacturing process, play an important 

role for successful cutting. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-49M6W4X-2&_user=2471587&_coverDate=02%2F15%2F2004&_alid=1435667021&_rdoc=1&_fmt=high&_orig=search&_cdi=5256&_docanchor=&view=c&_ct=2991&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=9f7b0a084812a50cf6c324a11edfc542#bib1#bib1
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The instability of the cutting processes with large vibrations generate a fluctuating 

overload on the cutting tool and mostly encourage the early malfunction of the 

cutting edge by tool chipping and excessive tool wear.  

Tool  Wear 

Machine 
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• Design
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• Friction
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• Lubricant

• Contact

Material
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• Material 

Properties
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• Cutting

material
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Figure 3.1: The major influencing parameters on tool wear in machining processes. 

 

3.3  Milling  Operations 

Milling operations are considered one of the most common manufacturing processes 

in industrial technology. Typically, milling is used to manufacture different and 

complex objects that are three dimensional geometry with many added features (i.e. 

holes, slots and pockets). As this process produces the parts with high finishing 

quality, it is mostly used to manufacture the prototypes for future products. Another 

application of milling is the production of tooling for other processes.  For instance, 

three-dimensional moulds are usually milled. Milling is also generally used as a 

secondary process to provide or improve features on parts that are manufactured 

using different processes.  

Milling machines are essentially classified as vertical or horizontal to create 

irregular surfaces by feeding the workpiece against a rotating cutter containing a 

number of cutting edges. The milling machine consists mainly of a motor driven 

spindle, which mounts and revolves the milling cutter, and a moveable machine 

table, which mounts and feeds the workpiece. Most milling machines have self-
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contained electric drive motors, coolant systems, variable spindle speeds, and 

power-operated table feeds.  

The cutter head generally contains the milling machine spindle which is attached to 

the ram. The cutter head can be swivelled from a vertical spindle position to a 

horizontal spindle position or can be fixed at any desired angular position between 

vertical and horizontal. The recent milling machine (Computer Numerical Control 

(CNC)) is connected by the computerised system to control the machining 

conditions and implemented the manufacturing program as shown in Figure 3.2.  

 

Figure 3.2: A CNC milling machine. 

 

Milling cutters are usually made of High Speed Steel (HSS) and Carbide which are 

available in a great variety of shapes and sizes for various purposes. Generally, the 

operator should know the names of the most common classifications of cutters, their 

uses, and the sizes best suited to the work to avoid the problem of the inaccurate 

selection for the tool [58]. This can be achieved by following the instruction of the 

tool manufacture that provides the required information about the tool and their 

machining conditions. 
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3.4   End Milling Cutters 

The end milling cutting tool, also called an end mill or end mill cutter, has teeth on 

the end as well as the periphery. The smaller end milling cutters have shanks for 

collet mounting or direct spindle mounting. For the small cutters, they may have 

either a straight or tapered shank. End milling cutters may have straight or spiral 

flutes. Spiral flute end milling cutters are classified as left hand or right-hand cutters 

depending on the direction of rotation of the flutes.  Straight flute end milling cutters 

are generally used for milling either soft or tough materials, while spiral flute cutters 

are used mostly for cutting steel large end milling cutters (normally over 2 inches in 

diameter) are called shell end mills and are fixed on the face to be bolted for 

mounting on a separate shank or mounting on an arbour, such as plain milling 

cutters as shown in Figure 3.3. 

Furthermore, the most common end milling cutter is the spiral flute cutter containing 

four flutes. Two-flute end milling cutters, referred to as two-lip end mill cutters, are 

used for milling slots and keyways if there are no drilled holes provided for starting 

the cut.  The helical cutter teeth are used particularly for face milling operations 

requiring the facing of two surfaces at right angles to each other [59]. 

Two-Lip End Mill

T-Slot  Cutter

Double End Mill 
Woodruff  keyway Cutter

Shell End Mill 

 

Figure 3.3: End mill Cutters. 

 
 

The specification of the end mill cutter [60], are described in the following points, 

which is necessary to be defined as it will be used in the experimental work.                                                                                                                  

.  

 Shank is projecting portion of cutter which locates and drives the cutter                     

from the machine spindle or adapter as shown in the Figure 3.4.  
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 Tooth is the cutting edge of the End mill. Tooth face, also known as the rake 

face, the portion of the tooth upon which the tooth meets the part. 

 Length of cut (Flute Length) is the effective axial length of the peripheral 

cutting edge which has been relieved to cut. 

  Flute is a space between cutting teeth providing chip space and regrinding 

capabilities. The number of cutting edges is sometimes referred to as 

"teeth". 

 Clearance angle is the angle formed by the cleared surface and line tangent to 

the cutting edge.   

 Clearance: Primary (1st angle, 5°-9°) - Relief adjacent to the cutting edge.  

 Clearance: Secondary (2nd angle, 14°-17°) - Relief adjacent to cutting 

edge 

 Clearance: Tertiary (3rd) - Additional relief clearance provided adjacent 

to the secondary angle.  

mill size or cutting diameter

A - mill size or cutting diameter

B - shank diameter

C - length of cut or flute length

D - overall length 

A

C

D Rake  Angle Primary Angle 

Secondary 

Angle 

Core  Diameter

Tooth  Width

Tooth 

Height

B 

 

Figure 3.4: Specification of the End mill. 

3.5  Errors in End Milling Operation 

Accuracy of machined components is one of the most critical considerations for any 

workpiece manufacturer. It could be defined as the degree of agreement or 

achievement of a finished product with the required dimensional and minimum 

geometrical accuracy  error [61]. On the other hand, theoretically it can be explained 

as any deviation in the position of the cutting edge from the required value to make a 

workpiece of the specified tolerance. The amount of error in a machine gives a 
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measure of its accuracy which expressed the maximum translation error between any 

two points in the production of the machine. This widely depends on the available 

resolution of the system positioning that can be difficult produced more accurate 

than what it made for. Therefore, there will be no further feedback to improve the 

positioning within more over the designed range. 

However, another important issue is the errors that occur between the measurement 

point and the feedback point [62]. The suggested way to keep track of the errors is to 

create an error account. An error account allocates sources among the different 

components of a machine. It is a system analysis tool used for the prediction and 

control of the total error of a system. An error account essentially addresses two 

fundamental issues. One involves obtaining the influence of different sources of 

error on the accuracy of the machine. The other involves taking a set of 

specifications and determining the permissible level of each source and the 

difference will be taken in the consideration till reach to the optimised system.  

Specifically, errors may contain two categories quasi-static errors and dynamic 

errors. Quasi-static errors are those geometric/kinematic between the tool and the 

workpiece that are slowly varying with time and related to the structure of the 

machine tool itself because thermally induced strains in the machine structure.  The 

other is Dynamic errors that are caused by sources such as spindle error motion, 

vibrations of the machine structure, controller errors etc. These are more dependent 

on the particular process conditions of the machine. Quasi-static errors account for 

about 70 % of the total error of the machine tool, and therefore, a major focus of 

error compensation has been investigated in research [63].  

3.6 Tools Wear in the Milling Operation 

Generally, tool wear is defined as the loss amount of tool material due to physical 

(mechanical) and chemical interactions between the cutter and workpiece, this leads 

to remove small parts of material from the used cutter. Tool wear is an extremely 

complicated process associated with many parameters such as contact stress between 

mating surfaces, material properties of the workpiece and cutting tool, temperature 

on the cutting edge, and cutting conditions [64]. Sometimes when high temperature 

and high contact stresses at the tool-chip interface, the chip maintains a very close 

contact with the tool on the rake surface and flank surface through an interfacial 
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layer or built up edge [65]. Therefore, tool wear in the metals cutting is supposedly 

due to adhesion and diffusion of tool material into the flowing chip at the interface 

of tool-chip. 

Tool wear is the leading cause of vibration of the machine tool and weakening of 

surface roughness and dimensional accuracy of the workpiece. Hence, it causes tool 

breakage and workpiece damage. These rapid changes are having a serious effect on 

the progress of machining process. In the last decades, automated machining 

operation has been progressing intensively and unattended process of machine tools 

is widely introduced in many machine shops. Therefore, these aspects and the 

problems have been encouraged the researcher [66] to seek a detecting system to 

monitor these conditions and realises high efficiency and automation of machining 

process. 

Tool wear can be classified into several types, and summarised as follows [67]: 

• Adhesive wear associated with shear plane deformation. Generally, adhesion 

means the recombination made when the tool and the workpiece material derived 

into contact with distance of atoms. Therefore, it is called cold welding phenomena 

caused by the plastic deformation of the actual contact area of mating surfaces under 

pressure and temperature. Consequently, the relative motion of adhesion points on 

these surfaces, it reasons adhesive wear when the grain is taken away by shear or 

tension. 

• Abrasive wear resulting from hard particles cutting action, therefore it is defined as 

the damage on a surface, which occurs because the motion relative to the surface of 

harder asperities at the interface. Specifically, the adhesive layer could be occurred 

in the whole cutting process, and directly allows the cut by the hard inclusions in the 

workpiece material on the tools. The hard inclusions in the workpiece surface will 

press into the friction surface and generates the trough-shaped indentation by the 

increasing the abrasive grooves. 

• Diffusion wear occurring at high temperatures. The close contact between the tool-

chip and tool-workpiece makes an ultimate environment for the atoms in the tool 

material with the external diffusion through the tool-chip interface.  

• Fracture wear or Debonding failure happened due to fatigue. It is a complex 

process and formed by the part of tool material detachinging under the joint action 

of the abrasive wear, adhesive wear, and diffusion wear. The fracture wear has 

different forms due to the differences of tool materials. 
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The tool wear structure may depend totally on the machining conditions, mainly 

cutting speed and the undeformed chip thickness, and a combination of the 

abovementioned wear mechanisms. A variety of forms of wear-land pattern and 

existing cutting speed are shown in Figure 3.5 for metal cutting process. The more 

largely occurring forms of cutting tool wear usually  identified as the principal types 

of tool wear in metal cutting using single-point tools are nose, flank, notch and 

crater wear.  

Nose wear or edge rounding occurs mainly through the abrasion wear mechanism on 

the cutter major edges resulting in an increase in negative rake angle. Nose wear can 

be dependent entirely on the implemented cutting conditions with the lost of tool 

sharpness throughout plastic or elastic deformation. At high cutting speeds, the edge 

deforms plastically and may be lost of the entire nose. Edge chipping and cracking 

occurs during periodic breaks of the built-up edge in interrupted cuts with brittle tool 

and thermal fatigue. Catastrophic failure may be also happened if the nose is 

considerably worn or as a consequence of the utilisation of inappropriate machining 

conditions and brittle tools such as ceramics and cemented carbide [68]. 

(a) Nose wear

(low cutting speed

(b) Flank and notch wear

(medium cutting speed)

(d) Plastic /breakage

(very high cutting speed)

(c) Cratering

(high cutting speed

 

Figure 3.5: Cutting tool wear forms in orthogonal metal cutting (reproduced from 

[68]). 

However, choosing suitable machining methods and tooling systems is important to 

achieve dimensional accuracy and surface quality. In addition, cutting parameters, 

cutter characteristics, material of tool and work piece, chip formation, tool wear and 
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the vibration of the tool and work piece configuration are parameters that 

significantly affect production performance. The most critical one among these 

mentioned parameters is the tool life. Tool wear can be visually measured using a 

microscope [69]. However, in practice, tool life is estimated by Taylor’s equation  

instead of making cumbersome measurements.  

The cutting conditions have significant importance since they effected on the metal 

removal rate and production rate. These conditions included feed, speed, and depth 

of cut which are built in Taylor's equation [69]: 

CVT n                                                                                           (3.1) 

 

Where T= Tool Life (min)               V = Cutting speed (mm/min) 

n and C are constants that depend on feed, depth of cut, work material, and tooling 

material, but mostly on material (workpiece and tool). 

It can be expressed the above equation of tool life in terms of the cutting variables as 

follows: 

 
mlK DfCVT                                                                                (3.2) 

 

f = Feed per tooth (mm/tooth)         D= Axial depth of cut (mm) 

k, l, m = Constants for a given tool-work combination and tool geometry and to be 

estimated using experimental work.  

 

A common approach for assessing machining performance is tool wear/tool life. 

Tool wear is a time dependent process. As cutting proceeds, the amount of tool wear 

increases gradually. Tool wear must not be allowed to go beyond a certain limit in 

order to avoid tool failure. However, tool life is the length of time that a cutting tool 

can work satisfactorily before it begins to fail.  

Tool wear/tool life is one of the most significant and necessary parameters required 

for process planning and total machining economics. A review of several theoretical 

and experimental techniques for predictive assessment of tool-wear and tool-life are 

described in reference [70]. 

The trend in tool wear/tool life modelling has been to extend Taylor's equation. This 

is mainly due to the direct relationship between cutting speed and tool-life as shown 

in Figure 3.6.  
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Figure 3.6: The relationship between cutting velocity and tool life. 

  

This relationship holds appropriate for all machining operations and is considered as 

a basis for more advanced models. However, there is a serious drawback with the 

use of Taylor's equation, because it does not inform directly the relationship between 

tool wear and tool life. Empirical attempts [71] have been presented to define this 

relationship in terms of the variation in cutting speed as shown in Figure 3.7. It can 

be observed that the tool wear is proportional to the time of machining.  
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V1, V2, V3: Different cutting speeds

 

Figure 3.7: The relationship between tool wear and tool life with different cutting 

velocities. 

 

These curves of the relationship between tool wear and tool life have been taken in 

the methodological consideration of this thesis.  
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3.7  Tool Wear and Fixturing Errors  

Currently, it can be seen that both the tool wear and fixturing errors have played a 

critical role in creating inaccuracy of the manufactured parts. Taken together, fixture 

set-up and geometric imprecision of the locating elements are caused to errors in 

fixturing, especially where the contact area is small between the fixture and 

workpiece. Therefore, it is important to create more attention to the workpiece 

displacement which is dependent on some factors including place of the fixturing 

elements, clamping system, clamping strength, and type of contact surface. Thus 

workpiece displacement could be a major cause of machine error.  

On the other hand, the fixture also contributes to machining imprecision by 

generating the deformation of thin-walled parts under the influence of the clamping 

force. Therefore, the main aim of the recent research is trended to focus on the basic 

design of fixture such as locator and clamp, their placement, and the clamping 

sequence. Many suggestions have been presented to address this error such as 

increasing the clamping force to prevent the separation of the workpiece, and 

reducing the depth of cut during machining processes [72]. Therefore, the general 

aim is built the fixture forms as an integral part of the machine tool and thus 

contributes to its based accuracy. Another suggestion is presented by reference [30] 

to improve the quality of wood machined surfaces using NC fixturing system.  

3.8 Surface Roughness in Milling Operation  

Surface roughness is considered as one of the most important parameters to 

determine the quality of machined parts. Surface roughness is defined as a group of 

irregular waves in the surface, measured in micrometres (μm). There are various 

simple surface roughness amplitude parameters used in the industry, such as 

roughness average (Ra), and maximum peak-to-valley roughness (Rmax) [73]. The 

parameter Ra is used in this study. The quality of the machined surface has a very 

important role especially in the production of complex shapes such as precision 

moulds which need to high resistance of deformation and corrosion [74]. 

Many investigations have been performed to verify the relationship between surface 

roughness and cutting parameters such as cutting speed, feed rate and depth of cut. 

Practically, many influences which usually have an effect on surface roughness 

including vibration and inaccuracies in the machine tool, abnormalities in feed 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX5-4GYNXVH-3&_user=2471587&_coverDate=12%2F31%2F2007&_alid=1026663990&_rdoc=3&_fmt=full&_orig=search&_cdi=5581&_docanchor=&view=c&_ct=1171&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=a762b037d5a1dbdc530ad57bcce98b65#bib4
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mechanism, imperfection in the structure of workpiece  materials and surface 

damage produced by chip flow [75]. Surface roughness is affected also by other 

variables [76], such as the mechanical properties of the material, the geometry of the 

milling cutter, the runout errors of the tools and the vibration produced during the 

process as illustrated in Figure 3.8. 
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Figure 3.8: Parameters that affect surface roughness. 

 

Surface roughness measurement is divided into two categories:  direct and in-direct 

measurement. Direct measurement of the machined surface which is directly 

proposed by light scattering, ring field capacitance or ultrasonic sensing, stylus type 

gage is the most common direct measuring instrument. In indirect methods, surface 

roughness is derived using parameters of machining process such as acceleration. 

Although the indirect methods showed less accurate prediction than direct method, 

the indirect methods are more practical to be implemented in the in-process 

measurement [77]. The modelling and prediction problems of surface roughness of a 

workpiece by computer vision in machining operations have received a great deal of 

attention [78]. However, since the roughness of the machined surface is an important 

quality measure in metal machining, therefore it is important to monitor and control 

surface roughness over time during the machining operation. Monitoring surface 

roughness is mostly performed by manual inspection of workpiece surface using 

profilometer which is taken a long time and needs to the skilled operator. For the 

specific production, sometimes the inspection of the surface roughness applied 

100% on all products; this will increase the cost of the workpiece [79].  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX5-4GYNXVH-3&_user=2471587&_coverDate=12%2F31%2F2007&_alid=1026663990&_rdoc=3&_fmt=full&_orig=search&_cdi=5581&_docanchor=&view=c&_ct=1171&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=a762b037d5a1dbdc530ad57bcce98b65#bib2
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 Surface roughness needs to be investigated with regard to the effect of the change of 

cutting tool condition and the stability of the machine under the observing of the 

monitoring system. 

3.9 The Relationship between Tool Wear and 

Fixturing System 

In the past years, many researchers have studied the end milling process since they 

investigated the effect of vibration, deflection of the workpiece-tool system in the 

end milling process on surface roughness. Nevertheless, other established a 

mathematical model that predicts the surface roughness after end milling. The most 

critical point is the relationship between the holding device and the workpiece or 

tool.  

Generally, in the analysis of the workpiece-fixture displacement, it is assumed that 

both of the mating objects are rigid everywhere except with the contact region. Most 

of the research suggests that the best shape of the locators and the clamps is 

spherical tips to make sufficient contact. This may be to increase the area of contact 

and reduce the deformation of the workpiece, and to stand against the change of the 

machining conditions such as tool wear. For example, reference [72] presented a set-

up for the workpiece which clamped by the locators as shown in Figure 3.9. This 

recognised a reference for the frame of the workpiece with respect to the frame of 

fixture reference. However, throughout the machining process, the workpiece is 

displaced within the fixture. This displacement is emerged because a combination of 

localised deformation, slip and lift-off at the contact regions. This finding supports 

the idea that the most of the workpiece-fixture errors happen at the contact points.  

y
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Thrust clamps
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Figure 3.9: Workpiece before clamp actuation. 
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The tool geometry could have a significant effect on process vibration. Reference 

[80] has studied the effect of material and geometry on the tool wear characteristics 

of cutting tools during the milling process. The wear investigations in this case are 

more complex than in other machining operation and the cutting conditions are 

influenced by the location of the cutter with respect to the workpiece. The 

conclusion is the chip cross-section changed due to the fluctuations of contact 

between the tool and workpiece. Reference [81] interpretation overlooks much for 

this problem as it investigates the effect of tool holder geometry (70° and 90°) on 

cutting performance in terms of tool life and tool wear when machining of nickel-

based alloys 242. It was found that during machining of workpiece with a tool 

holder providing geometry of 90° shoulder cutting, the tool wear rate progressed 

more rapidly compared to the 70°-tool holder. Generally, the cutting inserts were 

rejected mainly due to intensive wear on the flank face and the surrounding area.  

Tools for semi-finishing and finishing operations, particularly for medium and large 

moulds, must generate complex forms using end mills. These final processes 

normally use tools with small diameters, small feed per tooth, radial and axial depth 

of cut and higher tool rotation and feed velocity than in conventional processes. This 

encouraged reference [82] to suggest that these tools may be either solid (mainly for 

small diameters) or with inserts. The results show that the selection of the tool 

materials is necessary to minimise the friction coefficient between chip and tool and 

consequently reduce the tool wear and improve surface roughness.  

Furthermore, reference [83] contributes a work to a better understanding of the 

milling process and of the wear mechanisms of tools used in semi-finishing 

operations of hardened steels for dies and moulds. The work evaluates the influence 

of the inclination of machined surfaces as indicated in Figure 3.10. The finding 

indicates that with inclined surfaces, the problem of cutting speed is absent since the 

effective tool diameter is increased. The angle between the tool axis and the surface 

exerts a strong influence on the components of the cutting force. When the tool axis 

is parallel to the surface (90°), only tangential and radial components of force are 

present. The main conclusion has been presented that the inclination of the machined 

surface strongly influences tool life, and tool wear involves different mechanisms. 

Hence, the way tool wear-vs-machining time behaves could be different and 

dependent on the above factors. 
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Figure 3.10: Axial and radial components of cutting force for surface 

inclination (reproduced from [83]).    
 

 

3.10  Conclusion 

Milling process is one of the most common and complex process in machining 

operations. The quality of the machined parts is influenced by many parameters 

including machine, tool wear, fixture, workpiece and cutting conditions. 

Tool wear plays an important role in the quality of the workpiece and surface finish. 

Therefore, monitoring tool wear to predict surface finish is important for quality 

control. Tool wear/life in milling is a complex process and influenced by many 

factors. The tool wear/life-vs-machining time is not consistent and can be influenced 

by many factors; hence, it is important to investigate how the expected tool wear 

performance would influence the prediction of tool wear.  
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Chapter 4  Fundamental Principles of 

Condition Monitoring Systems in Milling 

Operations 

 

4.1 Introduction 

Nowadays, the global market competition has drawn the manufacturer’s attention on 

automated manufacturing systems using condition monitoring. The Condition 

Monitoring (CM) has been used as a method to improve products quality, 

eliminating inspection, and enhancing manufacturing productivity. The main goal of 

condition monitoring also is eliminating accelerated tool wear, tool breakage and 

poor surface finish. In this chapter, the concept of condition monitoring is presented 

with its importance. The limitation of the CM is also addressed.  

4.2 Condition Monitoring Systems 

Traditionally, the ability of an operator to define the condition of the process is built 

based on his knowledge and senses (i.e. vision and hearing). This ability now is the 

expected role of the monitoring system. Currently, most of machining processes are 

fully automated and carried out under the supervision of safety screens. Typically, 

the role of the operator is to supervise and also to load and unload of the parts for 

several machines in a manufacturing cell. One of the limitations of this process is 

that the operator does not monitor continuously and his reaction time to any problem 

will not be sufficient, especially in a high speed machining. This reason 

considerably leads to find an automated method to detect the faults of the production 

process. Therefore, a Tool Condition Monitoring (TCM) systems are proposed in 

literature to identify and respond, on line, to any abnormalities in process, it is also 

should take a suitable action [84]. Figure 4.1 shows the general structure of a TCM 

which consists of sensors, signal processing stages, and decision making systems. 

The decision making system is used to interpret the sensory information and to 

decide on the required corrective action.  

The tool condition monitoring system depends on two basic elements including the 

number and type of the used sensors. This is important to determine the quality of 
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the data acquired, and the associated signal processing and simplification methods 

which are employed to analyse the sensory information and determine status of tool. 

The first element affects the cost of the system since it involves expensive hardware, 

while the second element influences the effectiveness and the speed of the system. It 

is important to design a condition monitoring system with a high efficiency, short 

development time, and with a suitable number of sensors [84]. By choosing 

appropriate number of sensors and associated signal processing methods, a 

minimum classification error of process abnormalities can be reached. 

Decision making

?
Classification

Sensory Signal

Extraction Sensory 

characteristic FeaturesSignal

Processing

 

Figure 4.1: The general structure of a condition monitoring system (reproduced from 

[19]). 

For more than several decades, the creation of effective, efficient and on-line tool 

condition monitoring systems (TCMSs) have been observing importance in industry 

and manufacturing research. Therefore, researchers have dedicated much time and 

effort in developing these systems. However, only limited reliable TCMSs have 

been established for industrial applications. This is mainly due to the nature of the 

monitoring signals, difficulties to define or find  the nonlinear relationship between 

the measured features and tool wear, and to economic reasons [85]. Other methods 

are more simplistic and fast to use, however they are mostly more sensitive to 

changes in cutting conditions and less sensitive to tool wear.  

Many researchers participated in the development of TCMSs have focused on the 

problem of extracting the most valuable information from the monitoring signals. As 

a result, several new signal processing techniques are investigated, in order to 

achieve more efficient and accurate estimation methods in designing an effective 

TCM. There is also a trend in the manufacturing research community of several 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4NNWCFR-1&_user=2471587&_coverDate=11%2F30%2F2007&_alid=1434457552&_rdoc=1&_fmt=high&_orig=search&_cdi=5754&_docanchor=&view=c&_ct=1985&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=03bb1f86c7f789c8e4b5386cb72ae24c#bib20


Chapter 4  Fundamental Principles of Condition Monitoring Systems in Milling  

     48 

needs in the development of a TCM to be used in the practical applications. The 

developed TCM can be reached the following achievements [86]:  

• An agreement between the number of the used sensors and their cost, and the 

performance of the TCM.  

• A sufficiently less computation time that permits to change the tool before the wear 

exceeds the accepted limit. 

• The used sensors that do not disturb the production process. 

4.3   Significance of Monitoring  Systems   

The aim of an automated system is to allow machines to continue working as long as 

the conditions of the process are satisfactory. This already is becoming a practical 

reality. Complex automated manufacturing systems mean that individual units are 

extremely interdependent. Therefore, a fault or a breakdown could mean a full 

stoppage of a manufacturing cell, thus affecting productivity of the complete 

production system. The need to the process monitoring system is not only to detect 

tool wear and tool breakage at an early stage, but also to present a process 

assessment and optimisation parameters. The system can be implemented to improve 

machine utilisation and thus reduce the machining cost. In the next sections, the 

importance and limitations of the monitoring system are presented in detail. 

To avoid the damage to the machining system (i.e. tool, tool holder and machine), it 

is required to have resources that have the ability to promptly detect an actual or 

forthcoming tool breakage. This could be achieved by making in-process 

measurements existing by continuous monitoring of the metal-cutting process. It has 

estimated that the development of this monitoring system to reliably detect tool 

condition could result in an increase of cutting speed, a decrease in cutting time, 

savings in tool changing time, and overall savings of 10 to 40% [87].  

In a metal cutting process, TCM systems cover monitoring the machine and the 

cutting process dynamics, cutting tools and workpiece to achieve optimum 

performance of the process [88]. Therefore, as a serving, the TCM systems can be 

briefly observed the following purposes: 

1. Detect the fault in the process for cutting tool and machine.  

2. Check and maintain the stability of the manufacturing process. 
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3. Provide a compensatory mechanism for tool wear progress which keeps the 

tolerance of the machined workpiece in acceptable limits. 

4. Create an avoidance system of machine tool damage.  

 

Simply the continuing of the production process through rest breaks alone could 

give around 10-12 % more parts per shift [89]. This means that the payback period 

for installing the monitoring system is relatively very short. This advantage even 

without considering additional benefits such as detecting tool wear or tool breakage, 

collision control, and so on, the system can repay its cost exclusively by accessing  

the production through operators breaks. 

Another advantage can be observed from the monitoring system is the product 

quality improvement, since the automated machines remain in a stable thermal 

conditions. Generally, the existing conditions of the operation, it is possible to 

realise gradual improvements. This development supports the manufacturing process 

to have better quality, and reduce the costs. 

4.4 Limitation of TCM  System 

Much research has been performed concerning the development of reliable TCMs. 

However, due to the obvious complexity of the process, the current systems have 

some significant limitations. Several factors have obstructed advances in the 

development of TCM including inappropriate choice of sensor signals and their 

utilisation. The lack of an efficient TCM system may include excessive power take-

off, inaccurate tolerances, irregularities and uneven workpiece surface finish. As a 

result, the machine tool and/or machine peripheral damage which suffer from 

unnecessary costs. One of the primary reasons for the lack of industrial application 

of TCM is due to the fact that these systems have been developed based mainly on 

mathematical models with perhaps limited number of experimental work. These 

models require enormous amounts of experimental data for validation. Another 

possible interference, generally, lies in the nature and features of the applied sensor 

signals, which tend to be non-linear and therefore difficult to model. The random 

behaviour can be related to the significant variation and non-homogeneities that 

occur in the operating part [88]. Also, there are complications involved in designing 

TCM that take account of the noise sources.  



Chapter 4  Fundamental Principles of Condition Monitoring Systems in Milling  

     50 

Usually, most machining processes can be classified as having one or more of the 

following characteristics: 

1. Difficult to organise into behaviour due to non-homogeneities in workpiece 

material. 

2. Sensitivity of the process parameters to machining conditions. 

3. Non-linear relationship of the process parameters to tool wear. 

The disturbances of aforementioned sources could lead to misleading information, 

hence limiting the precision of the condition monitoring system. Therefore, when 

unexpected disturbances occur, a TCM should to be capable of analysing and 

recognising the fault and cancel any disturbance with specific level of confidence. 

Many attempts to develop the TCM to detect rapid changing and unpredictable 

environment have been done. The major drawback is still to the implementation real 

adaptive, self-calibrating, condition monitoring system that is more sensitive to 

faults and less sensitive to disturbances and noise. There is a limitation for selecting 

a suitable sensor and signal processing for online monitoring with complex 

machining scenarios. This problem can be avoided by using influencing parameters 

of the machining process that show sensitivity to tool wear or tool breakage. For 

milling processes, it can be noticed that the majority of researchers developing the 

TCM have used torque, thrust force, vibration and strain, while other researcher used 

temperature and sound and acoustic emission (AE) [18]. 

4.5  Structure of TCM System 

  
Typically, most approaches which are used in tool condition monitoring are 

constructed upon three major elements; sensors, feature extraction and decision 

making as illustrated in Figure 4.1. This section will discuss these elements and the 

limitations associated with them.  

4.5.1 Tool Condition Monitoring Sensors 

 

A wide range of sensors has been used to monitor the parts of machine tool that are 

more expected to produce unique signals related to process or machine conditions. 

The monitoring of cutting tools has included approaches to tool identification, tool 

wear monitoring, tool breakage and tool life.                  
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Since the indirect signal measurement of the tool performance is easier than the 

direct measurement, the practical approaches for tool condition monitoring are 

implemented using indirect measurements. Significant connection exists between the 

sensors used for tool monitoring during machining operations [90]. Figure 4.2 

illustrates the most approaches used. Most of these approaches have usually placed 

additional sensors on the machine. 
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Figure 4.2: Multi-sensor cutting tool monitoring options. 

4.5.1.1   Cutting Force 

One of the most significant current approaches in condition monitoring is based on 

the measurement of cutting forces. Force measurements are generally taken using a 
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dynamometer mounted between the workpiece and machine table during cutting 

process as shown in Figure 4.2. This dynamometer measures the cutting force in 

three perpendicular directions including the X, Y and Z axis. However, in the end 

milling process, the Z axis cutting force component contains little information but 

the X and Y axis signals have been exposed to provide more accurate information 

for the process. A serious weakness with this dynamometer, however, is the physical 

and cost limitations. These limitations have encouraged the researcher to seek 

indirect measuring the cutting force and develop a range of tool holder mounted 

dynamometers which could reduce some of the limitations [91]. 

 

4.5.1.2   Spindle System Condition    

 

Spindle parameter such as motor torque is the most common approach for 

monitoring various tool condition monitoring. This approach is based on cutting 

experiments which are performed to obtain an understanding of the variations of the 

signals during machining process. Then, the machine controller aims to hold the 

parameter at or around the optimum value by controlling the machining process. 

The spindle motor torque is predicted using a geometric model of the tool and 

workpiece interaction. It is able to quantify the metal removal over discrete time 

intervals. The transfer function of spindle torque to current is normally calibrated 

using a force dynamometer. Within this overall approach, several methods have 

been developed. The torque extrapolated from the spindle current measured on-line. 

The aim is  to compare the estimated spindle torque to the actual torque during end 

milling therefore any deviation around a pre-set value will indicate a range of faults, 

including tool wear or breakage [92]. This approach will serve as a base for future 

studies, where they developed a monitoring of spindle shaft vibration to measure the 

tool wear during milling process. A concern is recognised that the bandwidth of the 

spindle motor servo enforces limiting factors to affect both spindle speed and 

number of cutting edges on the tool. Also, in some cases spindle power might not be 

sensitive to tool conditions when using a small tool on an over-rated spindle motor. 

  4.5.1.3   Acoustic Emission  

 Acoustic Emission (AE) is a very high frequency oscillation or stress wave, 

generated when deformation occurs as metals are cut or fractured. The acoustic 



Chapter 4  Fundamental Principles of Condition Monitoring Systems in Milling  

     53 

emission is a very high frequency stress wave generated when plastic deformation 

occurs (chip creation) as a result to the interaction between the operating part and 

the tool. The AE is found successful in applications related to tool monitoring during 

machining processes. It is still less straightforward in milling since the pulse shock 

loading arises during the entry and exit of each individual tooth to the workpiece. 

Those pulses also generated during tooth fractures.  

Another limitation in using the AE is related to the discontinuous nature and 

variability of the process. To overcome this limitation, an approach is suggested to 

monitor cutting tool wear using both AE and vibration monitoring as outlined in 

[93]. The approach suggests that progress in the application of AE in this area may 

be forthcoming and  could be implemented by  using optical probing to measure the 

AE from the rotating tool holder during machining process [94]. 

4.5.1.4   Feed Axis System Condition 

 

This approach is based upon the actions of the axis system used to move the 

workpiece past the rotating tool. The monitoring strategy involved monitoring of the 

armature current of the DC motors on the X and Y axis drives. Same limitations 

emerge with the use of monitoring the axis motor current as with monitoring the 

spindle motor. The bandwidth of the system is limited by the characteristics of the 

servo since the bandwidths of 100 Hz are too low compared the possible tooth 

passing frequency of 400 Hz or higher in milling applications. 

A method is developed to use this approach for detecting the tool breakage by 

comparing the actual cutting force measured using a table dynamometer. It then 

became possible to detect tool breakage from direct measurements of the axis drive 

armature current. The cutting force is considerably more than the friction forces 

within the drive system [95]. 

Many experiments are conducted to form inter-relationships between tool condition 

(i.e. wear or breakage) and various control signals within the X axis DC motor feed 

drive system. The parameters of the axis are monitored including armature current, 

motor tachometer and the velocity command signal from the machine controller as 

illustrated in Figure 4.3. This system enables to detect a broken or worn tool from a 

sharp tool by considering the variance of the tachometer or motor current 

individually [96]. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-3V5CM41-6&_user=2471587&_coverDate=01%2F31%2F1999&_alid=1428788789&_rdoc=20&_fmt=high&_orig=search&_cdi=5754&_docanchor=&view=c&_ct=2766&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=090ec7a707100d18c22e825c32da82b9#b27#b27
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-3V5CM41-6&_user=2471587&_coverDate=01%2F31%2F1999&_alid=1428788789&_rdoc=20&_fmt=high&_orig=search&_cdi=5754&_docanchor=&view=c&_ct=2766&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=090ec7a707100d18c22e825c32da82b9#b28#b28
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-3V5CM41-6&_user=2471587&_coverDate=01%2F31%2F1999&_alid=1428788789&_rdoc=20&_fmt=high&_orig=search&_cdi=5754&_docanchor=&view=c&_ct=2766&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=090ec7a707100d18c22e825c32da82b9#b30#b30
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-3V5CM41-6&_user=2471587&_coverDate=01%2F31%2F1999&_alid=1428788789&_rdoc=20&_fmt=high&_orig=search&_cdi=5754&_docanchor=&view=c&_ct=2766&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=090ec7a707100d18c22e825c32da82b9#b32#b32
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Figure 4.3: Schematic of the x-axis drive and control system (reproduced from 

[96]). 

 

4.5.1.5  Recent TCM Approaches 

 

Further to the aforementioned approaches, vibration analysis is a successfully and 

widely used condition monitoring tool for machines and processes. However, in the 

setting of milling monitoring, its application is slightly limited by the nature of the 

process due to the noisy signals arising with the vibrations during to the cutting 

process. It is reflected a good indicator especially in a real time for tool breakage 

monitoring. A multi-sensor approach (fusion model) has also become increasingly 

more applicable in TCM comparing with other existing methods. Multi-sensor 

approach has developed a massive rise in the data acquisition and computing 

capabilities presented to achieve an on-line monitoring of the manufacturing 

process. A combination of the sensory techniques to create effective monitoring 

system has been presented in literature [19]. The amount of information generated 

by this approach associated with the application of artificial intelligence, such as 

ANN to control large amount of sensor inputs [97].  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-3V5CM41-6&_user=2471587&_coverDate=01%2F31%2F1999&_alid=1428788789&_rdoc=20&_fmt=high&_orig=search&_cdi=5754&_docanchor=&view=c&_ct=2766&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=090ec7a707100d18c22e825c32da82b9#b41#b41
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4.5.2  Signal Processing and Feature Extraction 

The critical step in tool monitoring is how to extract valuable information from the 

implemented sensors. The accurate interpretation of data could significantly produce 

a reliable level of information for the decision making process [98].  

End milling process, similar to many machining operations, could be characterised 

using deterministic model or stochastic model. The deterministic model assumes the 

process parameters are stable and can be easily predicted while the stochastic model 

assumes random variation in the process [99]. It is assumed that real life operations 

have stochastic nature and hence it is important to develop the efficient signal 

processing and feature extraction to ignore the random variation and focus on 

features related to the faults and process/machine health. 

The traditional technique of observing signals is to view them in the time domain. 

The time domain is a record of what happens to a parameter of the system versus 

time. Another technique, which is the frequency domain, used for analysis of signals 

with respect to frequency, and it shows how much of the signal's energy is present at 

each frequency. Signal processing in time domain and frequency domain are 

normally used to extract useful features from the signals. 

There are several time domain features that can be extracted from raw sensor data 

such as maximum, minimum, standard deviation and average. All the time domain-

features avoid the complexity of pre-processing (i.e. they do not require the difficult 

task of framing, windowing and filtering), therefore they do not consume processing 

power and time. However, they are not robust to measurement and calibration errors.  

The frequency domain features (i.e. frequency spectrum energy and maximum of 

frequency spectrum) require pre-processing and Fast Fourier Transform (FFT) of 

sensory signals. The frequency domain features greatly depend on user knowledge 

about the characteristics of features. Also, fourier transform of a signal does not 

contain any local information about the signals. Generally, the features extracted 

from the absolute values of the raw measurements are more robust to noise and 

calibration errors than the features extracted directly from the raw measurements 

[100].  

 

Wavelet analysis is an exciting new method for solving the problems in the previous 

methods by combining the applications in time and frequency domains. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-3V5CM41-6&_user=2471587&_coverDate=01%2F31%2F1999&_alid=1428788789&_rdoc=20&_fmt=high&_orig=search&_cdi=5754&_docanchor=&view=c&_ct=2766&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=090ec7a707100d18c22e825c32da82b9#b45#b45
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Frequency
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Wavelet transform is better than the existing minutiae based methods and it takes 

less response time which is more suitable for online verification with high accuracy. 

The modern applications of wavelet theory as diverse as signal processing, image 

processing and pattern recognition [101]. 

4.5.3   Intelligent Decision Making 

An Intelligent TCM system is defined as an integrated system consists from multi- 

sensors, signal processing method and intelligent decision making technique, these 

requirements are necessary for automatic manufacturing process.  

In recent years, intelligent monitoring systems for tool breakage detection have 

gained more attention because they can better expect the correct mapping pattern for 

the input and output of a dynamic system directly. This feature is too difficult in the 

physical model which requires the derivation of very complex mathematical 

equations concerning measures that are difficult to determine. Many researchers 

moved from the predictive methods to intelligent discriminator systems, such as 

Expert systems, Fuzzy sets, novelty detection, and Artificial Neural Network 

(ANN). The intelligent system uses their ability to describe high non-linear 

characteristics of manufacturing processes, superior learning, noise destruction, and 

parallel computation abilities [102].  

However, the disadvantage of some of the decision making systems that they would 

require significant training and they could be very dependent on their structure and 

configuration [103]. 

4.6  Conclusion 

 

TCM systems are important to detect faults which may occur during the machining 

process. Consequently, this leads to improve the quality of the product, save the 

energy, increase the productivity, reduce the totally cost. The successful of the TCM 

application depends on the number and type of the used sensors, and on the quality 

of signal processing and decision making stage. This is additional to the dependency 

on the reliability of the hardware and data acquisition systems. 

Many approaches have been implemented regard to the environment of the milling 

machine tool including cutting force, spindle system, acoustic emission, vibration 
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and fusion model. For feature extraction, many techniques have been applied state 

from time series, frequency component such as the FFT, wavelet, those currently 

combined with artificial intelligence system such as neural network and/or fuzzy 

logic. Overall, it seems to be a possibility that the next generation of monitoring 

tools can be developed to engage into the control strategies implemented in the 

advanced machine tools design. The research in this topic is continuing to provide 

more reliable, robust and responsive tool condition monitoring systems which are 

needed in recent manufacturing systems. They still needed for more development if 

really automated machining process is to develop further. 
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Chapter 5  A Review of the Implementation of 

Tool Condition Monitoring in Milling Processes  
 

5.1  Introduction 

Reliable techniques for on-line tool condition monitoring (TCM) are required for 

automated manufacturing; therefore TCM systems in machining process have 

become the topic of investigation over the past decades. This chapter reviews the 

condition monitoring application presented in industry and academic research. It 

also covers the implication and the concern with implementing such condition 

monitoring systems. The techniques used for signal processing and classification of 

the pattern recognition for the data have been displayed in the context of this 

chapter. The investigation focuses on four challenging issues including fixturing 

system, tool wear and breakage in milling, surface roughness and condition 

monitoring systems. Finally, this chapter summarises the knowledge gaps which this 

literature survey reveals, and which are addressed in this thesis.  

5.2  Tool Wear and Monitoring System 

The current demand for higher manufacturing efficiency has led to an increased 

need for research aimed at machine tool condition monitoring. This is to prevent 

downtime due to tool failure, and is also a very important economical consideration. 

The cost of a tool failure can be significant compared to the price of the cutting tool. 

5.2.1  Tool  Wear 

 

In general, from reference [104], it can be observed that the development of the tool 

wear is relatively rapid in milling, and it is sometime un-useful for up machining. It 

is common that the pattern that  explains  the  wear  progress within  the cutting time 

can be divided into three different regions as illustrated in Figure 5.1. In the first 

region, the wear develops rapidly in the form of an exponential curve and then 

gradually decreases to a constant rate. While, the steady state of the wear presented 

in the second region of the wear curve can be viewed as linear to the cutting time. 

The third region simulated the failure region but it can be observed that different 
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wear curves depend on the different combination of tool-workpiece materials. It can 

be established that third period is very short and could be detected (tool breakage) in 

the early stages of the cutting especially when the machining conditions are not 

selected according to instruction of the tool manufacturer.  
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Figure 5.1: Typical curve of tool wear using cutting time. 

 

Reference [105] demonstrated that tool faults contribute to downtime of machining 

centres with average of 7%, also this estimation could be increased to 20% as 

reported by [106]. Furthermore, unexpected breakages may happen at any time, 

catastrophic failure affecting other constituents in the system. However, by 

designing an effective tool wear monitoring system such failures can be avoided, 

and obtain a maximum utility from the cutting tools [107]. 

5.2.2 Online Tool Condition Monitoring 

 

It is therefore, the main objective of automated condition monitoring systems is to 

improve the quality of manufactured products by employing a detection system for 

faults within the process and machine. Various signals are emitted from the machine 

tool throughout the machining process. However, these signals could provide a 

valuable input to the monitoring systems, in spite of the considerable amount of 

noise generated. Therefore, the signals would require processing for monitoring 

purposes. This leads the researchers to search for an effective method to extract 



Chapter 5 A Review of the Implementation of Tool Condition Monitoring in Milling   

     60 

useful information from the data of sensory signals. This process normally requires 

several stages of signal processing and data analysis to extract abnormal patterns.  

Generally, the performance of the condition monitoring system is significantly 

depends on the number and type of sensors and the associated algorithm methods 

employed to extract useful information from signals. These factors are based to 

design of an effective, automated fusion model and reduction in cost of monitoring 

systems [105]. Hence, it could possibly be hypothesised that the setup of a 

monitoring system in the milling process needs to consider all the above aspects.  

5.3  Tool Condition Monitoring  Methods 

The development of reliable condition monitoring techniques is based on a 

considerable amount of research which was carried out earlier in the research 

program in order to construct the fundamentals of a detection system [108]. These 

techniques can be categorised into two main groups:  

5.3.1 Direct  Methods  
 

Direct methods involve direct measurements from the tool. The tool condition (i.e. 

wear) is directly captured by assessing the changes of actual geometrics arising from 

worn area on the tool cutting. Direct measurement of tool wear requires that either 

the tool be removed from the machine after a certain period of time or a measuring 

device be installed on the machine. However, both of these alternatives are not 

reasonable in automated machining processes increasing machine downtime and 

affect productivity. Furthermore, direct measurements are difficult to implement 

because of the continuous contact between the tool and the workpiece, practically in 

the presence of coolant fluids. Therefore, although the direct methods are probably 

more accurate than the indirect methods, the indirect methods have been preferred 

over the direct methods and most of the research in this field is concentrated on 

them. Most of these are applied as off-line methods where the process is interrupted 

to carry out the control. The most common direct sensing techniques are described 

into the next sections. 

5.3.1.1   Optical  Direct  Method 

 

The application of this method depends on a measurable parameter that can be 

included with the visual inspection on the used component. For example, to measure 
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the wear, an inspection of tool thickness will be performed before and after the 

machining [109]. In general, these sensors depend on the higher reflective properties 

of the wear area, compared to the unworn surface, to derive various morphological 

parameters that characterise tool wear. The majority of the research work has 

tracked the measurement of flank wear whereas few researchers have attempted to 

measure both flank and crater wear. Flank wear regions can be imaged with a CCD 

camera; however, in order to derive valuable information from within the crater, the 

projection of a structured light pattern onto the tool is required. The CCD camera is 

coupled to an expert system to assess tool life in flexible manufacturing cells [110]. 

One problem with this method is that due to the hostility of the machining 

environment (lubricant, built-up edge or metal deposits on the cutting tool), vision 

sensors are restricted to user use between cutting cycles when the tool is removed 

from the workpiece (i.e. off line process) [111]. The new trend is to use the digital 

camera wired or wireless transmission (Wi-Fi) in monitoring system.  

5.3.1.2   Laser Vibrometery Method 

 

Laser Vibrometery is one of the non-contact and remote measurement methods 

normally adopted for milling tool vibration measurements during the manufacturing 

process. It is employed for precisely measuring velocity and displacement of 

vibrating surface without any physical contact. The vibrometer automatically 

collects vibration data from a user defined surface and presents it for visualisation 

and analysis [112].  Laser Doppler Vibrometry (LDV) presents an attractive solution 

for radial vibration measurement which is taken directly from a rotor surface. 

Reference [113] combined an experimental study of the cross-sensitivity 

encountered in LDV measurements of rotor radial vibration with a quantitative 

evaluation of measurement errors, including sensitivities to other motions. The 

evaluation of the effects of misalignments and other motions, for both rough and 

polished-circular rotors, is made possible by a recently developed structure for a 

comprehensive mathematical prediction of measured velocity. The simplicity in 

modelling enhances further importance to the finding that this modelling framework 

can be applied universally for laser vibrometry applications. 
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5.3.1.3   Radioactivity Method  

In machining processes, most of the wear particles of cutting tools are carried away 

following to the chip. Therefore, a suitable way for measuring wear could be to track 

these lost particles. Radioactive sensors have been employed to measure the 

volumetric overall loss of the tool material. In most cases, the tools are made 

radioactive by irradiation in atomic reactors. The idea of this method is used a small 

amount of radioactive material is fixed on the face of the tool, throughout of cutting 

process; the worn tool material will transfer to the chips. By using radioactive 

sensors monitoring, the amount of radioactive material deposited on the chips can be 

evaluated and the tool wear assessed [114]. However, the limitations of this method 

are related to the total amount of the wear which is too small percentage compared 

to the chips which have to be collected and measured for their radioactivity. 

Therefore, it is difficult to utilise radioactive methods as an on-line wear monitoring 

system. Also, some concerns over the environmental and health limit use this 

technique for workshop.  

5.3.1.4   Proximity Method 

 

Proximity sensors (i.e. inductive, capacitive and infrared) estimate tool wear by 

measuring the change in the distance between the tool’s edge and the workpiece. All 

these sensors depend on the idea of generating an output related to the distance 

between the sensor and the target. This distance can be measured by electric 

micrometres and pneumatic touch probes [115] or can detect the light reflected by 

the target using Proximity type photoelectric sensors [116]. However, this method 

suffers from a serious drawback. The measurement is affected by the thermal 

expansion of the tool, deflection or vibration of the workpiece and the deflection of 

the cutting tool due to the cutting force. Also, for monitoring the cutting tool, 

particularly the accessible detecting only from one direction. 

5.3.1.5   Wireless Temperature  Method  

The determination of temperature at the cutting tool, workpiece or chip could 

significantly be used to assume the process temperature. Reference [117] contributed 

a design of sensor which combines the implanted wireless thermocouple, in 

conjunction with the transmission of wireless signals. The tool is surrounded by a 
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thermocouple sensor relays a signal to a thermocouple module allowing for cold 

junction referencing, amplification and filtering of the analogue voltage signal. The 

signal is then transferred to a transmission (ADC) module which converts the 

analogue signal to a digital pulse code modulator representative signal. The success 

of this method mostly depends on the environment of the process which effects on 

the temperature of the machining process. 

5.3.1.6   Resistance  Method  

 

It is noticed that electrical resistance increases between the interfaces of the tool and 

workpiece. Gradually, increasing the tool wear leading to an increased contact area. 

Therefore, resistance measurement employed in detecting the tool wear in 

machining process, but it is considered an ineffective method because of the 

resistance change due to the variation in temperature and cutting forces throughout 

the machining process. 

This effect may be limited in the micro-machining operation, therefore, reference 

[118] suggested a new transition resistance sensor for monitoring of micro 

machining processes with a high number of revolutions up to 160.000rpm. Since, the 

micro-machining operations are not sufficiently provided with suitable setting 

equipment and the process is not perfectly controlled as the process parameters 

cannot be detected due to the extremely limited working zone and the high spindle 

speed. Various applications such as in process detection of tool wear are introduced. 

This method needs further improvements to be used in the automatic control of the 

micro-cutting processes. 

5.3.2   Indirect Methods 

 

The indirect methods often use cutting parameters such as cutting force, vibration, 

acoustic emission, temperature and power measured during the cutting process.  

Besides the indirect method used, the selection of parameter is also very important 

to design an effective condition monitoring system. However, the parameter that is 

useful for one method could be inappropriate choice for the other. Furthermore, 

detecting mechanisms including a single sensor could be infrequently making 

reliable results for the tool condition. Therefore, it is better to employ multiple 
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sensors to observe the same process in order to detect the tool wear status with high 

accuracy rates using a sensor fusion model [108]. 

Indirect methods, which are concerned in this thesis, are usually indirect on-line 

methods.  

 

The main indirect methods are: 

5.3.2.1   Force Sensor 

 

Among the indirect on-line tool wear monitoring methods, cutting force, an 

indicator of tool condition, is one of the most widely used variables. Indeed, it is 

noticed that cutting forces increase gradually with tool wear. Exploring the 

relationship between tool wear propagation and cutting force variation is of great 

importance to the development of an effective tool condition monitoring strategy. 

Reference [107] presented an experimental study of variations in the tool wear 

propagation and cutting force in the end milling process. The experimental results 

showed that significant wear is the major failure mode affecting the tool life.          .   

The cutting forces have a direct influence on heat generation, tool wear or failure, 

quality of machined surface and accuracy of the operating parts. Therefore, 

reference [119] provided in-depth analysis of the work showing that milling 

dynamometer can measure quasi-static and dynamic cutting forces, and torque by 

using strain gauge and piezo-electric accelerometer has been designed and 

constructed.  

An online monitoring of the cutting tool wear level is very necessary to prevent any 

deterioration.  However, there is no direct manner to measure the cutting tool wear 

online. Therefore, reference [120] adopted an indirect method to estimate the wear 

measurement of one or more physical parameters appearing during the machining 

process such as the cutting force. The cutting forces are measured by means of a 

force dynamometer, while the tool wear is measured in an off-line manner using a 

binocular microscope. In some cases Renishaw contact sensor can be used to 

measure tool wear. 

Despite the importance of micromachining operations in industry and the extensive 

research conducted in the past, there are few dynamometers capable of measuring 

the lowest frequencies that exceed the excitation frequency enabling the process 
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force measurement of micromachining operations. Hence, applications with high 

spindle speeds require a dynamometer whose lowest frequency value is maximised. 

Reference [121] contributed an innovative piezoelectric dynamometer (MicroDyn) 

providing the base for measuring high frequency signals in micro machining 

processes with rotational speeds of more than 100,000 rpm, resulting in a high 

excitation frequency. Consequently, the interference of the excitation frequency of 

those processes with the natural frequency of designed dynamometer makes it 

impossible to measure machining forces within a wide frequency range.  

For development with the on-line monitoring equipment (hardware) and real-time 

data analysis and optimisation software, reference [122] has presented an intelligent 

system that commenced with experiments using a force dynamometer. The 

monitoring system is connected with the PC which including data processing, 

analysis and optimization.  

5.3.2.2   Vibration Sensor 

 

In the condition monitoring of rotating machine, vibration sensors are the most used 

type of signal, but they do not achieve agreement in the area of the monitoring of 

cutting tool wear. This is mainly due to the other surrounding sources of vibration. 

Though, it is clear that cutting with a worn tool leads to higher variations of the 

effect on the tool; this obviously stimulates the tool to vibrate. The advantages of 

vibration measurement include ease of implementation and the fact that no 

modifications to the machine tool or the work piece fixtures are required. Vibration 

monitoring is mainly used to detect tool condition, surface quality, and dimensional 

deviations in machining applications. Generally, the vibration amplitude caused by 

interaction of a new tool and work piece is small compared to worn tool. 

Reference [123] developed a reliable monitoring system for industrial application 

based on the analysis of the structure of the tool vibration signals using singular 

spectrum analysis (SSA) and cluster analysis. This technique of time series analysis 

decomposes the acquired tool vibration signals into an additive set of time series.  

Following this, reference [124] explored the use of data mining techniques for tool 

condition monitoring in metal cutting using SSA which is performed on vibration 

signals measured on the tool holder. The main aim is to avoid the lack of large 

training data set was compensated by application of cross validation. This highlights 

two important aspects: strong significance of information in high frequency 
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vibration components, and benefits of the combining SSA and band-pass filtering to 

remove undesirable components (noise). 

5.3.2.3   Acoustic Emission Sensors 

 

During the cutting process, the workpiece is machined by removing unwanted 

material (chip) via plastic deformation. The acoustic emission is defined as transient 

elastic energy released in the deformation, phase transformations and the cracking 

mechanisms. In rotating machine with very small tool diameters, where the 

monitoring by cutting forces and motor current is not applicable because of their 

very low levels, the alternative sensor is of acoustic emissions. 

Recently, AE sensors designed for detecting tool breakage have been successful. 

This result may be explained by the fact that the frequency range of the AE signal is 

much higher than machine vibrations and environmental noises [125].  

It is a simple process to mount the AE sensor on the workpiece side for monitoring 

the milling and drilling processes which use multipoint rotating cutting tools. 

However, the difficulty occurs in transmitting the detected signal from the rotating 

part. Although transmission may be made by radio signal, there are few workable 

methods that have been developed to transmit the sensor signal from the rotating 

spindle to the fixed part using optical methods [16]. However, such techniques are 

still not economically usable due to either the reliability of the system, or the basic 

cost of the devices and the change in the construction of machine head.  

As one of the practical solutions to meet the requirement in terms of the signal 

transmission, reference [17] has developed the application of the acoustic emission 

(AE) sensor for monitoring the cutting process. The coolant stream is successfully 

used as a medium for transmitting the AE wave in the milling process monitoring. 

This sensor is mounted in the special holder with other necessary devices.  Figure 

5.2 illustrated the proposal to effectively utilise the cutting fluids as the medium for 

transmitting the AE signal. The AE sensor is attached to the cutting fluids supply 

nozzle so that the AE signal generated at the cutting point can be transmitted 

through the fluids and consequently detected by the sensor. By applying this 

method, it has become possible to take the AE signal from the rotating tools. But, 

the concern on this method is the effect of the noise of the fluid flow and machine 

bearing. 
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Figure 5.2: Monitoring system for the milling process (reproduced from [17]). 

 

Micromilling processes can made miniaturised products with high relative accuracy. 

While micromachining operations are different than conventional macromachining 

processes, it is important that the modelling of micro end milling forces incorporates 

the dynamics of the tool, ploughing and elastic recovery. Reference [126] examined 

the mechanistic modelling of shearing and ploughing domain cutting regimes to 

accurately predict micro-cutting forces for micromilling with spindle speeds up to 

160,000 rev/min with a cooling system that steadies the temperature at high 

rotations. The tool dynamics are indirectly identified by performing dynamometer 

and AE coupling analysis.  

5.3.2.4   Power  Sensor 

 

Apart from these main types of signal used for indirect monitoring, the electric 

power consumption is often a properly accurate measure of the deterioration of tool 

condition. It reflects a situation of tool condition change throughout the machining 

process. The spindle motor power monitoring system is considered one of the most 

applicable systems for plant floor applications because it is relatively simple and its 

mounting hardly affects the machining operation. In the last three decades, 

researchers have utilised many machining variables such as spindle motor power 

(current) [127-129].  

Power sensors are often used in combination with other sensors. For example, if the 

change in the consumed current would not be sufficient to be detected. Therefore, 
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modifying a blind sources separation technique has contributed to separating those 

source signals obtained by milling operations. This method based on wavelet 

transform and independent component analysis has been developed by [130]. The 

source signals related to a milling cutter and spindle are separated from a signal of 

single channel power. The experiments with different tool conditions illustrated that 

the separation strategy is reliable and encouraging for machining process 

monitoring. 

5.3.2.5   Sound Sensor 

 

When the milling process is stable, the system is controlled by forced vibrations 

produced by periodic forces which will increase as a result of the interaction 

between the cutting tool and the workpiece during the machining process [131]. 

Correspondingly, vibrations arise from this interaction will generate a sound. This 

sound is a transmission of mechanical energy contains information about the 

process. Experienced operators can have ability to extract information from it and 

correct or modify the cutting parameters. Reference [132] developed an approach to 

collect the milling process sound through a sound sensor (microphone) placed inside 

the machine-tool enclosure. Frequency range is normally related to the sound range 

20 Hz - 20 kHz, but some research has analysed wider ranges 0.5 Hz - 40 kHz 

Generally, the sound sensor reflects similar behaviour as a accelerometer sensor as  

both depend on the vibration of the machining process.  

 

5. 4   Signal processing methods 

    5.4.1  Fast Fourier Transform (FFT) 

       

The most common approaches regarding indirect methods of cutter tool monitoring 

are analysis of accelerations signal, dynamic forces and acoustic emissions. Fast 

Fourier Transformation (FFT) is widely used in order to present cutter tool wear or 

tool fault in the frequency domain. 

If the FFT is taken into account, the second harmonic is an indicator of tool wear 

estimation. Another approach uses the increase of energy in the frequency domain as 

an indicator of cutter tool conditions. However, a question arises as to whether a 
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change of cutter tool geometry is as a result of wear or as a tool fault that can be 

observed in the frequency domain. 

The limitation of FFT consists in the impossibility of processing non-linear and non-

stationary data [101]. Since the Fourier transform approach has certain serious 

theoretical drawbacks in processing machining signals. It is the integration for all 

times. This fact makes it difficult to analyse any local property of the signal. 

Another shortcoming of the FFT is presentation of results only in frequency domain. 

However, the manufacturing process is described as a non-linear and non-stationary 

process. The signal processing methods used to analyse non-stationary signals are 

appropriate for cutting process monitoring. Therefore, reference [133] studied the 

relation between cutter tool wear and acceleration signal in frequency and time-

frequency domain using a new method, Hilbert–Huang Transform (HHT) which 

presented data locally without harmonics. The idea is processed the data by short-

time Fourier transform the cutter tool wear or tool fault is detected by increasing the 

power in the power spectral density. While by using HHT, the acceleration signals 

change the frequency in the marginal spectra as a result of geometric change of the 

cutter tool. Also, it is applied to the cutter tool wear and tool fault monitoring and 

compared to the FFT. 

5.4.2   Wavelets Transformation (WT) 
 

The reliability and applicability of tool breakage detection to assist in advancing 

high availability levels of sophisticated manufacturing systems, in conjunction with 

high quality levels of manufactured components, are considered in the resent 

research. In order to improve robustness of the tool from wear and breakage, the 

signal processing method of spectral analysis is the most commonly used technique 

in tool breakage detection. Yet, although it is resolution is good in the frequency 

domain, it has an inadequate time domain resolution. Also some signal information 

in time domain is lost in the spectral analysis process. The wavelet transforms (WT) 

which is localized in both time and frequency to detect a small change in the input 

signals. In addition, it requires less computation than FFT. 

Continuous wavelet transformer is recognised as effective tools for both stationary 

and non-stationary signals. However, much of the information is superfluous and 

computationally very slow [134]. Discrete wavelet transform (DWT) uses an 

analysing wavelet function. DWT is able to simultaneously sample in both 
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frequency and time domains so that it can extract more information, which can be 

used to analyse tool breakage monitoring signals [135]. Reference [136] presented 

an effective algorithm for tool breakage monitoring system based on DWT of an 

acoustic emission (AE) and an electric feed current signal. The experiment results 

show overall 98.5% reliability and the good capability of real-time monitoring of the 

proposed for detecting tool breakage during machining process. 

Among many machining condition monitoring systems, a spindle motor power 

monitoring system is considered as one of the most popular systems for plant floor 

applications. However, in practice, power signals are mixed with many signal 

sources relevant to cutting tool, which contaminate with each other in feature 

extraction processes and decrease the monitoring reliability. Reference [137] 

presented a new method based on the wavelet transform for the detection of tool 

damage. It is assumed that the vibration signal of the original structure of tool 

without any defect is already known. When the defects are presented, the vibration 

signals of the defected tool are then recorded. After comparing the DWTs of these 

two sets of vibration signals in the space domain, it could be used to detect the 

presence of defects; their number and location.  

5.4.3  Principal  Component  Analysis (PCA) 

 

Principal Component Analysis (PCA) is technique of identifying patterns in the 

correlated data, and expressing the data to highlight their similarities and 

differences. The main advantage of PCA is that once the patterns in data have been 

identified, the data can be compressed, i.e. by reducing the number of dimensions, 

without much loss of information. The methods involved in PCA are discussed 

below [138]: 

1. Getting some data 

2. Normalization of data 

3. Calculation of covariance matrix. 

4. Interpretation of covariance matrix. 

Reference [139] proposed a signal processing method used on PCA and wavelet 

analysis, aiming to reduce the dimension of the data and obtain both frequency and 

time localisation information which could help to find abnormal phenomenon 

quickly and orient the position and the time of faults exactly in the complex textile 
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machinery systems. At first, the original signals are simplified by principal 

component transform, which was conducted by calculating the eigenvalue and 

eigenvector of correlation coefficient matrix, and by defining the first few Principal 

Components (PCs) containing most of the variables according to the contribution 

and cumulative contribution rates. Secondly, the restructured signals are 

decomposed into approximate and detailed ones for obtaining meaningful captures 

of instantaneous frequency by wavelet analysis. From practical application, this 

signal processing method was validated. 

In addition, PCA is used for fault diagnosis based on different sensors. For example, 

the basic theory of principal component analysis and its basic procedures for fault 

detection are introduced the sound signal pre-processing is depicted, multi-domain 

feature vector is extracted from time, time-frequency and frequency domain, faults 

are diagnosed with principal component analysis method [140].  

In the current research, the PCA is used to design an effective fusion model to detect 

the faults of tool and fixturing system. 

 

5.5   Tool Condition Classification 

5.5.1  Classification using Neural Network (NN) 

 

An Artificial Neural Network (ANN) is a mathematical or computational model 

based on biological neural networks. It consists of an interconnected group of 

artificial neurons and processes information using a connectionist approach to 

computation. In most cases an ANN is an adaptive system that changes its structure 

based on external or internal information that flows through the network during the 

learning phase. An ANN usually organises its units into several layers. The first 

layer or input layer, the intermediate layers or hidden layers, which are not always 

present because they are sometimes not needed, and the last or output layer. The 

information to be analysed is presented (or fed) to the neurons of the first layer and 

then propagated to the neurons of the second layer for further processing. 

These results are propagated through each layer, converting the information into the 

network output in the final layer. The goal of an ANN is to discover some 

association between input and output patterns. Many different neural network 

structures have been developed to achieve different learning and processing speed 
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capabilities. Neural networks are classified as supervised and unsupervised 

according to their learning characteristics. The decision is greatly dependent on the 

data obtainable for training the networks. If there is a target class or output for each 

pattern, then a supervised neural network can be used such as Back Propagation 

Neural Network (BPNN). However, when the input data do not have target output 

specified previously, then “unsupervised” neural networks have to be implemented. 

Unsupervised neural networks, such as Learning Vector Quantisation (LVQ) use a 

special algorithm to group similar patterns in the input data space into similar output 

classes [141]. 

Tool condition monitoring is necessary to obtain good quality product. The 

relationship between sensor and tool wear is investigated during end milling. For 

this purpose, reference [142] conducted an experiment using an acceleration sensor 

assembled on a machinery analyser. Tool wear was measured by a toolmaker's 

microscope where it was observed that there was an increase in vibration amplitude 

with increasing tool wears. However, the problem of associating such an approach 

with the milling process makes it very difficult to detect the levels of tool wear 

especially when considering the use of intelligent sensor based monitoring systems 

within an automated machining environment. Therefore, another approach is needed 

for the decision making process in order to support tool condition monitoring is the 

application of neural networks. Reference [143] presented a review of the 

application of neural networks as outlined in Figure 5.3. Where the sequence of the 

monitoring process start from the transfer the data from the machining process 

through the sensors to the computer system. The feature extraction technique will 

obtain the useful information, and then the data will be trained and tested using 

neural network to determine the tool stats. It is identified that the development of 

accurately on-line monitoring system capable of operating within the milling 

environment is needed further investigations. 
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Figure 5.3: Representation of neural network based cutting process monitoring. 
 

5.5.2   Classification using Fuzzy Logic (FL) 
 

A fuzzy logic is an artificial-intelligence-based method has also proved a useful 

classification technique to tool wear monitoring strategies when combined with 

multiple sensor inputs. A fuzzy clustering algorithm is used for online tool wear 

classification. This approach develops the online capabilities of the system which 

have yet to be established as all analysis is carried out off-line. The application of 

fuzzy pattern recognition techniques is described to identify and classify tool wear 

as part of an on-going research activity. Reference [144] presented a method for tool 

wear monitoring based on fuzzy logic handling multi-sensor inputs, and monitoring 

the spindle motor power and the cutting forces. During a classification stage, cutting 

experiments are carried out utilising various tools with known wear.  

Skilled human operators are shown to be better than model-based controllers in 

machining control, therefore fuzzy logic control,  is a practical alternative to model 

based control schemes. Reference [145] employed this fact and proposed a fuzzy-

logic control of cutting forces in CNC milling processes using motor currents as 

indirect force sensors.  

Reference [146] performed a comparison between experimental results and 

consistent fuzzy rule-based model for estimating the cutting forces. For experimental 

work, a dynamometer and strain gauge are used to measure static and dynamic 

cutting forces. Experimental results are compared with the predicted fuzzy model; 

the difference between experimental and predicted results is around 99.6% due to 

possibly the inaccurate editing for the role of the fuzzy logic. The developments are 
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continuous to achieve good results with this approach. Therefore, reference [147] 

conducted with the advance of a tool wear condition-monitoring technique based on 

a two stage fuzzy logic scheme. For this, signals acquired from various sensors are 

processed to make a decision about the status of the tool. In the first stage of the 

proposed scheme, statistical parameters derived from thrust force, machine sound 

and vibration signals are used as inputs to the fuzzy process. The fuzzy output values 

of this stage are then taken as the input parameters of the second stage. Finally, 

outputs of this stage are taken into a threshold function, the output of which is used 

to assess the condition of the tool. 

Fuzzy logic approaches are applied for the micromilling processes, as extreme 

forces and vibrations significantly affect the overall quality of the part. In order to 

improve the part quality and longevity of tools, so reference [148] examined the 

factors affecting tool wear using various sensors including accelerometers, force and 

acoustic emission sensors combined with an optical microscope to measure the real 

tool condition in micro-milling. The signals are fused through the neuro-fuzzy 

method to determine whether the tool is in good shape or is worn.  

Overall, the applicability of fuzzy logic analysis to monitor tool wear has yet to be 

established within an industrial context. Correspondingly, the application of the 

approach as a means of decision making within a tool breakage monitoring system 

also requires further investigation. 

5.6  Single and Sensor Fusion  

Generally, the use of a single sensor signal in the development of a tool condition 

monitoring system is still insufficient in recognising the complex and diverse nature 

of the cutting process. Such models are frequently less robust, less reliable and often 

not capable of whole tool condition monitoring due in part to the lack of  

information to make a reliable decision on tool condition monitoring from a one 

sensor alone [149]. However, the utilisation of multisensory systems for TCM is 

proposed to fuse the informational power of each unique sensor to provide 

complementary and redundant information about conditional changes in cutting 

tools, which is referred to as sensor fusion. In these multisensory systems, signal 

processing techniques extract sets of features that are sensitive to the tool condition 
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as explained by references [150,151]. Reference [152] also has interferanced with 

the concern of a single sensor and proposed many investigations to overcome the 

limitations of sensor methods, by using multisensory (sensor fusion) to create a 

stronger correlation between indirect signals and actual tool condition. These 

investigations show that multisensory systems could provide additional signals for 

better predictive findings. 

In the last decades, various pattern classification methods have been applied in the 

application of multisensory TCM to ensure high level of accuracy in prediction or 

classification results. Some research has emphasised pattern recognitions that can be 

an effective sensor fusion strategy in TCM. However, the level of complexity and 

robustness of the TCM model has been rarely part of the design objectives as 

presented by references [153].  

An important point of consideration is that under different cutting conditions, a time 

series of signal from a single sensor may not be able to provide sufficient 

information to create reliable decisions with high degree of certainty on the state of 

manufacturing processes. Consequently, reference [154] developed a multisensory 

system by combining the capability of AE methodology, and force and torque 

methodology for the monitoring of end milling operations. Multi-sensor systems 

remove the above drawback since loss of sensitivity in one sensor domain can be 

offset by information from other sensors within the system, thus allowing high 

decision making capability over a wide range of process conditions to be possible.  

Recently, the advances in process monitoring and signal processing have encouraged 

the effectiveness of sensor systems closer to industrial implementation. Particularly, 

a wide range of sensors that can recover information about the machining process 

such as tool condition and surface roughness has been implemented. Reference 

[155] supported this idea and reported that significant reduction in cutting errors can 

be achieved by the utilisation of sensor systems for the monitoring of machine  

manufacturing processes. As new effort to use a fusion sensors, reference [156] 

studied the application of the multisensory (i.e. force sensors and accelerometers)  

for monitoring the machined roughness at varying cutting parameters. Taken 

together, a Laser Doppler Vibrometry (LDV) is used to correlate signal values with 

surface roughness values. With these advances in process technology and 

monitoring, an intelligent tool condition monitoring (TCM) method using 
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multisensory systems has attracted closer attention from academic and industrial 

research because successful application  of TCM during machining can improve the 

probability of producing high quality parts and protects the manufacturing systems.  

  . 

5.7  Condition Monitoring System and Fixtures 

An analysis enables the deformation of the joint to be predicted together with 

distributions of stress and strain in the contact layer at joint interface. The influence 

of geometrical features, defined by the shape and the dimension of contact area 

(joint) on stress and strain levels is considered as a critical issue in the fixturing 

system. This is because the concentrations of stress and strain can be reduced 

leading to optimisation of the performance and reliability of the clamping process. 

The author [157] worked in the area of fixturing design (collet) and stated that 

initially the nature of contact between mating surfaces were identified to be full, 

partial and pointed contact as shown in Figure 5.4. The real target is to reach to the 

full contact case by increasing the applied load, but less maintaining a load than the 

yield stress for the work piece or tool to avoid the plastic deformation.   
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Figure 5.4: Types of contact between the collet and tool surfaces. 

 

When a workpiece is clamped in a fixture and the contact between the workpiece 

and the fixture elements changes, its frequency response will also change. Reference 

[158] investigates the signal variations between normal and abnormal clamping 

conditions of the fixture on the workpiece using an expanding sleeve between the 

machine tool spindle and the tool holder, the uniform contact or the triple-contact 

will be achieved. This added stability considerably increases cutter life, while 
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allowing cutting tools to operate effectively at much heavier feed rates. However, to 

realise this advantage, contact tooling must be used with fully automated machine 

and monitoring systems.                                   .                                                            

 Currently, continuous attempts are being made to develop the models and use the 

rubber (as elastic material or composite with ductile materials) that exhibit extensive 

non-linear deformation before failure [159]. In the industrial, some of the company 

[160] used this advantage of the rubber and used it as a collet to hold the cutting tool 

in the process. Conventional split-steel collets provide maximum gripping efficiency 

only at actual bored or nominal capacity. They lose parallelism when chucking bars 

due to the size over or under this capacity. This significantly reduces gripping 

strength and accuracy. Rubber collets are used in some machining operations (e.g. 

tapping) to avoid the problem of contact and the flexibility of rubber can provide the 

freedom of the steel slot to create full contact with shaft or tool as shown in      

Figure 5.5.                                                                                                                       
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Figure 5.5: The difference between rubber collet with other types in gripping parts.    
 

 

In applying the monitoring system to the machining process including fixturing 

system, reference [1] presented an experimental design and evaluation of a pin-type 

universal fixturing system. The fixturing system is designed for holding complex 

shaped aerospace components during machining processes. The experimental 

investigation is performed by comparing the pin-type clamping system with a 

dedicated clamping system during the machining of aluminium and steel parts. 

Force signals are monitored during machining. According to the evaluation of the 

force signals, the results prove that the pin-type clamping system can be recognised 
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for machining different complex shaped components with performance comparable 

with a dedicated clamping system. In order to obtain enough sensing data, special 

attention should be paid to the sensor allocation optimisation within the rigid 

fixturing system to ensure and improve diagnosis, lowering sensing cost and reduce 

down-time. Reference [161] investigates both theoretically and experimentally the 

effect of sensor allocation optimisation on the diagnosis ability of a multi-station 

manufacturing system. The effective diagnostic ability depends on three parameters, 

namely detection, location, and insulation. 

Various developments in production technology lead to increasing automation, 

flexibility and productivity. As a first component, generated a sensory fixture system 

has been developed, which includes different sensors and allows multi-sensors 

fusion. The integrated sensors can likewise be utilised for monitoring. Using these 

two components in one set-up, a milling machine provides sensory capability at both 

sides of the process. This translates to a first step towards sensory machine tools and 

comprehensive process control comparable with manual processing in which the 

tool and workpiece are hand guided. Reference [162] described the combined 

application of the sensory fixture and the spindle for process monitoring. Since three 

piezo-actuators have been arranged around a conventional spindle in a parallel 

kinematics configuration. This allows the movement of the spindle in three degrees 

of freedom in a range of ±100 μm. The structure permits only displacements in z-

direction and rotations about the x- and y-axis. Thus, the tool tip can be moved 

inside a prismatic space as shown in Figurer 5.6. However, the research of the 

fixturing controlling by condition monitoring system still needs for future 

development. 
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Figure 5.6: Adaptive spindle system (AdSpin) [162]. 
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5.8 Surface Roughness and TCM 

 
One of the most significant aspects of cutting processes is surface quality of the 

produced workpiece, since it mostly considered as a final stage in the production 

cycle for improving the surface finish and dimensional and geometrical properties of 

the workpiece. Therefore, to provide the desired surface quality, it is important to 

determine the influencing factors which include workpiece material and cutting tool, 

the cutting conditions and process phenomena [163, 164]. 

In end milling operations, theoretical surface roughness is generally dependent on 

cutting conditions, workpiece materials and cutting tools [165]. However, the 

following equation is used to calculate the theoretical roughness [166]:   
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                                                                    (5.1)    

Where Ra is the surface roughness (μm), 
zƒ  is feed per tooth (mm/tooth), z is 

number of teeth in the cutter, R-radius of the cutter, ± ve sign to up and down 

milling respectively. 

The actual surface roughness is usually larger than the theoretical surface roughness 

values obtained by these formulae, because, it does not take into account built up 

edge formation, deflection and vibration which are usually a function of cutting 

conditions like speed and axial depth of cut. This limitation refers to the real need to 

find an approach to measure the surface roughness. 

In the past, researchers have created many attempts to improve the conditions of 

milling and the surface roughness quality in CNC machines by mathematical 

studies. On the other hand, an estimation of the surface roughness has been proposed 

considering the significance of runout tool errors which are a result of imperfect 

fixturing systems [167]. These runout errors create a forced vibration detected by a 

dynamometer mounted over the support workpiece surface [168].    

The surface roughness of a workpiece is modelled and predicted by using computer 

vision methods. However, the difficulty occurs in obtaining the actual surface 

roughness from surface images [169]. To be able to predict the surface roughness of 

the machined part, it is necessary to develop a model that includes the influence of 

cutting conditions, tool errors and the properties of the workpiece material and 
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cutting tool. Reference [170] proposed useful models for determining surface 

roughness from process parameters such as feed, cutting speed and depth of cut, but 

neglected to include the effect of tool errors.  

References [171, 172] presented models that make it possible to predict surface 

roughness as a function of tool errors such as radial and axial runouts in milling 

operations with square insert cutting tools. However, these models did not carry out 

the statistical analysis of tool errors and therefore did not represent the sensitivity of 

surface roughness to variations in these errors.  

One of the main factors that affect the surface finish of the machined part in milling 

operations are such as reference [173] investigated the effect of  tool errors by 

studying the defects in the location of the cutting tool teeth. The study found that the 

main parameters to generate these defects are imprecision in the tolerances of the 

cutting tool inserts and seats, inaccuracy in the fixturing of the indexable inserts. 

Reference [174] presented the application of neural networks algorithm to perform 

the adaptive surface roughness control in end-milling operations. Moreover, 

reference [175] created a model dealing with the prediction of the machined  surface 

by assuming that  the milled surface has the same profile as the profile of the 

deflected cutting tool during the milling process. The efforts of roughness prediction 

are continuous, as reference [176] proposed a method to compare the usefulness of 

data from CNC machine tools and external sensor data for the indirect evaluation of 

surface roughness in vertical milling operations. Therefore, it can be observed that 

the research for surface roughness requires more development. 

5.9 Summary of Identification of Knowledge Gaps 

The fixturing system (tool holder) is influenced directly by the stability of the tool. 

Moreover, due to the complex structure of tool wear mechanism, unpredictable 

breakages may occur at any time which might also lead to catastrophic failure 

affecting other components in the system. A considerable amount of research has 

been carried out so far to develop reliable condition-monitoring techniques. These 

techniques can be categorised into two main groups: direct methods and indirect 

methods. One of the most effective indirect methods is design sensor fusion models 

for monitoring tool condition and selection of a suitable sensor to detect the changes 

in machining processes. However, the studies are still limited with regard to 
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investigation of the overall effect and monitoring of the fixturing system during the 

machining process. 

From the conducted survey of the literature for the related research in terms of the 

monitoring system, tool conditions, fixturing system  and  surface roughness, either 

in academic or in industrial fields, it can be observed a series of gaps within the 

knowledge which has been generated from the reviewed work. These can be 

summarised in the following list: 

1. There is limited research focusing on the problems generated by the incorrect 

use of the fixturing system. 

2. There have been many attempts to design a condition monitoring system to 

detect the tool condition in milling processes. However, there is limited  work 

on including the fixturing system in the element of the automated 

manufacturing system. 

3. The efforts of using a multisensors model require further developments to 

improve the technique of the sensory system and the feature extraction. The 

fusion model is rarely used for fixturing system. 

4. Most significant current research deal with a new approach by combining the 

indirect monitoring methods with those direct or real measurements of the 

cutting process variables. So far, however, there has been little discussion 

about applying this approach for fixturing system monitoring. 

5. Surface roughness as a reflection of the part quality needs to be predicated 

with a practical approach to avoid the manual measurement. 

These concerns need to be investigated within an effective sensor fusion to deal with 

the aforementioned issues which are taken into serious consideration for the whole 

trend of the thesis. 
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Chapter 6   Methodology 
 

6.1   Introduction 

This chapter outlines the research methodology. It summarises the drawbacks in 

research and industry in relation to the design of condition monitoring systems and its 

relationship to fixturing quality. The condition monitoring system has been used for 

detecting the milling process faults such as tool wear and tool fixturing. It also 

presents the research aim, objectives and the implemented condition monitoring 

methodology. The chapter explains the general stages of the proposed approach. In 

addition, it presents how the following chapters are structured to assess the planned 

methodology. 

6.2  Problem Definition 

From the previous literature review chapters, the knowledge gaps can be summarised 

as follows: 

1. There are many attempts to design a condition monitoring system to detect the 

tool condition monitoring in milling process. But there is a lack of understanding 

in the effect of the fixturing system on the condition monitoring systems. Also, 

there is limited research in studying the relationship between the online condition 

monitoring system and the fixturing quality (either fixturing type or fixturing 

material). 

2. The efforts of using a sensor fusion model would need further developments, 

particularly when addressing fixturing systems. 

3. Most significant current research deals with a new approach by combining the 

indirect monitoring methods with those direct or real measurements of the cutting 

process variables. So far, however, there has been little discussion about applying 

this approach for fixturing system monitoring. 

4. Surface roughness as reflection of the part quality needs to be predicated with 

practical approach to avoid manual measurement techniques. 
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Therefore, it can be concluded that a limited research has been done on the effect                                                                                                                        

of fixturing system on the design of condition monitoring system. Therefore, this 

thesis is targeted towards the investigation of the effect of fixturing system on the 

condition monitoring system and, if there is any effect, how then the designer can 

address such effect. 

The schematic of the investigated problem is illustrated in Figure 1.3. This research 

will investigate the difference in the system’s behaviour and the changes in the 

machining characteristics on the design of condition monitoring system.   

The key question is does the designer have the ability to adjust the monitoring system 

in normal case (domain A) and recalibrate it when the change of parameters becomes 

abnormal (domain B) if influenced by change in machine characteristics? 

 

6.3   Problem Domain and Objectives 

The aim of this research is to investigate the effect of fixturing system (collet) on the 

capability of condition monitoring system using sensor fusion model. Much research 

has been performed to develop reliable TCM. However, several factors have 

obstructed advances in the development of TCM including inappropriate choice of 

sensor signals and their utilisation [18]. The ASPS approach [19] has been presented 

to select the most sensitive sensors and signal processing techniques for monitoring 

the tool conditions in milling processes. Despite the ASPS approach can provide a 

solution for monitoring the fixturing system, there are some limitations in relation to 

the sensory sensitivity detection methods implemented. Therefore, the domain of this 

research is in developing and modifies the ASPS approach to address and solve the 

fixturing problems. The outcome is a novel approach, termed ASPSF (Automated 

Sensor and Signal Processing Selection for Fixturing) in selecting the sensors and 

signal processing techniques essential for monitoring the setup and conditions of 

fixturing system in milling processes to address fixturing quality. Through the ASPSF 

approach, a wide range of novel signal analysis and simplification techniques are 

used to confirm and assess the research methodology for selecting sensors and signal 

processing methods and to detect the relationship between the  changes of the process 

setup and the design of condition monitoring systems. 

The overall aim of this thesis is to construct a condition monitoring system for 

detecting fixturing quality, at reduced cost, using an effective sensor-fusion model 



Chapter 6  Methodology 

     84 

with reduced experimental work. This investigation will address the limitation of 

literature review for the fixturing system as an important part during the 

manufacturing process, also to monitor the fitness and the clamping rigidity to reduce 

the loose of the cutting tool. This investigation, as a result, will address the following 

issues:  

 Address the limitation of literature about the tool holder and then study the effect 

of the fixturing system (type or material) on the performance of monitoring 

system. 

 Detect any faults or abnormalities may occur during the machining operation using 

sensor fusion which is designed to monitor the health of the manufacturing process 

with regard to changing tool conditions.  

 Evaluate the stability of the fixturing system and the efficiency of the monitoring 

system regarding to the surface roughness of the work piece. 

 Since the manual measuring method for the surface roughness is time consuming 

and relatively expensive, part of the proposed monitoring system will employ to 

predict the roughness of the machined surface using the output of the force sensor. 

As milling is a complex process with regard to extracting the information from the 

used sensors, the ASPSF approach will be used to address the effect of milling 

machine setup on the design of the condition monitoring system. Fixturing type and 

material will be taken as a case study to explore the feasibility of the proposed model. 

6.4  How the Suggested ASPSF Approach is 

Conceived 
 

This research builds on the knowledge gaps in the industry and research to design the 

condition monitoring system. The knowledge gap highlights that there is no unique 

design of monitoring in relation to detect the faults of the fixturing quality.     .  

Furthermore, the main obstacles facing the designers of monitoring systems are 

selecting the required number of sensors and effective signal processing method. 

However, the reference [19] has presented the ASPS approach to select the sensors 

and signal processing techniques for monitoring the tool conditions in milling 

processes. Another reference [20] has employed this approach to develop an effective 

sensor fusion model to measure the sensitivity to tool wear for turning processes. The 

ASPS approach will be developed and improved to be used in this research as shown 
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in the Figure 6.1. This section will describe the general stages of the ASPS approach, 

and the limitations to be addressed in this thesis. 
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Figure 6.1: The ASPS approach has been modified to produce the ASPSF approach. 

6.4.1  General stages of ASPS Approach 

 

The ASPS approach can be implemented using the following stages: 

6.4.1.1  Simplification of Complex Signals for Extraction of Features 

 

The raw signals which are collected from complex processes (e.g. milling) need to be 

processed start by removing the signals from a complex shape into a group of 

simplified Sensory Characteristic Features (SCFs), see Figure 6.2. SCFs can be 

obtained from any signal processing technique or a combination of signal processing 

techniques as long as the output is, or can be presented as, a real number. Several 

numbers of SCFs can be calculated when taking samples of the complex signals at 

constant intervals and processes these signals using a broad variety of signal 

processing methods. During the processing time, these sensory signals can be 

simplified into a number of SCFs [20]. The SCFs could be a perfect means to explore 
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the essential information regarding the presented process conditions. Several 

processing methods can be achieved SCFs since the output is a real number or 

entered as a real number, see Figure 6.2. 
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Figure 6.2: Simplification of complex sensory signal into simple SCFs. 

 

6.4.1.2  Automated Sensitivity Detection 

 

A sensitive sensory characteristic feature (SCF) could, depending on its information 

content, include an important amount of information about the state of the process 

which could lead to superior recognition. It is expected to react to the change in 

process conditions by an important change in its value. The sensitivity of a SCF can 

be evaluated by several methods such as: 

1. The use of manual observation and visual inspection of the signals. 

2. The use of a classification system as they are automated processes with complete 

independence such as neural networks, etc. 

3. The use of statistical techniques to detect the change in the SCFs levels. 

The change in SCFs can be detected visually. Figure 6.2 shows a simplification of a 

complex sensory signal into simple sensory characteristic features (SCFs), SCF1 is 

increasing gradually between the two conditions of the process. In addition, SCF2 is 
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decreasing gradually between the conditions of the process when the process changes 

from one condition to the other. SCFN-1 and SCFN could be changing randomly 

between the process conditions with time. These sensory characteristics features 

(SCFN-1 and SCFN) are identified as insensitive SCFs while both SCF1 and SCF2 are 

identified as sensitive SCFs [177]. The detection of the sensitivity of the SCFs has to 

be automated in order to develop a rapid and structured methodology of selecting 

sensors and signal processing methods. Several methods can be utilised for sensitivity 

measurements. For example, Figure 6.3 shows an example of methods which can be 

used for sensitivity detection measurement, such as the slope of a linear regression 

and sudden change in value. 
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Figure 6.3: Example of two measuring sensitivity methods of the SCFs. 

 

6.4.1.3  Association Matrix (ASM) 

 

The following stage of ASPS is used the sensitivity values for every sensory signal 

and signal processing method to construct another matrix which is called the 

Association Matrix (ASM). The Association Matrix (ASM) is a matrix which 

associates the obtained sensitivity values (eg. in Figure 6.3) for the corresponding 

sensory features [20]. It gives a simple presentation of the sensitivity values 

associated with each feature (fij). The ASM for a fault y is defined as follows: 
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where 1≤ i ≤n and 1≤ j ≤ m 

The element fij is called the sensitivity coefficient of the machining feature obtained 

using the machining signal of the ith sensor and the jth signal processing method. 

The essential evaluation for the most appropriate sensor and signal processing method 

can be provided by using ASM since each column is associated with one signal 

processing method while each row is associated with one sensor. Basically, the 

sensory characteristic features with relatively high sensitivity coefficient are the most 

sensitive to fault detection and they are the most appropriate features to be used. 

Therefore, the related sensory signals and signal processing methods are the most 

appropriate ones and then selected as an initial monitoring system. 

6.4.1.4  Sensor Fusion and Cost Reduction 
 

A group of high-sensitivity SCFs should be used in combination to design a 

monitoring system with high sensitivity and consistency. When all SCFs extracted 

from the sensors are ranked according to their sensitivity values, the highest sensitive 

number of SCFs can be used together to construct the preliminary monitoring system. 

The number and type of sensors can be used easily to calculate the cost of the system. 

The value of the highest sensitive number of SCFs can be selected based on the cost 

of the system, the required quality of interpretation, the speed of signal processing 

and the implemented decision making method. The value chosen in this research is 10 

based on a previous implementation of the ASPS approach for turning processes and 

on using a decision-making method in the turning process [20]. The last value is also 

found satisfactory in providing sufficient monitoring capability with reasonable signal 

processing speed. 

Consider Figure 6.4 where m sensors are processed by n signal processing methods to 

create (m × n) sensory characteristic features. These features need to be calculated 

during the process in order to classify the sensitivity of the SCFs to the process states. 

The SCFs are arranged in order of sensitivity and the most sensitive number of SCFs 

is selected to produce the initial condition monitoring system, the cost of the system 

can be calculated based on the sensors of the selected SCFs. 
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     Figure 6.4: The rank and the selection of SCFs, information obtained from [19]. 

 

Efficient design of condition monitoring systems is thus accomplished within shorter 

development time, and more economically by minimising the number of sensors 

used. Therefore a cost reduction stage has been implemented in order to minimise the 

cost of the system. The cost reduction of the system is performed by eliminating 

sensors which do not significantly contribute to the selected number of SCFs by 

removing their SCFs from the system and replacing them from SCFs which come 

next on the rank, see Figure 6.4, from sensors already in the system without having to 

significantly reduce the overall sensitivity of the system (i.e. the new SCFs should 

still have relatively high sensitivity). The contribution of a sensor in a system is 

defined as the utilisation of a sensor. It is defined as the number of SCFs used in a 

system from that sensor relative to the total number of SCFs used in the overall 

system. More details are presented in the following chapters. Assume, for the process 

shown in Figure 6.4, that the first sensitive number SCFs are found from sensors (S1, 

S3, S5,Si, Sn-1, Sn). Therefore, the cost of the sensors in addition to their signal 

conditioning devices will be considered as the cost of the hardware. Assume CSj is 

the cost of the jth sensor and its signal conditioning devices and all the associated 

hardware [20].  

Therefore, the cost of the system will equal to: 

nn-i CS 1CS CS 5CS 3CS  1CS Cost   

Assume that the sensor Sn-1 contributes in only h SCFs where h is much less than the 

contribution of the other sensors. Then that SCF from the Sn-1 can be removed from 
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the system and replaced by another h SCF from the other sensors (S1, S3, S5, Si, Sn) 

as long as these new SCFs have relatively high sensitivity on the rank. Consequently, 

the cost of the new system will be: 

ni CS CS 5CS 3CS  1CS Cost   

Where the new system is reduced by CSn-1. 

The number of sensors is reduced, even if the number of SCFs in the system is still 

not changed, and therefore the cost of the system is also reduced. This removal 

process can be very efficient as long as: 

 The new SCFs have high sensitivity so that the overall system performance does not 

decline. 

 The eliminated sensor is relatively expensive. 

In the subsequent chapters, much more details will be explained the previous 

discussion. 

6.4.1.5   Data Analysis and Pattern Recognition 

A machine condition monitoring problem will be finally transformed into a pattern 

recognition problem to identify, from the sensory signals, the machine or process 

conditions.  Five types of pattern recognition systems have been used to demonstrate 

the application of the ASPS approach by previous researchers [19, 20]. Novelty 

detection and Learning vector quantisation neural networks (LVQ) are implemented 

in order to compare their result directly. The application of two systems is used to 

compare their result in order to evaluate the ASPS approach independently from 

specific pattern recognition. 

6.4.2   Limitations of the ASPS Approach 

 

The researcher [19] has extracted the sensitivity for each sensory signal based on the 

absolute slopee of the Linear Regression (LR) method. The aim is to reduce the 

number of sensors needed in the overall system and reduce the cost. As shown in 

Figure 6.5, both signals (SCF1 and SCF2) have different levels of the sensitivity 

utilising the linear regression method. 
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Figure 6.5: Examples of SCFs using linear regression method. 

 

So far, this method has been applied to obtain the slope of the SCF pattern to measure 

the sensitivity. However, as can be seen from Figure 6.6, sometimes sensitive features 

are considered to have low sensitivity. 

Another reference [20] has employed this approach to develop an effective sensor 

fusion model for turning processes based on the Sudden Change In Value (SCIV). 

The SCIV method used to measure the sensitivity of the sensory characteristic 

feature. This value is obtained from the absolute difference of 5% of the mean of   the 

first points and 0.95% of the mean of last points. Figure 6.6 shows examples of the 

sensory characteristic feature (SCF). One major issue in this method is concerned 

with the lack of investigating the changes of the features for the points between the 

first and last group of points, see Figure 6.6 for example.   
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Figure 6.6: Examples of SCFs using Sudden Change In Value (SCIV). 

 

The sensitivity measuring methods which are used by the previous researchers are not 

always suitable to address the relation between the fixturing system and the design of 

the monitoring system.  

6.4.3  The Suggested ASPSF Approach  

Therefore, ASPSF approach is used to address the current drawback in the ASPS 

approach and extend its application for the relationship between fixturing quality and 

the design of the condition monitoring system. 

In the implemented machining process, different types of the fixturing systems will 

be used to hold the cutting tool. The signals of the sensory automatically transferred 

to the PC for processing. Therefore, the ASPSF objective is to extract sensory 

characteristic features (SCFs) obtained from the sensory signals using different signal 

processing methods and to find out the sensitivity of such features on the machine 

which has gone abnormal. If a specific feature from a specific sensor shows high 

sensitivity to the fault this simply means this SCF is useful in detecting or evaluating 

the fault of the fixturing system or address the tool condition. Therefore, ASPSF will 

provide the condition monitoring designer by the quality information to calibrate the 

characteristics of machining parameters. Consequently, the designer has the ability to 

adjust the monitoring system in normal case and recalibrate it when the change of 

parameters becomes abnormal.  
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This approach is considered the author’s main contribution which is established to 

combine previous points with the idea of developing a generic structured sensor-

fusion model using the following three techniques: 

1. Evaluating the new ASPSF approach (Automated Sensor and Signal Processing 

Selection for Fixturing). 

2. The automated simplification of complex signals into simple sensory characteristic 

features (SCFs).                      

3. Automated detection techniques of sensitive SCFs and hence the associated sensors 

and signal processing methods. 

The details of the main techniques developed will be described in the following 

sections with more technical description and examples in the subsequent chapters. 

 

6.5   The Concept of ASPSF Approach 

The main idea of the implemented approach is described in this section. Specifically, 

further detailed procedures for the implemented approach will be described in section 

6.6 of the current chapter and with more detail and experimental examples in the 

subsequent chapters of this thesis. The aim of the implemented approach is to design 

a condition monitoring system for fixturing using an automated simple procedure to 

detect the sensory characteristic features which are most sensitive to the process states 

or faults and show less sensitivity to other process operating variables and 

parameters. The ASPSF approach is based on the ASPS approach and on conducting 

studies to prove that there is a dependency between a measured sensory value (SCF) 

and the monitored state or physical phenomenon [178]. The cost of the system should 

also be considered; the expensive sensor should be eliminated from the system when 

a low-cost sensor can be used to do the same task instead of an expensive sensor. 

Figure 6.7 shows the basic principle of an ASPSF approach. It analytically relates the 

sensory signal and the signal processing methods used to the state or the physical 

phenomenon which needs to be detected or evaluated. 
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Figure 6.7: The essential structure of the ASPSF approach. 

 

Similar to the original ASPS approach, the ASPSF approach starts by defining the 

operation to be monitored and its states (e.g. normal or abnormal condition). Then, 

several sensors are installed for process monitoring in order to produce sensory 

signals that contain information about the process. The following stage of the 

proposed approach is for extracting sensory characteristic features (SCFs) obtained 

from the sensory signals using a wide range of signal processing methods and then 

discovering the sensitivity of such features on the investigated process state. If a 

specific feature from a specific sensor shows high sensitivity to the fault, this means 

this sensory characteristic feature is useful in detecting or evaluating that fault. A 

particular number of sensitive sensors and signal processing methods are then 

selected as an initial monitoring system. Cost reduction can then be performed based 

on the number of SCFs extracted from the selected sensors. Consequently, and to 

reduce the cost, the sensor might be eliminated from the monitoring system if 

extracted numbers of SCFs from a sensor are insignificant. More details about the 

main concept of the ASPSF approach are explained in the next sections of this 

Chapter. 

As shown in Figure 6.8, the ASPSF implements new techniques as described in the 

next sections. 
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Figure 6.8: Schematic diagram of the proposed ASPSF approach and methodology. 

 

6.6   Techniques Developed within the Suggested 

ASPSF Approach 

This thesis utilises different sensors such as force, accelerometer, acoustic emission, 

power, eddy current, strain and sound sensor. It also utilises several signal processing 

methods such as maximum, minimum, standard deviation, range, average, power, 

skewness, kurtosis, Fast Fourier Transform (FFT) and wavelet.  

6.6.1  Automated Sensitivity Detection 
 

Several measuring sensitivity methods have been developed in this thesis and 

implemented to measure the sensitivity of the sensory features. These methods are 

Principal Component Analysis (PCA), Range value (RV), Correlation Coefficients 
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(CCX3 and CCX20) and Fuzzy logic. All these methods are considered as statistical 

methods modified to be used in detecting the sensitivity of the SCF. Linear regression 

method and Sudden Change In Value method will also be used and evaluated 

throughout this thesis. LVQ neural network will be used to measure the capability of 

each method and defines the most accurate method. A brief definition for each 

method is provided in the following sections.  

6.6.2   Principal component Analysis (PCA)       

 

Principal Component Analysis (PCA) [179] is a linear transformation method used to 

identify dimensions of maximum variation within a data set. The data is transformed 

into a space spanned by a set of orthogonal vectors called Principal Components 

(PCs), which are aligned along the axes of maximum variation. The first PC is the 

dimension with maximum variation with each further PC corresponding to less 

variation than the previous [180]. 

Diagrammatically, the concept of the PCA can be shown as in Figure 6.9. The 

uncorrelated property of the components is highlighted by the fact they are 

perpendicular, i.e. at right angles to each other, which mean the indices are measuring 

different dimensions in the data.  
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Figure 6.9: Diagram of the Principal Component Analysis (PCA). 

 

Simply, the steps of implementing the PCA start by subtracting the mean of the data 

from the original dataset and then finding the covariance matrix of the dataset. The 

following step is calculating the eigenvalue which equals to the distance between the 

zero mean and each variable of the row data. The biggest value is indicated the more 

effect on the data. Therefore, it is useful to select which sensor has more performance 

during the machining. Each eigenvalue of the used sensor is combined to create the 

http://heapol.oxfordjournals.org/content/21/6/459.full#F1
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Principal Component Feature (PCF). All the PCFs are arranged to form the 

Eigenvalue Sensory Matrix (EVSM) which will be fully described in Chapter 8, 

Section 8.3.2. Further information about the PCA in general can be found in reference 

[181]. 

The advantages of the PCA are summarised as follows: 

1- It is a way for identifying patterns in data, and expressing the data in such a way as 

to highlight their similarities and differences. Since patterns in data can be hard to 

find in data of high dimension, where the luxury of graphical representation is not 

available, PCA is a powerful tool for analysing data. 

2- The other main advantage of PCA is that once you have found these patterns in the 

data, and you compress the data, i.e. by reducing the number of dimensions, without 

much loss of information. 

6.6.3   Range Value (RV)  

 

The Range Value (RV) method used to measure the absolute difference between the 

last point and fist point of the feature as illustrated in Figure 6.10. This is to explain 

the range of the change of the signal pattern. 
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Figure 6.10: Example of SCFs using Range Value (RV) method. 

6.6.4   Correlation Coefficients for X
n
 Curves 

Based on Taylor’s equation [69], tool wear can be expressed as: 

y= X
n
                                                                                           (6.1) 

For  n = 3  and n = 20, see wear curves in Figure  6.11.,  
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In this thesis, the correlation between SCFs and Taylor’s equation is investigated. 

 y= X
3
   is named CCX3,  

and  y= X
20

   is named CCX20. 

In this case, high correlation will mean high sensitivity to the process states or faults. 
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Figure 6.11: The polynomial equation of the expected tool wear pattern. 

 

6.6.5   Fuzzy Logic (FL) 

As described in the aforementioned sections, that there are different methods to 

measure the sensitivity of the features. In this thesis, a fuzzy logic [182, 183] has 

been used to characterise the sensitivity of the features when all the sensitivity 

measuring methods are combined together. This will be implemented by a 

membership function (0---1) which associates with each element of universe and 

represents the grade of membership specify for the condition each case [184]. As 

illustrated in Figure 6.12, the features obtained from each method have been interred 

in the fuzzy logic rules, these rules to evaluate each type of the method and then the 

results of the rules are combined to determine the most sensitive features.  
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Figure 6.12: Steps of the fuzzy logic approach. 
 

6.6.6   Learning Vector Quantisation (LVQ) 

Learning Vector Quantisation is implemented in this research work. LVQ which 

implements a competitive neural network. LVQ neural network will be trained and 

tested with various experimental cases to evaluate the effect of different factors on the 

identification performance. Learning vector quantization is a nearest-neighbour 

pattern classifier based on competitive learning [185]. A LVQ network will be used 

in this research to evaluate all the measuring sensitivity methods and define the most 

accurate method among them. 

6.6.7   Taylor’s Equation Induced Pattern (TIP)   
 

Taylor’s equation will also be used for another novel application, which is to 

determine the capability of the group of SCFs to detect tool wear. This technique will 

be termed as Taylor’s Equation Induced Pattern (TIP) to represent the pattern of the 

signal and to detect the moment of changing the tool conditions. This technique is 

also evaluated by using a supervised neural network, as Back Propagation Neural 

Network (BPNN).  Consequently, the application of this system is used to compare 

the TIP results in order to evaluate the ASPSF approach independently from specific 

pattern recognition.  

6.6.8   Surface Roughness (Ra) 

Research over several decades in industry has reported that surface roughness is a 

reliable indicator to measure the quality of the machined surface. Therefore, the 

current research will concentrate on the investigation of using this indicator as a 

reflector to the sensitivity of the sensory system. In other words, the author will seek 
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how the change of the surface finish will affect the sensitivity of the monitoring 

system.  More details are described in Chapters 8, 9 and 10. 

6.7 The Application of the ASPSF Approach in This 

Thesis 

The approach has been tested on three stages: 

STAGE 1: (Chapter 8) Initial implementation of the ASPSF 

approach  
 

A self-learning methodology can be considered this part of thesis for the 

classification of the system normal and abnormal states and the selection of the most 

sensitive sensors and signal processing methods for detecting machining faults in 

milling. The ASPSF approach is performed by mounting multi-sensors (force, 

vibration, acoustic emission, sound and strain) on the machine tool. Two types of the 

fixturing are used as perfect and imperfect clamping. The Experimental evaluation 

will be described in Chapter 8. Furthermore, a novel approach will be presented to 

predict the surface roughness.  

STAGE 2: (Chapter 9) Initial implementation of the ASPSF 

approach using pattern recognition systems  

A new group of multi-sensory signals (eddy current, accelerometers, power) has been 

installed on the machine tool to perform the ASPSF approach for milling operations 

using different fixturing systems. Surface roughness tester used to measure real 

roughness of the workpiece. The ASPSF approach is performed for evaluating the 

surface roughness of machined parts. This part of thesis also investigates the 

correlation coefficient between the SCF and the surface roughness for rapid design of 

monitoring system using four types of fixturing system. The experimental evaluation 

will be described in Chapter 9. 

STAGE 3: (Chapter 10) The evaluation of ASPSF using broken teeth 

of tool  

In this part, the new methodology has been implemented to apply the ASPSF 

approach using the tools with different number of broken teeth, and different fixturing 

systems. The correlation between SCFs and surface roughness of the machined parts 



Chapter 6  Methodology 

     101 

has been investigated. Neural networks are used for evaluating the methodology. The 

experimental evaluation will be described in Chapter 10. 

6.8  Structure of Subsequent Chapters 

The subsequent chapters of this thesis are organised to investigate the applicability of 

the ASPSF approach for designing condition monitoring systems for detecting the 

machine/fixture abnormalities in milling processes and to explain, in detail, the main 

steps for the approach. The following chapters are outlined in order to provide a 

logical basis for testing the assumptions and describing the outcomes. A simplified 

flow diagram of the basic structure of the subsequent chapters as illustrated in Figure 

6.13.  
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Figure 6.13: Diagram of the structure of the subsequent chapters. 

 

Chapter 7 describes the general experimental set-up which has been performed to 

prove the capability of the ASPSF approach for fixturing processes. It describes the 

machine tools used, the faults investigated and the data acquisition software.  
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This chapter also describes the components of the implemented monitoring system. 

It presents the tools used in designing the monitoring system including sensors, signal 

processing and simplification methods, and classification techniques including neural 

networks and Taylor’s Equation Induced Pattern (TIP).  

The chapter outlines the tools which have been used to prove the applicability of the 

methodology for fixturing systems and milling processes. 

Chapter 8 explains how the ASPSF approach can be used to design a monitoring 

system for a fixturing process with eight sensory signals such as force, strain, acoustic 

emission, accelerometer and sound. The main aim of the chapter is to describe the 

details of the ASPSF approach in a practical way aided by real experimental tests. 

The chapter presents a monitoring design for monitoring fixturing and gradual tool 

wear in milling processes. Furthermore, a novel approach will be presented to predict 

the surface roughness. Generally, the chapter introduces the following points: 

1. The common problem of selecting the most appropriate sensors and signal 

processing method for designing a condition monitoring system in milling. 

2. The basic main steps of the ASPSF approach for eight sensory signals. It describes 

how the SCFs are created and how they can be arranged in order to calculate their 

sensitivity for fixturing rigidity and gradual tool wear detection. 

3. The capability of linear regression analysis to detect the sensitivity of SCFs. The 

response of the SCFs is visually investigated and compared to the Principal 

Component Analysis (PCA). 

4. The method of choosing the most sensitive SCFs and PCFs to form the required 

condition monitoring system. 

Chapter 9 presents further applications of the suggested ASPSF approach described 

in Chapter 9. The chapter presents more experimental work to prove the capability of 

the ASPSF approach in designing a condition monitoring system by selecting the 

most sensitive sensors and signal processing methods with reduced cost and less 

experimental work. All these concepts are compared with the PCA method. The aim 

of this chapter is to confirm the theory and the technique established in Chapter 9 

using pattern recognition methods. 

Chapter 10 presents the tool with broken teeth and the correlation between SCFs 

and surface roughness of the machined parts of the ASPSF approach. Neural 

networks are used for evaluating the methodology. It builds on the results found using 
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pattern recognition systems and dependency. The chapter addresses the following key 

issues: 

1. Select the most accurate sensitivity method using fuzzy logic and then evaluate all 

these methods using LVQ neural network. Taylor’s Equation Induced Pattern (TIP) 

and Back Propagation (BP) neural network are used to prove the results. 

2. Address the composite relation between the tool conditions, fixturing system and 

efficiency of the condition monitoring system.  

3. Address the relation between the surface roughness and sensitivity of monitoring 

system. 

Chapter 11 reviews the implementation of the suggested methodology. It also 

considers whether the results in previous chapters prove that ASPSF is a re-usable 

designed methodology for selecting sensors and signal processing methods with 

reduced cost and experimental work for fixturing and tool wear, tool breakage in the 

milling process. It clarifies how novel approach has been created and tested. It also 

presents the contribution of the researcher, estimates unresolved problems and 

recognises limitations on the methods. Experiments and outcome are clearly detailed 

and future work is suggested to assistance following researchers. 

6.9 Summary 

The implemented methodology of this research work has been summarised and 

investigated in this chapter. The aim is to develop an organised structured 

methodology for the design and implementation of the ASPSF approach of condition 

monitoring systems for machining operations with experimental conformation for 

investigation the effect of tool condition and fixturing on milling processes using 

monitoring system. The problems of condition monitoring design have been 

described and compared with the current practice in the field. This has covered the 

way the ASPSF approach is concerned and its new features and techniques. The 

general steps of the ASPSF approach have been described. The purpose of the 

following chapters has described in light of the suggested methodology. 
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Chapter 7   Experimental Set-up 

 

7.1 Introduction 

The elements and stages of the implemented condition monitoring system in this 

research are covered in this Chapter. This Chapter provides further details regarding 

the machine tool, workpiece and cutting tool. It also presents the surface roughness 

measuring device and the condition monitoring system set-up including the 

placement of sensors, the data acquisition system and programmed software. A brief 

description of sensors, signal processing methods and pattern recognition systems 

utilised for developing the proposed model (as defined in chapter 6, section 6.4) is 

presented. A force dynamometer, accelerometers, eddy current, sound, strain, 

acoustic emission and power sensors are used for monitoring the machining process. 

Different types of signal processing methods are used to process the raw signals in 

the time and frequency domains to extract the Sensory Characteristic Features 

(SCFs). The sensitivity of the sensory characteristic features is calculated using 

automated sensitivity methods to evaluate physical phenomena. All pattern 

recognition techniques used in developing the model including neural networks and 

the Taylor’s Equation Induced Pattern (TIP) classification method are addressed in 

the last part of this chapter.  

7.2  Stages of the implemented condition monitoring 

system 

 
As described in Figure 7.1, the procedures of research work have been implemented 

on four stages as follows:                                           :                                                 

1. Machining Process: this stage provides information about the machine tool, 

workpiece and cutting tool, roughness measuring device, and  sensors installation. 

The implemented sensors and signals processing equipment will be also presented. It 

is also described data acquisition card and Software.                                             .      

2. Signal Processing: the sensory signal will simplify using statistical methods in 

time domain, and FFT and wavelet in frequency domain.                        .                  
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3. Automated Sensitivity Detection: All the automated measuring sensitivity 

methods and LVQ neural network to evaluate these methods will be described.        

4. Making Decision and Classification: Taylor’s Equation Induced Pattern (TIP) 

and BP neural networks classification methods are presented.                   .                 

The complete experimental setup is illustrated  in Figure 7.1, and will be described 

in the next sections.                                                                                                   .     
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Figure 7.1: The complete experimental  setup. 
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 7.2.1  Workpiece and Cutting Tool  

The experimental work is performed on a CNC milling machine type DENFORD. 

To present and simulate a real environment, the experimental work is designed by 

using the milling process of aluminium workpiece with a gradual tool wear test. The 

use of workpiece materials with low specific weight is an effective way of reducing 

the weight of structures. Aluminium alloys (aluminium AA6262) are among the 

most commonly used lightweight metallic materials as they provide a number of 

different interesting mechanical and thermal properties. Furthermore, they are 

relatively easy to shape metals, especially in material removal processes, such as 

machining [186]. The dimensions of the aluminium workpiece are (150 x 100 x 40 

mm).  

For the cutting tools, two material types have been used, namely, Carbide and High 

Speed Steel (HSS) tools. Carbide tool (or tungsten carbide) is made from a 

composite material containing equal quantities of tungsten and carbon powder, but it 

can be pressed and formed into shapes for use in industrial machinery. Carbide tool 

maintain a sharp cutting edge better than other tools, and they are very abrasion 

resistant and can also withstand higher temperatures than high speed steel tools. 

High speed steel tool consisted of 2% carbon (C), 2.5% manganese (Mn), and 7% 

tungsten (W). It can withstand higher temperatures without losing its hardness; 

therefore this property allows HSS to cut faster than high carbon steel, hence the 

name high speed steel. Carbide and HSS tools are the common cutters used 

generally in milling operation; therefore they will be used in this research.  

For the selected tools, the recommended machining values are as follows: feed-rates, 

215–260 mm/min while Depth Of Cut (DOC) varied from 0.2 to 0.4mm [187]. 

Cutting speed is selected based on the toughness of the workpiece to be machined. 

Based on the tool’s manufacture instructions, the recommended cutting conditions 

for the carbide tools and HSS tools are described in Table 7.1. 

 

Table 7.1: The recommended cutting conditions for the Carbide and HSS tools. 

 

Type of  Tool  
 

Spindle Speed Feed Rate 

 
Depth of  Cut 

  (DOC) 

 Carbide tools  2490 RPM  250  mm/min 0.22-0.36 mm 

 HSS tools 2860 RPM 215  mm/min 0.36 mm 

 

http://en.wikipedia.org/wiki/Tungsten
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Industrial_machinery
http://en.wikipedia.org/wiki/High_speed_steel
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Manganese
http://en.wikipedia.org/wiki/Tungsten
http://en.wikipedia.org/wiki/Speeds_and_feeds
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7.2.2  Surface Roughness Measuring Device 

 
Surface roughness is considered as the character of the machining quality, therefore 

roughness test used to investigate the change in the roughness of the machined 

surface [188]. Surface roughness measuring device will be performed in the current 

experimental work as shown in Figure 7.2. Therefore, a Mitutoya (SJ-210) apparatus 

is used for the surface roughness measurements [189]. The measuring process by the 

roughness tester is tracking the machining process where the workpiece surface 

width (100 mm) divided to 5 divisions (20 mm per division) of machining and those  

will be measured later  using the tester as the stylus movement length is 17.5mm. 

The measurements of surface roughness will be compared later with the progress of 

tool wear. Figure 7.2 illustrated the machining and roughness measurements. 
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Figure 7.2: Schematic diagram of surface measurement setup. 

 

 

7.2.3  Sensors Installation 

To hold the sensor on the milling operation to detect the changes of tool condition, it 

is very important to make the required holder to fix the sensor in a suitable position. 

The main point of the difficulties in monitoring the rotating system is the limitation 

on fixing the sensor on the moveable and rotating spindle. Therefore, specific fixture 

has been designed and made in the workshop at the Nottingham Trent University. It 
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is attached precisely to the spindle case using a strong bond (Epoxy), and then the 

eddy current sensors have been inserted as shown in Figure 7.3. 

Figure 7.4 shows the fixture to hold the accelerometers in three axes (x, y, and z). 

This fixture has been attached mechanically to the spindle case, and is used to hold 

the sensors to detect the vibration of the spindle. The other fixture has been attached 

to the workpiece, with same design and function. The robust attach will increase the 

reliability of the collected signals. 

Eddy current sensor

 

Figure 7.3: Fixture to insert the eddy current sensors. 
 

Accelerometer sensor

 

Figure 7.4: Fixture to hold the accelerometers. 

 

7.2.4  Sensors and Signals Processing Equipment 

 
A wide range of sensors are installed on the machine tool to develop a unique 

combination of sensory systems to detect the faulty and abnormal conditions of the 

machining process. These sensors are connected on the holder of workpiece, 
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machine spindle case and cutting tool. Therefore, they will be detecting faults in the 

workpiece and cutting tool.                                                                      .                   

The force signals are monitored using 3-component Dynamometer (Kistler 9257A) 

and the cutting tool is fixed on the dynamometer bolted rigidly on the machine 

movable table so that the workpiece speed and the feed components of the cutting 

forces can be measured. The vibration signals are monitored using an accelerometer 

(B&K4366) which is mounted close to the workpiece and tool in order to measure 

the radial acceleration due to the workpiece-cutting tool system vibration. Both the 

force dynamometer and the vibration accelerometer are connected to a 4-channel 

charge amplifier (Kistler 5070A).                                                                                   

 The acoustic emission signals are monitored using an AE-Piezotron Sensor (Kistler 

8152B) which is mounted close to the workpiece and is connected to AE piezotron 

coupler (Kistler 5125B) which gives the AE signals and the RMS of the AE signals. 

The four vibration accelerometers (Kistler 8704B) which three of them are attached 

to the machine spindle case, and the fourth one is attached perpendicularly to the 

movable workpiece table, together are connected to a coupler (Kistler 5134B).           

 The dynamic and quasistatic force signals are monitored using a strain sensor 

(Kistler 9232A) which is mounted at the side of the workpiece and it is connected to 

a charge amplifier (Kistler 5001). The sound signals are monitored using a Back 

Electret Condenser Microphone (Yago EM-400) which is mounted in a post on the 

machine moveable table and is connected directly to the DAQ card. Eddy current 

sensors (IC12-02) are connected to power supply (PDA 3502 A) with 12 volts. 

Power sensor (IP-151) is connected directly to the connect ion box, then to the data 

acquisition card. The signals are monitored using data acquisition card NI PCI-

6071E from National Instruments using special data acquisition software written 

using the National Instrument CVI programming package and a computer. Matlab 

software is used for the complete analysis of this research. Figure 7.5 shows a photo 

of the equipment used in the experimental work.                                           .              
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Figure 7.5: The equipment of the experimental work. 

 

7.2.5  Data Acquisition Card and Software 

The data acquisition card used is the NI-6071E from National Instruments, a 

multifunction analogue, digital, and timing I/O boards for PC AT. The card has 12 

bits ADCs with 64  analogue input single ended or 32 differential with a guaranteed 

sampling rate up to 50k sample. The analogue input used configured as differential 

inputs because of the low voltages level involved, noisy environment, and long 

wires used in connecting the signals to the data acquisition card. The analogue 

channel is used to acquire the machining data using a sampling rate of 15000 or 

16000 samples per channel. The card is used in a bipolar mode of ±10 V with a 

board gain of 0.5. Hence, for 12 bit data samples the resolution is up to 9.76 mV. 

The data acquisition card is programmed using Labview/ CVI from National 

Instrument, a developed software  package for data acquisition and monitoring. 

LabWindows/CVI is a enhanced ANSI standard C programming language.               

The data acquisition software enabled the capture of the required signals to the PC 

hard disk for off-line analysis using Matlab. The software saves the data in text 

format for simple use by Matlab for analysis.                                                               

7.3  The Implemented Sensors 

The sensors used in this research are force dynamometer, strain sensor, 

accelerometer sensor, eddy current sensor, power sensor, acoustic emission sensor 

and microphone for measuring sound. 



Chapter 7  Experimental Set-up 

     111 

7.3.1 Force Dynamometers 

 

Piezoelectric force sensors are mostly used for dynamic-force measurements such as 

oscillation, impact, or high-speed compression or tension. Any force applied to the 

piezoelectric sensing element produces a separation of charges within the atomic 

structure of the material, generating an electrostatic output voltage.  These sensors 

are widely used in the practical investigation due to being less dependent on the 

structure of the cutting machine and that the cutting forces can be easily simulated. 

Dynamometer mainly consists of three-component force sensors fitted under high 

preload between a base plate and a top plate. Each sensor contains three pairs of 

quartz plates, one sensitive to pressure in the z-direction and the other two 

responding to shear in the x and y-directions, respectively [190].   

 

Figure 7.6: Dynamometer 9257A in milling operation [190]. 

 

Kistler dynamometer 9257A that measures the horizontal and vertical components 

of the cutting force will be used in the proposed research as in Figure 7.6.  A base 

plate of dynamometer (Kistler type 9257A) is attached to the movable table of the 

milling machine. The workpiece is mounted on the top plate of the dynamometer to 

allow indirect measurement of the milling forces to which it is subjected.  

7.3.2  Accelerometers 
 

Accelerometers or vibration sensors are used for measuring acceleration. The main 

reason for using the vibration for monitoring machine tools and processes is that 

they are simple, precise and affordable. In addition, they are easy to use and no 
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significant modification to the machine is generally required. Meanwhile, the 

limitations of the vibration methods are dependency of the vibration signals on 

cutting conditions, workpiece materials and machine structure. 

The accelerometer mounting position in milling operations has been proposed in a 

number of studies. In this study, the sensors are mounted on the base of the 

workpiece in x, y axis, also three sensors on the case of rotating machine spindle in 

three axes (x, y, and z). These positions are determined to be suitable locations to 

detect the vibration from the cutting tool. After the mounting positions are decided, 

special fixtures have been made with thread hole to hold the sensors on the fixtures. 

Vibration monitoring has been found useful in machine tools as well as continuous 

process industries [191].  

Figure 7.7 shows a photo of the one of Kistler accelerometers (8704B) used in this 

research. 

 

Figure 7.7: Photo of the Kistler accelerometer [191]. 
 

 

7.3.3  Acoustic  Emission 

Acoustic Emission (AE) has been used for materials research in monitoring stresses 

from AE events emitted from crack initiation, structural defects, measurements, and 

other material anomalies [192]. From this work it was found that most materials 

emit sounds or stress waves as they are deformed, these sounds provide the very 

nature of plastic deformation under different intensities which inherently give 

warning signals for impending failure of a specific material. Recently, acoustic 

emission based monitoring systems are finding increased applications in condition 

monitoring. Acoustic emission and audible sound waves which are created during 
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machining have been found useful in several researches for the classification of 

process condition, especially with following specification [192]: 

• High sensitivity and wide frequency range.                   

• Inherent high pass-characteristic. 

• Insensitive to electric and magnetic noise fields. 

• Robust, suitable for industrial use. 

• Ground isolated: prevents group loops. 

Figure 7.8 shows a photo of the Kistler AE sensor (8152B) used in this research 

which is attached to the workpiece. 

 
 

Figure 7.8: AE sensor (Kistler 8152b111) [192]. 

 

7.3.4   Strain  
 

The dynamic and quasistatic forces on fixed or moving machine parts are measured 

by using strain sensor. The sensor has ability to measure the force-proportional 

strain at machine tool or structural surfaces (indirect force measurement). The high 

sensitivity and acceleration-compensated design of the sensor allows process 

monitoring on fast running process machinery (e.g. presses, automatic assembly 

machines). The strain of the basic material acts using the two contact surfaces on the 

sensor as a change in distance. The sensor enclosure serves as an elastic 

transmission element and converts the change in distance into a force. This sensor 

has many advantages compared with the common wire strain gauge technology state 

in the high sensitivity, significant overload resistance and practically unlimited life 
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even under fluctuating loads [193]. Figure 7.9 shows a photo of the Kistler strain 

sensor (9232A) used in this research. 

 

Figure 7.9: Strain sensor (Kistler 9232A). 

 7.3.5   Eddy Current  
 

These sensors operate with magnetic fields. The driver creates an alternating current 

in the sensing coil in the end of the probe. This creates an alternating magnetic field 

with induces small currents in the target material; these currents are called eddy 

currents. The eddy currents create an opposing magnetic field which resists the field 

being generated by the probe coil [194]. The interaction of the magnetic fields is 

dependent on the distance between the probe and the target. As the distance changes, 

the electronics sense the change in the field interaction and produce a voltage output 

which is proportional to the change in distance between the probe and target. The 

target in the current research is the rotating spindle of the milling machine; therefore 

a round fixture has been attached to the spindle case to amount the sensor. Figure 

7.10 shows the photo of Eddy current sensor (IC 12-02) which is used in the 

research [195]. 

 

Figure 7.10: Eddy current sensor IC 12-02 [195]. 
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7.3.6   Sound  
 

The sound signal during a cutting process based on the concept of sensing tool 

condition has been used more than three decades ago [196].  Several studies using 

sound signals and their results indicate the correlation between tool condition and 

the sound emitted during the machining process [197]. It has been reported that tool 

wear is correlated with an increase in the amplitude of the high frequency bands of 

the sound signal. In this research, a sound signal is used to extract valuable 

information correlated with fixturing and tool condition. The main limitation of 

using this signal in the development of a condition monitoring system is the ambient 

noise, as has been identified and studied in several research papers [175]. 

These papers conclude that in the region between 0 and 2 kHz the influence of the 

environment and of the noise either from adjacent machines, motors, conveyors, or 

from processes may contaminate the signals. Nevertheless, they conclude that this 

effect can be moderated by using noise cancellation methods in the signal processing 

algorithm. A photo of the microphone (EM-400) which used in this thesis has shown 

in Figure 7.11. 

 

Figure 7.11: Sound sensor (microphone). 

7.3.7   Power  
 

A power sensor is used to monitor the load on the motor that is driving the machines 

spindle which can give valuable information related to the load on the motor. The 

major advantage of the motor related parameters to detect malfunctions in the 

cutting process is that the measurement apparatus does not disturb the machining 

process and the power sensing use the motors current as an indirect sensor of cutting 

force [198]. Figure 7.12 shows the power sensor which used in this research.         .   
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Photo of power sensor. 21 Figure 7. 

7.4  Signal  Processing Methods 

This research work has been used maximum, minimum, standard deviation, range, 

average, power, skewness, kurtosis for analysis in the time domain. It also has used  

FFT1, FFT2, FFT3, FFT4, FFT5, FFT6, FFT7, FFT8, FFT9 and FF10 for analysis in 

the frequency domain. The following paragraphs outline each method used. 

7.4.1 Time Domain Methods 

More details about the following methods are described in [199]. 

1. Arithmetic mean (µ): The mean of amplitude values of raw data signal. The mean 

of n amplitude values of a signal [x1, x2, …, xn] is 
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2. Standard Deviations (std) which is normally represented by the Greek symbol σ, 

where σ measures the variation of the data from the average. It is defined as: 
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3. Skewness (Skew): The 3rd central moment and is a measure of the asymmetry of 

the probability distribution of the signal raw data. It is expressed as: 
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4. Kurtosis (Ku): Fourth central moment and is a measure of the peakedness of the 

probability distribution of the signal raw data: 
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5. Power (P): Signal power is defined as the measured area under the rectified signal 

envelope. This is another measurement of the signal amplitude; however, it is 

sensitive to amplitude as well as duration, and it is less dependent on operating 

frequency. Power is defined as: 
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7.4.2  Frequency Domain Analysis Methods 

 

Fourier Transformation 

 

In order to confirm the presence of certain frequencies, it is important to break down 

the signal into its frequency spectrum. Because of this the frequency content of a 

signal is not regularly clear from the time domain. The discrete Fourier 

transformation (DFT) algorithm is used to exchange a digital signal from time 

domain into a signal in the frequency domain. The discrete Fourier transformation is 

a very computationally intensive algorithm which contains a huge number of 

mathematical operations, though when the length of the signal is a power of two, 

then Fast Fourier Transformation (FFT) can be used which reduces the computation 

necessary to make the transformation from time domain to frequency domain [200]. 
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For k = 0, 1,2,. . . ., N-1    

Where: 
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Wavelet Analysis 

 

Fourier transformation has an important disadvantage as the transformation process 

from the time domain to frequency domain removes the time information.  

Consequently, when looking at a frequency spectrum, it is not possible to know 

when an exact event has happened. Wavelet analysis provides an alternative 

technique of breaking a signal down into sub-signals or levels with different 
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frequencies which carry the time information. In wavelet analysis, the length of the 

signal, i.e. number of values contained in the signal, determines how many wavelet 

levels there will be in the decomposition. In general, for a signal of length N, where 

N = 2n there are n+1 wavelet levels. The shape of the wavelet levels depends on the 

mother wavelet signal which is used to build these levels. Wavelet analysis involves 

breaking the signal into sub-signals, each of which is generated from a combination 

of shifted and scaled wavelet signals. For every level the number of wavelet signals 

used  to construct the signals equals 2n where n is the level number. The standard 

deviation (std) of the wavelet levels is used as sensory characteristic features for the 

condition monitoring system. The standard deviation of each level reflects the actual 

contribution of that level in building the original signal [200]. 

 

7.5  Automated Sensitivity Detection 

 
 

Linear Regression (LR) 

 

Linear regression is used to find the linear equation which best represents the linear 

relationship between two variables. The first variable is the independent variable 

which could be the degree of tool wear, etc. The second variable is the dependent 

variable and this variable is a sensory characteristic feature which changes according 

to the change in the independent variable. The line is obtained by using the least 

squares straight line fitting. The least squares line is defined as [20]: 
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 xbba     y  1                                             (7.8) 

 
Equation 7.8 represents the slopee of the least squares straight line. The absolute 

value of b1 is to find out the most sensitive sensory feature to the independent 

variables (e.g. degree of cutter wear) of machining parameters. 
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Sudden Change in Value (SCIV) 

 

The Sudden Change In Value (SCIV) statistical method is used in this research to 

find the average difference between the first group of points and the last group of 

points. The first variable is the average value of the first (5%) of samples. While the 

second variable is the average value of the last (95%) of samples, see Figure 6.7 in 

the previous chapter. The sudden value is the difference between the two averages 

[21]. SCIV is defined as: 

Last values = maximum of  mean (Last point - (0.05* Last point)). 

First values = mean of the (0.05* Last point). 

SCIV = Last values – First values. 

Range Value (RV)  

 

The Range Value (RV) statistical method is used in this research to find the 

difference between the first value and the last value. RV is defined as: 

RV= Last Value – First Value. 

 

Correlation coefficients (CCX3 and CCX20) 

 

Based on Taylor’s equation [69]: 

y= X
n
    

where y is wear level, n is a constant, X is machining time. 

This research has used n= 3 and  n= 20 to develop two types of generic wear curves, 

namely y= X
3
  and y= X

20
 which are named CCX3 and CCX20 respectively.  

 

The correlation coefficient is obtained from the correlation between the pattern of 

the constant functions individually and the pattern of the feature (SCF) to generate 

the correlation coefficient (CCX3) and the correlation coefficient (CCX20) as shown 

in Figure 6.12 in the previous chapter.  This correlation will provide a representative 

to the trend of the feature pattern as the high correlation indicates high sensitivity of 

the feature to detect the change of the tool condition.  

Fuzzy Logic (FL) 

Fuzzy Logic is a particular area of concentration in the investigation of artificial 

intelligence and is constructed on the value of that data which is neither absolutely 
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true nor false [184]. The data which operators use in their everyday lives to base 

natural decisions and apply general rules of practical information can and should be 

applied to those control situations which demand them. Developed knowledge can 

be a great way to avoid the unwanted effects of the system reaction.  

In the current research, fuzzy logic will be used to implement the controlling of the 

sensitivity measuring method to select the most sensitive feature. A fuzzy logic 

model with its fundamental input-output relationship consists of four components 

namely, the fuzzifier, the inference engine, the defuzzifier, and a fuzzy rule base as 

shown in Figure 7.13. In the fuzzifier, inputs are fuzzified into linguistic values to be 

associated to the input linguistic variables. After fuzzification, the inference engine 

refers to the fuzzy rule base containing fuzzy IF-THEN rules to derive the linguistic 

values for the intermediate and output linguistic variables [183]. Once the output 

linguistic values are available, the defuzzifier produces the final values from the 

output linguistic values. 

Fuzzy Rule Base

Input  Values

Fuzzification

Defuzzification Output  Values

Fuzzy Inference Engine

 

Figure 7.13: Structure of a fuzzy logic model.       

Principal Component Analysis (PCA) 

 

PCA is a multivariate statistical technique used to reduce the number of variables in 

a data set into a smaller number of dimensions. In mathematical terms, from an 

initial set of n correlated variables, PCA creates uncorrelated indices or components, 

where each component is a linear weighted combination of the initial variables. For 

example, from a set of variables X1 through to Xn: 
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The formula for covariance is very similar to the formula for variance. The formula 

for variance could also be written as [181]: 
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For two dimensions can be described as: 
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The cov(X, Y) is a covariance matrix which is squared matrix, therefore it is possible 

to calculate the eigenvalue and eigenvector as it will indicate the useful information 

about the effect of each variable on the data. Eigenvector (v) is a non-zero vector 

that after multiplying by the matrix, remain parallel to the original vector. For each 

eigenvector, the corresponding eigenvalue (λ) which is a factor or real number to 

scale the eigenvector when multiplied by the matrix as showing on equation 7.11. In 

other words, the eigenvalue will define the length of the variable of the row data. It 

is possible to measure the eigenvalue by the following equation: 

v][ λ v][ )],([ YXcov                                                                 (7.11)        

For the purpose of measuring the significance of the sensor in current research, 

eigenvalue will be used to evaluate the important of each sensor. The theory is based 

on the discussion represented in chapter 6, section (6.6.2). More details regarding 

the application of this method are shown in Chapter 8.  

 

7.6  Making Decision  and Pattern Recognition 

 
A machine condition monitoring problem will be finally transformed into a pattern 

recognition problem to identify, from the sensory signals, the machine or process 

conditions. For data analysis, unsupervised neural network Learning Vector 

Quantisation (LVQ) has been used two types of pattern recognition systems to 

demonstrate the application of the ASPSF approach. The application of these 

systems is used to compare their result in order to evaluate the ASPSF approach 

independently. Taylor’s Equation Induced Pattern (TIP) and Back Propagation 

Neural Network (BPNN) are implemented in order to compare their results directly. 

http://en.wikipedia.org/wiki/Parallel_(geometry)
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These methods are implemented to compare the result of each monitoring system. 

More details about these methods are briefly described in the following sections. 

The ASPSF approach is not limited to these methods but can be implemented with 

other methods such as the Self-Organizing Neural Networks and the Radial Basis 

Neural Network (RB), etc. 

7.6.1  Data  Analysis 

 

Data analysis is an important stage of the research process which is generally 

defined as a process that converts raw data into information and knowledge to 

explore the relationship between variables. Unsupervised neural network, such as 

LVQ uses a special algorithm to group similar patterns in the input data space into 

similar output classes. The functional behaviour of the whole system is determined 

mainly by the pattern of connectivity of the nodes. As a system, they are capable of 

performing some high level functions such as adaptation, generalisation and target 

learning. These capabilities are particularly attractive for tool wear monitoring 

applications. The method developed and applied in this work, is the Learning Vector 

Quantisation (LVQ) which implements a competitive neural network. LVQ neural 

network will be trained and tested with various experimental cases to evaluate the 

effect of different factors on the identification performance. Learning vector 

quantization is a nearest-neighbour pattern classifier based on competitive learning. 

A LVQ network contains an input layer, a Kohonen layer which learns and performs 

the classification, and an output layer. The input layer contains one node for each 

input feature, the output layer contains one node for each class. Figure 7.14 

illustrates the structure of LVQ neural network. During the training process of the 

LVQ, the euclidean distance from a training vector, x, to each node’s weight vector, 

wi, in the Kohonen layer is computed according to the formula: 

2/1

1

2)( 







 



n

j

jijii xwxwd

                                                   (7.12) 

 

The nearest node is declared to be the winner, and its weight vector is adjusted 

according to whether the winning node is in the class of the training vector: 

If the winner is the correct class, then wi+1 = wi + α(x - wi); 

If the winner is not the correct class, then wi+1 = wi - λ(x - wi), 

 

http://hsc.uwe.ac.uk/dataanalysis/researchProcess.asp
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where wi+1  is the weight vector after adjustment, wi the vector before adjustment, α 

and λ are learning parameters. A brief description of the algorithm is given below 

[185]: 

Hidden  Layer 

Input Layer

Outputs

Output Layer

Inputs

 

Figure 7.14: The architecture of the LVQ neural network. 

 

For each input sample, the two closet weights vectors wi and wj are first found by 

using the Euclidean distance criterion. Assume the distances from wi and wj to x are 

di and dj, respectively. If the two closest weight vectors belong to different classes, 

one of them is correct. Furthermore, if the input sample x is located inside the 

window between the two closest weight vectors, then: 

))()(()()1( twxttwtw iii                                                      (7.13) 

 

))()(()()1( twxttwtw jjj                                                     (7.14) 

Let t denote the number of training set iterations. The window is defined in terms of 

relative distances dt and dj from wi and wj to x, respectively, having a constant ratio. 

Then the input vector x is defined to be within the windows if min(di/dj, dj/di) > s, 

with s = (1 - w)/(1 + w). 

During testing, LVQ classifies an input vector by assigning it to the same class as 

the output unit has its weight vector closest to the input vector. To reduce computing 

time and simplify the structure of  LVQ neural network, five neurons are set in the 

Kohonen (hidden) layer, which is useful to eliminate the subclusters of each class. 
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7.6.2  Pattern Recognition 

7.6.2.1  Taylor’s Equation Induced Pattern (TIP)   

 

Since the best measuring sensitivity method has been defined, the feature (SCF) will 

be arranged according to the sequence of this method, that is will lead the 

investigation to the next stage of the monitoring system which is the pattern 

recognition. In general, therefore, it seems that it is important to classify the status of 

the tool from fresh to worn then making the decision.  The key problem is how could 

one define the tool status when the tool has moved from being fresh, to semi-worn to 

worn? 

To solve this problem, as discussed previously, Taylor’s equation is used as a 

generic pattern for that which is a novel way to address this problem. These patterns 

are derived from the general aspect of the Taylor’s equation as explained in chapter 

3, section 3.7. Therefore, this technique will be called as Taylor’s Equation Induced 

Pattern (TIP). To plot these patterns, two types of constant functions X3 and X20 are 

employed to do that as shown in Figures 7.15, and 7.16. These patterns are 

considered as templates to divide the target of neural network. Here, Back 

Propagation (BP) Neural Network will be implemented for the data training and 

testing since it is supervised method and definitely needs to determine the target in 

advance. 
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Figure 7.15: The BP neural target division according to y= X3 (function (X3)). 
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Figure 7.16: The BP neural target division according to y= X20 (function (X20)). 

 

Figure 7.15 shows the first constant function (X3 function) divided the  tests to three 

equal sections, meanwhile Figure 7.16 shows the second constant function (X20)
 

which is  divided to different sections length (77 % fresh, 12% semi-worn, 11% 

worn). The experimental sensory feature (Experimental) divided to the empirical 

number extracted according to the features pattern. 

7.6.2.2  Back Propagation Neural Network (BPNN)  

 

The back propagation algorithm is a supervised learning method which was first 

proposed in 1969, but was ignored because of its demanding computations until the 

mid-1980s. It is more useful for feed-forward networks (networks that have no 

feedback or simply, that have no loop connections). The term is an abbreviation for 

backwards propagation of errors. Back propagation requires all transfer functions 

used by the artificial neurons (or nodes) to be differentiable. Back propagation is 

used to calculate the error gradient of the network with respect to its modifiable 

weights. This gradient is almost used in a simple stochastic gradient descent 

algorithm to find weights that minimize the error. Back propagation may have 

practical problems of getting trapped in local minima and knowing when the 

procedure has converged. It is important to note that back propagation networks are 

necessarily multilayer perceptrones usually with one input, one hidden, and one 

output layer. Generally, BP neural network as a classifier model is simple to use, but 

this model works as a black box.  

Figure 7.17 illustrates the architecture of the back propagation neural network, as the 

learning has two phases. 
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Figure 7.17: The architecture of the Back Propagation Neural Network. 

 

First, a training input pattern is presented to the network input layer. The network 

then propagates the input pattern from layer to layer until the output pattern is 

generated by the output layer. If this pattern is different from the desired output, an 

error is calculated and then propagated backwards through the network from the 

output layer to the input layer. The weights are modified as the error is propagated. 

As in the above figure the inputs signal pattern   ( x1  x2  . . . xn) are propagated 

through the network from the left to right, and the error signal (e1  e2 . . . en) from the 

right to the left. The neuron determines its output in a manner including two stages. 

First, it computes the net weighted input as [202]: 





n

i

i wixX
1

                                                                            (7.15) 

Where n is the number of inputs, and Ө is the threshold to the neuron. Next, this 

input value is passed through the activation function as a sigmoid activation 

function: 

xe
Y




1

1
                                                                                 (7.16) 

The derivative of this function is easy to compute and guarantees that the neuron 

output is bounded between 0 and 1. The error signal at the output of neuron k at 

iteration p is defined by: 

)()()( , pypype kkdk                                                               (7.17) 
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Where yd,k (p) is the desired output of neuron k at iteration p. After this, for example, 

neuron k which is located in the output, is supplied with a desired target. Hence, 

straightforward procedure is used to update weight wjk. The rule for updating weights 

layer at the output layer according to the following equation: 

)()()1( pwpwpw jkjkjk                                                     (7.18) 

 

Where wjk (p) is the weight between neuron  j in the hidden layer and neuron k in the 

output layer at iteration p, and the ∆wjk (p) is the weight correction.  

The aforementioned procedure is employed in the current research to find the most 

accurate pattern which achieves the lower ratio of the training error using the BP 

neural network. 

7.7 Conclusion 
 

This chapter described the general experimental setup of this research work. It 

described the elements and stages used to implement the experimental condition 

monitoring systems, including CNC milling machine, workpiece materials, cutting 

tools, sensors installation,  surface roughness measurements, software and the data 

acquisition system. Correspondingly, it also presented the sensor types and their 

position focusing on cutting tools. The signal processing methods and artificial 

intelligence recognition system have been illustrated. 

Different types of signals, including force, accelerometer (vibration), AE, strain, 

eddy current, sound and power are used to obtain the information about the process. 

Roughness tester is also used in experiments to measure the quality of the machined 

surface. To extract the Sensory Characteristic Features (SCFs) for the design process 

of the monitoring system, time and frequency domain signal processing methods are 

used. The most appropriate sensory features are chosen by the ASPSF approach to 

be introduced to the pattern recognition system to identify process faults. For data 

analysis, unsupervised neural network, Learning Vector Quantisation (LVQ) is 

implemented to explore the relation between the investigated variables. Two types 

of pattern recognition system, Taylor’s Equation Induced Pattern (TIP) and back 

propagation neural network, are used in this investigation to categorise process 

states independently.                                                                            .   
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Chapter 8  Initial Evaluation of ASPSF 

Approach 
 

 

8.1 Introduction 

 

This chapter describes the initial evaluation and implementation of the Automated 

Sensor and Signal Processing Selection for Fixturing (ASPSF) approach. In this 

chapter, it is outlined how the ASPSF approach can be utilised to develop a sensor 

fusion model of a condition monitoring system to detect the effect of the changes of 

the fixturing setup on the condition monitoring system design. The details of the 

ASPSF approach is introduced using different types of fixturing materials combined 

with gradual tool wear depending on multi-sensor signals during a milling operation. 

This chapter uses force, strain, accelerometer, acoustic emission, sound sensors to 

examine the suitability of the ASPSF condition monitoring. It covers the main stages 

of the ASPSF approach, the Association Matrix (ASM) and the Eigenvalue Sensory 

Matrix (EVSM) of the wear test, the sensitivity detection, the selection of the most 

sensitive SCFs and PCFs for a condition monitoring system, and the cost of the 

implemented monitoring system. The implementation of the ASPSF approach will 

answer the following questions: 

 

1. What is the effect of the changes in fixturing on the machining signals and 

hence the design of the monitoring system? 

 

2. What is the relationship between ASPSF approach and PCA for detection of 

sensitive information? 

 

3. Can the surface finish be predicted from the sensor signals (Cutting force)? 

 

The essential principles of the ASPSF approach are diagrammed in Figure 8.1. It is 

designed to systematically relate the sensory signal and the signal processing 

methods created to the faults which are to be detected taking into consideration the 

fixturing setup. 
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Figure 8.1: The essential principles of the ASPSF approach. 

 

8.2 The Experimental work 

In this chapter, the experimental work is conducted to examine the behaviour of the 

signals for different fixturing types, material and monitor tools status (fresh and 

worn), and then to find the most sensitive sensory characteristic features to fixturing 

and tool failures. As illustrated in Figure 8.2, the experimental work of the condition 

monitoring system of this study is performed on a milling CNC machine type 

(DENFORD). Several sensory signals are used in this study including cutting forces 

(Fx, Fy and Fz), strain, accelerometer (Vwy), acoustic emission sensor (AE), and 

microphone (Mic) for measuring sound. The force signals are monitored using 3-

component dynamometer (Kistler 9257A) and the work piece is fixed on the 

dynamometer. The dynamic and quasistatic force signals are monitored using a 

strain sensor (Kistler 9232A). Both the force dynamometer and the strain sensor are 

connected to a 4-channel charge amplifier (Kistler 5070A). The AE sensor (Kistler 

8152b111) is attached to the workpiece to monitor AE signals transmitted during 

machining and connected to AE coupler (Kistler 5125B). The accelerometer (B& 

K4366) are mounted on the moveable table of machine and connected to charge 
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amplifier (Kistler 5001). Sound signals are collected using a microphone (EM400) 

placed in direct vicinity of the workpiece.  All the wires and cables of the sensors are 

connected to a National instrument connection box (SCB-100). The signals are 

monitored using data acquisition card NI PCI-6071E from National Instrument using 

special data acquisition software written using the National Instrument (Lab 

windows/ CVI) programming package. The experimental work is performed on 

milling machine using Aluminium workpiece. The milling process is carried out at 

the conditions as shown in the Table 8.1. 

 

Table 8.1: The machining parameters of the milling process. 

 

Machining condition 
 

Specifications 
 

Feed rate 250  mm/min 

Depth of cut 0.22  mm 

Coolant type No coolant (Dry) 

Spindle speed 2490 RPM 

Diameter of tool 3 mm 

Material of tool 

 

Solid Carbide (End mill Solid 

Carbide) 

Type of tool End mill Tool ( 4 Flutes, Uncoated) 
 

X ( Feed  direction)

Charge 

Amplifier

AE 

Coupler

N I

Connection 

Box

N I Data

Acquisition

card

Sound Sensor

Strain Sensor

Force Sensor (Fx,Fy,Fz)

Charge

Amplifier

Vibration Sensor

Tool

AE Sensor

pc

3

2

5

6 1

4 3 2

5
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Figure 8.2: Schematic diagram of experimental setup for the monitoring system. 

 

To emulate a fixturing system with low rigidity, the shank of the tool is covered by 

rubber with thickness of 1 mm as shown in Figure 8.3 where the tests start with a 

fresh tool and finished with completely worn tool. 
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Figure 8.3: The two states of the milling tool (fresh and worn tool). 

 

8.3 Signal Simplifications 

 
One of the complex machining processes is milling, and it is assumed that complex 

sensory signals presented as a function of time as shown in Figure 8.4 and Figure 

8.5. It can be noticed that the author assumed that the process starts with a healthy 

condition (fresh tool), and gradually or suddenly the state of the process changes 

with an introduced fault (worn tool). Previous researchers [20] used the visual 

inspection as a signal simplification method to evaluate the performance of the 

sensors, but the limitation of this method it is not automated and depends on the 

experience of the inspector.  It is relatively clear these machining signals have been 

found difficult to predict the most sensitive signals to fixturing rigidity and tool wear 

directly from the unprocessed data. 



Chapter 8   Initial  Evaluation of  ASPSF Approach 

     132 

Sample Number

Fresh Tool   without sleeve Fresh Tool  with Rubber sleeve

0 1000 2000 3000 4000 5000
0

0.5

1

0 1000 2000 3000 4000 5000
0

0.5

1

0 1000 2000 3000 4000 5000
0

0.5

1

0 1000 2000 3000 4000 5000
0

0.5

1

0 1000 2000 3000 4000 5000
0

0.5

1

0 1000 2000 3000 4000 5000
0

0.5

1

F
or

ce
, 

F
x(

vo
lt)

0 1000 2000 3000 4000 5000
0

0.5

1
S

tr
ai

n,
 (

vo
lt)

0 1000 2000 3000 4000 5000
0

0.5

1

V
ib

rt
a
ti
o
n
 (

v
o
lt
)

0 1000 2000 3000 4000 5000
0

0.5

1

A
E

, 
(v

o
lt
)

0 1000 2000 3000 4000 5000
0

0.5

1

M
ic

ro
p
h
o
n
, 

(v
o
lt
)

Sample Number

F
o
rc

e 
, 
F

x
  
(N

)
S

tr
ai

n
, 

 (
v
o
lt

)
V

ib
ra

ti
o
n
, 

 (
v
o
lt

)
A

E
, 
 (

v
o
lt

)
M

ic
ro

p
h
o
n
e,

  
(v

o
lt

)

 

Figure 8.4: Example of the raw signals of the milling for fresh tool (normalised). 
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Figure 8.5: Example of the raw signals of the milling for worn tool (normalised). 
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It can be observed from Figures 8.4 and 8.5 that the vibration amplitude of some 

signals has increased for the worn tool, as in the cutting forces signals. In addition, 

the level of some sensory signals has changed such as the acoustic emission (AE) 

signal. It may be difficult to assess the state of the process from the produced  signal, 

therefore the first step is to transfer signals from its complex form into a group of 

simplified sensory signals denoted Sensory Characteristic Features (SCFs). For 

example, if a milling process sensory signal can be transformed into a group of SCFs 

with relatively simple nature with less variation, then it is expected to be much 

easier to retrieve the necessary information which presents the state of the process 

based on the change in the level of the extracted SCFs. Another indicator of signal 

simplification is Principal Component Feature (PCF) which is obtained by using the 

Principal Component Analysis (PCA) method as described in the following sections. 

A sensitive SCF or PCF is a feature which includes a significant amount of 

information regarding the condition of the process. This should lead to better 

recognition. The sensitivity of the SCFs and PCFs respectively for this experimental 

work in this chapter is evaluated by the following methods: 

1. Linear Regression (LR) method.  

2. Principal Component Analysis (PCA) method. 

8.3.1  Linear Regression (LR) method 

 

In order to reduce the cost and development time, the automated design method of 

condition monitoring systems will be used along with multisensors and features 

extraction to select the most appropriate sensor and its associated signal processing 

methods in order to reduce cost and development time.  Therefore, in this section the 

practical steps of the ASPSF approach for the same eight (Fx, Fy, Fz, strain, Vwy, 

AE, AERMS, and Mic) sensory signals are described. The theoretical ideas of the 

ASPSF approach are presented in Chapter 6. Briefly, assuming that the monitoring 

system has m number of sensory signals which can be processed by n number of 

signal processing methods to produce a sensory characteristic features (SCFs). For 

example, a sensory characteristic feature extracted from the std value of the Fx 

sensory signal can be presented as SCF (Fx, std). The sensory feature matrix (SFM) 

can be calculated for every set of signals, or machining samples, during the 
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machining process. For any sensory characteristic feature, it is possible to study its 

behaviour in relation to fixturing setup and tool status.  

The highest SCFs  are selected to form system
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Figure 8.6: The practical steps of the ASPSF approach using linear regression. 

 

A schematic diagram of the practical steps of the ASPSF approach is utilised in 

Figure 8.6. The sensory signals are simplified and processed to give specific sensory 

characteristic features arranged in the SFM which can be used to calculate the 

sensitivity of every feature on tool conditions. The sensitivity coefficients are then 

arranged in the Association Matrix (ASM) for further analysis. After calculating the 

sensitivity of each sensory characteristic feature on the machining conditions, tool 

status level in this case, another matrix is constructed. The ASM is a matrix which 

associates the obtained sensitivity values for the corresponding sensory features. It 

gives a simple presentation of the sensitivity values associated with each feature. 

The sensitivity coefficient of the machining feature is obtained using the machining 

signal of the sensor and the signal processing method. The ASM gives the key 

evaluation for the most appropriate sensor and signal processing method to be used 

since each column is associated with a signal processing method while each row is 

associated with a sensor. Therefore, the sensory characteristic features with 

relatively high sensitivity coefficient are the most sensitive to the cutting conditions 
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and they are the most appropriate features to be used. Therefore, the related sensory 

signals and signal processing methods are the most appropriate ones to use. 

Since the importance of a feature is in its relative value compared to others, a 

normalising process is performed using equation 8.1 below so that any sensory 

characteristic feature will have a value between 0.1 and 0.9 making it possible to 

compare all calculated sensory features relative to each other [175]. There is no 

specific reason for using this type of normalising and any other normalising values 

could be used. The only reason is that such values are expected to have better effect 

on the classification systems [170]. Also, in order to be able to compare the 

sensitivity of SCFs of this test with the sensitivity of SCFs in similar tests, all 

features are normalised using the same equation [188]. 

                                        

min)(
minmax

8.0
1.0 


 ixx                                                          (8.1) 

 

 

Where: 

max: is the maximum value of a sensory characteristic feature. 

min: is the minimum value of a sensory characteristic feature. 

Then, the raw signals are processed using several time domain signal processing 

methods to extract the Sensory Characteristic Features (SCFs). The signal 

processing methods used are maximum (max), minimum (min), standard deviations 

(std), the average (), the range, the skewness (skew), kurtosis value (K) and power 

as explained in Chapter 7. The 8 signal processing methods are used to process the 8 

sensory signals to construct an Association Matrix (ASM) of (8  8) which allows 

the investigation of 64 sensory characteristic features (SCFs) for the design of the 

monitoring system. The SCFs are arranged according to their sensitivities to tool 

status based on the absolute slopee of the linear regression method as shown in 

Figure 8.7. Figures 8.7, 8.8 present examples of high, medium and low-sensitivity 

SCFs to tool wear for two types of fixturing sleeve materials, namely steel (without 

sleeve) and rubber sleeve  respectively. 
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Figure 8.7: Example of high, medium and low sensitivity SCF for the tool without 

sleeve.    
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Figure 8.8: Example of high, medium and low sensitivity SCF for the tool with 

rubber sleeve. 
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The SCFs are visually inspected and it has been found that SCFs with high absolute 

slopee show higher sensitivity to the fault.  The above figures present examples of 

the highest and lowest sensitive SCFs for this particular tool wear test where 

sensitivity values are the linear regression slope of the normalised features.  The 

whole SCFs are arranged to create the Association Matrix (ASM) for the tool 

without sleeve as shown in Table 8.2. This matrix will provide an opportunity to 

visually inspect the sensitivity of the all used sensors.  

Table 8.2: The Associated matrix of the system for tool without sleeve. 

 

                             Signal Processing Method 

Sensor  max min std power average skew kurtosis range 

Fx 0.048 0.415 0.257 0.323 0.637 0.111 0.120 0.379 

Fy 0.450 0.701 0.528 0.043 0.650 0.014 0.287 0.610 

Fz 0.406 0.214 0.242 0.124 0.129 0.005 0.490 0.450 

Strain 0.060 0.171 0.324 0.294 0.254 0.040 0.422 0.229 

Vwy 0.154 0.155 0.052 0.264 0.155 0.012 0.030 0.044 

AE 0.242 0.301 0.364 0.303 0.027 0.362 0.131 0.270 

AERMS 0.447 0.373 0.422 0.295 0.385 0.182 0.029 0.415 

MIC 0.070 0.014 0.082 0.049 0.136 0.146 0.023 0.043 

 

 

Figure 8.9 presents images of the Association Matrix (ASM) which includes the 

sensitivity of a few SCFs implemented in this monitoring system. The ASM presents 

for each sensor and signal processing method (SCF) the sensitivity to detect the 

machining faults, where high sensitivity indicates high capability to detect the fault. 

The numbers with small value in Table 8.2  show in black in the images in Figure 

8.9. This mean low sensitivity, numbers with medium values are shown in red which 

means medium sensitivity, and numbers with high values are shown in white which 

means high sensitivity.  
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Figure 8.9: A graphical presentation of the sensitivity for tool without sleeve. 

 

 

By using the same methodology to create the ASM matrix for the tool without 

sleeve, Table 8.3 presents the values of the sensory sensitivity for all features of the 

system to monitor the tool with rubber sleeve. Similarly, this table is used to present 

the images of the sensitivity as shown in Figure 8.10.  

 

Table 8.3: The Associated matrix of the system for tool rubber sleeve. 

 
 

                                   Signal Processing Method 

Sensor  max min std power average skew kurtosis Range 

Fx 0.260 0.082 0.182 0.243 0.473 0.132 0.053 0.188 

Fy 0.567 0.577 0.015 0.276 0.589 0.032 0.126 0.018 

Fz 0.021 0.108 0.005 0.004 0.008 0.052 0.033 0.024 

Strain 0.383 0.153 0.553 0.275 0.283 0.543 0.304 0.445 

Vwy 0.113 0.110 0.248 0.159 0.111 0.050 0.548 0.102 

AE 0.066 0.009 0.071 0.060 0.454 0.000 0.004 0.047 

AERMS 0.022 0.299 0.058 0.018 0.096 0.037 0.140 0.015 

MIC 0.404 0.398 0.551 0.560 0.004 0.294 0.492 0.455 
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Figure 8.10: A graphical presentation of the sensitivity for tool with rubber sleeve. 

It can be noticed from Figures 8.9, 8.10 that the change in the characteristic of the 

fixturing system has caused change in the most sensitive sensors and signal 

processing systems that can be used to detect tool wear. For example, with normal 

fixturing system, force signals (Fy) and force (Fx) are found to be the most sensitive 

to detect tool wear. However, with the rubber sleeve system, force sensor (Fy) and 

sound signals are found to be the most sensitive signals to detect tool wear.  

 8.3.2  Principal Component Analysis (PCA) method 

 

One of the difficulties inherent in multivariate statistics is the problem of visualizing 

data that has many variables. Some of the software, such as Matlab, can be used to 

display a graph of the relationship between two or three. But when there are more 

than three variables, it is more difficult to visualise their relationships. 

Generally, in data sets with many variables, groups of variables often move together. 

One reason for this is that more than one variable might be measuring the same 

driving principle governing the behaviour of the system. In many systems there are 

only a few such driving forces. But an abundance of instrumentation enables you to 

measure dozens of system variables. When this happens, it is can be simplified the 

problem by replacing a group of variables with a single new variable.  
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Principal component analysis is a quantitatively rigorous method for achieving this 

simplification. The method generates a new set of variables, called Principal 

Components Analysis (PCA). Each principal component is a linear combination of 

the original variables. All the principal components are orthogonal to each other, so 

there is no redundant information. The principal components as a whole form an 

orthogonal basis for the space of the data. The first principal component is a single 

axis in space. When you project each observation on that axis, the resulting values 

form a new variable, and the variance of this variable is the maximum among all 

possible choices of the first axis. The second principal component is another axis in 

space, perpendicular to the first. Projecting the observations on this axis generates 

another new variable. The variance of this variable is the maximum among all 

possible choices of this second axis. 

By examining plots of these few new variables, researchers often develop a deeper 

understanding of the driving forces that generated the original data. 

In general, the raw data does not make enough sense without processing analysis, 

and according to the above basis, it is suitable to use the principle component in this 

research, due to the fact that it is necessary to show the effect of the variables on the 

data, this will provide the researcher the ability to determine which variable (e.g. 

sensor) is more effective to detect the changes during the machining operation. The 

theoretical concept of the principal component has described in the previous chapter. 

The highest SCFs  are selected to form system
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Figure 8.11: The practical steps of the ASPSF approach using PCA. 
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Figure 8.11 explains the practical steps of implementing the principal component 

analysis. The raw data is the same which was used in the previous section. The first 

step is arranged the raw data to be more appropriate, which mean that the variables 

are measured in the same unit. Standardising the data is often preferable when the 

variables are in different units. The normalisation the data by dividing each column 

by its standard. 

The second step, and for PCA to work properly, it is important to subtract the mean 

from each of the data dimensions. The mean subtracted is the average across each 

dimension. Therefore, all the values have (the mean of the values of all the data 

points) subtracted, and all the values have subtracted from them. This produces a 

data set whose mean is zero as shown in Figure 8.12. 
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Figure 8.12: PCA example data, original data on the left, data with the means              

subtracted on the right, and a plot of the data.                                                

 

In the third step, the covariance will be calculated, as explained in the Chapter 7. 

Covariance is always measured between two dimensions. Consequently, as a data set 

with more than 2 dimensions, there is more than one covariance measurement that 
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can be calculated. For example, from a 3 dimensional data set (dimensions x, y, z), it 

could be calculated cov (x, y), cov (x, z) and cov (y, z). Basically, the dimension of 

the data equals to the number of data variables, hence, for an (n) dimensional or 

variable data set; it is possible to calculate different covariance values as in the 

following equation: 

 

2 x )2(
 valuescovariance ofNumber 




n

n
                                (8.2) 

 

Where: n is the number of variable of the row data. 

 

A useful way to get all the possible covariance values between all the different 

variables is to calculate them all and put them in a matrix. In the current research, it 

is called Principal Component Matrix (PCM). This matrix with n row and n column, 

so it is a squared matrix and arranged as follows: 

 

 nnji

nn

 x 

 x )X , (X covPCM                                                      (8.3) 

 

Where 

Xi  is the first variable (first sensor). 

Xj  is the second variable (second sensor). 
 

In the following equation (8.4), there is an example of how to calculate the 

covariance for three accelerometer sensors (FX, Fy, and Fz). The first value  in the 

PCM matrix is obtained from the  covariance between first sensor (Fx)  and itself, 

and the second value resulted from the covariance between the second sensor (Fy) 

and first one (Fx), and so on. Therefore, as eight sensors used in this research, the 

whole dimensions of the PCM matrix is (8 x 8). 

 



















Fz) , cov(Fz  Fy), cov(Fz  Fx) , cov(Fz

Fz),cov(Fy   Fy),cov(Fy   Fx) ,cov(Fy 

Fz),cov(Fx   Fy),cov(Fx   Fx) ,cov(Fx 

PCM 3  x 3
               (8.4) 

 

A covariance is created the PCA more effective in ASPSF for calculating the 

relation between the variables of data, and this provides the proposed method more 

support than linear regression which depends on measure the sensitivity for each 

variable (sensor) individually. 
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The fourth step is implemented by calculating the eigenvectors and eigenvalues for 

the PCA matrix since it is square. The concept of the eigenvector and eigenvalue is 

defined in chapter 7. This gives the components in order of significance. To be 

precise, if you originally have n variables in the row data, and so you calculate n 

eigenvectors and eigenvalues. Eigenvector determine the location of the variables on 

the n- variables space, meanwhile the eigenvalues evaluate the distance between the 

variable and the mean zone. In general, once eigenvectors are found from the 

covariance matrix, the next step is to order them by eigenvalue, highest to lowest. 

That is meaning the eigenvector with the large eigenvalue is pointed as the most 

significant relationship between the data variables.  
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Figure 8.13: A plot of the principle components according to eigenvalue of  

variables in the covariance matrix for tool without sleeve. 
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Figure 8.14: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool with rubber sleeve. 

 

 

Figures 8.13 and 8.14 illustrate the application of the above procedure in this 

research, and visually show that the force sensor (Fy) has the maximum eigenvalues 

for tool without sleeve, and tool with rubber sleeve. This means that the force sensor 

is most sensitive to the changes of the machining process for both cases. Sound 

sensor (Mic) is also achieved the second most sensitive sensor in both cases. 

Aforementioned figures display the variables in two dimensions and there is ability 

to show the results in three dimensions.  

 

In the final step, all eigenvalues are arranged in a matrix, where the sensors in the 

column, and principal components in the row. This matrix is called Eigenvalue 

Sensory Matrix (EVSM) as shown in Table 8.4, and it is assumed to ignore the sign 

of the eigenvalue which is indicate the position of the variable due to the 

investigation depends on the value not on the sign. This will create a matrix similar 

with that one constructed in the linear regression (ASM). In the current research, the 

first and two principal components (PC1 and PC2) will be used because they are 

most accurate and relate to the original data. 
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Table 8.4: The Eigenvalue Sensory Matrix (EVSM) of the system for tool without 

sleeve. 

 

                         Principal component Analysis 

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Fx 0.412 0.704 0.563 0.611 0.768 0.693 0.781 0.579 

Fy 0.318 0.872 0.298 0.423 0.051 0.391 0.225 0.010 

Fz 0.020 0.092 0.150 0.208 0.022 0.182 0.006 0.153 

Strain 0.404 0.053 0.105 0.182 0.024 0.171 0.031 0.014 

Vwy 0.405 0.011 0.101 0.254 0.049 0.142 0.045 0.013 

AE 0.407 0.026 0.212 0.270 0.138 0.049 0.166 0.027 

AERMS 0.410 0.042 0.285 0.300 0.139 0.031 0.184 0.080 

Mic 0.411 0.105 0.651 0.380 0.604 0.006 0.524 0.730 
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Figure 8.15: A graphical presentation of the EVSM for tool without sleeve. 

 

Figure 8.15 shows the image of the eigenvalue sensory matrix (EVSM) for the tool 

without sleeve, where the high value is presented in white, while the low eigenvalue 

in black. It is possible to consider the eigenvalue of the PC as a feature for each 

sensor; therefore, the each sensor in each PC will has Principal Component Feature 

(PCF).  In the above figure, it can be seen that the feature of the force sensor (Fz) in 

the fourth principal component (PC4) is PCF(Fz, PC4), and it is same for the strain 
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sensor in first principal component which is PCF(Strain, PC1) and so on. However, 

the PCF(Fy, PC2) is the most sensitive feature for the tool without sleeve. 

For the tool with rubber sleeve, Table 8.5 presents the eigenvalue matrix in the same 

arrangement for the sensor and the principal component. 

 

Table 8.5: The Eigenvalue Sensory Matrix (EVSM) of the system for tool with   

rubber sleeve. 

 

                       Principal component Analysis    

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Fx 0.423 0.229 0.443 0.530 0.089 0.840 0.112 0.409 

Fy 0.423 0.850 0.031 0.490 0.044 0.268 0.465 0.217 

Fz 0.379 0.010 0.029 0.466 0.026 0.205 0.108 0.137 

Strain 0.012 0.009 0.005 0.084 0.035 0.015 0.064 0.105 

Vwy 0.012 0.018 0.152 0.007 0.268 0.129 0.013 0.047 

AE 0.398 0.098 0.385 0.023 0.307 0.133 0.051 0.040 

AERMS 0.402 0.669 0.547 0.093 0.336 0.227 0.137 0.580 

Mic 0.423 0.690 0.575 0.496 0.842 0.306 0.154 0.644 

 

Similarly, the procedure for the image of the tool without sleeve, Figure 8.16 

presents the visual matrix of the sensor and the principal component. The feature for 

the force sensor (Fy), for instance, in the second principal component (PC2) and it 

will obtain the PCF(Fy, PC2), also the feature for the acoustic emission sensor  (AE) 

in the fourth principal component (PC4) is PCF(AE, PC4). However, it can be seen 

that the force (Fy) and sound signals are the most sensitive signals for the tool with 

rubber sleeve to detect tool wear. 
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Figure 8.16: A graphical presentation of the EVSM for tool with rubber sleeve. 

 

 

8.3.3  Correlation between LR slope and PCA methods 

The correlation coefficient is a quantity that gives the quality of a least squares 

fitting to the original data or to define the relation between two cases [186]. In this 

research, it is used to calculate the relation between the sensor sensitivity using 

linear regression and the sensitivity using Principal Component Analysis (PCA).  

The calculation process correlation is started by preparing the required data from the 

ASM matrix and covariance matrix. Figure 8.17 shows the practical steps of 

calculation the correlation coefficient between the sensitivity and principal 

component. Where the ASM matrix using linear regression is constructed from the 8 

signal processing methods as a column and 8 sensors as a row, therefore it is 

possible to measure the average of the sensitivity values for each sensor 

individually. All the 8 sensitivity average values for the sensors will be putted in one 

column. 
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Figure 8.17: The practical steps of calculating the correlation coefficient between 

sensitivity and PC.                                                                       
 

 

With regard to the covariance matrix using PCA and as described in the previous 

section this matrix is squared matrix and constructed from the 8 principal 

components and 8 sensors as a row with same sequence as in ASM matrix use linear 

regression. As the principal components are arranged in order of significance, the 

first and two principal components (PC1 and PC 2) will be used in this research. 

Each principal component has eigenvalues for eight sensors, and this value 

determines the sensor significant which qualified to the sensor sensitivity. 

Consequently, the correlation coefficient will be calculated from the relationships 

between the sensitivity of the sensors and the PC1, PC2 individually as will be 

illustrated in the following Figures. 
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Figure 8.18: The correlation coefficient between PCA and Linear regression 

sensitivity for tool without sleeve. 
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Figure 8.19: The correlation coefficient between PCA and Linear regression 

sensitivity for tool with rubber sleeve. 

 

Figures 8.18, 8.19 show the correlation coefficient between the sensitivity using 

linear regression and the sensitivity using the PCA for tool without sleeve, tool with 

rubber sleeve respectively. In Figure 8.18, this relationship has been  plotted for the 

tool without sleeve, and the correlation coefficient between the mean sensitivity and 

first principal component (PC1) is 88%, meanwhile it is 87% between the sensitivity 

and second principal components (PC2). The correlation coefficient for the tool with 

rubber sleeve is much lower than for the tool without sleeve, where it is 75%, for 

sensitivity and PC1, whereas the relationship between sensitivity and PC2, it is 71% 

as shown in Figure 8.19.   

 



Chapter 8   Initial  Evaluation of  ASPSF Approach 

     150 

Tool without sleeve Tool with rubber sleeve
0

20

40

60

80

100

Fixturing materail

C
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t 

o
f 

 P
C

1
 %

88 %

75 %

Fixturing system
 

Figure 8.20: The relation between the correlation coefficient of PC1 and fixturing 

system. 
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Figure 8.21: The relation between the correlation coefficient of PC2 and fixturing 

system. 

 

Figure 8.20 shows the concluding relationships between the correlation coefficient 

of PC1and the fixturing systems (both types of tools, with and without sleeve). 

Where the bar chart proves the aforementioned findings as the correlation decreased 

with the used material less rigidity (less modulus of elasticity) as the maximum 

correlation for the tool without sleeve (88%), following by the tool with rubber 

sleeve (75%) respectively. Figure 8.21 presents similar results for the correlations of 
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PC2, where they are (87%, 71%) for the tool without sleeve and the tool with rubber 

sleeve. From the analysis and above figures, it is can be concluded that the fixturing 

type and material could play a significant role in the result of sensitivity level. 

8.4  Selection of Sensory Features  

8.4.1 Selection of Sensory Characteristics Features (SCFs) 

 

In order to assist the classification system to be fast implemented and to provide 

useful classification, it has been decided based on previous applications of the ASPS 

approach (turning process) [20] to base the application and the design of the ASPSF 

condition monitoring system of this test on a set of 10 SCFs. The sensory 

characteristic features are grouped into 3 systems, with 10 features in each. A 

Matlab computer program is used to arrange the ASM features according to the 

absolute Linear Regression (LR) and arrange every 10 as a separate system. The 

three systems have the average sensitivity as shown in Figure 8.22 and Figure 8.23 

for the tool without sleeve and tool with rubber sleeve. It can be observed that the 

first system has the most sensitivity features for fixturing system stability and tool 

wear detection compared to the other systems. 
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Figure 8.22: Comparison between the systems sensitivity of tool without sleeve. 
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Figure 8.23: Comparison between the systems sensitivity of tool with rubber sleeve. 

 

The first system which contains the most sensitive 10 features is shown in Table 8.6 

for both types of tools (normal and with rubber sleeve). In addition, Table 8.7 shows 

the next 10 features and Table 8.8 shows the least sensitive 10 feature to detect 

fixturing quality and tool wear. 

The first system is found to have relative sensitivity (LR average of 0.540, 0.546) 

which are much more than the average sensitivity of the second. In addition, the 

third system is found to have the lowest sensitivity for the detection of the fixturing 

stability and tool wear. 

Table 8.6: First system with the SCFs sensitivity (LR) slope for the both tools. 

 

 

 

 

 

 

 

 

 

 

 

Tool without sleeve       Tool with rubber sleeve 

Sensory 

Signal 

Signal 

Processing 

method 

Sensitivity  

(LR 
slope) 

Sensory 

Signal 

Signal 

Processing 

method 

Sensitivit

y (LR 
slope) 

Fy Minimum 0.701 Fy Average 0.589 

Fy Average 0.651 Fy Minimum 0.577 

Fx Average 0.638 Fy Maximum 0.567 

Fy Range 0.611 Mic Power 0.560 

Fy Std 0.528 Strain Std 0.553 

Fz Kurtosis 0.490 Mic Std 0.551 

Fy Max 0.451 Vwy Kurtosis 0.548 

Fz Range 0.451 Strain Skew 0.543 

AERMS Max 0.447 Mic Kurtosis 0.492 

AERMS Std 0.423 Fx Average 0.473 

                   Average 0.540                  Average               0.546 
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Table 8.7: Second  system with the SCFs sensitivity (LR) slope for both tools. 

 
 

 

 

 

 

 

 

 

 

  

 

      Table 8.8: Third system with the SCFs sensitivity (LR) slope for the both tools. 

 

               Tool without sleeve       Tool with rubber sleeve 

Sensory 

Signal 
Signal 

Processing 

method 

Sensitivity  

(LR slope) 
Sensory 

Signal 

Signal 

Processing 

method 

Sensitivity  

   (LR 
slope) 

Mic Skew 0.147 AERMS Kurtosis 0.140 

Mic Average 0.136 Fx Skew 0.132 

AE Kurtosis 0.131 Fy Kurtosis 0.126 

Fz Average 0.129 Vwy 1 0.113 

Fz Power 0.124 Vwy Average 0.111 

Fx Kurtosis 0.121 Vwy Minimum 0.110 

Fx Skew 0.111 Fz Minimum 0.108 

Mic Std 0.082 Vwy Range 0.102 

Mic Maximum 0.070 AERMS Average 0.096 

Strain Maximum 0.061 Fx Minimum 0.082 

                     Average 0.111                   Average                  0.113 

 

 

As can be noticed from the above tables, the first system has the highest sensitivity, 

for example, the force (Fy) and minimum have the highest sensitivity (0.701) for the 

tool without sleeve, while the force (Fy) and average have the highest sensitivity 

(0.589) for the tool with rubber sleeve. The second system has a medium to high 

level of sensitivity and third system has the lowest sensitivity. For example, strain 

sensor and maximum have the lowest SCFs (0.061) for normal tool, also the force 

(Fx) and minimum for the other tool in the third system. Looking at the above tables, 

Tool without sleeve       Tool with rubber sleeve 

Sensory 

Signal 

Signal 

Processing 

method 

Sensitivity  

(LR 

slope) 

Sensory 

Signal 

Signal 

Processing 

method 

Sensitivity 

 (LR 

slope) 

Strain Kurtosis 0.423 Mic Range 0.455 

Fx Minimum 0.416 AE Average 0.454 

AERMS Range 0.415 Strain Range 0.445 

Fz Maximum 0.406 Mic Maximum 0.404 

AERMS Average 0.385 Mic Minimum 0.398 

Fx Range 0.379 Strain Maximum 0.383 

AERMS Minimum 0.373 Strain Kurtosis 0.304 

AE Std 0.365 AERMS Minimum 0.299 

AE Skew 0.362 Mic Skew 0.294 

Vwy Std 0.325 Strain Average 0.283 

                   Average 0.385                  Average                     0.372 
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it can be seen that the first 16 SCFs are almost the same but then the sensitivity of 

the other SCFs drops considerably. Therefore, the ASM matrix is found very useful 

in predicting the sensitivity of the SCFs. The sensitivity of the SCFs is proven to be 

measurable and there is a difference between the type of the sensor to detect the 

changes in the fixturing quality (fixturing type and material). The details of the first 

few SCFs structure can be used to optimise system cost without significantly 

affecting system performance. It is important to notice that the statement of high 

sensitivity means high information is based on the visual inspection of each feature 

and the way it behaves during the fault's development. 

Therefore, a statement can be made that the average sensitivity of a system is a 

reflection of the expected behaviour of the system. The proof of this statement will 

be described in the next chapters using neural networks and Taylor’s Equation 

Induced Pattern (TIP) classification systems. 

 

8.4.2  Selection of Principal Component Features (PCFs) 

 

For more reliable decision, and as sensory characteristic features (SCFs) have been 

used in the previous section, the principal component features (PCFs) are used to 

create a more useful classification. The classification depends on the same set of 10 

PCFs. The principal component features are grouped into 3 systems, with 10 

features in each. A Matlab computer program is also used to arrange the EVSM 

features according to the absolute principal component analysis (PCA) and arrange 

every 10 as a separate system. The three systems have the average sensitivity as 

shown in Figure 8.24 and Figure 8.25 for the tool without sleeve and tool with 

rubber sleeve. It can be detected that the first system has the most sensitivity features 

for fixturing system stability and tool wear detection compared to the other systems. 
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Figure 8.24: Comparison between the systems eigenvalue of tool without sleeve. 
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Figure 8.25: Comparison between the systems eigenvalue of tool with rubber sleeve. 

 

The below Table 8.9 is shown the first system which contains the most sensitive 10 

features for both types of tools (without and with rubber sleeve). 
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In addition, Table 8.10 shows the next 10 features and Table 8.11 shows the least 

sensitive 10 feature to detect the abnormalities of fixturing quality and tool. For both 

tools, the first system is found to have relative eigenvalues (Eigenvalue average of 

0.699, 0.679) which are much more than the average sensitivity of the second. In 

addition, the third system is found to have the lowest sensitivity for the detection of 

the fixturing stability and tool wear. 

Table 8.9: First system with the PCFs eigenvalue (PCA) for the both tools. 

 

 

 

 

Table 8.10: Second system with the PCFs eigenvalue (PCA) for both tools. 

 
 

 

 

               Tool without sleeve       Tool with rubber sleeve 

Sensory 

Signal 

Principal 

Component 

method 

Eigenvalue 

(PCA) 

Sensory 

Signal 

Principal 

Component 

method 

Eigenvalue 

(PCA) 

Fy PC2 0.872 Fy PC2 0.850 

Fx PC7 0.781 Mic PC5 0.842 

Fx PC5 0.768 Fx PC6 0.840 

Mic PC8 0.730 Mic PC2 0.690 

Fx PC2 0.704 AERMS PC2 0.669 

Fx PC6 0.693 Mic PC8 0.644 

Mic PC3 0.651 AERMS PC8 0.580 

Fx PC4 0.611 Mic PC3 0.575 

Mic PC5 0.604 AERMS PC3 0.577 

Fx PC8 0.579 Fx PC4 0.530 

                     Average 0.699                       Average               0.679 

              Tool without sleeve       Tool with rubber sleeve 

Sensory 

Signal 
Principal 

Component 

method 

Eigenvalue 

(PCA) 
Sensory 

Signal 

Principal 

Component 

method 

Eigenvalue 

(PCA) 

Fx PC3 0.563 Mic PC4 0.496 

Mic PC7 0.524 Fy PC4 0.490 

Fy PC4 0.423 Fx PC4 0.465 

Fx PC1 0.412 Fy PC7 0.443 

Mic PC1 0.411 Fx PC3 0.423 

AERMS PC1 0.410 Fy PC1 0.423 

AE PC1 0.407 Mic PC1 0.423 

Vwy PC1 0.405 AERMS PC1 0.402 

Strain PC1 0.404 AE PC1 0.398 

Fy PC6 0.391 AE PC3 0.385 

                   Average 0.435                      Average                     0.434 



Chapter 8   Initial  Evaluation of  ASPSF Approach 

     157 

Table 8.11: Third system with the PCFs eigenvalue (PCA) for the both tools. 

 
 

               Tool without sleeve       Tool with rubber sleeve 

Sensory 

Signal 
Principal 

Component 

method 

Eigenvalue 

(PCA) 
Sensory 

Signal 

Principal 

Component 

method 

Eigenvalue 

(PCA) 

Mic PC4 0.381 Fz PC1 0.379 

Fy PC1 0.318 AERMS PC5 0.336 

AERMS PC4 0.300 Mic PC6 0.306 

Fy PC3 0.298 Vwy PC5 0.268 

AE PC4 0.270 Fy PC6 0.268 

AE PC3 0.212 Fy PC8 0.217 

Strain PC4 0.182 Mic PC7 0.154 

Fz PC3 0.150 Fz PC8 0.137 

Vwy PC6 0.142 Fz PC7 0.108 

AE PC5 0.138 AE PC4 0.093 

                     Average 0.239                   Average                  0.226 

 

8.5 System Cost and Utilisation 

The main target for the industrial approach, is implementing the project with higher 

performance and reduced cost possible. The ASPSF approach, adding to their ability 

to select the more sensitive sensor, it is could be used to minimise the cost of the 

condition monitoring system. According to the number and type of used sensors, the 

cost of the monitoring system can be easily calculated. It is vital to reduce the cost of 

the system by eliminating sensors which do not significantly contribute to the 

selected SCFs. This is achieved by removing their SCFs from the system and 

replacing them by SCFs which come next on the rank from sensors already in the 

system. This cost reduction is possible without having to significantly reduce the 

overall sensitivity of the system (i.e. the new SCFs should still have relatively high 

sensitivity). The contribution of a sensor in a system is defined as the sensor 

utilisation (U). The U for a sensor is defined as shown in equation 8.5: 

x100
 x PT

S
U                                                                              (8.5) 

S: number of SCFs used from the sensor. 

T: total number of features in the system (10 in this case) 

 P: number of signals produced by the sensor (e.g. 3 for the 3-components force 

dynamometer, 1 for the strain, 1 for Vibration, 2 for acoustic emission, 1 for sound).  
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The overall sensor utilisation average factor for a system (UA) is defined as the 

average value of the sensor utilisation (U) of all the sensors used in the system. 

When removing the least used sensors in the system, it has been found that the 

sensor utilisation (U) factor is useful in minimising the cost of the system. The 

variable supposed cost of each system is calculated and compared to optimise the 

performance of the system related to its cost. The cost reduction process is discussed 

in Chapter 6, section 6.4.1. It explains and evaluates the cost reduction process with 

the support of the fixturing quality and tool wear experimental work. Figure 8.26 

shows the sensor set-up for the experimental work in this chapter. In this work, cost 

means the supposed variable cost of the monitoring system since the objective is to 

compare systems. 

£2200

PC  £800

£1400 4 Charge 

Amplifier  £4420

Charge Amplifier

£725

AE Coupler

£449

£30

£263

£420

£428

£12000Dynamometer

Sound sensor

AE sensor

Strain sensor

£16683

£2052

£20935

Accelerometer

Data Acquisition

Card

 

Figure 8.26: The sensor setup used to calculate the cost of the system (prices are 

based on quotation). 

 

 

8.5.1 System Optimisation 

8.5.1.1 Linear Regression (LR) method 

From Tables 8.6 and 8.7, it can be observed that there is no significant difference in 

the average sensitivity for both systems for the tools (without and with rubber 

sleeves). For the tool without sleeve, the cost of the first and second systems is 

relatively different (£19497, £20905). But, it is still can be optimised by increasing 

the system utilisation by replacing the sensory characteristic features of the AE 
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sensor from the first system with the forces sensory signals from the second system 

to reduce the cost and still have the sensitivity level. 

            Table 8.12: Sensors utilisation for the tool without sleeve using LR. 

 

 

 

 

 

 

 

 

 

 

As shown in Table 8.12, the overall average utilisation has increased in the first 

system from 18.5% up to 33.3% and from 13.75% up to 33.3% in the second system 

and the cost is reduced by 11% from £20935 to £18620. In addition, the average 

sensitivity of the system did not significantly change as can be seen in Table 8.13. In 

fact the average sensitivity has increased to 0.534 compared with the second system. 

 

Table 8.13: The optimised system (1st and 2nd system) for the tool without sleeve 

using LR. 

 
 

 

 

 

 

 

 

 

 

 

 

 

For the tool with rubber sleeve, there is significant difference between the cost of 

first and second systems which are (£20058, £4252). But it is still can be optimised 

Sensor U 

1
st
 system 

U 

2nd system 

Optimised 

System 

Dynamometer 27% 10% 33.3% 

Strain ------ 10% -------- 

Vwy ------ 10% -------- 

AE 10% 25% -------- 

UA Average 

Utilisation 
18.5% 13.75% 33.3% 

System Cost £19497 £20905 £18620 

Average 

Sensitivity 
0.540 0.385 0.534 

Tool without sleeve  

Sensory 

Signal 

Signal 

Processing 

method 

Sensitivity 

(LR 

slope) 

Fy Minimum 0.701 

Fy Average 0.651 

Fx Average 0.638 

Fy Range 0.611 

Fy Std 0.528 

Fz Kurtosis 0.490 

Fy Max 0.451 

Fz Range 0.451 

Fx Minimum 0.416 

Fz Maximum 0.406 

 Average 0.534  
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by increasing the system utilisation by replacing the sensory characteristic features 

of the strain and accelerometer sensors from the first system with the sound sensory 

signals from the second system to reduce the cost and still have the sensitivity level. 

            Table 8.14: Sensors utilisation for the tool with rubber sleeve using LR. 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table 8.14, the overall average utilisation has increased in the first 

system from 25% up to 50% and from 33.33% up to 50 % in the second system and 

the cost is reduced by 10.9 % from £20935 to £18650. In addition, the average 

sensitivity of the system did not significantly change as can be seen in Table 8.15. In 

fact the average sensitivity has increased to 0.507 compared with the second system. 

 

Table 8.15: The optimised system (1st and 2nd system) for the tool with rubber 

sleeve using LR.   
 

 

 

 

 

 

 

 

 

 

 

Sensor U 

1
st
 system 

U 

2nd system 

Optimised 

System 

Dynamometer 13.33% ------ 13.33% 

Strain 20% 40% -------- 

Vwy 10% ------ -------- 

AE ------ 10% -------- 

Mic 30% 40% 60 % 

UA   Average 

Utilisation 

18.33% 30% 36.66 % 

System Cost £20058 £4252 £18650 

Average 

Sensitivity 
0.546 0.372 0.507 

Tool with rubber sleeve 

Sensory 

Signal 

Signal 

Processing 

method 

Sensitivity 

(LR  

slope) 

Fy Average 0.589 

Fy Minimum 0.577 

Fy Maximum 0.567 

Mic Power 0.560 

Mic Std 0.551 

Mic Kurtosis 0.492 

Fx Average 0.473 

Mic Range 0.455 

Mic Maximum 0.404 

Mic Minimum 0.398 

                           Average               0.507 
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From Tables 8.13, 8.15, it can be seen that the average optimized sensitivity of the 

monitoring system for tool without sleeve is 0.534 and 0.507 for tool with rubber. 

The cost of the system is reduced from £20935 to £18620 for the normal tool and 

from £20935 to £18650 for tool with rubber sleeve. This gives an indicator that the 

sensitive and the cost of the monitoring system could be changed according to type 

of the fixturing system. 

9.5.1.2 Principal Component Analysis (PCA) method 

From Tables 8.9 and 8.10, it can be noticed that there is no significant difference in 

the average sensitivity for both systems for the tools (without and with rubber 

sleeves).  

For the tool without sleeve, the cost of first and second systems is relatively different 

(£18650, £20935). But it is still can be optimised by increasing the system utilisation 

by replacing the principal component features of the sound  sensor from the first 

system with the forces sensory signals from the second system to reduce the cost and 

still have the eigenvalue level.  

 

Table 8.16: Sensors utilisation for the tool without sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

As shown in Table 8.16, the overall average utilisation has increased in the first 

system from 26.6 % up to 33.3% and from 12.66% up to 33.3% in the second 

system and the cost is reduced by 11% from £20935 to £18620. In addition, the 

average eigenvalue of the system did not significantly change as can be seen in 

Table 8.17. In fact the average eigenvalue has increased to 0.641 compared with the 

second system. 

Sensor U 

1
st
 system 

U 

2nd system 

Optimised 

System 

Dynamometer 23.3% 13.3% 33.3% 

Strain ------ 10% -------- 

Vwy ------ 10% -------- 

AE ------ 10% -------- 

Mic 30% 20%  

UA Average 

Utilisation 
26.6% 12.66% 33.3% 

System Cost £18650 £20935 £18620 

Average 

Eigenvalue 
0.699 0.435 0.641 
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Table 8.17: The optimised system (1st and 2nd system) for the tool without sleeve 

using PCA. 

 
 

 

 

 

 

 

 

 

 

For the tool with rubber sleeve, the cost of both systems is the same (£19795). 

However, it is still can be optimised by increasing the system utilisation by replacing 

the principal component features of the AE sensor from the first system with the 

sound and force sensory signals from the second system to reduce the cost and still 

keep the reliable eigenvalue level. 

       Table 8.18: Sensors utilisation for the tool with rubber sleeve using PCA. 

 
 

 

 

 

 

 

 

 

 

 

As illustrated in Table 8.18, the overall average utilisation has increased in the first 

system from 21.66% up to 33.33% and from 17.22% up to 33.33 % in the second 

system and the cost is reduced by 10.9% from £20935 to £18650. In addition, the 

Tool without sleeve 

Sensory 

Signal 

Principal 

Component 

method 

Eigenvalue 

(PCA) 

Fy PC2 0.872   

Fx PC7 0.781 

Fx PC5 0.768 

Fx PC2 0.704 

Fx PC6 0.693 

Fx PC4 0.611 

Fx PC8 0.579 

Fx PC3 0.563 

Fy PC4 0.423 

Fx PC1 0.412 

                     Average 0.641  

Sensor U 

1
st
 system 

U 

2nd system 

Optimised 

System 

Dynamometer 10% 16.66% 16.66% 

Strain ----------- ----------- ------ 

Vwy ---------- ----------- ------ 

AE 15% 15% ------ 

Mic 40% 20% 50% 

UA Average 

Utilisation 
21.66% 17.22% 33.33% 

System Cost £19795 £19795 £18650 

Average 

Eigenvalue 
0.679 0.434 0.642 
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average eigenvalues of the system did not significantly change as can be seen in  

Table 8.19.  In fact the average sensitivity has increased to 0.642 compared with the 

second system. 

 

Table 8.19: The optimised system (1st and 2nd system) for the tool with rubber 

sleeve using PCA. 

 
 

 

 

 

 

 

 

 

8.5.1.3 System optimisation correlation using LR slope and PCA 

 

In the previous sections, the sensory system optimisation is implemented using 

different methods, namely, Linear Regression (LR) and Principal Component 

Analysis (PCA). However, it can be seen that there is significant similarity between 

two methods to reduce the cost of the monitoring system to detect the changes of the 

fixturing stability or tool wear occurred. 

From Tables (8.12, 8.14, 8.16 and 8.18), it can be observed that the selected sensor 

for the tool without sleeve is dynamometer in both used methods (LR slope and 

PCA), whereas, the dynamometer and sound sensors are the selected sensors for the 

tool with rubber sleeve. The sensor utilisation average (UA) of optimised system are 

33.3% which them same in both methods for the tool with and without sleeve, but 

the UA for the tool without sleeve are slightly different (i.e. 36.66% and 33.3%) due 

to increase the number of feature of the sound sensor as shown in Table 8.20. For 

both used methods, The cost of the optimised systems are same which are £18620 

for the normal tool, and £18650 for the tool with rubber sleeve with reduced cost 

ratio 11% and 10.9 % respectively. 

      Tool with rubber sleeve 

Sensory 

Signal 

Principal 

Component 

method 

Eigenvalue 

(PCA) 

  

Fy PC2 0.850  

Mic PC5 0.842  

Fx PC6 0.840 

Mic PC2 0.690 

Mic PC8 0.644 

Mic PC3 0.575 

Fx PC4 0.530 

Mic PC4 0.496 

Fy PC4 0.490 

Fx PC4 0.465 

                 Average               0.642               
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Table 8.20: Comparison between the optimised systems from LR slope and PCA. 
 

 

 

 

8.5.2  System  Evaluation 

 

8.5.2.1 Linear Regression (LR slope) method  

 

The ASM matrix could be used to evaluate the effectiveness of a sensor or signal 

processing method based on the sensitivity of every sensor and signal processing 

method to the fault which is embedded in the ASM matrix. 

The average sensitivity of all the sensory characteristic features, for a Signal 

Processing method SPk, achieved using all the sensory signals can be used as an 

indication of how relatively the signal processing method is valuable. The average 

value of the kth column of the ASM matrix for a signal processing SPk is the 

average sensitivity of the kth signal processing method and can be defined as [156]: 

Method  Variable Linear 

Regression (LR) 

Principal 

Component 

Analysis (PCA) 

 

Tool 

without 

sleeve  

Selected        

sensor 

Dynamometer 

 

Dynamometer 

 

UA of optimised 

system 

33.3% 33.3% 

Optimised 

System Cost 

£18620 £18620 

Reduced cost 

ratio 

11 % 11 % 

Optimised 

System 

Sensitivity 

0.534 0.641 

 

Tool 

with 

rubber 

sleeve 

Selected        

sensor 

Dynamometer 

Mic 

Dynamometer 

Mic 

UA of optimised 

system 

36.66 % 33.3% 

Optimised 

System Cost 

£18650 £18650 

Reduced cost 

ratio 

10.9 % 10.9 % 

Optimised 

System 

Sensitivity 

0.507 0.642 
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n

d

Aspk

n

i

ik
 1                                                                             (8.6) 

 

Where n is the number of rows in the ASM. 

In addition, the average sensitivity of the kth signal (As) can represent the general 

sensitivity of a signal to the failure and can be defined as: 

 

m

d

Ask

m

i

jk
 1                                                                              (8.7) 

Where m is the number or columns in the ASM. 

For the ASM matrix, the average of the summation of sensitivity coefficients (Ac) 

can provide an evaluation of the condition monitoring system sensitivity in the 

detection of the failure under investigation. And can be defined as: 

mn

d

Ac

n

i

m

j

ij

 x 

1 1


 

                                                                            (8.8) 

 

The As values for the sensory signals used in the system for both tools (normal and 

with rubber sleeve) are shown in Figure 8.27 and the Asp values for the signal 

processing methods used in the system are shown in Figure 8.28. As can be noticed 

from the figures, the results reflect what is found in the optimum system where the 

force sensor (Fy) is the most sensitive sensor for normal tool (tool without sleeve), 

meanwhile the sound sensor (Mic) is more sensitive for the tool with rubber sleeve 

to detect fixturing stability and tool wear. 
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Figure 8.27 : As values for the sensory signals of both tools. 
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Figure 8.28: Asp values for the signal processing methods of both tools. 
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The Ac factor of this system is found to be (0.20) for the normal tool and (0.24) for 

the tool with rubber sleeve. However, to find the effectiveness of the selection of the 

utilised sensors and signal processing methods, the evaluated values can be 

compared with other systems. The high Ac value mean high sensitivity level, 

meaning high information and low Ac, means low sensitivity value and less 

information. But a low Ac could include features with high sensitivity. 

8.5.2.2 Principal Component Analysis (PCA) method 

As the ASM matrix which is structured from the sensor and signal processing 

method  is used to evaluate the performance of the sensor in the previous section, the 

eigenvalue sensory matrix (EVSM)  which is also structured from the sensor and 

principal component and used to assess the effectiveness of same sensory system 

using principal component analysis. 

The average eigenvalue of all the sensory principal component, for a Principal 

component  method PCk, obtained using all the sensory signals (Aev) can be also 

used as an indication of how relatively the principal component method is applicable 

as signal processing method. The average value of the kth column of the EVSM 

matrix for a principal component PCk is the average sensitivity of the kth principal 

component method and can be calculated as [169]: 

n

EV

Apck

n

i

ik
 1                                                (8.9) 

 Where EV is the eigenvalue for each sensor, n is number of the row in EVSM 

matrix. Moreover, the average eigenvalue of the kth signal (Aev) can characterise 

the general eigenvalue of a signal to the abnormal and can be calculated as: 

m

EV

Aevk

m

i

jk
 1                                               (8.10)    

Where m is the number or columns in the EVSM matrix. 
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For the EVSM matrix, the average of the summation of eigenvalue coefficients (Ec) 

can obtain an evaluation of the condition monitoring system performance in the 

detection of the abnormal under analysis. And can be defined as: 

mn

EV

Ec

n

i

m

j

ij

 x 

1 1


 

                                               (8.11) 

The Aev values for the sensory signals used in the system for both tools (normal and 

with rubber sleeve) are shown in Figure 8.29 and the Apc values for the principal 

component methods used in the system are shown in Figure 8.30. As can be noticed 

from the figures, the results reflect what is found in the optimum system where the 

force sensor (Fx) is the most sensitive sensor for normal tool (tool without sleeve), 

meanwhile the sound sensor (Mic) is more sensitive for the tool with rubber sleeve 

to detect fixturing stability and tool wear. 
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Figure 8.29: Aev values for the sensory signals of both tools. 
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Figure 8.30: Apc values for the principal component methods of both tools. 

 
 

 

The eigenvalue coefficients (Ec) of this system is found to be (0.26) for the normal 

tool and (0.27) for the tool with rubber sleeve. However, the effectiveness of the 

selection of the utilised sensors and principal component methods, the evaluated 

values can be compared with sensory coefficient (Ac) resulted by using signal 

processing methods.   

8.5.2.3 Comparison between LR slope and PCA methods 

Figure 8.31 shows the values of the Ac factor and the Ec factor for both tools 

(normal and tool with rubber sleeve). It can be seen that there is a difference 

between the factors in the value as for normal tool and tool with rubber sleeve as 

they are (0.20, 0.24) and (0.26, 0.27) for the Ac an Ec for both tools respectively. 

The more significant findings to emerge from this discussion are that: 
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1- Linear Regression method and Principal component together could be provided 

similar indication with regard to determine which sensor has a higher sensitivity. 

2-  Both methods indicate that the automated monitoring system has ability to 

define the changes in the fixturing system; therefore it could be used to detect 

the abnormities or the changes of the machine setup during the machining 

process. 
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Figure 8.31: Comparison between Ac and Ec of both tools. 

 

8.6 Approach to measure surface roughness 

8.6.1   Proposed Approach  

Generally all surfaces have their own characteristics, which are referred to as surface 

texture. Surface texture is the pattern of the surface which deviates from a nominal 

surface. The deviations may be repetitive or random and may result from roughness, 

flaws and waviness. Therefore, the surface roughness is defined as a closely spaced, 

irregular deviation on a scale smaller than waviness. Figure 8.32 shows the standard 

terminology and symbols to describe surface roughness. In machining, surface 

roughness is generally specified mathematically in terms of the arithmetic average 

deviation from the mean using Eq. (8.12) [203]. 

dxY(x)
L

1
   Ra

L

o

                                                                 (8.12) 
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Where L is the sampling length and Y is the ordinate of the profile curve. In other 

words, Ra is the area between the roughness profile and its mean line, or the integral 

of the absolute profile height over the evaluation length which needs to be 

optimised. The spindle-tool system including collet and chuck holder modelled as a 

cantilever beam was assumed to be the main vibration to determine surface 

roughness. Then the relationship between tool motion and force waveform could 

express as [78]: 

forcetool r    C  r 
                                                                    (8.13) 

Where rtool is displacement of tool, C is coefficient to be estimated from using the 

experimental data, and rforce  is displacement of cutting force signal. 

Surface roughness considered in this research is Ra, which is calculated from cutting 

force by equation 8.13: 

 Ra    C   Ra forceworkpiece 
                                                    (8.14) 

Where Raforce is a centreline average value directly calculated from rforce 

 

Figure 8.32: Surface roughness profile. 

 

 

In the current research, as a novel investigation, the relation pattern of forces signals 

will be used to measure the surface roughness of the workpiece using equation 8.12. 

The real surface roughness of the machined surface is measured using surface tester 

as illustrated in Figure 8.33. By using the equation 8.13, the value of the constant 

(C) can be calculated, this leads to predict the surface roughness for the future work 

in the machining process and helps to avoid using the manual measurement by using 

the equation 8.14.  
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8.6.2  Implementation of the proposed Approach  

The experimental work of the condition monitoring system of this study is 

performed on a milling CNC machine type (DENFORD) using Aluminium 

workpiece. The force signals are monitored using 3-component Dynamometer 

(Kistler 9257A) and the workpiece is fixed on the dynamometer. The force 

dynamometer is connected to a 4-channel charge amplifier (Kistler 5070A). All the 

wires and cables of the sensors are connected to a National instrument connection 

box (SCB-100). The signals are monitored using data acquisition card NI PCI-

6071E from National Instrument using special data acquisition software written 

using the National Instrument CVI programming package. A Mitutoya (SJ-210) 

apparatus is used for the surface roughness measurements. The average value (Ra) 

was recorded as the value of surface roughness.  

 

NI 
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Tool
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Figure 8 33: Schematic diagram of experimental setup.      
 

 

The shank of the tool is covered by a rubber sleeve to emulate a fixturing system 

with low rigidity. The tests start with a fresh tool and finish with completely worn 

tool. The raw signals for the tools are collected from the sensors to monitor 45 

machining samples for each type of tools. 

To verify prediction models, cutting tests using 45 cutting tests are conducted. Step 

cutting is also performed using same end mill tools. Axial depth of cut is 0.22 mm 

and feed rate of cut is 250mm/min. Detailed cutting conditions are listed in Table 

8.1.  Surface roughness values have been measured by using stylus type profilometer 

(SJ-210) after each cut. Measuring position has been at the centre line of machined 
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surface. Surface roughness from the measured cutting forces is calculated on PC 

using software after targeted area was machined. Cutting forces have been measured 

using force sensor (Dynamometer Kistler 9257A). The testing planning has been 

divided into two phases. The first phase is a preparation in which sample data are 

collected so the mathematical surface roughness can be computed. In the second 

step, the experimental surface roughness measurements are collected in the z-axis. 

From cutting tests which is started by fresh tool and finished with worn tool, 

coefficient C of equation  8.13 is ( 0.733 + 0.002 μm/N) for tool without sleeve and 

(0.625+ 0.002 μm/N) for tool with rubber sleeve. The statistic methods and 

roughness quantity are used such as the average surface roughness (mean of Ra). 

Figures (8.34, 8.35) have shown that there are statistical parameters qualify between 

the patterns of the curves for surface roughness of workpiece using surface 

apparatus (SJ-210) for the tool without sleeve and the tool with rubber sleeve, and 

mathematical surface roughness using cutting forces signals. Where the average of 

each five tests has been computed gradually to nine groups as shown in Figures 8.36 

and 8.37. It can be noticed that the values of both real and modelled surface 

roughness have been increased when used tool with rubber sleeve. This finding 

provides an indicator for the ability of this approach to detect the changes of the 

quality of the fixturing system. 
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Figure 8.34: surface roughness of forces and workpiece for the tool without sleeve. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4KYY3RR-1&_user=2471587&_coverDate=05%2F31%2F2007&_alid=1649573312&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5754&_docanchor=&view=c&_ct=145&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=255492037e30cdb3457dbd8e323ca144&searchtype=a#hit81#hit81
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Figure 8.35: surface roughness of forces and workpiece for the tool with rubber 

sleeve. 
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Figure 8.36: Mean of the surface roughness for the tool without sleeve. 
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Figure 8.37: Mean of the surface roughness for the tool with rubber sleeve. 

 

This study has investigated a metal cutting surface quality control procedure that 

takes advantage of the known change pattern of surface roughness. This procedure is 

performed on statistical analysis of surface roughness measurement and will directly 

respond to the features of the surface roughness curve. A set of actual data collected 

from metal cutting process is studied. The data are measurement of the surface 

roughness of a practicable workpiece. First, mathematical model has been found to 

describe the behaviour of surface roughness. Then a surface roughness is measured 

for the same area of machined surface which the data of cutting forces are used to 

create this mathematical model. This study has proven that the accurate resulting 

value for the prediction performance measure could be obtained from a predicted 

mathematical model and the testing samples by using the available experimental 

data. 

8.7 Conclusion 

This chapter described the practical details of the ASPSF approach. The ASPSF 

approach for eight sensory signals is explained using an experimental machining test 

to monitor a fixturing system stability and gradual tool wear in milling process. The 

implemented ASPSF approach utilises two matrixes, named the Association Matrix 

(ASM), and Eigenvalue Sensory Matrix (EVSM) to compare the sensitivity of the 
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features and eigenvalue of the principal component to the fault under investigation. 

In addition to evaluate the overall monitoring system using the average sensitivity 

and eigenvalue of sensors, and signal processing methods and principal component 

methods. The Linear regression (LR) analysis and Principal Component Analysis 

(PCA) are used to find out the most sensitive features  to detect fixturing setup and 

cutting tool wear. Two types of the fixturing setup have been used to hold the 

cutting tools, tool without sleeve and tool with rubber sleeve. The SCFs of LR 

method are visually examined and examples of high-sensitivity and low sensitivity 

SCFs are presented, similarly, the PCFs obtained from the PCA method are 

described and the images of EVSM matrix are utilised. Sensory utilisation is 

implemented within the ASPSF approach to reduce the cost of the system without 

affecting the sensitivity of the system. The ASPSF approach is found useful in 

selecting the most sensitive sensors either by using linear regression method or 

principal component analysis method which they both emerged a reliable correlation 

to design a condition monitoring system for milling process. 

On the other hand, the proposed approach to predict the surface roughness of the 

machined surface using the response of the force sensor presented valuable results to 

avoid the manual measurements.                                             .             .
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Chapter 9  The Applications of ASPSF 

Approach Using Pattern Recognition Systems 
 

9.1 Introduction  

 
In order to implement the ASPSF approach with different applications, in this chapter, 

different groups of multi-sensor fusion models have been presented. The chapter 

provides more experimental work to verify the capability of the applied ASPSF 

approach in developing and designing a sensor fusion model of a condition 

monitoring system for milling process by selecting the most sensitive sensors and 

signal processing methods using pattern recognition systems. It describes the same 

achieved methodology in the previous chapter for the following investigations: 

• Taylor’s Equation Induced Pattern (TIP) Investigation: The chosen process 

parameters monitored are force (dynamometer), acoustic emission (AE), sound, 

accelerometers, strain, power, eddy current sensors using different types of constant 

functions. These methods are applied for finding the relation between the suggested 

patterns of the constant function with those resulted from the sensory signals.  

 • Back Propagation Neural Network Investigation: This process complement the 

previous investigation by training the data according to the obtained target. Both 

investigations represent the same methodology and experimental work to detect 

fixturing setup and tool wear and provide diagnostic and prognostic information. 

• Surface Roughness Investigation: As the surface roughness is a reliable indicator 

to the quality of the machined surface, therefore it is employed in this chapter to 

reflect the effect of the machining quality on the sensitivity of the monitoring system. 

This chapter also seeks to confirm the methodology and the technique applied in 

Chapter 8 for the milling process with different multi-sensors using different pattern 

recognition systems. The main assumption to be tested is that linear regression and 

principal component analysis methods are capable of detecting the sensitivity of the 

SCFs and sensory signals. 

9.2 Data Analysis 

The experimental work is conducted to examine the behaviour of the signals for 

different fixturing types and material and to monitor tools status (fresh and worn), and 
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also to find the most sensitive sensory characteristic features to fixturing and tool 

failures. As illustrated in Figure 10.1, the experimental work of the condition 

monitoring system of this study is performed on a milling CNC machine type 

(DENFORD). Several sensory signals are used in this study including cutting forces 

(Fx, Fy and Fz), strain, accelerometers (Vwx, Vwy, Vsx, Vsy and Vsz), Acoustic 

Emission sensor (AE), eddy current sensors (Edx, Edy), power sensor (Pwr), and 

microphone (Mic) for measuring sound. The force signals are monitored using 3-

component dynamometer (Kistler 9257A) and the work piece is fixed on the 

dynamometer. The dynamic and quasistatic force signals are monitored using a strain 

sensor (Kistler 9232A). The AE sensor (Kistler 8152b111) is attached to the 

workpiece to monitor AE signals transmitted during machining and connected to AE 

coupler (Kistler 5125B). The accelerometers (B&K4366) are mounted on the 

moveable table of machine and connected to charge amplifier (Kistler 5001). The 

other accelerometers (Kistler 8704B) are attached to the machine spindle and 

connected to coupler (Kistler 5134B). Sound signals are collected using a microphone 

(EM400) placed in the direct vicinity of the workpiece. Eddy current sensors (IC12-

02) are connected to power supply (PDA- 3502 A) with 12 volts. Power sensor (IP-

151) is connected directly to the data acquisition card. All the wires and cables of the 

sensors are connected to a National instrument connection box (SCB-100). The 

signals are monitored using data acquisition card NI PCI-6071E from National 

Instrument using special data acquisition software written using the National 

Instrument (Lab windows/ CVI) programming package. Mitutoya apparatus (SJ-210) 

is used for the surface roughness measurements. The experimental work is performed 

on milling machine using Aluminium workpiece. The milling process is carried out at 

the conditions as shown in the Table 9.1. 

                       Table 9.1: The machining parameters of the milling process. 

Machining conditions Specifications 

 

Feed rate 215 mm/min 

Depth of cut 0.36 mm 

Coolant type No coolant (Dry) 

Spindle speed 2860 RPM 

Diameter of tool 3mm/ 6mm shank 

Material of tool HSS (End mill HSS) 

Type of tool End mill Tool( 4 Flutes, Uncoated) 
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Figure 9.1: Schematic diagram of experimental setup for the monitoring system. 

 
 

To emulate a fixturing system with low rigidity, the shank of the tool is covered by 

three different elastic materials namely rubber, copper and aluminium with thickness 

of 1mm as shown in Figure 9.2 where the tests start with a fresh tool and finished with 

completely worn tool. 
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Figure 9.2: The two states of the milling tool (fresh and worn tool). 
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9.2.1 Signals Simplifications 

 

One of the complex machining processes is milling, and it is assumed complex 

sensory signals presented as a function of time as shown in Figure 9.3 and Figure 9.4.  

It is assumed that the process starts with a healthy condition (fresh tool), and 

gradually or suddenly the state of the process changes with an introduced fault (worn 

tool). It is relatively clear these machining signals have been found difficult to predict 

the most sensitive signals to fixturing rigidity and tool wear directly from the 

unprocessed data. 
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      Figure 9.3: Example of the raw signals of the milling process for fresh tool. 
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Figure 9.4: Example of the raw signals of the milling process for worn tool. 
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It can be observed from Figures 9.3 and 9.4 that the vibration level of some signals 

has increased for the worn tool, as in the cutting forces signals. In addition, the level 

of some sensory signals has changed such as the acoustic emission (AE) signal. It 

may be difficult to assess the state of the process from the produced  signal, therefore 

the first step is to transfer signals from its complex form into a group of simplified 

sensory signals denoted Sensory Characteristic Features (SCFs). For example, if a 

milling process sensory signal can be transformed into a group of SCFs with 

relatively simple nature with less variation, then it is expected to be much easier to 

retrieve the necessary information which presents the state of the process based on the 

change in the level of the extracted SCFs. 

9.2.1.1 Linear Regression (LR) method 

 

The raw signals are processed using several time domain signal processing methods to 

extract the Sensory Characteristic Features (SCFs). The signal processing methods 

used are maximum (max), minimum (min), standard deviations (std), the average (), 

the range, the skewness (skew), kurtosis value (K) and power as explained in Chapter 

7. The 8 signal processing methods are used to process the 15 sensory signals to 

construct an Association Matrix ASM of (8  15) which allows the investigation of 

120 sensory characteristic features (SCFs) for the design of the monitoring system. 

The SCFs are arranged according to their sensitivities to tool status based on the 

absolute slopee of the linear regression method as shown in Figures 9.5- 9.8.  

  

Figure 9.5 presents examples of high and low-sensitivity SCFs to tool wear for three 

tools without sleeve. However, Figures 9.6, 9.7 and 9.8 present different examples of 

the sensitivity SCFS when used cutting tools with rubber sleeve, copper and 

aluminium sleeves respectively.  
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Figure 9.5: Example of high and low sensitivity SCF for the tools without sleeve.      
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Figure 9.6: Example of high and low sensitivity SCF for the tools with rubber sleeve. 
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Figure 9.7: Example of high and low sensitivity SCF for the tools with copper sleeve. 
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Figure 9.8: Example of high and low sensitivity SCF for the tools with aluminium 

sleeves. 

 

The SCFs are visually inspected and it has been found that SCFs with high absolute 

slopee show higher sensitivity to the fault.  Table 9.2 presents example of the highest 
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and lowest sensitive SCFs for this particular tool wear test where sensitivity values 

are the linear regression slope of the normalised features. Notice that the above 

figures indicate that the change in the characteristic of the fixturing system has caused 

change in the most sensitive sensors and signal processing systems that can be used to 

detect tool wear. For example, with normal fixturing system, eddy current signals 

(Edy) and force (Fx) are found to be the most sensitive to detect tool wear. However, 

with the rubber sleeve system, eddy current (Edx) and force signals are found to be 

the most sensitive signals to detect tool wear. Differently, with holding by copper 

sleeve, force and power signals are indicated more performance to sense the tool 

conditions. Similarly, with clamping by the aluminium sleeve, power and force 

signals have effectively stated the tool wear.  

            

              Table 9.2: The Associated matrix of the system for tool 1 without sleeve. 

 
 

Tool  1                                      Signal Processing Methods  

Sensor max  min std power average skew kurtosis range 

Fx 0.844 0.742 0.158 0.408 0.805 0.416 0.216 0.100 

Fy 0.761 0.754 0.437 0.943 0.777 0.075 0.379 0.106 

Fz 0.503 0.614 0.022 0.047 0.507 0.696 0.332 0.288 

Strain 0.661 0.672 0.689 0.542 0.385 0.603 0.351 0.687 

Vwy 0.532 0.517 0.555 0.535 0.533 0.570 0.348 0.440 

AE 0.952 0.974 0.923 0.892 0.532 0.136 0.498 0.966 

AERMS 0.926 0.725 0.702 0.929 0.919 0.165 0.344 0.727 

Mic 0.943 0.645 0.770 0.921 0.922 0.904 0.008 0.726 

Vsx 0.843 0.559 0.741 0.920 0.892 0.082 0.504 0.482 

Vsy 0.162 0.399 0.725 0.930 0.875 0.256 0.262 0.367 

Vsz 0.452 0.343 0.515 0.713 0.740 0.084 0.076 0.006 

Vwx 0.436 0.478 0.467 0.877 0.880 0.756 0.486 0.004 

Pwr 0.091 0.742 0.853 0.991 0.325 0.226 0.150 0.591 

Edx 0.299 0.437 0.129 0.821 0.821 0.762 0.368 0.340 

Edy 0.998 1.195 1.146 1.194 1.193 1.075 1.071 1.107 
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Figure 9.9: A graphical presentation of the sensitivity for tool 1 without sleeve. 

 

Figure 9.9 presents images of the Association Matrix (ASM) which includes the 

sensitivity of a few SCFs implemented in this monitoring system. The ASM presents 

for each sensor and signal processing method (SCF) the sensitivity to detect the 

machining faults, where high sensitivity indicates high capability to detect the fault. 

The numbers with small value in Table 9.2 is shown in black in the image in Figure 

9.9. This mean low sensitivity, numbers with medium values are shown in red which 

means medium sensitivity, and numbers with high values are shown in yellow which 

means high sensitivity. The associated matrixes, tables and images, for the tools are 

described in Appendix B.  

9.2.1.2  Principal  Component  Analysis (PCA) method 

 

The fourth step is implemented by calculating the eigenvectors and eigenvalues for 

the PCA matrix since it is square. The concept of the eigenvector and eigenvalue is 

defined in chapter 7. This gives the components in order of significance. To be 

precise, if you originally have n variables in the row data, and so you calculate n 

eigenvectors and eigenvalues. Eigenvector determine the location of the variables on 

the n- variables space, meanwhile the eigenvalues evaluate the distance between the 
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variable and the mean zone. In general, once eigenvectors are found from the 

covariance matrix, the next step is to order them by eigenvalue, highest to lowest. 

That is meaning the eigenvector with the larges eigenvalue was the one that pointed as 

the most significant relationship between the data variables.  
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Figure 9.10: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 1 without sleeve. 

 

 

Figures 9.10 shows the application of the above procedure in this research, and 

visually clear that the eddy current sensor in y-axis (Edy) has the maximum 

eigenvalue for tool 1, that is indicated it as a most sensitive to the changes of the 

machining process for the tool without sleeve, meanwhile the dynamometer, force 

sensor in x axis (Fx), and eddy current sensor in x axis (Edx) are second and third 

more sensitive sensors for detecting the tool and fixturing conditions.  

The principal components for the all sensors used in the test are arranged to create 

Eigenvalue Sensory matrix (EVSM). The EVSM is similar with that one constructed 

in the linear regression. The EVSM for tool 1 without sleeve is showing in Table 9.3 

and graphically presented in Figure 9.11. It can be noticed that the feature PCF(Edy, 

PC1) is the most sensitive; it is constructed from the combination of the Edy sensor 

with the first principal component. The EVSM for the other tools (2-12) are described 

in Appendix C.  
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Table 9.3: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 1 without 

sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.36 0.40 0.47 0.11 0.29 0.66 0.46 0.38 0.53 0.52 0.44 0.55 0.42 0.50 0.37

Fy 0.35 0.38 0.42 0.10 0.13 0.24 0.29 0.28 0.34 0.49 0.22 0.44 0.19 0.14 0.33

Fz 0.32 0.23 0.27 0.05 0.10 0.12 0.14 0.21 0.20 0.43 0.16 0.26 0.14 0.11 0.23

Strain 0.23 0.18 0.22 0.04 0.04 0.10 0.07 0.19 0.17 0.40 0.12 0.15 0.07 0.05 0.21

Vwy 0.09 0.15 0.18 0.03 0.00 0.06 0.06 0.16 0.06 0.19 0.12 0.11 0.05 0.04 0.08

AE 0.06 0.14 0.17 0.02 0.02 0.05 0.03 0.07 0.04 0.19 0.06 0.07 0.03 0.02 0.05

AERMS 0.02 0.02 0.12 0.00 0.03 0.05 0.03 0.00 0.01 0.14 0.05 0.04 0.01 0.00 0.01

Mic 0.03 0.02 0.08 0.02 0.03 0.05 0.02 0.03 0.01 0.10 0.04 0.02 0.03 0.01 0.01

Vsx 0.14 0.04 0.02 0.05 0.06 0.12 0.04 0.04 0.01 0.09 0.01 0.02 0.08 0.02 0.09

Vsy 0.15 0.22 0.03 0.08 0.06 0.13 0.10 0.08 0.05 0.08 0.05 0.02 0.10 0.22 0.15

Vsz 0.31 0.29 0.13 0.08 0.06 0.14 0.23 0.11 0.19 0.08 0.08 0.06 0.13 0.27 0.22

Vwx 0.31 0.31 0.17 0.17 0.12 0.16 0.24 0.30 0.27 0.01 0.18 0.07 0.26 0.28 0.27

Pwr 0.33 0.32 0.26 0.18 0.21 0.17 0.29 0.34 0.32 0.02 0.31 0.19 0.37 0.39 0.32

Edx 0.34 0.34 0.28 0.39 0.21 0.19 0.37 0.34 0.37 0.07 0.39 0.36 0.42 0.41 0.40

Edy 0.88 0.35 0.45 0.86 0.36 0.58 0.58 0.57 0.42 0.13 0.64 0.47 0.59 0.44 0.49
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Figure 9.11: A graphical presentation of the EVSM for tool 1 without sleeve. 

  

9.2.1.3 Correlation between LR and PCA methods 

By using the same steps in the previous chapter (section 8.3.3) to calculate the 

correlation coefficient between the sensitivity using linear regression and the 
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eigenvalue using principal component analysis, the following figures show these 

relationships for different tools with and without sleeves. 
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Figure 9.12: The correlation coefficient between PCA and linear regression 

sensitivity for tools without sleeves. 
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Figure 9.13: The correlation coefficient between PCA and linear regression 

sensitivity for tools with rubber sleeves. 
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Figure 9.14: The correlation coefficient between PCA and linear regression 

sensitivity for tools with copper sleeves. 

 

0.1 0.2 0.3 0.4 0.5 0.6
-1

0

1

2

3

Correl. Coefficient  =  86%

P
C

 1

Tool 10

0.1 0.2 0.3 0.4 0.5 0.6
-1

0

1

2

3

Correl. Coefficient =  84%

P
C

 2

Tool 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-2

0

2

4

CorrelCoefficient =  86%

P
C

 1

Tool  11

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

0

1

2

3

CorrelCoefficient =  93%

P
C

 2

Tool  11

0.1 0.2 0.3 0.4 0.5 0.6
-2

0

2

4

Sensitivity

CorrelCoefficient  =  86%

P
C

 1

Tool 12

0.1 0.2 0.3 0.4 0.5 0.6
-5

0

5

10

Sensitivity

CorrelCoefficient  =  70%

P
C

 2

Tool  12

Tools  with aluminium sleeve
 

Figure 9.15: The correlation coefficient between PCA and Linear regression 

sensitivity methods for tools with aluminium sleeves. 
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Figures 9.12- 9.15 show the correlation coefficient between the sensitivity using 

linear regression and the sensitivity using the PCA for tools without sleeve, tools with 

rubber sleeve, tools with copper sleeve and tools with aluminium sleeve respectively. 

In the Figure 9.12, which plotted the relationship for the three tools without sleeve 

been used. For those tools, the correlation coefficient between the mean sensitivity 

and first principal component (PC1) is 94%, 97% and 91%. Meanwhile it is 93%, 

97% and 90% between the sensitivity and second principal components (PC2). The 

correlation coefficient for the three tools with rubber sleeve it is much lower than for 

the tool without sleeve, where it is (75%, 70% and 80%) for sensitivity and PC1, 

whereas the relationship between sensitivity and PC2, they are 56%, 54% and 69% as 

shown in Figure 9.13.  Figure 9.14 shows the correlation for the three tools with 

copper sleeve as (93.6%, 89% and 92%), while the values of correlation coefficient 

are (93.7%, 83.7% and 89.7%) for the relation between sensitivity and PC2.  For the 

three tools with aluminium sleeve, the correlation coefficient is (86%); however it is 

(84%, 93% and 70%) between sensitivity and PC2 as shown in Figure 9.15.   
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Figure 9.16: The relation between the correlation coefficient of PC1 and fixturing 

systems. 

 

Figure 9.16 shows the concluding relationships between the correlation coefficient of 

PC1and the fixturing materials (all the types of tools with and without sleeve), where 

the bar chart proves the aforementioned findings as the correlation decreased with the 

used material less rigidity (less modulus of elasticity) as the maximum correlation for 

the tools without sleeve, following by the tools with copper sleeve, tools with 

aluminium sleeve and finally tools rubber sleeve respectively. Figure 9.17 presents 

similar results for the correlations of PC2.  
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Figure 9.17: The relation between the correlation coefficient of PC2 and fixturing 

materials. 

 

From the analysis and above figures, it is can be concluded that the fixturing type and 

material could play a significant role in the result of sensitivity level. In addition, the 

fixturing type and material could affect the eigenvalues of principal component 

analysis where there is less sensitivity and correlation coefficient of the tools with 

rubber sleeve. Whereas, it can be noticed that tools with normal fixturing (tools 

without sleeve) produce better sensitivity and high correlation coefficient. 

The finding of the above discussion that: 

1- There is significant relationship between the sensitivity using linear regression and 

those using principal component.  

2- The second finding is stated that the change of the fixturing material leads to 

change the sensitivity of the sensory feature.  This finding indicates the ability of 

the fixturing setup to effect on the design of monitoring system. 

 

9.3 Data Training  

 

9. 3.1  Linear Regression (LR) method 

 

The data have been collected online from the machining process using the monitoring 

sensor and signal condition equipment. As the sensor and signal processing method 

with higher sensitivity are applied to determine the most sensitive of sensory 

characteristic feature (SCF) using the linear regression slope, the following step is to 

create a matrix to account the feature data of this sensor arranged from higher to lower 
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sensitivity values. First twenty SCF of the first tool (Tool with sleeve) are selected as 

a training data where the first twenty SCF of the other tools are used for testing. Each 

feature is structured from 27 tests, on the other ward from the first test till last test as 

the tool status is changed from fresh to worn tool.  
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Figure 9.18: The application of Neural Network for SCF data. 

 

Figure 9.18 shows the practical steps of the implementation the neural network for the 

training data. By using back propagation neural network, it can be classified the tool 

condition. The training error values between the used tool (first tool without sleeve) 

and the other tools are measured in neural network.  

 

Figure 9.19 provides examples from the input data to the neural network, where the 

first twenty features are entered. The SCF of maximum point of the sound signal got 

high sensitivity according the linear regression slope. Similarly, the minimum point of 

the accelerometer (Vsx), and the maximum point of AE signal from the fresh tool to 

worn tool. 
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Figure 9.19: Example of the SCF data for input training data. 

 

 

As the back propagation training algorithm is one of the supervised neural network 

method, therefore it can be determined the target for output data and it is assumed as 

ideal target. Moreover, the trained network can be simulated to obtain its response to 

the inputs in the training set, consequently the difference between the simulated data 

and the ideal target it is represented the training error as in the following equation: 

 

 targetIdeal - data Simulated error  Training                               (9.1) 

 

Figure 9.20 presents the mean training error percentage for used tools in the 

experimental test using Back Propagation (BP) as a supervised neural network. The 

mean error of the tools without sleeve is 1.15 %; meanwhile it is 2.07% for the tools 

with rubber sleeve. The error values are relatively high for both tools with copper 

sleeve and tools with aluminium sleeve as they are (1.46 %, 1.84%) respectively. 

Similary, Figure 9.21 shows the percentaing of training errors for used tools using un 

supervised neural network, namely Learning Vector Quantisation (LVQ). The error 

ratios are less than those obtained from data training uing the BP. However, they take 

the similer patern as the ratio is 0.56% for the tool without sleeve and then it raised to 

0.84% for tool with rubber sleeve. Meanwhile, it is 0.79%, 0.82% for the tool with 

copper and aluminium sleeves respectively.   
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Figure 9.20: SCF testing error ratio using BP neural network for tools  with different  

fixturing  systems. 
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Figure 9.21: SCF testing error ratio using LVQ neural network for tools with different 

fixturing materials. 

 

9.3.2 Principal Component Analysis (PCA) method 

 

The data have been collected from the machining process using the monitoring sensor 

and signal condition equipment. As the sensor with higher sensitivity has been 

determined using the principal component analysis, the next step has also created a 

matrix to account the sensory data for each one of the sensitive  sensors from the first 

test till 27
th

 test as a tool become completely worn. The data of the first tool is 
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considered as a training data and the sensory data of the machining rest tools are used 

for testing.         
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Figure 9.22: The application of Neural Network for PCA data. 

 

Figure 9.22 shows the practical steps of application the neural network for obtained 

data based on the principle component analysis. It presents that the PCA has ability to 

state the level of effectiveness as regards the sensor with higher eigenvalue. 

Consequently, the data of the those sensor are supplied to neural network as training 

data, therefore the network later could classify the status of the tool as “0” when the 

tool is fresh(normal) or “1” for the worn tool. Then, the value of training error could 

be calculated from the difference between the simulated target and ideal target. Figure 

9.23 illustrates examples of the input data to the neural network. It can be seen that 

according to the principal component that the eddy current sensor got the higher 

eigenvalue and this means that it more sensitive to the changes through milling 

process, the data of sensory characteristic features for eddy current sensor will be 

entered as input data (i.e. SCF(Edy, max), SCF(Edy, min), SCF(Edy, std),…..). 

Where SCF of this sensor are used for training from the fresh tool till the tool will be 

out of machining. 
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Figure 9.23: Example of the SCF data of most sensitive sensor. 

 

As the aforementioned input data used for training in the neural network, then it is 

possible to calculate the training error by using the same equation 9.1. Figure 9.24 

shows the mean training error for the data of the implemented tools according to the 

classification of the PCA to determine which sensor gets the more sensitive during the 

machining process. The training error value is 1.27% for the tools without sleeve, 

2.25% for the tools with rubber sleeve, and 2.1%, 2.41% for tools with copper sleeve 

and tools with aluminium sleeve respectively. It is clear that the error percentages for 

the tools with sleeve higher than those for tools without sleeve. Figure 9.25 presents 

the error percentages of the data training using LVQ neural network where they are 

0.55%, 1.16%, 0.65% and 1.1% for the tools without sleeve and tools with rubber, 

copper and aluminium sleeves respectively. The values of these errors lower than 

those resulted by using BP neural network.  This could be provided an indicator to the 

ability to classify the fixturing as perfect or imperfect from the result of training in 

neural network. 
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Figure 9.24: PCA testing error ratio using BP neural network for tools with different 

fixturing systems. 
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Figure 9.25: PCA testing error ratio using LVQ neural network for tools with different 

fixturing materials. 

 

 

 

9.3.3  The Training Error Evaluation 
 

It would be interesting to compare the results of mean training error depend on the 

training data from linear regression method and principal component analysis. Figure 

9.26 has been combined the errors results from Figure 9.20, and Figure 9.24, and 

combined the Figures 9.21 and Figure 9.25 to show the correlation coefficient relation 

between the signal simplification methods using different neural networks. The 
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correlation coefficient is 85.5% between the LR and PCA using supervised Back 

propagation network (BP), whereas it is 78% between them using unsupervised 

learning vector quantisation (LVQ) neural networks. Generally, it can be seen that the 

values of errors from the training data using linear regression is lower than those 

obtained from the principal component analysis in both used neural network. The 

amount of errors using BP neural network is higher than training errors by using LVQ 

network. However, the patterns of training error for both methods are consistent 

where they started with lower error values for the tools without sleeve and then they 

rose for the rest tools without sleeve. One of the more significant findings to emerge 

from this discussion is that the training errors depend on the linear regressing is less 

than other method, also the ability of the neural network to define the machine setup 

stability. Taken together, these findings support the reliability of the proposed 

monitoring system to detect the changes in the fixturing set up. 
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Figure 9.26: correlation coefficient between training errors of LR and PCA (a) using 

BP neural network, (b) using LVQ neural network. 

 

 

9.4  System Cost and Utilisation 

 
The same method used in Chapter 8 to calculate the cost of the system is used here 

again. Figure 9.27 shows the sensor set-up for the experimental work in this section. 
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Figure 9.27: The sensor setup used to calculate the cost of the system (prices are 

based on quotation).     

 

 

9.4.1 Selection of Sensory Features  

 

9.4.1.1 Selection of Sensory Characteristic Feature (SCFs) 

 

By using the linear regression method to develop the designed system, and as the 12 

tools need to be analysed clearly, therefore they are classified to four groups as each 

three tools use the same type of sleeve and are been grouped together. 

The same method for the SCF classification which is used in the chapter 8, section 

8.4.1, the three systems have the average sensitivity as shown in Figure 9.28 for the 

tool 1 without sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other 

systems. The SCF classification for the other tools (2-12) is described in Appendix D.  
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Figure 9.28: Comparison between the systems sensitivity for tool 1 without sleeve. 

 

 

Table 9.4: First system with the SCFs sensitivity (LR) slope for the  tool 1 without 

sleeve. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tool 1 without sleeve 

Sensory 

Signal 

SP 

method  

Sensitivity 

 

Edy min 1.195 

Edy average 1.194 

Edy power 1.193 

Edy std 1.145 

Edy range 1.106 

Edy skew 1.075 

Edy kurtosis 1.071 

Edy max 0.998 

Pwr power 0.991 

AE min 0.974 

               Average 1.094 
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Table 9.5: Second system with the SCFs sensitivity (LR slope) for the  tool 1 without 

sleeve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 9.6: Third system with the SCFs sensitivity (LR slope) for the  tool 1 without 

sleeve. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4.1.2 Selection of Principal Component Feature (PCFs) Method 

 

The same method in the section chapter 8, section 8.4.2, for PCF classification is used 

here for sorting the 12 tools which are implemented the experiment work. In the 

following subsections, the classification process for the tool 1 without sleeve, more 

details about the other tools are described in Appendix E. 

Tool 1 without sleeve 

Sensory 

Signal 

SP 

method  

Sensitivity     

AE range 0.965 

AE max 0.951 

Mic max 0.943 

Fy power 0.942 

Vsy power 0.929 

AERMS power 0.928     

AERMS max 0.926 

AE std 0.922 

Mic average 0.921 

Mic power 0.920 

                Average 0.934 

Tool 1 without sleeve 

Sensory 

Signal 

SP 

method  

Sensitivity 

Vwy kurtosis 0.348 

AERMS kurtosis 0.343 

Vsz min 0.342 

Edx range 0.340 

Fz kurtosis 0.331 

Pwr average 0.324 

Edx max 0.298 

Fz range 0.288 

Vsy kurtosis 0.262 

Vsy skew 0.255 

                Average 0.313 
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The three systems have the average sensitivity as shown in Figure 9.29 for the tool 1 

without sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other 

systems. 
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Figure 9.29: Comparison between the systems eigenvalue of tool 1 without sleeve. 

 

  

 

Table 9.7: First system with the PCFs eigenvalue (PCA) for the tool 1 without sleeve. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tool 1 without sleeve 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Edy PC1 0.879 

Edy PC4 0.862 

Fx PC10 0.664 

Edy PC8 0.638 

Edy PC15 0.586 

Edy PC2 0.580 

Edy PC9 0.576 

Edy PC4 0.569 

Fx PC4 0.550 

Fx PC3 0.529 

                Average 0.643 
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Table 9.8: Second system with the PCFs eigenvalue (PCA) for the tool 1 without 

sleeve. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9.9: Third system with the PCFs eigenvalue (PCA) for the tool 1 without 

sleeve. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4.2   System Optimisation 
 

9.4.2.1 Linear Regression slope (LR slope)  Method 

 

From Tables 9.4 and 10.5, it can be observed that there is no significant difference in 

the average sensitivity for both systems for the tool 1 without sleeve. More details 

about the other tools (2-12) are described in Appendix F. 

Tools 1 without sleeve 

Sensory 

Signal 

PC 

method  

Eigen- 

Value 

 

Fx PC3 0.516 

Fx PC 6 0.504 

Fy PC 10 0.494 

Edy PC 14 0.492 

Fx PC 6 0.474 

Edy PC 1 0.471 

Fx PC 12 0.458 

Edy PC 9 0.447 

Edy PC 13 0.442 

Fx PC 3 0.437 

                Average 0.473 

  Tools 1 without sleeve 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

Pwr PC13 0.194 

Vsz PC 9 0.193 

Vwy PC 12 0.193 

Fy PC 4 0.193 

Strain PC 6 0.193 

AE PC 8 0.193 

Edx PC 8 0.189 

Strain PC 4 0.184 

Pwr PC 8 0.181 

Vwy PC 4 0.178 

           Average 0.189 



Chapter 9  The  Applications of ASPSF Approach Using Pattern Recognition Systems 

     204 

The cost of first and second systems is significant different (£10146, £22138). But it 

is still can be optimised by increasing the system utilisation by replacing the sensory 

characteristic features of the power sensor from the first system with the AE sensory 

signals from the second system to reduce the cost and still have the sensitivity level. 

For the tool 2, the difference in the cost between the first and second systems is slight 

but for tool 3 it is too high. 

 

Table 9.10: Sensors utilisation for the tool 1 without sleeve using LR. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

As shown in Table 9.10, the overall average utilisation has increased in the first 

system from 31.66% up to 45% and from 17% up to 45% in the second system and 

the cost is reduced by 59 % from £24789 to £10116. In fact the average sensitivity has 

increased to 1.091 compared with the second system of tool 1 as can be seen in Table 

9.11. 

 

 

 

 

 

 

 

 

 

Tool 1 

Sensor U 

1
st
 

system 

U 

2nd 

system 

Optimised 

System 

Dynamometer -------- 3.33% ------- 

AE 5 % 25% 10% 

Mic ----- 30% ------- 

Vsy ------ 10% ------- 

Pwr 10% -------- ------- 

Edy 80% -------- 80% 

UA Average 

Utilisation 
31.66% 17% 45% 

System Cost £10146 £22138 £10116 

Average 

Sensitivity 
1.094 0.934 1.091 
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Table 9.11: The optimised system (1st and 2nd system) for the tool 1 without sleeve 

using LR. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4.2.2 Principal Component Analysis (PCA) Method 

 

From Tables 9.7 and 9.8, it can be observed that there is no significant difference in 

the average sensitivity for both systems for the the tool 1 without sleeve. The details 

about the other tools (2-12) are described in Appendix G. 

For the tool 1, for example, the cost of both systems is the same (£19035). But it is 

still can be optimised by increasing the system utilisation by replacing the sensory 

characteristic features of the eddy current sensor(Edx) from the first system with the 

forces sensory signals from the second system to reduce the cost and still have the 

sensitivity level. 

 

Table 9.12: Sensors utilisation for the tool 1 without sleeve using PCA. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Tool 1 without sleeve 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

Edy min 1.195 

Edy average 1.194 

Edy power 1.193 

Edy std 1.145 

Edy range 1.106 

Edy skew 1.075 

Edy kurtosis 1.071 

Edy max 0.998 

AE min 0.974 

AE range 0.965 

              Average 1.091 

Tool 1 without sleeve 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 10% 20% 6.66% 

Edy 70% 40% 80% 

UA Average 

Utilisation 
40% 30% 43.33% 

System Cost £19035 £19035 £19035 

Average 

Eigenvalue 

0.643 0.473 0.640 
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As shown in Table 9.12, the overall average utilisation has increased in the first 

system from 40 % up to 43.33% and from 30% up to 43.33%  in the second system 

and the cost is reduced by 23 % from £24789 to £19035. In fact the average 

sensitivity has increased to 0.640 compared with the second system of the tool 1 as 

can be seen in Table 9.13. 

 

Table 9.13: The optimised system (1st and 2nd system) for the tool 1 without sleeve 

using PCA. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4.2.3   System Optimisation Correlation Using LR and PCA methods 

 

In the previous sections, the sensory system optimisation is implemented using 

different methods, namely, Linear Regression (LR) and Principal Component 

Analysis (PCA). However, it can be seen that there is significant similarity between 

two methods to reduce the cost of the monitoring system and to detect the changes of 

the fixturing stability or tool wear occurred. From the above tables, it can be observed 

that the selected sensor for the tools without sleeve is Eddy current (Edy) in both used 

methods (i.e. LR and PCA), whereas, the AE and dynamometer sensors are the 

second selected sensors for those tools as the cost of the dynamometer is £12000 and 

the AE is £428. This reason creates a significant difference between the optimised 

system costs. The sensor utilisation average (UA) of optimised system for the tool 

without sleeve is 45% using LR method, but the UA for those tools is slightly 

different (i.e. 43.33%) due to increase the number of feature of the dynamometer 

sensor using PCA method as shown in Table  9.14.  

Tools 1 without  sleeve 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

Edy PC1 0.879 

Edy PC4 0.862 

Fx PC10 0.664 

Edy PC8 0.638 

Edy PC15 0.586 

Edy PC2 0.580 

Edy PC9 0.576 

Edy PC4 0.569 

Fx PC4 0.550 

Edy PC14 0.492 

                Average 

 

0.640 
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 Table 9.14: Comparison between the optimised systems from LR slope and PCA for 

tools with different fixturing systems. 
 

Method  Variable Linear Regression 

(LR) 

Principal 

Component PCA) 

 

Tool 

without 

sleeve  

Selected   sensor Eddy current (Edy) 

AE 

Eddy current (Edy) 

Dynamometer 

UA of optimised 

system 

45% 43.33% 

Optimised System 

Cost 

£10116 £19035 

Reduced cost 

ratio 

59 % 23 % 

Optimised System 

Sensitivity 

1.091 0.640 

 

Tool with 

rubber 

sleeve 

Selected  sensor Dynamometer  

Eddy current (Edx) 

Power 

Dynamometer 

Eddy current (Edy) 

 

UA of optimised 

system 

24.44% 40% 

Optimised System 

Cost 

£21755 £19035 

Reduced cost 

ratio 

12 % 23 % 

Optimised System 

Sensitivity 

0.651 0.611 

 

 

Tool with 

copper 

sleeve 

Selected  sensor Dynamometer 

Power 

Dynamometer 

Eddy current (Edy) 

UA of optimised 

system 

33.33% 36.66% 

 

Optimised System 

Cost 

£18620 £19035 

 

Reduced cost 

ratio 

24.8 % 23% 

Optimised System 

Sensitivity 

0.792 0.669 

 

 

Tool with 

aluminium 

sleeve 
 

 

Selected  sensor Dynamometer 

Microphone 

Power 

Dynamometer 

Eddy current (Edy) 

 

UA of optimised 

system 

22.22% 36.66% 

Optimised System 

Cost 

£18717 £19035 

Reduced cost 

ratio 

24% 23% 

Optimised System 

Sensitivity 

0.685 0.695 
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The cost of the optimised systems is same (i.e. £19035) for all the tools using the PCA 

method, however this cost is different for the tools using the LR method. For the tools 

with different fixturing materials ( rubber, copper and aluminium sleeves), it can be 

observed that both LR and PCA methods are presented that the dynamometer, eddy 

current  and power are the most sensitive sensors due to the fact that they have been 

presented with a high ability to detect the change of machining characteristics. It is 

also clearly noticed that the sensitivity of the sensory system is changed according to 

the change in the fixturing quality. In details, the values of optimised system 

sensitivity are (0.651, 0.611) for the tool with rubber sleeve using LR and PCA 

methods respectively, however, they are (0.792, 0.669) and (0.685, 0.695) for the 

tools with copper and aluminium sleeves. 

9.4.3  System Evaluation 

9.4.3.1 Linear Regression slope (LR slope) Method 

 

Same methods which are used to calculate the average sensitivity of the sensory 

signals and signal processing methods using linear regression (LR) in chapter 8, 

section 8.5.2.1, here it will be applied for the signals for testing tool 1 without sleeve 

as in the next sections. More details about the testing other 11 tools are described in 

Appendix H.  

Figure 9.30 shows the average sensitivity (As) for the tool 1 without sleeve, as it is 

clear that the eddy current sensor (Edy) is the more sensitive, and the acoustic 

emission (AE) and microphone sensors are the following higher sensitivity for this 

tool. 
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Figure 9.30: As values for the sensory signals of tool 1 without sleeve. 
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Figure 9.31: Asp values for the signal processing methods of tool 1 without sleeve. 

 

Figure 9.31 shows the average of the sensitivity of the signal processing methods 

(Asp) for the tool 1 without sleeve. It presents that the power as a signal processing 

method take the higher rank as most sensitive method for the tool 1 without sleeve. 

Following this, the average and minimum signal processing methods are the more 

sensitive methods. 

Same method in the chapter 8, section 8.5.2.1, here the average of the summation of 

sensitivity coefficients (Ac) of those systems is found to be (0.58) for the tool 1 

without sleeve. However, to find the effectiveness of the selection of the utilised 

sensors and signal processing methods, the evaluated values can be compared with 

other systems. 

 

9.4.3.2  Principal Component Analysis (PCA) Method 

 

Same methods which are used to calculate the average eigenvalue of the sensory 

signals and signal processing methods using Principal Component Analysis (PCA) in 

chapter 8, section 8.5.2.2, here it will be applied for the signals for testing tool 1 

without sleeve, however, more details for testing 11 tools in the Appendix I.  

Figure 9.32 shows the average eigenvalue (Aev) for the tool 1 without sleeve, as it is 

clear that the eddy current (Edy) sensor is the most sensitive to detect the tool wear 

and fixturing quality. Force sensor (Fx) is also the higher sensitivity. 
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               Figure 9.32: Aev values for the sensory signals of tool 1 without sleeve. 
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Figure 9.33: Apc values for the principal component methods of tool 1 without sleeve 

The average of the eigenvalue of the principal component methods (Apc) for the tool 1 

without sleeve as shown in Figure 9.33. It presents the first principal component (PC1) 

as a most sensitive method for tool 1 without sleeve , however the second and third 

principal components (PC2 and PC3) are also more sensitive methods for this tool. 

The same method in the chapter 8, section 8.5.2.2, here the average of the summation 

of eigenvalue coefficients (Ec) of those systems is found to be (0.19) for the tool 1 

without sleeve.  

9.4.3.3 Comparison between LR and PCA methods  

Figure 9.34 shows the values of the Ac factor and the Ec factor for 12 tools (normal 

and tools with rubber, copper and aluminium sleeve). It can be seen that there is a 
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difference between the factors in the value as for normal tools, for example, the 

average of the sensitivity coefficients (Ac) for three tools without sleeve is (0.58, 0.32 

and 0.28) , however the average of the eigenvalue coefficients (Ec) for those tools is  

(0.19,0.20 and 0.18 ) respectively. This comparison for other tools is shown in the 

Figure 10.44.  The more significant findings to emerge from this discussion are that:  

1- Both linear regression (LR) and principal component method (PCA) could be 

provided similar indication with regard to determine which sensor has a higher 

sensitivity. 

2- Those methods indicate that the ability of the suggested monitoring system to   

detect the changes in the fixturing system, therefore it could be used to monitor the 

faults or the changes of the machine setup during the manufacturing operation. 
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Figure 9.34: Comparison between Ac and Ec of both tools. 

 
 

9.5  Pattern Recognition  

As discussed in the previous sections that approved the ability of the sensitivity 

measuring methods to define the more sensitive features, that is will lead the 

investigation to the next stage of the monitoring system which is the pattern 

recognition. In general, therefore, it seems that is important to classify the status of the 

tool from fresh to worn then making the decision. The most important limitation lies 

in the fact that when to spot that the fresh stage has been finished and the tool raised 

to semi-worn or completely worn. It can therefore be assumed that the tool status has 
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taken different start or end points. On the other ward, the fresh stage may be finished 

at point nii, meanwhile the semi-worn finished before or after point nij and so on.   

In this research, Taylor’s Equation Induced Pattern (TIP) has been proposed to deal 

with this obstacle, as the patterns of constant functions and the experimental sensory 

feature could be used as shown in Figures 9.35- 9.37. These patterns are considered as 

templates to divide the target of neural network. Here, Back Propagation (BP) Neural 

Network will be implemented the data training and testing since it is supervised 

method and definitely needs to determine the target in advance. 
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Figure 9.35: The BP neural target division according to the X3 function. 
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Figure 9.36: The BP neural target division according to the X20 function. 
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Figure 9.37: The BP neural target division according to the experimental feature 

(Experimental).     

                                                                     . 

Figure 9.35 shows the first constant function (X3 function) divided the 27 tests to 

three equal sections, meanwhile Figure 9.36 shows the second function (X20
 
function) 

divided to different sections length (21 fresh, 3 semi-worn, 3 worn). The experimental 

sensory feature (Experimental) divided to (11 fresh, 12semiworn, 4worn) as 

illustrated in Figure 9.37. Each type of the above function has been used as a 

suggested target for the Back Propagation (BP) Neural Network. The learning role for 

BP are (epochs=500; Learning rate=0.7).  Following this, the feature data of the first 

tool used for training and the data for else tools used for testing. 

 

 The results of the training and testing for the tools used in the tests have shown that 

the X20
  

function  achieves lower ratio of error in comparing with the two another 

methods as illustrated in Figure 9.38. The finding of this means that generally the tool 

still fresh and could be used as fresh tool till the test 21, and then from test 22 to 24 as 

a semi worn. On the other word, it can be considered a 77% of the tool life as a fresh 

tool and till 88% as semi worn. The remained percentage is considered as a worn. The 

results of the training error BP neural network are different from the tools to other 

depend on the quality of the fixturing system, as errors for tools without sleeve are 

different with those for tool with rubber sleeve , tool with copper sleeve or tool with 

aluminium sleeve. 
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Figure 9.38: The of testing errors for all the tools using different target                                                                                                                                                                                                                                                                                                                                                                           

functions. 

Consequently, according to the results as shown in the Figure 9.38 that the suggested 

function (X20) proves the significant ability to represent the most of the patterns of 

the features and provides the decision for the status of the tool condition. 

Furthermore, it is clearly evidenced that the type and material of the fixturing system 

could be considerably effect on the design of the condition monitoring system.  

9.6 Surface Roughness 

Surface specification can also be a good reference point in determining the quality of 

a production process, because the stability of the machine is affected on the feature of 

the operating part. In this section, the surface roughness will be measured for the 

machined surface, and then investigate the correlation between the sensitivity of the 

sensors which is increased with change the tool condition (from fresh to worn) and the 

roughness of the surface.  

9.6.1 Roughness of Machined Surface 

The surface roughness of the workpiece has been measured for each track of 27 tests 

with used normal fixturing and different elastic material sleeves namely rubber, 

copper and aluminium.  
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Figure 9.39 has shown the results of the surface roughness for four cases. The 

consequences of the patterns indicate that the values of the surface toughness when 

using tool without sleeve is less than those obtained when using tools with rubber, 

copper and aluminium sleeves which are also illustrated in the same figure using the 

average of surface roughness measurement for each case. The reason for these results 

may be the modulus of elasticity of steel (200 GPa) which is significantly more that 

for elastic materials (0.01- 0.1 GPa, 120
 
GPa and 69 GPa, [204] as rubber, copper and 

aluminium respectively as shown in Table 9.15. It is clear from the statistical methods 

that the surface roughness is increased with reduced of the modulus of elasticity for 

the fixturing materials.  
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Figure 9.39: Surface roughness of workpiece for four types of fixturing materials. 

 

Table 9.15: The modulus of elasticity (E) and average of surface roughness. 

Material

Factor

Without 

sleeve (steel)

Rubber 

sleeve 

Copper 

sleeve

Aluminum 

sleeve

Modulus of elasticity E (GPa) 200 0.01-0.1 120 69

Max. Ra (µm)
0.878 0.9740 0.9713 0.9117

Min. Ra (µm) 0.148 0.2357 0.1797 0.1933

Median Ra (µm) 0.3603 0.6910 0.4907 0.5517
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9.6.2 The Correlation Coefficient 

 

The correlation coefficient is a quantity that gives the quality of a least squares fitting 

to the original data or to define the relation between two cases. In this research, it is 

used to calculate the relation between the sensor sensitivity and surface roughness 

values. High, medium and low correlation have been illustrated as example of 

correlation according to the relation between the sensor features and surface 

roughness for the normal tool and tool with rubber, copper and aluminium sleeves 

respectively as shown in Figure 9.40. 
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Figure 9.40: Examples of low, medium and high correlation SCF for the tools. 

http://mathworld.wolfram.com/LeastSquaresFitting.html
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Examples of the values of the correlation are documented in Table 9.16, as a part of 

the whole results which have been created the ASM matrix as visually shown in 

Figure 9.41. It is clear that the correlation between two techniques to predict the tool 

condition (tool wear), and secondly using the correlation between the sensor 

characteristic features (SCF) and surface roughness, has achieved high agreement 

especially for SCFs with high sensitivity. Both sensitivity measures have indicated 

that the change of fixturing conditions has influenced surface roughness and the most 

sensitive features (i.e. sensor and signal processing methods) to be used to detect tool 

wear effectively. 

       Table 9.16: The most sensitivity of the sensory the system for different tools. 

 
 

            Tool without sleeve 
 

        Tool with rubber sleeve 
 

Sensor 
 

SP Correlation 
 

Sensor 
 

SP Correlation 

Edx Power 0.9091 Edx Std 0.7175 

Edy Min 0.8271 Fx Range 0.4648 

Mic Max 0.7934 Vwx Kurtosis 0.4286 

Edx Min 0.6097 AE Skew 0.3561 

Strain Skew 0.5739 Fz Power 0.2849 

Vwx Kurtosis 0.4741 Fz Max 0.2428 

Fx Skew 0.3130 FY Min 0.2087 

Pwr Min 0.2813 Edy Max 0.1412 

Fx Kurtosis 0.1447 Vwy Std 0.0836 

Fy Skew 0.0367 Strain Power 0.0479 

         Tool with copper  sleeve 

 
        Tool with aluminium sleeve 

Sensor 
 

SP Correlation 
 

Sensor SP Correlation 

Fx Max 0.7687 Vwx Range 0.4945 

Pwr Std 0.5129 Vwy Range 0.4457 

Fy Kurtosis 0.4543 Fx Std 0.3777 

Fy Max 0.4146 Fz Power 0.2765 

Mic Range 0.3369 AE Average 0.2473 

Edy Min 0.2698 Fx Skew 0.2037 

Vwx Min 0.1794 Strain Power 0.1057 

Vwx Range 0.1101 Fy Max 0.0946 

AE Average 0.0853 Edx Skew  0.0636 

Vwy Std 0.0191 Mic Range 0.0304 
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Figure 9.41: The correlation coefficient between the sensitivity SCF and surface 

roughness for different fixturing materials.     

                                   

9.7 Conclusion 

 
In this chapter, the ASPSF approach for multi-sensors combined with artificial neural 

networks (BP and LVQ), and Taylor’s Equation Induced Pattern (TIP) in the 

experimental test, is explained using two methods of the signal simplification as linear 

regression and principal component analysis to monitor gradual tool wear in the 

milling process with regards to the change of the fixturing type and material system. 

The ASPSF approach utilises the Association Matrix (ASM) and Eigenvalue Sensory 

Matrix (EVSM) to compare the sensitivity of the feature to the fault under 

investigation. In addition, they evaluate the overall monitoring system using the 

average sensitivity of sensors and signal processing methods, also using the average 

of the eigenvalue of the principal component methods. The analysis of Linear 

Regression (LR) and Principal Component Analysis (PCA) analyses are used to find 

the most sensitive features to detect tool wear in milling processes. The SCFs and 

PCFs are visually examined and examples of low sensitivity and high sensitivity 
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features are presented. Sensory utilisation is implemented within the ASPSF approach 

to minimise the cost of the system without affecting the system sensitivity. There is a 

reliable relationship between the signal simplification methods (i.e. LR and PCA) 

either in eliminating the insensitive sensor or in reducing the monitoring system. The 

Taylor’s Equation Induced Pattern (TIP) technique used to define the  pattern 

recognition and make the accurate decision for the tool condition status and states the 

effect of the fixturing system quality on the efficiency of the monitoring system. The 

results show the ability of the technique to describe the tool condition and the quality 

of fixture could be significantly changed the monitoring system construction. 

Consequently, the ASPSF approach has been found useful in selecting the most 

sensitive sensors and signal processing methods or principal component methods to 

design a condition monitoring system with low experimental work and minimised 

cost. Furthermore, surface roughness is used as a good indicator to explain the effect 

of the fixturing system on the design of condition monitoring system as the findings 

proved that the change in fixturing quality could change the roughness of machined 

surface and leads to change in the sensitivity of the detecting system.  

                                 

                                 .
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Chapter 10  The Evaluation of ASPSF Using 

Broken Teeth of Cutting Tool  
 

10.1 Introduction 

This chapter provides the full details for the concept of the ability of the ASPSF using 

different types of the sensor fusion model. It describes the implementation of the 

ASPSF approach to detect the changes in the machine setup and the stability of the 

four fixturing systems as perfect or imperfect fixturing systems. The methodology in 

the current chapter has been changed as the tests in the previous chapters started by 

using fresh tool and finished with completely worn tool. Here, fresh tool and tool with 

different broken teeth will be used where the transfer of the tool conditions from new 

to breakage may take considerable time. All these tools used will have different 

fixturing systems. Surface roughness as a reliable indicator to product quality will be 

studied and will produce a relation between the ASPSF approach and the machined 

surface roughness.                                    

The current questions that could be asked include the ability of the ASPSF approach 

to detect the tool breakage from the collected data and provide a classification to the 

tool condition to avoid a future problem of the machine breakdown.                                         

10.2 Experimental Setup 

The experimental work is performed on the CNC milling machine, the signal 

processing equipment in the previous chapter has been employed to achieve the aim 

of the current investigation. The sensors used are force sensor (Fx, Fy and Fz), 

accelerometers attached to the machine table (Vwx, Vwy), strain, acoustic emission 

(AE), sound (Mic), accelerometers attached to machine spindle (Vsx, Vsy, Vsz), 

power, eddy current sensors (Edx, Edy). The tools used in this test are made from 

carbide with 3mm flute and 6 mm shank as described in the Table 10.1 for machining 

specification. The surface roughness has been measured manually for the machined 

surface using the roughness measuring device (Mitutoyo SJ-210). Figure 10.1 shows 

the schematic of the experiment work of the current chapter, where the whole sensory 

signals are collected by the sensor and the signal condition equipment, and then 
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transferred to the data acquisition card to process the information in the personal 

computer (PC).  

 

                    Table 10.1: The machining parameters of the milling process. 

Machining condition 
 

Specifications 
 

Feed rate 250 mm/min 

Depth of cut 0.36 mm 

Coolant type No coolant (Dry) 

Spindle speed 2490 RPM 

Diameter of tool 3mm/ 6mm shank 

Material of tool Carbide (End mill carbide) 

Type of tool End mill Tool (4 Flutes, Uncoated) 
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Figure 10.1: Schematic diagram of the monitoring system and surface roughness. 

 

Different types of the sleeve will be used to cover the shank of the used tools as 

rubber, copper and aluminium sleeves. In the machining test, there are three types of 

the tool tip conditions, namely fresh, one broken tooth, two broken teeth as shown in 
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Figure 10.2. This is just to simulate the tool breakage and the relation between the 

tool condition and fixturing system quality. 
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Figure 10.2: The three states of the milling tool (fresh, 1 broken tooth and 2 broken 

teeth) with four fixturing systems.     

                                                                                

10.3  Signal Simplification 

 
Since the milling is complex process and the monitoring signals which are collected 

from the sensor difficulty to expect what may be happened during the forward of 

machining, this further to the amount of the huge data and the need to make the fast 

decision to tackle any abnormal conditions. Therefore, signal simplification is applied 

on the data to emerge the useful information. Generally, it can be considered that the 

visual patterns could indicate to initial expression that the amplitude of the sensory 

signal raise up as shown in the following Figures.  
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  Figure 10.3: Examples of the raw signals of the machining process for fresh tools. 

 

Figure 10.3 shows examples of the collected signal of fresh tools for different 

fixturing system (Tool without sleeve, tool with rubber sleeve, tool with copper sleeve 

and tool with aluminium sleeve). It can be seen from this figure that the amplitude and 

pattern of force signal (Fx) is different from system to another, same thing with regard 

to other signals as acoustic emission (AE) and vibration, power and Eddy current 

sensors. 
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Figure 10.4: Examples of the raw signals of the machining process for tools with one 

broken tooth. 
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Figure 10.5: Examples of the raw signals of the machining process for tools with two 

broken teeth. 

 

Following this, Figure 10.4 explains the signals of the tools with one broken tooth, it 

can be noticed clearly the changes in the amount of the amplitude range. As illustrated 

for the force sensor, it is observed that signal is sharply declined and then raised up 

which means at that moment there is no cutting or broken tooth. Other signals show 

that there are sudden changes in the signal pattern and relative rise in the amount of 

the signal amplitude. Gradually, Figure 10.5 shows the tools with two broken teeth, 

here force sensor provides that the declines in the signal are become close each to 

other refer to cutting down, and it can be seen that the AE sensor reflects a 

considerable difference in the size of the signal as it indicates that something is 

abnormal. Other sensors in the above examples as vibration (Vsy), power or eddy 

current visually are obtained significant changes. These findings enhance our 

understanding of the importance to use the simplification methods. In this chapter, a 

variety of the sensitivity measuring methods have been used to select the feature 

(SCF) which has the most sensitive to the variables of the cutting process which are as 

follows, this to find the best method to measure the sensitivity: 

1. The Linear Regression (LR) method 

2. The Range Value (RV) method 

3. The Sudden Change In Value (SCIV) method 

4. Correlation Coefficients (CCX3) method 
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5. Correlation Coefficients (CCX20) method 

6. Fuzzy Logic (FL) method 

10.3.1 Linear Regression (LR) Method 
 

As explained in the previous chapters, the linear regression method is used to find the 

linear equation which best represents the linear relationship between two variables 

depend on the feature in time domain. Here, it will be used to measure the sensitivity 

of the sensory characteristic feature in time, frequency and time frequency domains. 

Therefore, the Fast Fourier transforms (FFT) and wavelet features are grouped to the 

statistical time domain in this analysis.    
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Figure 10.6: Example of the result for all the SCFs using LR method for four fresh 

tools with different fixturing systems. 

 

 

From Figure 10.6, it can be noticed that the SCF(Fz, max) shows the high sensitivity 

to the changes in the condition of fresh tool without sleeve, however the SCF(AE, 

kurtosis) shows the low sensitivity for tool wear. The tools with different sleeves 

show different features, for example, the SCF(Vsx.wav1) is the most sensitive feature 

for tool with rubber sleeve, but the SCF(Edy, wav3) obtained low sensitivity. The 

different is continuous for tools with copper and aluminium sleeves.  However, for all 



Chapter 10 The  Evaluation of  ASPSF Using Broken Teeth  of Cutting Tool   

     226 

examples which are indicated low sensitivity, it can be noticed that this method does 

not represent the real condition of the feature since the feature reflects that there is a 

raise in the pattern especially at the end of the test, but the method considered these 

features as low sensitive. The images of the Associated Matrix (ASM) for 15 sensors 

and 28 signal processing methods used in this test, which totally will create 420 

features as shown in Figure 10.7. Where the high sensitivity value (lighter colour) 

indicates high capability of detecting the machining faults, meanwhile black colour 

represents low sensitivity. 
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Figure 10.7: A graphical presentation of the sensitivity for fresh tool without sleeve 

using LR method. 

 

As the tool breakage is difficult and complex phenomena, this encouraged us to study 

it in this chapter, Figure 10.8 shows the image of the associated matrix for the 420 

features to define the required considerations for designing monitoring system in case 

of damaged tool with one tooth for four fixturing systems. 

From Figure 10.8, it can be observed that the sensitivity values of the features are 

completely different with those of the fresh tool for all fixturing system. Since, the 

SCF (Mic, wav8) is taken the highest place in the rank of the most sensitive features 

for the tool without sleeve with one broken tooth. Meanwhile the SCF(Vwy, FTT2) is 

high sensitive for the tool with rubber sleeve. For the tool with copper sleeve, the SCF  

(Fy, std), while the high sensitive feature SCF(Fz, FFT7) for tool with aluminium  

sleeve. More details about the 3 tools are described in Appendix J. 
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Figure 10.8: A graphical presentation of the sensitivity for tool with one broken tooth, 

using LR slope method.  
 

Continuously, Figure 10.9 shows visually the associated matrix of the features for 

normal tool with two broken teeth. In the cutting process, it is highly expected to 

damage tool with two or more teeth after it’s broken the first tooth due to the cutting 

process will not continuous. This will create a significant stress on the following tooth 

and may be broken it. It can be simulated this case using ready damaged tool to 

investigate the effect of this phenomena on the detecting system. 
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Figure 10.9: A graphical presentation of the sensitivity for tool with two broken teeth, 

using LR method. 
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Figure 10.9 shows the extreme changes between the figures either comparing with the 

previous ASM images or between the different fixturing systems for tool with two 

broken teeth. Here, the SFC(Fx, FFT4) got the great ability to detect the variable in 

the discrete machining process for the tool without sleeve, nevertheless, the SFC(Fz, 

skew) presents high efficiency to do that for the tool with rubber sleeve. The SCF 

(Strain, std), and SCF(Mic, power) are taken the high sensitive for tool with copper 

and aluminium sleeves respectively as described in Appendix J.  So far this method 

has been applied to obtain the slope of the signal feature to contribute the sensitivity 

of the feature, but it is not too efficient to measure correctly all the pattern with 

reliable precision. The possible explanation for this limitation is due to some features 

show visually high sensitivity to tool wear but in this method considered as a low 

sensitivity. 

10.3.2  Range Value (RV) Method 

 

The range value method used to measure the absolute difference between the last 

point and fist point of the feature. This is to explain the range in the change of the 

signal pattern. Figure 10.10 shows example of the feature using this method. Where 

the SCF(Vsx, range) is achieved the higher rank of the sensitivity, and this reflects a 

good indicator to the ability of this method to detect the abnormal conditions. 

However the second SCF(Fx, max) reflects the low sensitivity. But, visually it can be 

seen that this feature relatively interacts with the changes of tool status and presents 

an indicator to increase the cutting force at the end points of the test.  
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Figure 10.10: Examples of SCFs using Range Value method for fresh tool without 

sleeve.   
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From the above examples, it can be clearly noticed that this method has ignored the 

points in the mean path between the first and last points. This certainly will effect on 

the reliability of this method. However, Figure 10.11 shows the image of the 

associated matrix of the sensitivity according to the range value method for the fresh 

tools with different fixturing systems.  
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Figure 10.11: A graphical presentation of the sensitivity for fresh tool without sleeve 

using Range value method. 

 

 

As shown in Figure 10.11, the Range Value (RV) method has been presented different 

examples for sensitivity of feature, where in the fresh tool without sleeve, the 

SCF(Vwy, average) is the most sensitive, meanwhile the SCF (AERMS, std) is taken 

the first feature in the sensitivity rank for fresh tool with rubber sleeve. The SCF(Fz, 

average) and the SCF(Vwy, range) is the best feature to detect the conditions for the 

fresh tools with copper and aluminium sleeve as described in Appendix K. 

 

Following this, Figure 10.12 shows the ASM matrix for the tool with one broken 

teeth. For the tool without sleeve and tool with rubber sleeve, the SCF(Mic, power) 

and  SCF(Edy, min) achieved the higher value of the range to monitor the tool status, 

nevertheless, for tool with copper sleeve and aluminium sleeve, the SCF(AE, FFT7) 

and SCF(Fx, std) are the more sensitive features. 
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Figure 10.12: A graphical presentation of the sensitivity for tool with one broken 

tooth, without sleeve using Range value method. 
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Figure 10.13: A graphical presentation of the sensitivity for tool with two broken 

teeth, without sleeve using Range value method. 

  

 

From the above images for the tools with different types of fixturing system, it can be 

noticed that the values of the sensitivity are different between one system to another; 

also those values have been raised up when the tool condition transferred from the 

fresh tool to tool with one broken tooth. This situation will give an indicator that the 
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output of the sensors increased due to the disturbing or the abnormal cutting in the 

machining process. This phenomenon will become more appearance especially for the 

normal tool with two broken teeth as it can be seen in the Figure 10.13. More details 

for other three tools are described in Appendix K. 

10.3.3   Sudden  Change In Value (SCIV) Method 

 

The Sudden Change In Value method used to measure the sensitivity of the sensory 

characteristic feature. Where this value is obtained from the absolute difference of 5% 

of minimum first points and 0.95% of the maximum of last points. Figure 10.14 

shows examples of the feature for fresh tool.  
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Figure 10.14: Examples of SCFs using SCIV method for fresh tool without sleeve. 

 

 

Similar to the previous measuring sensitivity methods, this method has been shown 

that there are different values of the sensitivity. Also there is a difference between the 

features to detect the tool conditions. Visually, in the Figure 10.15, it can be observed 

that the SCF(Mic, range) got the high level in the sensitivity for the fresh tool without 

sleeve. However, for the fresh tools with rubber, copper and aluminium sleeves, the 

SCF(Vsy, wav8), SCF(Fx, average) and the SCF(Vwy, min) are the most sensitive 

features to monitor the tool and fixturing conditions.  

One major issue in this method concerned to the lack of investigating the changes of 

the features for the points between the first and last points.   
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Figure 10.15: A graphical presentation of the sensitivity for fresh tool with, without 

sleeve using SCIV method. 

 

Signal processing method

S
en

so
r

M
a

x
  

M
in

 

S
td

P
o

w
e
r

A
v

e
ra

g
e

S
k

e
w

K
u

rt
o

si
s

R
a

n
g
e
 

F
F

T
1

F
F

T
2

F
F

T
3

F
F

T
4

F
F

T
5

F
F

T
6

F
F

T
7

F
F

T
8

F
F

T
9

F
F

T
1

0

W
a

v
1

W
a

v
2

W
a

v
3

W
a

v
4

W
a

v
5

W
a

v
6

W
a

v
7

W
a

v
8

W
a

v
9

W
a

v
1

0

 Tool without sleeve

 

 
Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

High sensitisvsity

Low sensitisvsity

High  SCF (AE, FFT5)

 
 

Figure 10.16: A graphical presentation of the sensitivity for tool with one broken 

tooth, without sleeve using SCIV method. 

 

Continuously, from the Figure 10.16, it can be noticed that the SCF(AE, FFT5) 

obtained the higher sensitive for the tool wear using normal tool with one broken 

tooth. Meanwhile the SCF(Fx, min), SCF(Edy, wav5) and SCF(Pwr, kurtosis)  

represent the high sensitive features for the tools with rubber sleeve, copper or 

aluminium sleeve as described in Appendix L.   
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It can be concluded from the images for the tools with one broken tooth, that the 

difference between the SCIV for the feature is increased, since it can be noticed that 

some of the features got higher sensitivity ( light colour) and other features got a less 

sensitivity (black colour), this behaviour indicates that when tool edge cutting the 

workpiece (remove the chip), the sensor surely obtained high signal, but in case of 

passing the broken tool edge and there is no cutting, this means that there is no 

considerable signal could be collected. The uncontrollable cutting in the rotating 

machining process will provide a high problem in the sequence of the tool over the 

workpiece and therefore the thickness of the chip will be changed and the tolerance of 

the product dimension will become imprecise. 

Since the discrete cutting will increase in the tool with two broken teeth due to the 

cutting time-off between the teeth will increase, this phenomena will not obtain 

continuous signal from the sensor and certainly the sensitivity will decline to lower 

level as illustrated in Figure 10.17, mean while it will raise in case of cutting. 
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Figure 10.17: A graphical presentation of the sensitivity for tool with two broken 

teeth, without sleeve using SCIV method. 

 

10.3.4  Correlation Coefficients (CCX3) and (CCX20) methods 

 

The correlation coefficient is a quantity that gives the quality of a least squares fitting 

to the original data or to explain the relation between two cases. It is very important to 

http://mathworld.wolfram.com/LeastSquaresFitting.html
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define the relationship between theoretical curve of the expected pattern and the 

experimental curve of the sensory feature. The theoretical curve of the tool wear can 

be plotted according to the constant function (X
3 

or X
20

). Generally, these constant 

functions have been built based on the Taylor’s equation for the tool life. Then, the 

relationship will be used as a calibration to find the correlation coefficient, the first 

correlation coefficient (CCX3) is the correlation between the SCF pattern and X
3
 

function, and the second correlation coefficient (CCX20) is the correlation between 

the SCF pattern and X
20

 function as described in Chapter 6, section 6.6.4. Both of 

these coefficients will consider reliable methods for measuring the sensitivity of the 

feature. As the high correlation means the high sensitivity for the changes which may 

be occurred while the machining process, following this, the low correlation means 

low SCF sensitivity.  

By finding the correlation coefficient between the above constant function and the 

pattern of the sensory feature, it is possible to assess the sensitivity of the feature as it 

represents the general behavior of the tool life. Figure 10.18 shows examples of the 

high and low sensitivity of the feature according to this concept for the fresh tool 

without sleeve. 
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Figure 10.18: Examples of SCFs using CCX3 method for fresh tool without sleeve. 

 

After conformational measuring of CCX3 and CCX20, it was necessary to arrange 

them to create the Association Matrix (ASM). Figure 10.19 shows example of the 

image of the sensitivity value according to the relationship between the constant 

function (CCX3) and the sensory feature for fresh tool without sleeve. It could be seen 
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that the SCF (Strain, FFT6) is the most sensitive feature for detecting the condition 

changes of the tool without sleeve, while the SCF (Vsz, FFT9) is high sensitive for 

fresh tool with rubber sleeve. Tools with copper and aluminium sleeves are obtained 

different sensitive features using CCX3 method as described in Appendix M. 

Therefore, it can be noticed that there is a clear difference among those systems.  By 

using CCX20 method, the SCF(Vsx, Kurtosis) and the SCF( AERMS, FFT8) are the 

most sensitive features for fresh normal tool and tool with rubber sleeve. But, 

SCF(Vsx, Kurtosis) and the SCF(AERMS, FFT8) are sensitive features for fresh tools 

with copper and aluminium sleeves as presented in Appendix N.  
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Figure 10.19: A graphical presentation of the sensitivity for fresh tool without sleeve 

using CCX3 method. 

 

For all the tools with one broken tooth, it can be observed that the correlation 

coefficients relatively are decreased since the pattern of the feature will become 

unexpected and may be far or less consistent from the pattern of the constant function. 

Therefore, it can be seen that the most of the sensory characteristic features have been 

tended to take the black colour as a reflection to the low sensitive especially in the 

time and wavelet domains as illustrated in Figure 10.20. 
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Figure 10.20: A graphical presentation of the sensitivity for tool with one broken 

tooth, without sleeve using CCX3 method. 
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Figure 10.21: A graphical presentation of the sensitivity for tool with two broken 

teeth, without sleeve using CCX3 method. 

 

Continuously, for the damaged tools with two broken teeth, low sensitivity features 

will become more common as vision in Figure 10.21. A possible explanation for this 

might be that the consistent between the pattern of the features and the constant 

function is significantly reduced as the two teeth breakage will directly effect on the 

stability of the cutting process. This fact leads to prove the ability of the suggested 
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monitoring system to classify the tool conditions as fresh or damaged tools. The 

present findings seem to be consistent with other previous methods which found that 

design of the monitoring system is generally affected by the type of the fixturing 

system.  

All the five measuring methods (i.e. LR, Range Value, SCIV, CCX3 and CCX20) 

presented different sensitivity results, as each one of them deals with the signal 

feature from different view as some of these methods focused on the first and last 

point regardless the mean points, and other created the correlation depend on the 

similarity between the suggested and experimental feature patterns. However, the 

approach of using one method shows that these results are not statistically significant. 

There is, consequently, a definite need for a reasonable approach to tackle this issue. 

10.3.5  Fuzzy Logic (FL) Method 

 

As described in the aforementioned sections, that there are different methods to 

measure the sensitivity of the features. In the current section, a fuzzy logic has been 

used to characterise the sensitivity of the features when the five methods combined 

together. This will be implemented by a membership function (0---1) which associates 

with each element of universe and represents the grade of membership specify for the 

condition each case. As illustrated in Figure 10.22, the features obtained from each 

method have been interred in the fuzzy logic rules, these rules to evaluate each type of 

the method and then the results of the rules are combined to determine the most 

sensitive features. 

Rule 1  If  slope is low and range is low, 

SCIV is low and CCX3 is high , and

CCX20 is high , then sensitivity is low.

Input 2

Range value of SCF
Rule 2  If  slope is medium and range  is 

medium, or SCIV is medium, and CCX3

is medium , and CCX20 is medium, then 

sensitivity is average.

Rule 3  If slope is high and range is 

high, or SCIV is high, and CCX3 is high 

, and CCX20 is  medium then sensitivity 

is high

∑

The inputs are

non Fuzzy
All the rules are evaluated in parallel 

using fuzzy reasoning        

The rules results are 

combined and distilled

( defuzzified)

The output

is non Fuzzy

Input 3

(SCIV) of SCF

Input 1

Linear regression 

slope of SCF 

SCF3

Sensory 

Characteristic 

Feature  (SCF)

Input 4

SCF2

SCF1

SCFn CCX3

Input 5

CCX20

Output

(SCF sensitivity)

 

Figure 10.22: Steps of the proposed fuzzy logic approach. 
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For an instance, Table 10.2 shows an example of the first maximum twenty features 

of fresh tool without sleeve, they are arranged according to the evaluation of fuzzy 

logic. It is clear that the sequence of the features is significantly different with those  

in the previous sensitivity measurement methods (i.e. LR, Range Value, CCX3, 

CCX20). The association matrix (ASM) of the sensitivity according to fuzzy logic has 

been imaged as illustrated in Figure 10.23. The SCF(Vsx, wav2), SCF(Vwy, max) 

and  SCF(Vsx, wav1) are the most sensitive features for the fresh tool without sleeve. 

Meanwhile, the SCF(Fy, min), SCF(Vwy, average) and SCF(Mic, wav6) represent the 

high sensitive features for the fresh tool with rubber sleeve. The most sensitive 

features for the fresh tool with copper sleeve are SCF(Vsz, wav4), SCF (Vsx, wav2)  

and SCF(Fz, kurtosis). The SCF(Edx, FFT6), SCF(Fz, FFT3) and SCF(Vsz, std) are 

the most sensitive features for the tool with aluminium sleeve as described in 

Appendix O. 

   

Table 10.2: Example of the results of the fuzzy logic evaluation for the SCF of fresh 

tool without sleeve. 
 

            SCF    LR  

Slope 

Range 

Value 

SCIV CCX3 CCX20 Fuzzy 

logic Sensor SP 

Vsx wav2 1.0235 0.6923 0.8434 0.5939 0.8604 0.9999 

Vwy max 1.3375 0.8000 0.8470 0.9318 0.5679 0.9998 

Vsx wav1 0.9999 0.6821 0.8433 0.6089 0.8972 0.9997 

Mic average 1.2810 0.8000 0.8363 0.7790 0.4536 0.9996 

Vsx std 0.9985 0.6797 0.8434 0.6138 0.9026 0.9995 

Vsy FFT1 1.1312 0.4458 0.4624 0.9923 0.7361 0.9994 

Fz wav8 1.2056 0.8000 0.4410 0.5315 0.4288 0.9994 

Vsx wav8 1.0833 0.6773 0.7737 0.4288 0.5648 0.9993 

Edx kurtosis 1.2046 0.4145 0.4165 0.7486 0.4889 0.9992 

Vwx std 1.1029 0.4139 0.8377 0.5724 0.5812 0.9991 

Fz min 1.2765 0.6000 0.8456 0.8096 0.4133 0.9990 

Vwx wav1 1.1178 0.4121 0.8378 0.5821 0.5640 0.9989 

Fz wav9 1.1837 0.8000 0.4722 0.4743 0.4042 0.9986 

AE FFT2 1.1944 0.4773 0.6200 0.7751 0.3946 0.9980 

Fz wav10 1.1755 0.8000 0.4838 0.4528 0.3941 0.9979 

Pwr FFT10 1.2119 0.4418 0.6538 0.7421 0.3707 0.9950 

Vwx Wav7 1.1138 0.3678 0.8371 0.5981 0.5656 0.9945 

AERMS FFT3 1.0337 0.3715 0.7016 0.7375 0.3689 0.9929 

Vsx wav10 1.0355 0.5873 0.6549 0.3681 0.4707 0.9929 

Edx wav5 0.9043 0.4551 0.8315 0.4451 0.5655 0.9925 
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Figure 10.23: A graphical presentation of the sensitivity for fresh tool without sleeve 

using fuzzy method. 

 
 

Similarly, the above procedures have been implemented for classifying the feature 

sensitivity for the tools with one broken tooth; Table 10.3 presents an example for the 

damaged tool without sleeve. It can be observed that the SCF (Mic, average), 

SCF(Mic, wav1) and SCF(Pwr, wav2) have been selected as the most sensitive 

features according to the evaluation of fuzzy logic. All the values of the sensitivity 

which are created by fuzzy logic imaged in Figure 10.24. However, the SCF(Fz, min), 

SCF(Fx, skew) and SCF(strain, min) are the most sensitive features for the tool with 

rubber sleeve. For the tool with copper sleeve, the most sensitive feature are  the 

SCF(Fz, max), SCF(Fy, skew) and SCF(Fz, range), while the features for tool 

aluminium sleeve are the SCF (Vsz, std), SCF(Vsz, power)  and SCF(Vsz, wav1) as 

described in Appendix O. It is clear that the evaluation of the fuzzy logic is different 

with the sequence of the each method individually. 
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Table 10.3: Example of the results of the fuzzy logic evaluation for the SCF of tool 

without sleeve with one broken tooth. 
 

           SCF LR  

Slope 

Range 

Value 

SCIV CCX3 CCX20 Fuzzy 

logic Sensor SP 

Mic average 1.1464 0.8000 0.8488 0.7924 0.9789  0.9999              

Mic wav1 1.1505 0.7981 0.7469 0.7957 0.9789 0.9998 

Pwr wav2 1.1265 0.7643 0.8423 0.5371 0.5320 0.9997 

Strain min 1.1982 0.7704 0.8416 0.5473 0.5299 0.9997 

Edx max 1.0675 0.8000 0.5700 0.5097 0.5525 0.9996 

Mic skew 1.2119 0.5605 0.8398 0.6317 0.4847 0.9995 

Vsy average 0.9704 0.4915 0.6858 0.6100 0.8711 0.9994 

Vwx wav10 0.9715 0.7202 0.8393 0.4661 0.6304 0.9992 

Pwr wav3 0.9472 0.6564 0.8379 0.4771 0.5940 0.9987 

Vwx wav9 0.9567 0.7156 0.8393 0.4445 0.6109 0.9984 

Edx FFT10 1.1080 0.3945 0.7521 0.7809 0.3957 0.9980 

Vwx std 1.0032 0.4418 0.8250 0.4087 0.5066 0.9976 

Pwr wav1 1.1317 0.5835 0.8423 0.5702 0.3843 0.9970 

Fz FFT10 1.1293 0.4331 0.7706 0.7605 0.3812 0.9966 

Edx FFT6 1.1562 0.3730 0.7867 0.7740 0.3881 0.9954 

Strain range 1.1464 0.6456 0.3691 0.4592 0.4591 0.9947 

Fx FFT3 1.1425 0.3874 0.7954 0.7403 0.3644 0.9938 

Edy wav7 0.9765 0.5245 0.8144 0.3955 0.4744 0.9935 

Fx FFT5 1.1838 0.4798 0.7700 0.7385 0.3632 0.9935 

Edx FFT10 1.1329 0.4422 0.7829 0.7322 0.3612 0.9930 
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Figure 10.24: A graphical presentation of the sensitivity for normal tool with one 

broken tooth using fuzzy method. 
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Furthermore, Table 10.4 shows an example of the sensitivity values arranged 

according to the evaluation of fuzzy logic for the normal tool with two broken teeth, 

since the suggested approach has been dependent on the control of the fuzzy roles. It 

is observed that this method classify the sensitivity to three categories, namely,  high, 

medium and low and take all the methods presentations in their decision, therefore it 

can be considered as a more reliable and accurate method to determine the most 

sensitive feature. Figure 10.25 shows the image of associated matrix for the normal 

tools with two broken teeth, where the SCF(AERMS, kurtosis), SCF(Fz, min) and 

SCF (Strain, wav1) are the most sensitive features. However, the SCF(Fy, wav1), 

SCF(Fy, wav9) and SCF(Fy, std) are the most sensitive features for tools with rubber 

sleeve. For the tool with copper sleeve, the most sensitive features are SCF(AERMS, 

skew), SCF(Vsx, range) and SCF(Vsx, std), and those for the tool with aluminium 

sleeve are the SCF(Fy, power), SCF(Pwr, std) and SCF(Fz, average) as described in 

Appendix O. 

Table 10.4: Example of the results of the fuzzy logic evaluation for the SCF of tool  

without sleeve with two broken teeth. 

 

              SCF     LR  

Slope 

Range SCIV CCX3 CCX20 Fuzzy 

logic Sensor SP 

AERMS Kurtosis 1.0615 0.6285 0.8429 0.7256 0.8937 0.9999 

Fz min 1.3088 0.5854 0.8415 0.8465 0.4709 0.9998 

Strain wav1 1.1913 0.6962 0.7774 0.4563 0.4525 0.9997 

Mic wav4 1.1921 0.7507 0.8376 0.5954 0.4521 0.9997 

Mic wav6 1.1509 0.5282 0.8351 0.6298 0.4416 0.9996 

Strain wav3 1.1588 0.6366 0.7408 0.4344 0.4383 0.9995 

Strain min 1.2214 0.7667 0.8144 0.4971 0.4306 0.9995 

Mic Wav8 1.1285 0.4367 0.8343 0.6321 0.4295 0.9995 

Mic power 1.1752 0.8000 0.8368 0.5472 0.4256 0.9994 

Strain power 1.1192 0.6645 0.7374 0.4195 0.4940 0.9992 

Vsx FFT8 1.0743 0.4160 0.5159 0.9935 0.8106 0.9991 

Strain range 1.1496 0.6370 0.7068 0.4429 0.4111 0.9989 

Strain wav4 1.1232 0.5914 0.7042 0.4054 0.4201 0.9986 

Edx wav4 1.0549 0.5321 0.8312 0.3999 0.4073 0.9982 

Fy FFT9 1.1431 0.3850 0.6781 0.8280 0.4300 0.9971 

Mic wav9 1.1126 0.3780 0.8338 0.6284 0.4179 0.9962 

AERMS wav8 1.0614 0.7131 0.8363 0.3792 0.4184 0.9962 

Strain min 1.0548 0.5161 0.7145 0.3702 0.3715 0.9944 

Edx FFT3 1.0982 0.4341 0.8053 0.7352 0.3674 0.9944 

Edx FFT8 1.1430 0.4695 0.7909 0.7381 0.3673 0.9944 
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Figure 10.25: A graphical presentation of the sensitivity for tool with two broken 

teeth, without sleeve using SCIV method. 

 

From the above figures, it can be concluded that there is a clear difference between 

the sensitive systems which are designed to detect the tool condition and to define the 

effect of the quality of fixturing system on the monitoring system. It seems possible 

that these results proved that the change of the fixturing material could affect the 

stability of the system, and consequently effects on the design of online monitoring 

system. However, an independent assessing method is important to evaluate the 

reliability and the precision of the fuzzy logic in comparing with the other methods. 

10.3.6  LVQ Neural  Network Training  

 

However, such expositions are unsatisfactory unless they assessed by another method 

for verification, therefore the Learning Vector Quantization (LVQ) neural network  

has been used to define which method of the measuring sensitivity exist less training 

and testing error. LVQ has been selected as it is unsupervised neural network 

therefore, independently, it will create a classification for the input training data and it 

will test the new input data and explore the error between them. For each tool, 420 

features will be divided to 12 systems, starting from higher to lower sensitivity and 

arranged according to different measuring sensitivity methods which are mentioned 

earlier (i.e. LR, Range value, correlation coefficients, Fuzzy). The data of tool without 
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sleeve will be used for training and the three rest tools (tool with rubber sleeve, tool 

with copper sleeve and tool with aluminium sleeve) will be used for testing. 

Figure 10.26 shows individually the average of the training errors of SCF for tools 

with four types of fixturing system. These features arranged according to the used 

measuring sensitivity methods. It is clear that the Range Value and CCX3 methods 

obtained the higher ratio of training error, which provided an indicator that those 

methods are far from the real representative for the sensory signals. In contrast, it can 

be seen that the rest four methods (LR, SCIV, CCX20 and Fuzzy logic) achieved 

comparatively lower errors and noticeably that the fuzzy logic is lowest one in error 

as shown in Figure 10.27.  
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Figure 10.26: The LVQ neural network errors of sensitivity feature for fresh tools 

with deferent fixturing systems. 
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Figure 10.27: The average LVQ errors of the sensitivity measuring methods for fresh 

tools. 

 

The above procedures have been applied to measure the training error of the data for 

the tools with one broken tooth. Similarly, the data of tool without sleeve will be used 

for training and the data of other tools with different sleeves for testing. Figure 10.28 

shows the LVQ training errors for the tool with different fixturing system. For four 

types of tools, it can be observed that the fuzzy logic obtained the lower training error 

for all the tools. Both the Range Value and CCX3 methods produced the higher ratio 

of the errors, meanwhile the LR, SCIV and CCX20 methods obtained the error but 

more that the fuzzy logic as illustrated in Figure 10.29. Generally, it can be noticed 

that the error values have been raised up comparing with those of the fresh tools.  
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Figure 10.28: The LVQ neural network errors of sensitivity feature for tools with one 

broken tooth for deferent fixturing systems. 
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Figure 10.29: The average LVQ errors of the sensitivity measuring methods for tools 

with one broken tooth. 
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This analysis will be continued to measure the error of the LVQ training error of the 

tools with two broken teeth as shown in Figure 10.30.  It is significantly clear that two  

methods (Range Value and CCX3) obtained high errors ratio.  
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Figure 10.30: The LVQ neural network errors of sensitivity feature for tools with two 

broken teeth for deferent fixturing systems. 
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Figure 10.31: The average LVQ errors of the sensitivity measuring methods for tools 

with two broken teeth. 

 

 

Figure 10.31 shows the average of the LVQ errors of the sensitivity measuring 

methods for tools  with two broken teeth. It is clearly showed that fuzzy logic keeps 

the last place in the rank of the lower training error. But, generally it can be noticed 

that the error values for the tools with two broken teeth are increased in comparing 

with the previous tools. 

The previous discussion for the training error of the LVQ neural  network showed that 

each type of the tools either different in the tool condition (fresh, with one broken 

tooth and two broken teeth) or in the type of fixturing system (without sleeve, with 

rubber, copper and aluminium sleeve), got different values of the errors. In addition, 

the error ratio increasing gradually when the tool condition transferred from the new 

tool to the damaged tools as seen in Figure 10.32. This presents an ability to define 

the type of the tool condition depends on the results of the neural network training. 

Consequently, this presented an indicator that the results of measuring sensitivity 

method could be different according to the type of the fixturing system. 
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Figure 10.32: Comparison between the average LVQ errors of the sensitivity 

measuring methods for three tool conditions. 

 

The present findings seem to be consistent with other results of previous chapters 

which found the quality of the fixturing system could affect the design of the 

condition monitoring system. 

 

10.4 Pattern Recognition 

10.4.1 Taylor’s Equation Induced Pattern (TIP)  
 

As discussed in the previous section that proved the ability of the fuzzy logic to define 

the more sensitive features by combining different techniques as a fusion model, that 

will lead the investigation to the next stage of the monitoring system which is the 

pattern recognition. In general, therefore, it seems that is important to classify the 

status of the tool from fresh to worn, and then make a decision.  The most important 

limitation lies in the fact that how to classify the tool condition after simplifying the 

collected signal from the sensor. A Taylor’s Equation Induced Pattern (TIP) technique 

used to define the pattern recognition and make the accurate decision for the tool 

condition status. Since, this research has been studying three stages of the tool 
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condition stages, fresh and tool with one broken tooth and tool with two broken teeth, 

logically, there is a difference among the sensory signals of those stages. Here, it will 

be focused on two variables for the signal, first is the amplitude of the first points 

which are (0.2, 0.4 and 0.6 ) for the first experimental pattern for fresh tool, the 

second and third patterns for tools with one broken tooth and two broken teeth (Vf, 

Vb1 and Vb2) respectively. The variable is the average variance among last points 

which are (0.4, 0.6 and 0.8) for three stages (Va0, Va1 and Va2). These values extracted 

from the experimental signals as shown in Figures 10.33, 10.34 and 10.35.  
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Figure 10.33: The amplitude and variance of first experimental pattern (pattern 1). 
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Figure 10.34: The amplitude and variance of second experimental pattern (pattern 2). 
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Figure 10.35: The amplitude and variance of third experimental pattern (pattern 3).                                                                                                                
 

 

In this research, the above applicable approach has been proposed to deal with the 

patterns of all experimental sensory features. These patterns are considered as 

templates to divide the target of neural network. Here, Back Propagation (BP) Neural 

Network will be implemented the data training and testing because it is a supervised 

method and definitely needs to determine the target in advance. Since the fuzzy logic 

is the best method to obtain the sensitivity, therefore the sequence of the features will 

be taken according to the arrangement of fuzzy logic. The features of first system of 

sensitivity for the tool without sleeve will be used for training and the data of other 

tools (tool with rubber, copper and aluminium sleeves) will be used for testing. This 

procedure will be also applied for the damaged tools with one broken tooth and two 

broken teeth. 
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Figure 10.36: The BP neural network errors for fresh  tools using different patterns. 

 
 

Figure 10.36 shows the results of the training and testing of the BP neural network for 

the fresh tools. It can observed that the pattern 3 has been obtained the higher ratio of 

training error for all the used tools, this  especially very clear for the tool with rubber 

sleeve where the error raised to 6.32 %, while the pattern 1 presented medium errors. 

However, pattern 2 is clearly provided less error which it is 4.66 %, and obtained less 

than this error ratio for the other tools. This indicates that the pattern 2 is the more 

suitable to represent the behaviour of the feature for the fresh tools with different 

fixturing system. 

Figure 10.37 shows the error of the BP neural network for the tools with one broken 

tooth. Here, the tool with rubber sleeve even it is got the higher error with pattern 3 

(5.35%) but it is still less than that for fresh tool. Pattern 2 obtained 3.27% as error 

ratio for the mentioned tool. However, it is 2.41%, 3.18% and 3.47% for the tools 

without sleeve, and with copper and aluminium sleeves. 
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Figure 10.37: The training errors of different patterns for tools with one broken tooth. 
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Figure 10.38: The training errors of different patterns for tools with two broken teeth. 
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For the tools with two broken teeth, as shown in Figure 10.38, it can be seen that the 

training error have been significant increased especially for the pattern 3 which 

obtained 7.92 % for the tool with rubber sleeve. For the same tool, pattern 2 made an 

error ratio by 5.89%; meanwhile pattern 1 is 6.53%. Other tools have achieved less 

error ratio with pattern 3 which are 7.15%, 7.35 and 7.55% respectively. 

 

10.4.2 Comparison between the Pattern Types 
 

From the above discussion, it can be concluded that pattern 3 has found to be 

achieved  higher error in comparing with the other two patterns, and relatively pattern 

1 keeps the middle stage for the all the tools, and clearly pattern 2 presented the lower 

error. Therefore, pattern 2 seems more agreement to represent the features of the fresh 

or damaged tools as shown in the Figure 10.39. Where in all tool conditions and for 

all the fixturing system, pattern 2 achieved lower errors, this provides an indicator 

about their reliability and ability to simulate the features of the sensory signals. One 

major finding of this approach is that the ability to classify the status of the tool 

conditions and the type of the fixturing system. Another important finding is that the 

capability of the ASPSF approach to define the relation between the tool conditions, 

fixturing system and condition monitoring system, since the effect of changing the 

tool condition or fixturing system could be significantly effected on the sensitivity of 

the sensory signal and consequently on the design of the monitoring system.  
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Figure 10.39: Comparison between the pattern errors for tools with different fixturing 

systems. 

 

10.5 Surface Roughness          

10.5.1 Roughness of Machined Surface 

The surface roughness is a vital and critical factor to measure the quality of the 

component produced since even the dimensions of the product are agreed within the 

dimensional tolerances, still there are possibilities of rejecting the workpiece due to 

lack of surface finishing. One of the main parameter to control the surface finish is 

determined the mechanical properties such as tool wear, tool breakage and tool runout 

due to imperfect fixturing system. Therefore in this section the relationship between 

the surface roughness and the type of the tool condition and fixturing system will be 

investigated. The surface tester (type Mitotoya SJ120) has been used to measure the 

roughness of the workpiece by tracking the machining process on the workpiece. 

After each machining test by using fresh tool with different fixturing system, the 

measurement of the surface roughness has collected as shown in Figure 10.40. It can 

be observed that the surface roughness (Ra, µm) is increased with the continuously of 

the machining process for all tools with different types of fixturing systems. But, 
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visually, it is clear that the roughness values for the tool with rubber sleeve are higher 

than those for other tools that may be because the rubber material is lowest elastic 

modulus and allows to the tool to move flexibly. 
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Figure 10.40: Surface roughness of workpiece for fresh tools. 

 

The tools with one broken tooth are used in the following test with same procedures 

to measure the roughness of the machined surface. The result of the measurements is 

illustrated in Figure 10.41, where it can be noticed that the values of collected data 

are increased for all the types of tools with different fixturing systems. This finding 

reflects the effect of the tool breakage phenomena on the quality of the surface, 

especially for the tool with rubber sleeve as both the effect of the rubber flexibility 

and tool breakage have been interfaced together to create significant change in the 

surface roughness which increased to around 2 µm. 
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Figure 10.41: Surface roughness of workpiece for tools with one broken tooth. 

The effect of increasing the number of the cutter broken teeth has been investigated in 

this experimental work. Figure 10.42 shows the measurement of tools with two 

broken teeth using tool without sleeve, tool with rubber sleeve, tool with copper 

sleeve and tool with aluminium sleeve. The results are agreement with our exceptions 

as the measurement of the roughness relatively near to 2.5 µm for the tool with rubber 

sleeve and around 1.5 µm for other tools. 
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Figure 10.42: Surface roughness of workpiece for tools with two broken teeth. 
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Figure 10.43: Average of surface roughness of workpiece for all tools conditions. 

     

For exploring the results in one graph to compare between the surface roughness 

measurements for each fixturing system individually in different tool conditions, 

Figure 10.43 presents the chart of the average of roughness. It can be clearly noticed 

that the roughness gradually increasing with regards to change the type of the tool 

conditions from the fresh tool to tool with one broken tooth to tool with two broken 

teeth. 

For conclusion, Figure 10.44 shows the relationship between the surface roughness 

and the type of the tool conditions, to evaluate the surface roughness of all the tools in 

case of fresh tool, also in the damaged tools with one and two broken teeth. It can be 

observed that the tools without sleeve have been obtained the lower values of the 

roughness measurements for three tool conditions. However, the tools with rubber 

sleeve produced the higher roughness meanwhile the tools with copper and 

aluminium sleeve produced less roughness than those for the tool with rubber sleeve.  

The findings of this study indicate that the tool condition and fixturing system have 

direct effect on the measurement of the surface roughness and consequently on the 
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quality of the products. This finding encourages us to investigate about the relation 

between the surface roughness and design of the condition monitoring system in terms 

of changing the condition of tool and fixturing types. 
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Figure 10.44: Comparison between the averages of Ra of workpiece for three tool 

conditions. 

 

10.5.2 Relation between Surface Roughness and Sensitivity    

As described in the previous section for the importance of the surface roughness to 

determine the quality of the workpiece, therefore it is important also to find a method 

to evaluate or control the roughness during the machining process. In this research, a 

suitable method is used to determine the correlation between the sensitivity of the 

sensory characteristic feature (SCF) and the surface roughness measurements. This 

correlation will explain is there any relation or its indicator to the overall change in 

the sensitivity or surface roughness.    
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Figure 10.45: The relation between surface roughness and average of sensitivity of 

features of system for fresh tools. 

 

 

Figure 10.45 shows the correlation between the sensitivity of the feature using 

different sensitivity measuring methods (i.e. LR, Range Value, SCIV, CCX3, CCX20, 

Fuzzy) and the surface roughness measurement of workpiece. It is visually clear that 

the sensitivity has a proportional increasing with the surface roughness since the 

change in the fixturing system for fresh tool will generate an increase in the surface 

roughness as explained in the previous section. This change leads to obtain sensory 

signals with high amplitudes, which means there is a possibility to increase the 

sensitivity of the feature. In addition, it can be seen that the roughness values of the 

tool with rubber sleeve are higher than those for other types of tools. 
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Figure 10.46: The relation between surface roughness and average of sensitivity of 

features of system for tools with one broken tooth. 

 

 
For the tools with one broken tooth, Figure 10.46 presents the relationship for the 

tools with different featuring system. It can be observed that the correlation values 

have been increased due to increase the agreement between the rise of surface 

roughness and the sensitivity of feature, also, here it can be seen that the tool rubber 

sleeve shows the higher relation among other tools without or with copper and 

aluminium sleeves. A possible explanation for this might be that the response of the 

sensor will rise as a result to redundancy in the cutting process. The most interesting 

finding is that an indicator to address the status of the tool depends on the response of 

the sensors and consequently depends on the sensitivity of the feature. 
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Figure 10.47: The relation between surface roughness and average of sensitivity of 

features of system for tools with two broken teeth. 

 

Continuously, Figure 10.47 shows the results of correlation for the tools with two 

broken teeth, where the surface of roughness of the workpiece has increased as 

mentioned in the previous section and therefore the correlation increased as well, this 

phenomena obtains a gradual increasing in the consistent of two variables. 

Taken together, these findings prove that the change in the tool condition or fixturing 

system could have a significant effect on the quality of the product; this case can be 

detected by using tool condition monitoring. Therefore, on the other word, it can be 

concluded that these changes could be effected on the design and the efficiency of 

monitoring system.   

                                              .. 

10.6 Conclusion 

The full capability of the ASPSF approach has been approved in this chapter. It has 

been used to create the affordable and effective detecting system to evaluate the effect 

of quality of the fixturing system and tool conditions on the design of the monitoring 

system in the milling process. Therefore,  three types of the tool conditions have been 

investigated , namely fresh, one broken tooth and two broken teeth, these  conditions 
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are studied using different fixturing system , such as tool without sleeve , tool with 

rubber sleeve , tool with copper sleeve and tool with aluminium sleeve.  

A wide range of the sensor and signal processing methods used to develop the ASPSF 

approach which is evaluated using different types of the measuring sensitivity 

application such as linear regression (LR), Range value (RV), Sudden change in 

Value (SCIV), Correlation coefficients (CCX3 and CCX20), and then all these 

methods have been utilised by fuzzy logic. The sensors are specifically chosen to 

cover most of the effected places in the CNC milling machine (i.e. machine table, 

rotating spindle and spindle case). The used sensors are dynamometer, AE, strain, 

accelerometers, and power, eddy current and sound sensor.  The features of these 

sensors have constructed an associated matrix which is imaged to show visually the 

most sensitive feature depends on the mentioned measuring sensitivity methods. The 

LVQ neural network has been used to train the data of the feature and to define which 

method obtains the lower training error. In addition, Taylor’s Equation Induced 

Pattern (TIP) used to define the pattern recognition of the used tools in the machining 

tests. 

Surface roughness has been measured using roughness tester (Mitotoya SJ 120), this 

measurement has been used in the new investigation to state the relationship between 

the experimental roughness and the sensitivity of the sensory feature. 

The results of the investigation in this chapter has proved the ability of the ASPSF 

approach to define the relationship between the tool conditions, fixturing system and 

the monitoring system. Since, any change in the tool condition as wear or breakage, 

also any change in the fixturing system (perfect or imperfect fixturing) could be 

effected on the efficiency of the monitoring system using fuzzy logic system or 

depend on the surface roughness measurements. 
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Chapter 11 Discussion and Conclusion 
 

11.1  Introduction  

Fixturing systems play an important part to hold a tool or workpiece during 

manufacturing processes. There is a limited research to focus on fixturing systems 

and their relationship to the design of condition monitoring systems.  This has driven 

this research towards the development of a sensor fusion system to investigate the 

effect of fixturing quality on the design of condition monitoring systems. 

Consequently, a novel approach, termed ASPSF, (Automated Sensor and Signal 

Processing Selection for Fixturing) has been implemented. The approach has 

investigated the sensitivity of the SCFs (Sensory Characteristic Features) and their 

behaviour during machining faults taking into consideration fixturing quality. This 

Chapter presents a summary of the suggested solution, aim of the research and the 

contribution to knowledge. It also shows the limitations and suggestions for future 

research. 

11.2  Suggested  Solution 

The sensitivity measuring methods which are used by the previous references are not 

sufficient to address the relationship between the fixturing systems and the design of 

the monitoring system. Therefore, the suggested ASPSF approach is used to solve 

these problems using automated sensitivity detection for the selection of sensor and 

signal processing methods and in identifying the effect of the fixturing system on 

such features.  

The ASPSF approach is designed to be generic for monitoring machining systems 

with reduced time and cost. In addition, it provides quality information regarding the 

machining process and its conditions. 

In the implemented experimental work, different types of fixturing systems are used 

to secure the cutting tool. Also, several sensory signals are used for monitoring the 

process. The signals of the sensory automatically transferred to a PC for processing. 

The ASPSF objective is to extract the SCFs obtained from the sensory signals using 

different signal processing methods and to find out the sensitivity of such features 

for different machine/fixture conditions. If a specific feature from a specific sensor 
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shows a high sensitivity to the fault, this simply means this SCF is useful in 

detecting or evaluating the condition of the fixturing system or addressing the tool 

faults. Therefore, the ASPSF can provide the condition monitoring designer by a 

methodology for continuous design and improvement of the condition monitoring 

system. Consequently, the designer has ability to adjust the monitoring system in 

normal case and recalibrate it when the change of parameters becomes significant.  

This approach is considered as the author’s main contribution which is established to 

combine previous points with the idea of developing a generic structured sensor-

fusion model using the following techniques: 

1. Evaluating the new ASPSF approach (Automated Sensor and Signal Processing 

Selection for Fixturing). 

2. Further applications of the automated simplification of complex signals into 

simple sensory characteristic features (SCFs). 

3. New automated detection techniques of sensitive SCFs and hence the associated 

sensors and signal processing methods. These methods include the Principal 

Component Analysis (PCA), Correlation Coefficients (CCX3 and CCX20), and 

Fuzzy Logic (FL) method. All the automated detection techniques are evaluated 

using LVQ neural network. 

4. Testing Taylor’s Equation Induced Pattern (TIP) and neural networks for defining 

the effect of fixturing quality on the design of the monitoring system. 

5. Further evaluations of cost-reduction technique based on removing the least 

utilised sensors when possible. 

6. Evaluating the results of the automated approach with surface roughness 

measurements. 

Therefore, the thesis has been designed to develop an effective sensor fusion system 

for milling operation and to determine the effect of fixturing system on the 

efficiency of the monitoring system. The overall structure of the thesis is described 

in Figure 11.1. Chapter 1 began by laying out an introduction for the problematic 

dimensions of the research. The following Chapters 2, 3, 4 and 5 reported the 

literature concerning the research conducted in the problem domain under 

investigation. The methodology of this thesis and the elements of the experimental 

work which have been used to implement the ASPSF approach are described in 

Chapters 6 and 7. The application of the ASPSF in this research has been described 



Chapter 11  Discussion and Conclusion 

     265 

in Chapter 8. Following this, Chapter 9 provides a further application for the 

proposed approach. Chapter 10 shows a new application of the ASPSF highlighting 

the full advantage of the approach.  

Chapters 2, 3, 4  and 5

Literature Review 

Chapter 1

Introduction

Chapter 6

Methodology

Chapter 7

Experimental Set-up

and the Elements of 

the ASPSF Approach

Chapter  11

Conclusion

Chapter  8, 9, 10

Detailed Application of  

the ASPSF Approach 

for Fixturing

 

Figure 11.1: Summary of the overall thesis structure. 

 

11.3  Research Aim and ASPSF Approach 

Implementation    

 
11.3.1 Research Aim 
 

The aim of this research is to investigate the influence of fixturing quality and its 

problems on the design of condition monitoring system. To address this aim, the 

novel ASPSF approach has been suggested. 

11.3.2 ASPSF Approach Implementation 

In spite of the importance of fixturing system in the machining processes to produce 

the best quality of machined parts, the survey of the literature review concludes that 

the lack of research to investigate the effect of the fixture on the condition 

monitoring system. Therefore, this investigation identified this gap in knowledge 

and addresses these limitations by creating and designing an automated monitoring 
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system that can detect the faults or the abnormalities in tool conditions and the 

fixturing system. Significant research has been performed concerning the 

development of reliable TCM. However, several factors have obstructed advances in 

the development of TCM including unsuitable choice of sensor signals and their 

utilisation. However, the previous reference [19] has presented the ASPS approach 

to select the sensors and signal processing techniques for monitoring the tool 

conditions. The ASPS approach has been modified and improved to be used in this 

research. 

The ASPSF approach has been used to cover faults in tool conditions such as tool 

wear and breakage. It also investigates the effect of the material and type of fixturing 

system by using different sleeves made from different elastic materials (rubber, 

copper and aluminium). These sleeves individually shrink to the shank of the tool to 

emulate the stability of the fixturing system as the normal tool namely tool without 

sleeve, abnormal tools which have rubber, copper or aluminium sleeves. A wide 

range of different sensors has been used, attached to the most suitable position in the 

machine as the workpiece, tool holder, spindle and machine electric supply. These 

sensors are the force dynamometer, acoustic emission, strain, accelerometers, sound, 

eddy current and power sensor.  

Many signal processing methods are applied in this thesis including maximum, 

minimum, standard deviation, power, average, skew value, kurtosis value, range, 

Fourier transformation and wavelet analysis. More details about the sensors and 

signal processing methods are described in Chapters 8, 9 and 10. The ASPSF 

approach for fixturing system is built based on the modification of the ASPS 

approach. However significant modifications are applied to investigate the tool and 

the fixturing quality problem as illustrated in the Figure 11.2. 
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Figure 11.2: Graphic illustration of the suggested ASPSF approach. 

The proposed ASPSF approach included the following steps: 

Signal simplification 

 

The approach utilises a wide range of sensory signals processed by a wide range of 

signal processing methods to extract the information in the signals as SCFs. These 

methods successfully applied in this research with different domains to create the 

Sensory Characteristic Features (SCFs). The SCFs are arranged together to build the 

Sensory Feature Matrix (SFM) which provides the features in an organised 3D 

matrix and in order to address the rank of the sensor sensitivity. In comparison to 

references [19, 20], this research has included newly used sensors as eddy current, 

power, and accelerometers attached to the spindle case. 

Automated sensitivity measuring method 

Automated sensitivity detection uses several types of analytical method such as the 

Principal Component Analysis (PCA) in order to evaluate the linear regression 

method as described in Chapter 8. The same techniques have been used in further 

applications as presented in Chapter 9. Moreover, Fuzzy logic has been implemented 
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to evaluate several sensitivity measuring methods including linear Regression, 

Range Value, Sudden Change In Value, Correlation Coefficient (CCX3) and 

Correlation Coefficient (CCX20) as explained in Chapter 10. The LVQ neural 

network has been used to measure the training error for each method and define the 

most accurate option. Consequently, this method will be used to define the most 

sensitive SCF.  

Selection of the Sensory Characteristic Features (SCF) 

 

The performance of the extracted SCFs is investigated against the tool faults and 

fixturing characteristics. The feature (SCF) which is produced from the sensor and 

signal processing method is arranged according to the value of the sensitivity. The 

total number of SCFs used in Chapters 8 is 64 features which resulted from 8 sensors 

and 8 signal processing method. In Chapter 9, 120 features  are constructed  from 15 

sensors and 8 signal processing (SP) methods. However, 420 features are built from 

15 sensors and 28 of SP methods in Chapter 10. These features are divided into 

different groups (systems) to evaluate their performance.  

Cost Reduction and Evaluation 

 

 One of the main aims of the ASPSF approach is to reduce the cost of the designed 

monitoring system by eliminating the insensitive features. The procedures of the 

cost reduction have been applied for the experimental work and it has proved the 

ability of the ASPSF approach to change cost to a reasonable level. This can be 

implemented by exchanging some of SCFs by others without significantly reducing 

the sensitive of the system.  

Another process follows that which is the evaluation to the system by measuring the 

sensitivity coefficients (Ac) and Eigenvalue coefficients (Ec) which are resulted 

from the averages of the associated matrix and eigenvalue matrix as explained in the 

section 8.5.2 of Chapter 8.  The results prove the capability of ASPSF approach to 

evaluate the overall sensitivity of the monitoring system. 

Surface Roughness 

 

Chapters 9 and 10 have shown that there is a relationship between surface roughness 

(Ra) and the design of the condition monitoring system to address and evaluation 

that. 



Chapter 11  Discussion and Conclusion 

     269 

11.4  Results and Discussion 

The suggested ASPSF approach has been applied to a milling process. The 

methodology involves the application of several techniques and developments to 

design the condition monitoring system in order to detect the faults of fixturing 

system and the tool. The main key developments and findings of this thesis are: 

Chapter 8: The shank of the cutting tool (Carbide tool 3/3 mm) is covered by a 

rubber sleeve to emulate a fixturing system with low rigidity. A group of sensors, 

namely acoustic emission, force, strain, vibration and sound, are used to design the 

tool wear monitoring system. The tests start with a fresh tool and finish with a 

completely worn tool. The Linear regression (LR) method has been successfully 

applied to measure the sensitivity of the feature (SCF). The Principal Component 

Analysis (PCA) method has been utilised to evaluate the LR method. A novel 

approach has been successfully implemented to predict the surface roughness (Ra 

value) based on the cutting force signal as described in section 8.6.  

The main findings are: 

1. A significant relationship between Linear Regression method and Principal 

Component Analysis method to find out the most sensitive features required to 

detect fixturing set-up and cutting tool wear has been found. The correlation 

coefficient between the two methods is 88% with a normal tool and 75% when 

using a tool with rubber sleeve. This indicates that the fixturing quality affects 

the sensitivity of the monitoring system.  

2. The ability of the automated detection methods to define the most sensitive 

Sensory Characteristic Features (SCFs). The features (SCFs) are obtained from 

the sensors and associated signal processing methods. The linear regression 

method has proved that the features SCF(Fy, min) and the SCF(Fy, average) are 

the most sensitive features for normal tool and tool with rubber sleeve. However, 

the principal component analysis method confirmed that the feature PCF(Fy, 

PC2) is the most sensitive feature in both cases.  

3. The capability of the ASPSF approach to recognise the changes in the fixturing 

system, and then detect the tool wear. Therefore it could be used to detect the 

abnormalities or the changes of the machine set-up during the machining 
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process. Also, the ability of the ASPSF approved to reduce the cost of 

monitoring system by 11% without significantly reducing the performance. 

4. The ability to predict the surface roughness using the signals generated by the 

cutting forces. A close relationship between the machined surface roughness and 

roughness predicted using the force signals has been found. 

Chapter 9: The application of the ASPSF has been successfully resulted in this 

chapter. The shank of the tools (High Speed Steel (HSS 3/6 mm) are covered 

individually by a rubber sleeve, copper sleeve and aluminium sleeve to emulate a 

fixturing system with different quality and flexibility. Further sensors have been also 

performed in the experimental work namely eddy current, power and accelerometers 

attached to the spindle case. This application has provided further evidence to 

support the capability of the ASPSF to monitor the abnormalities of the tool 

conditions and has presented a good agreement between the two measuring 

sensitivity methods (i.e. LR and PCA). For pattern recognition of the sensory signal, 

a novel method (Taylor’s Equation Induced Pattern (TIP)) has been implemented to 

detect the pattern of the sensory features (SCFs) under the variability of fixturing 

and tool conditions. Successfully, the back propagation neural network has 

evaluated the capability of the monitoring systems. Surface roughness measured 

using roughness tester (Mitotoya SJ 120), these measurements have been used in the 

new investigation to evaluate the relationship between the experimental roughness 

and the sensitivity of the sensory feature. 

The results of Chapter 9 indicated: 

1. The relationship between Linear Regression and Principal Component Analysis 

methods has been found to be significant to determine the most sensitive features 

to detect fixturing quality and cutting tool condition. 

      The correlation coefficient between the two methods is around 94% with normal 

tools and 75% for tools with rubber sleeve. Also, it is around 93.6 %, 86 % for 

tools with copper, aluminium sleeves respectively.  

2. The linear regression method demonstrated that the sensory features SCF(Edy, 

min) and the SCF(Pwr, std) are the most sensitive features for normal tool and 

tool with rubber sleeve. Also, the features SCF(Fx, max) and SCF(Mic, max) are 

the most sensitive features for tools with copper and aluminium sleeves 
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respectively. However, the PCA method has presented that the features 

PCF(Edy, PC1) and PCF(Fx, PC2) are the most sensitive features for normal tool 

and tool with rubber sleeve. Whilst, the features PCF(Fx, PC7) and PCF(Fx, 

PC11) provide better sensitivity features for tools with copper and aluminium 

sleeves.  

3. Based on Taylor’s Equation Induced Pattern (TIP) which used to define the 

pattern recognition accuracy, the ASPSF has the capability to determine the 

effect of the quality of the fixturing system on the capability of the monitoring 

system. Also, the ability of the ASPSF to reduce the cost of the monitoring 

system to 23% without significantly reducing its capability. 

4. Surface roughness measurements are used to evaluate the effect of the fixturing 

system on the design of condition monitoring system. The findings have proved 

that the change in fixturing quality could cause significant change in the 

roughness of a machined surface and lead to a change in the sensitivity of the 

monitoring system. The correlation coefficient between the surface roughness 

and the sensitivity is 90%, 71%, 76% and 49% with normal tools and the tools 

with rubber, copper and aluminium sleeves respectively. 

Chapter 10: Another important condition of the tool is investigated, which is the 

tool breakage. This case has been simulated experimentally using fresh tool, tool 

with one broken tooth and tool with two broken teeth. The Carbide tools (3/6mm) 

are used with the same fixturing systems as in Chapter 9. Several of the automated 

measuring sensitivity methods have been applied to implement the ASPSF approach, 

including the Linear Regression (LR), Sudden Change In Value (SCIV), Range 

Value (RV), Correlation coefficient (CCX3) and Correlation coefficient (CCX20).  

These methods have obtained different results for the sensitivity. Therefore, fuzzy 

logic method has been successfully applied to control and combine these results to 

find the most sensitive features (SCFs). The LVQ neural network has been used to 

evaluate all the measuring sensitivity methods. It has proved that fuzzy logic is the 

most suitable method among the sensitivity methods. Taylor’s Equation Induced 

Pattern (TIP) is used to define the pattern recognition of the sensory feature for 

monitoring tool conditions. 
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The key findings are: 

1. Fuzzy logic has been used to characterise the sensitivity of the features when 

different five methods are combined together. The fusion of different sensitivity 

measures using fuzzy logic has been found very reliable to select the most 

sensitive SCFs. The LVQ neural network has presented that the lowest training 

error is achieved by fuzzy logic within 1.5% for the fresh tool, 2% for tool with 

one broken tooth and 3% for tool with two broken teeth. However, the highest 

training error is achieved by correlation coefficient (CCX3) method with 5% for 

fresh tool, 5.5% and 6% tools with one and two broken teeth. For more details, 

see the section 10.3. 

2. The most sensitive features according to the evaluation of the fuzzy logic are 

described in Table 11.1. It can be observed that the SCF(Vsx, wav2) is the most 

sensitive feature for a fresh tool without sleeve. The SCF(Fy, min) is the most 

sensitive feature for a fresh tool with rubber sleeve. However, the features SCF 

(Vsz, wav4) and SCF(Edx, FFT6) are the most sensitive features for fresh tools 

with copper and aluminium  sleeves, and so on for other features.  

 

The force and vibration sensors are the most sensitive sensors and the wavelet 

and standard deviation are the most sensitive signal processing methods. This 

indicates that the sensitivity of the monitoring system is significantly dependent 

on the fixturing quality and tool condition. 
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Table 11.1: The most sensitive sensor (S) and signal processing (SP) in the different 

machining conditions using fuzzy logic. 

 

Tool

…… condition

Fixturing

type

Fresh

Tool

Tool with 1

broken tooth

Tool with 2

broken teeth

S SP S SP S SP

Tool without 

sleeve

(Normal Tool)

Vibration 

(Vsx)

Wavelet2 Sound average Acoustic

Emission

(AERMS)

Kurtosis

Vibration 

(Vwy)

maximum Sound Wavelet1 Force 

(Fz)

minimum

Vibration 

(Vsx)

Wavelet1 Power Wavelet2 Strain Wavelet1

Tool with 

rubber sleeve

Force 

(Fy)

minimum Force 

(Fz) 

minimum Force 

(Fy)

Wavelet1

Vibration 

(Vwy)

average Force 

(Fx)

skew Force 

(Fy)

Wavelet9

Sound Wavelet6 strain minimum Force 

(Fy)

Standard

deviation

Tool with 

copper sleeve

Vibration 

(Vsz)

Wavelet4 Force 

(Fz)

maximum Acoustic

Emission

(AERMS)

skew

Vibration 

(Vsx)

Wavelet2 Force 

(Fy)

skew Vibration 

(Vsx)

range

Force 

(Fz)

Kurtosis Force 

(Fz)

range Vibration 

(Vsx)

Standard

deviation

Tool with 

aluminium 

sleeve

Eddy 

current 

(Edx)

FFT6 Vibration 

( Vsz)

Standard

deviation

Force 

(Fy)

power

Force 

(Fz)

FFT3 Vibration 

( Vsz)

power Power Standard

deviation

Vibration 

(Vsz)

Standard

deviation

Vibration 

( Vsz)

Wavelet1 Force 

(Fz)

average

 
 

 

3. The full capability of the ASPSF approach has been demonstrated in this chapter. 

The general results have proved that the tool condition and the type of the 

fixturing system could affect the sensitivity of the sensory signal and 

consequently affect the design of the condition monitoring system as described in 

section 10.4 of Chapter 10. Surface roughness measurement has also proved the 

ability of the ASPSF approach by outlining the significant relationship between 
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surface roughness and the sensitivity of the SCFs under the variability of tool and 

fixturing conditions. For more details, see the section 10.5 of Chapter 10. 

The present findings seem to be consistent with other results of previous chapters 

which found that the quality of the fixturing system could influence the design of the 

condition monitoring system. 

11.5  Contribution to knowledge  

The main contribution and novelty of this work is the investigation into the effect of 

tool fixturing quality on the design of condition monitoring system using sensor 

fusion model. This contribution has addressed the limitations and gaps in knowledge 

identified in the literature review. The research examined the use of a combination 

of sensors which are used to detect the status of the tool condition in terms of 

changing the fixturing system. The real measurements of the surface roughness of 

the machined surface have been employed in this research to reflect the relationship 

between the quality of the surface finish and the sensitivity of the monitoring 

system. Further to the main contribution, there are several conceptual and technical 

contributions as follows: 

11.5.1 Conceptual Contribution 

 

In addition, the research included the following contributions: 

1. Testing the effect of fixturing quality on the design of condition monitoring 

systems to detect tool wear. The ASPSF approach has investigated the difference in 

the system’s behaviour and the changes in the condition monitoring system when the 

tool is not rigidly fastened to the fixture which is emulated using different materials 

with different modulus of elasticity. 

2. The ASPSF approach highly focused on the fixturing system as an important part 

in the machining process which is used to secure the cutting tool. This research 

concentrated on the complex phenomena to define the relationship between the tool 

conditions, fixturing system and design of the monitoring system. 

3. The ASPSF is generic and it could be applied for studying other issues related to 

the milling process or the stability of the machine. For example, it could be used to 

investigate other types of fixturing systems, or using different cutting tools. 
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4. The ASPSF approach has been developed based on the ASPS approach [19] with 

significant modification and the addition of different application.  

5. The proposed approach is fully automated and provides the flexibility, 

simplification and possibility of applying the model of condition monitoring for 

milling processes with decision making process into real industrial environment.  

11.5.2 Technical Contribution 

 

There are mainly different technical contributions have been presented in the thesis: 

 

1. This study adapted several signal simplification methods in order to extract useful 

information from the collected data. The wide range of the new sensors and signals 

enable the system to be more effective and more accurate. 

2. The new automated sensitivity measuring method has been used to implement and 

evaluate the ASPSF by using Principal Component Analysis (PCA). This method  

depends on calculating the eigenvalue or the distance between the position of the 

sensor and the mean of the data coordinate, the amount of this value will determine 

the effect of the variable (or the sensor) on the whole data, this function is employed 

to find the most sensitive sensor.  

3. More evaluations are applied to reduce the cost of the suggested system and to 

keep the high performance and reliability of the evaluated system. 

4. In order to detect the change of the fixturing systems on the detecting system, four 

types of fixturing system have been implemented in the experimental work 

represented by using tool without sleeve, and tools with elastic materials such as tool 

with rubber sleeve, tool with copper sleeve and tool with aluminium sleeve.  

5. To compare the efficiency of the used sensitivity measuring system, five methods 

are investigated, and then evaluated using fuzzy logic. The methods are: 

a. Linear Regression (LR) method. 

b. Range Value (RV) method. 

c. Sudden Change In Value (SCIV) method. 

d. Correlation Coefficient (CCX3) method. 

e. Correlation Coefficient (CCX20) method. 

6. A new sensor which is considered as one of the sensitive sensor (Eddy current 

sensor) to monitor the vibration of the spindle. This sensor has been carefully 
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attached to the spindle case using the fixture without effect on the design of the 

machine.  

7. Several sensors are used with the eddy current sensor to achieve the aim of the 

proposed approach namely, the force dynamometer, strain, acoustic emission, 

accelerometer, sound and power sensor. These sensors dealt with the most of milling 

machine problems.  

8. For data analysis, an unsupervised neural network, Learning Vector Quantisation 

(LVQ) is implemented to explore the relation between the investigated variables or 

to be used as a reliable classifier for the sensory sensitivity methods. 

9. A new technique, Taylor’s Equation Induced Pattern (TIP), has been suggested 

and successfully applied to represent the pattern of the signal and to detect the 

moment of changing the tool conditions. This technique is also supported by using a 

supervised neural network, as a back propagation neural network.             

10. Surface roughness has been measured and compared with the sensitivity of the 

monitoring system for further evaluation and analysis. 

11.6  Limitation and suggestion for future work 

The author identifies the following limitations and suggestions of this research and 

future studies. 

1. In the current research, it is focused on one type of the fixturing system, the 

collet, in the future work, other types (i.e. Hydraulic collet and Jaw chuck) of 

the fixturing system may be used to study the effect of the difference of 

fixturing system on the monitoring system. 

2. Different sensors and signal processing methods could be used to assess the 

proposed approach; this may influence the trend of the results. 

11.7 Final Conclusion 

Recently, more attention has been directed towards improving sensor fusion 

techniques to detect or predict faults in manufacturing processes. There has been 

limited research focusing on fixturing systems and their relationship to the design of 

condition monitoring systems. The identification of this gap in knowledge combined 
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with the recent developments improving sensor fusion techniques have led this 

thesis to investigate the effect of fixturing quality on the design of condition 

monitoring systems to detect tool wear. Importantly, the thesis focusses on the 

difference in the system’s behaviour and the changes in the condition monitoring 

system when the cutting tool is not rigidly fastened to the collet, which is emulated 

using elastic materials (e.g. rubber sleeve). A group of sensors, namely acoustic 

emission, force, eddy current, strain, power, vibration and sound, have been utilised 

to design the condition monitoring system. This has led to the development of a 

novel approach, termed ASPSF, (Automated Sensor and Signal Processing Selection 

for Fixturing) addressing the effect of the tool holding device (collet) on the 

monitoring system together with an assessment of the most sensitive sensors and 

signal processing method to detect tool wear.  

The results prove that the change in the fixturing quality has caused variation in the 

dynamics of the system and demonstrated significant effect on most sensitive 

sensors and signal processing methods for the detection of tool condition. Therefore, 

this thesis has proved that minor changes in the setup of the machining operation 

could have significant influence on the condition monitoring system, subsequently 

this requires redesign the monitoring system.  
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Appendix B: Signals Simplifications (For Chapter 9) 
 

9.2.1.1   Linear Regression (LR) method 

 
 

Table B.1: The Associated matrix of the system for tool 2 without sleeve. 

 

Tool  2 Signal Processing Methods 

Sensor max  min std power average skew kurtosis range 

Fx 0.026 0.348 0.108 0.152 0.320 0.066 0.133 0.200 

Fy 0.003 0.568 0.739 0.505 0.498 0.794 0.456 0.660 

Fz 0.088 0.307 0.049 0.079 0.099 0.051 0.370 0.272 

Strain 0.273 0.220 0.443 0.149 0.161 0.025 0.016 0.000 

Vwy 0.502 0.499 0.229 0.485 0.501 0.526 0.262 0.421 

AE 0.067 0.166 0.129 0.191 0.211 0.017 0.364 0.110 

AERMS 0.087 0.410 0.215 0.086 0.221 0.240 0.418 0.183 

Mic 0.077 0.467 0.046 0.244 0.246 0.022 0.075 0.427 

Vsx 0.182 0.019 0.201 0.243 0.200 0.294 0.112 0.168 

Vsy 0.421 0.433 0.795 0.809 0.151 0.052 0.438 0.650 

Vsz 0.775 0.247 0.625 0.414 0.207 0.484 0.280 0.430 

Vwx 0.115 0.127 0.414 0.514 0.352 0.186 0.081 0.091 

Pwr 0.560 0.349 0.666 0.738 0.353 0.325 0.333 0.574 

Edx 0.076 0.373 0.016 0.826 0.825 0.788 0.507 0.358 

Edy 0.715 0.000 0.671 0.559 0.592 0.671 0.085 0.715 
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Figure B.1: A graphical presentation of the sensitivity for tool 2 without sleeve. 
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          Table B.2: The Associated matrix of the system for tool 3 without sleeve. 

 

Tool 3                                            Signal Processing Methods  

Sensor max  min std power average skew kurtosis range 

Fx 0.358 0.125 0.039 0.004 0.523 0.326 0.164 0.147 

Fy 0.054 0.193 0.143 0.134 0.158 0.166 0.236 0.170 

Fz 0.060 0.326 0.243 0.288 0.436 0.366 0.026 0.252 

Strain 0.028 0.647 0.327 0.370 0.381 0.293 0.444 0.535 

Vwy 0.578 0.580 0.094 0.596 0.576 0.383 0.142 0.074 

AE 0.022 0.079 0.463 0.378 0.094 0.473 0.124 0.045 

AERMS 0.301 0.229 0.203 0.375 0.397 0.345 0.037 0.241 

Mic 0.200 0.253 0.386 0.584 0.587 0.373 0.159 0.045 

Vsx 0.429 0.042 0.158 0.224 0.170 0.104 0.054 0.264 

Vsy 0.536 0.399 0.056 0.028 0.108 0.230 0.264 0.220 

Vsz 0.524 0.047 0.181 0.025 0.509 0.574 0.119 0.309 

Vwx 0.166 0.219 0.432 0.380 0.216 0.462 0.202 0.153 

Pwr 0.520 0.707 0.910 0.924 0.317 0.447 0.255 0.798 

Edx 0.427 0.010 0.211 0.268 0.270 0.167 0.215 0.352 

Edy 0.171 0.000 0.501 0.488 0.480 0.499 0.271 0.171 
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Figure B.2: A graphical presentation of the sensitivity for tool 3 without sleeve. 
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        Table B.3: The Associated matrix of the system for tool 4 with rubber sleeve. 

 

Tool 4 Signal Processing Methods 

Sensor max  min std power average skew kurtosis range 

Fx 0.247 0.623 0.331 0.211 0.636 0.163 0.325 0.587 

Fy 0.002 0.214 0.404 0.023 0.045 0.240 0.356 0.339 

Fz 0.368 0.542 0.576 0.342 0.397 0.321 0.270 0.548 

Strain 0.061 0.265 0.208 0.255 0.289 0.269 0.122 0.299 

Vwy 0.084 0.082 0.155 0.042 0.082 0.245 0.170 0.409 

AE 0.395 0.510 0.534 0.484 0.115 0.463 0.256 0.437 

AERMS 0.542 0.535 0.448 0.518 0.530 0.010 0.234 0.467 

Mic 0.098 0.065 0.128 0.497 0.500 0.013 0.229 0.130 

Vsx 0.359 0.444 0.524 0.297 0.427 0.536 0.432 0.514 

Vsy 0.415 0.198 0.315 0.356 0.100 0.052 0.384 0.355 

Vsz 0.105 0.014 0.104 0.067 0.035 0.092 0.196 0.095 

Vwx 0.489 0.301 0.188 0.217 0.216 0.026 0.339 0.183 

Pwr 0.069 0.215 0.776 0.728 0.151 0.118 0.578 0.115 

Edx 0.770 0.190 0.070 0.244 0.242 0.262 0.575 0.665 

Edy 0.192 0.000 0.151 0.221 0.202 0.151 0.118 0.192 
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Figure B.3: A graphical presentation of the sensitivity for tool 4 with rubber sleeve. 
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Table B.4: The Associated matrix of the system for tool 5 with rubber sleeve. 

 

Tool 5                                                Signal Processing Methods  

Sensor max  min std power average skew kurtosis range 

Fx 0.102 0.679 0.540 0.496 0.275 0.403 0.262 0.402 

Fy 0.014 0.751 0.361 0.229 0.078 0.617 0.722 0.529 

Fz 0.238 0.628 0.267 0.192 0.021 0.645 0.246 0.368 

Strain 0.150 0.131 0.519 0.017 0.124 0.296 0.788 0.092 

Vwy 0.667 0.673 0.260 0.810 0.671 0.235 0.305 0.415 

AE 0.181 0.193 0.190 0.058 0.050 0.280 0.525 0.187 

AERMS 0.268 0.462 0.234 0.095 0.333 0.112 0.431 0.254 

Mic 0.247 0.252 0.219 0.168 0.167 0.212 0.002 0.328 

Vsx 0.647 0.090 0.300 0.376 0.301 0.142 0.088 0.367 

Vsy 0.146 0.467 0.336 0.020 0.262 0.221 0.337 0.476 

Vsz 0.629 0.345 0.264 0.114 0.250 0.267 0.487 0.626 

Vwx 0.014 0.139 0.281 0.082 0.184 0.372 0.054 0.134 

Pwr 0.427 0.054 0.338 0.438 0.215 0.322 0.264 0.317 

Edx 0.234 0.268 0.072 0.267 0.268 0.227 0.004 0.047 

Edy 0.030 0.044 0.013 0.059 0.046 0.384 0.056 0.049 
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Figure B.4 : A graphical presentation of the sensitivity for tool 5 with rubber sleeve. 
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Table B.5: The Associated matrix of the system for  tool 6 with  rubber sleeve. 

 

Tool 6 Signal Processing Methods 

Sensor max  min std power average skew kurtosis range 

Fx 0.296 0.345 0.212 0.203 0.359 0.291 0.579 0.325 

Fy 0.160 0.170 0.159 0.160 0.306 0.101 0.174 0.166 

Fz 0.164 0.168 0.166 0.166 0.137 0.009 0.168 0.167 

Strain 0.159 0.166 0.167 0.166 0.037 0.148 0.155 0.165 

Vwy 0.149 0.174 0.166 0.328 0.331 0.166 0.169 0.166 

AE 0.286 0.654 0.525 0.267 0.261 0.474 0.183 0.406 

AERMS 0.039 0.455 0.043 0.227 0.396 0.455 0.184 0.066 

Mic 0.421 0.049 0.288 0.212 0.215 0.304 0.543 0.379 

Vsx 0.146 0.299 0.486 0.229 0.192 0.130 0.010 0.067 

Vsy 0.190 0.098 0.138 0.249 0.336 0.317 0.244 0.118 

Vsz 0.077 0.093 0.410 0.393 0.036 0.016 0.072 0.006 

Vwx 0.118 0.287 0.108 0.069 0.082 0.132 0.246 0.210 

Pwr 0.219 0.470 0.848 0.880 0.448 0.430 0.251 0.248 

Edx 0.364 0.345 0.336 0.322 0.320 0.312 0.315 0.351 

Edy 0.262 0.013 0.139 0.225 0.201 0.241 0.311 0.246 
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Figure B.5: A graphical presentation of the sensitivity for tool 6 with rubber sleeve. 
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         Table B.6: Associated matrix of the system for  tool 7 with  copper sleeve. 

 

Tool 7 Signal Processing Methods 

Sensor max  min std power average skew kurtosis range 

Fx 1.024 0.182 0.704 0.684 0.863 0.288 0.138 0.662 

Fy 0.578 0.058 0.585 0.506 0.177 0.669 0.640 0.499 

Fz 0.307 0.079 0.311 0.255 0.393 0.468 0.289 0.216 

Strain 0.427 0.342 0.356 0.204 0.075 0.374 0.313 0.388 

Vwy 0.506 0.512 0.106 0.486 0.509 0.395 0.050 0.021 

AE 0.298 0.300 0.302 0.302 0.093 0.275 0.297 0.299 

AERMS 0.290 0.245 0.368 0.298 0.286 0.020 0.495 0.321 

Mic 0.281 0.269 0.119 0.148 0.155 0.157 0.193 0.175 

Vsx 0.591 0.009 0.681 0.188 0.088 0.110 0.413 0.469 

Vsy 0.231 0.288 0.676 0.241 0.072 0.186 0.390 0.363 

Vsz 0.565 0.500 0.604 0.242 0.098 0.195 0.706 0.796 

Vwx 0.135 0.047 0.513 0.468 0.087 0.122 0.204 0.038 

Pwr 0.815 0.738 0.795 0.855 0.300 0.254 0.294 0.779 

Edx 0.059 0.256 0.237 0.314 0.314 0.485 0.225 0.258 

Edy 0.386 0.276 0.262 0.392 0.406 0.198 0.313 0.281 
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Figure B.6: A graphical presentation of the sensitivity for tool 7 with copper sleeve. 
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Table B.7: The Associated matrix of the system for  tool 8 with  copper sleeve. 

 

Tool 8 Signal Processing Methods 

Sensor max  min std power average skew kurtosis range 

Fx 0.046 0.065 0.047 0.054 0.087 0.142 0.063 0.179 

Fy 0.447 0.554 0.248 0.253 0.445 0.162 0.187 0.140 

Fz 0.035 0.033 0.085 0.143 0.054 0.343 0.057 0.051 

Strain 0.110 0.358 0.316 0.391 0.340 0.201 0.257 0.328 

Vwy 0.235 0.231 0.173 0.146 0.233 0.223 0.371 0.207 

AE 0.426 0.534 0.574 0.501 0.184 0.345 0.228 0.529 

AERMS 0.621 0.324 0.424 0.419 0.437 0.132 0.477 0.514 

Mic 0.435 0.063 0.751 0.296 0.301 0.790 0.119 0.572 

Vsx 0.286 0.339 0.601 0.085 0.257 0.516 0.319 0.455 

Vsy 0.199 0.310 0.330 0.467 0.264 0.027 0.417 0.385 

Vsz 0.260 0.552 0.371 0.041 0.194 0.303 0.585 0.531 

Vwx 0.225 0.086 0.282 0.060 0.291 0.336 0.143 0.033 

Pwr 0.076 0.724 0.692 0.581 0.323 0.393 0.091 0.565 

Edx 0.191 0.172 0.055 0.140 0.140 0.141 0.346 0.053 

Edy 0.261 0.302 0.366 0.265 0.328 0.752 0.248 0.290 
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Figure B.7: A graphical presentation of the sensitivity for tool 8 with copper sleeve. 
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Table B.8: The Associated matrix of the system for tool 9 with copper sleeve. 

 

Tool 9 Signal Processing Methods 

Sensor max  min std power average skew kurtosis Range 

Fx 0.230 0.346 0.039 0.140 0.424 0.292 0.063 0.057 

Fy 0.545 0.647 0.209 0.577 0.670 0.209 0.042 0.260 

Fz 0.439 0.380 0.166 0.125 0.708 0.129 0.472 0.150 

Strain 0.201 0.356 0.128 0.263 0.249 0.005 0.298 0.315 

Vwy 0.941 0.913 0.221 0.962 0.928 0.640 0.299 0.308 

AE 0.283 0.386 0.247 0.168 0.268 0.302 0.400 0.332 

AERMS 0.320 0.385 0.272 0.362 0.382 0.064 0.429 0.271 

Mic 0.360 0.278 0.315 0.193 0.210 0.313 0.293 0.301 

Vsx 0.278 0.337 0.218 0.347 0.925 0.412 0.306 0.332 

Vsy 0.280 0.129 0.086 0.176 0.266 0.473 0.268 0.213 

Vsz 0.208 0.360 0.045 0.048 0.041 0.032 0.301 0.268 

Vwx 0.136 0.450 0.204 0.199 0.072 0.197 0.534 0.391 

Pwr 0.260 0.409 0.531 0.595 0.232 0.184 0.247 0.337 

Edx 0.072 0.348 0.249 0.316 0.316 0.282 0.287 0.236 

Edy 0.198 0.312 0.374 0.380 0.390 0.407 0.299 0.305 
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Figure B.8: A graphical presentation of the sensitivity for tool 9 with copper sleeve. 
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Table B.9: Associated matrix of the system for  tool 10 with  aluminium sleeve. 

 

Tool 10 Signal Processing Methods 

Sensor max  min std power average skew kurtosis Range 

Fx 0.349 0.703 0.603 0.615 0.325 0.273 0.085 0.548 

Fy 0.238 0.147 0.465 0.617 0.099 0.096 0.552 0.375 

Fz 0.377 0.287 0.158 0.285 0.590 0.094 0.357 0.144 

Strain 0.060 0.123 0.011 0.067 0.142 0.018 0.334 0.067 

Vwy 0.248 0.271 0.235 0.235 0.268 0.188 0.407 0.707 

AE 0.334 0.273 0.203 0.013 0.468 0.274 0.283 0.315 

AERMS 0.071 0.175 0.007 0.175 0.134 0.036 0.250 0.016 

Mic 0.816 0.591 0.528 0.492 0.493 0.537 0.519 0.753 

Vsx 0.489 0.531 0.289 0.251 0.414 0.446 0.694 0.696 

Vsy 0.039 0.435 0.417 0.452 0.373 0.173 0.251 0.373 

Vsz 0.255 0.226 0.487 0.098 0.402 0.444 0.117 0.307 

Vwx 0.008 0.514 0.200 0.108 0.220 0.231 0.446 0.332 

Pwr 0.260 0.308 0.798 0.763 0.512 0.471 0.145 0.438 

Edx 0.041 0.079 0.675 0.418 0.412 0.582 0.348 0.017 

Edy 0.056 0.536 0.551 0.028 0.165 0.218 0.364 0.546 

 

 

 

 

Signal processing method

S
e
n
s
o
r

Tool  10

 

 

max min std power Averge skew kurtosis range

Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
High sensitivity

Low sensitivity

High SCF (Mic, max)

 
 

Figure B.9: A graphical presentation of the sensitivity for tool 10 with aluminium 

sleeve. 
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Table B.10: The Associated matrix of the system for tool 11 with aluminium sleeve. 

 

Tool 11 Signal Processing Methods 

Sensor max  min std power average skew kurtosis Range 

Fx 0.642 0.151 0.099 0.272 0.475 0.466 0.094 0.180 

Fy 0.027 0.127 0.319 0.522 0.054 0.557 0.374 0.306 

Fz 0.166 0.366 0.364 0.360 0.011 0.069 0.610 0.258 

Strain 0.201 0.047 0.288 0.128 0.117 0.307 0.622 0.136 

Vwy 0.549 0.537 0.470 0.554 0.544 0.598 0.018 0.247 

AE 0.367 0.374 0.343 0.211 0.513 0.332 0.598 0.374 

AERMS 0.327 0.103 0.307 0.091 0.182 0.074 0.246 0.324 

Mic 0.500 0.472 0.500 0.532 0.528 0.532 0.419 0.157 

Vsx 0.562 0.438 0.072 0.260 0.275 0.175 0.155 0.160 

Vsy 0.153 0.349 0.230 0.324 0.556 0.008 0.299 0.118 

Vsz 0.472 0.105 0.245 0.498 0.562 0.500 0.209 0.314 

Vwx 0.451 0.127 0.287 0.065 0.441 0.508 0.336 0.405 

Pwr 0.084 0.356 0.028 0.092 0.453 0.232 0.165 0.119 

Edx 0.095 0.466 0.050 0.357 0.360 0.239 0.451 0.502 

Edy 0.040 0.188 0.256 0.430 0.433 0.184 0.101 0.182 
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Figure B.10: A graphical presentation of the sensitivity for tool 11 with aluminium 

sleeve. 
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Table B.11: The Associated matrix of the system for tool 12 with aluminium sleeve. 

 

Tool 12 Signal Processing Methods 

Sensor max  min std power average skew kurtosis Range 

Fx 0.308 0.353 0.061 0.025 0.379 0.327 0.339 0.009 

Fy 0.401 0.408 0.184 0.507 0.472 0.363 0.089 0.268 

Fz 0.453 0.546 0.533 0.480 0.453 0.137 0.229 0.470 

Strain 0.273 0.011 0.236 0.058 0.281 0.277 0.153 0.190 

Vwy 0.198 0.198 0.011 0.114 0.195 0.280 0.005 0.056 

AE 0.536 0.561 0.554 0.557 0.347 0.603 0.413 0.550 

AERMS 0.515 0.397 0.573 0.526 0.497 0.006 0.125 0.611 

Mic 0.286 0.281 0.654 0.519 0.519 0.627 0.295 0.070 

Vsx 0.367 0.139 0.183 0.389 0.423 0.368 0.484 0.373 

Vsy 0.481 0.288 0.083 0.359 0.439 0.519 0.035 0.479 

Vsz 0.620 0.028 0.449 0.005 0.405 0.466 0.066 0.421 

Vwx 0.161 0.228 0.340 0.116 0.351 0.510 0.176 0.239 

Pwr 0.038 0.041 0.299 0.317 0.177 0.134 0.002 0.002 

Edx 0.030 0.337 0.255 0.330 0.333 0.158 0.154 0.304 

Edy 0.618 0.729 0.079 0.661 0.667 0.110 0.540 0.260 
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Figure B.11 : A graphical presentation of the sensitivity for tool 12 with aluminium 

sleeve. 



Appendices 

     14 

Appendix C: Signals Simplifications (For Chapter 9) 
 

9.2.1.2  Principal Component Analysis (PCA) method 
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Figure C.1: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 2 without sleeve. 
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Figure C.2: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 3 without sleeve. 
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Figure C.3: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 4 with rubber sleeve. 
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Figure C.4: A plot of the principle components according to eigenvalue of      

variables in the covariance matrix for tool 5 with rubber sleeve. 
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Figure C.5: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 6 with rubber sleeve. 
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Figure C.6: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 7 with copper  sleeve. 
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Figure C.7: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 8 with copper  sleeve. 
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Figure C.8: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 9 with copper sleeve. 
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Figure C.9: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 10 with aluminium sleeve. 
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Figure C.10: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 11 with aluminium sleeve. 
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Figure C.11: A plot of the principle components according to eigenvalue of variables 

in the covariance matrix for tool 12 with aluminium sleeve. 

 

 

 

 

Table C.1: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 2 without 

sleeve. 

 

Principal Component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.27 0.57 0.44 0.27 0.15 0.40 0.46 0.56 0.53 0.51 0.21 0.58 0.52 0.53 0.35

Fy 0.27 0.28 0.43 0.23 0.12 0.39 0.38 0.12 0.12 0.36 0.15 0.40 0.10 0.44 0.09

Fz 0.27 0.25 0.34 0.20 0.10 0.30 0.27 0.07 0.11 0.24 0.13 0.17 0.01 0.25 0.03

Strain 0.27 0.18 0.30 0.12 0.08 0.20 0.22 0.03 0.07 0.13 0.07 0.10 0.01 0.23 0.01

Vwy 0.26 0.15 0.09 0.11 0.08 0.19 0.08 0.03 0.03 0.10 0.02 0.10 0.02 0.19 0.01

AE 0.25 0.03 0.03 0.10 0.00 0.12 0.05 0.01 0.01 0.00 0.01 0.10 0.04 0.17 0.02

AERMS 0.25 0.05 0.04 0.07 0.01 0.12 0.03 0.02 0.02 0.01 0.00 0.07 0.08 0.02 0.03

Mic 0.22 0.06 0.09 0.05 0.05 0.04 0.01 0.03 0.06 0.10 0.08 0.04 0.12 0.02 0.07

Vsx 0.22 0.10 0.09 0.02 0.14 0.04 0.02 0.06 0.11 0.12 0.11 0.03 0.18 0.07 0.08

Vsy 0.26 0.19 0.21 0.06 0.16 0.05 0.06 0.09 0.19 0.15 0.11 0.02 0.25 0.11 0.08

Vsz 0.26 0.20 0.22 0.08 0.25 0.06 0.11 0.11 0.27 0.24 0.13 0.01 0.28 0.15 0.12

Vwx 0.27 0.22 0.22 0.08 0.26 0.13 0.15 0.18 0.27 0.24 0.25 0.14 0.29 0.18 0.15

Pwr 0.27 0.22 0.25 0.09 0.36 0.19 0.24 0.21 0.31 0.27 0.28 0.32 0.30 0.21 0.19

Edx 0.87 0.32 0.30 0.16 0.38 0.39 0.44 0.41 0.33 0.34 0.33 0.34 0.41 0.26 0.56

Edy 0.27 0.44 0.31 0.24 0.70 0.53 0.47 0.63 0.53 0.42 0.78 0.44 0.42 0.41 0.68
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Figure C.12: A graphical presentation of the EVSM for tool 2 without  sleeve. 

 

 

 

 

Table C.2: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 3 without 

sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.33 0.41 0.46 0.15 0.26 0.22 0.30 0.70 0.60 0.69 0.46 0.61 0.59 0.67 0.80

Fy 0.32 0.40 0.46 0.15 0.19 0.15 0.05 0.30 0.46 0.45 0.44 0.33 0.43 0.07 0.26

Fz 0.32 0.38 0.19 0.13 0.17 0.12 0.03 0.22 0.34 0.28 0.27 0.32 0.23 0.02 0.24

Strain 0.31 0.20 0.15 0.12 0.17 0.11 0.01 0.20 0.23 0.15 0.11 0.30 0.17 0.01 0.23

Vwy 0.30 0.18 0.15 0.10 0.16 0.07 0.00 0.19 0.08 0.11 0.09 0.17 0.12 0.00 0.14

AE 0.29 0.14 0.05 0.07 0.10 0.01 0.02 0.18 0.04 0.05 0.00 0.11 0.11 0.01 0.10

AERMS 0.23 0.10 0.04 0.06 0.03 0.00 0.03 0.17 0.02 0.04 0.02 0.01 0.07 0.04 0.00

Mic 0.19 0.02 0.04 0.02 0.00 0.00 0.05 0.12 0.00 0.00 0.05 0.00 0.03 0.06 0.00

Vsx 0.15 0.05 0.04 0.02 0.00 0.14 0.11 0.10 0.01 0.03 0.07 0.01 0.01 0.07 0.02

Vsy 0.13 0.11 0.08 0.02 0.01 0.14 0.14 0.09 0.02 0.05 0.09 0.03 0.00 0.11 0.03

Vsz 0.03 0.17 0.08 0.06 0.05 0.15 0.31 0.01 0.04 0.05 0.09 0.04 0.07 0.18 0.04

Vwx 0.16 0.23 0.15 0.10 0.12 0.17 0.32 0.00 0.17 0.06 0.16 0.07 0.13 0.20 0.11

Pwr 0.25 0.93 0.23 0.11 0.13 0.17 0.37 0.08 0.19 0.13 0.24 0.20 0.16 0.26 0.12

Edx 0.31 0.34 0.86 0.11 0.17 0.19 0.42 0.19 0.23 0.23 0.27 0.23 0.21 0.31 0.22

Edy 0.32 0.40 0.50 0.23 0.86 0.39 0.60 0.40 0.35 0.37 0.57 0.43 0.52 0.54 0.29
 

 

 

 



Appendices 

     21 

 

Principal Component Analysis

S
e
n
s
o
r

 

 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Low Eigenvalue

High EigenvalueTool 3

High PCF  (Pwr, PC2)

Low PCF  (Fx, PC4)

 

Figure C.13: A graphical presentation of the EVSM for tool 3 without  sleeve. 

 

 

 

 

Table C.3: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 4 with 

rubber sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC 10 PC 11 PC 12 PC 13 PC 14 PC 15

Fx 0.32 0.80 0.44 0.29 0.35 0.53 0.28 0.37 0.27 0.60 0.29 0.47 0.69 0.36 0.47

Fy 0.31 0.45 0.35 0.09 0.27 0.45 0.27 0.37 0.24 0.33 0.18 0.47 0.35 0.31 0.26

Fz 0.31 0.36 0.31 0.01 0.20 0.28 0.16 0.34 0.20 0.26 0.13 0.39 0.34 0.31 0.26

Strain 0.26 0.31 0.15 0.04 0.07 0.17 0.13 0.28 0.16 0.20 0.05 0.27 0.23 0.25 0.13

Vwy 0.24 0.22 0.07 0.04 0.06 0.09 0.09 0.25 0.10 0.19 0.05 0.23 0.07 0.14 0.11

AE 0.06 0.20 0.05 0.04 0.00 0.00 0.04 0.20 0.08 0.16 0.01 0.08 0.05 0.14 0.06

AERMS 0.01 0.13 0.03 0.10 0.01 0.00 0.02 0.19 0.01 0.14 0.06 0.02 0.01 0.13 0.05

Mic 0.12 0.10 0.02 0.11 0.02 0.03 0.03 0.00 0.07 0.13 0.14 0.04 0.05 0.09 0.01

Vsx 0.17 0.06 0.05 0.12 0.07 0.06 0.07 0.08 0.10 0.11 0.17 0.04 0.07 0.08 0.05

Vsy 0.24 0.03 0.11 0.14 0.09 0.09 0.09 0.12 0.14 0.08 0.20 0.14 0.10 0.15 0.10

Vsz 0.25 0.03 0.11 0.15 0.17 0.10 0.12 0.15 0.25 0.02 0.22 0.15 0.12 0.16 0.14

Vwx 0.30 0.12 0.22 0.17 0.25 0.15 0.21 0.16 0.27 0.04 0.35 0.21 0.18 0.18 0.19

Pwr 0.30 0.16 0.26 0.17 0.30 0.18 0.26 0.23 0.28 0.13 0.36 0.22 0.19 0.20 0.29

Edx 0.32 0.19 0.39 0.32 0.36 0.24 0.39 0.33 0.47 0.14 0.40 0.23 0.20 0.39 0.40

Edy 0.32 0.35 0.48 0.47 0.64 0.50 0.69 0.38 0.54 0.49 0.56 0.29 0.31 0.52 0.54
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Figure C.14: A graphical presentation of the EVSM for tool 4 with rubber sleeve. 

 

 

 

 

Table C.4: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 5 with 

rubber sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC 10 PC 11 PC 12 PC 13 PC 14 PC 15

Fx 0.31 0.52 0.41 0.25 0.71 0.83 0.59 0.44 0.49 0.67 0.50 0.42 0.21 0.12 0.45

Fy 0.30 0.50 0.28 0.17 0.22 0.18 0.37 0.16 0.30 0.38 0.13 0.11 0.13 0.09 0.35

Fz 0.30 0.34 0.24 0.15 0.18 0.16 0.32 0.15 0.22 0.30 0.12 0.10 0.12 0.09 0.20

Strain 0.30 0.08 0.22 0.08 0.12 0.15 0.22 0.08 0.15 0.25 0.07 0.07 0.09 0.06 0.20

Vwy 0.21 0.88 0.18 0.01 0.03 0.14 0.20 0.05 0.14 0.14 0.01 0.06 0.02 0.03 0.10

AE 0.01 0.03 0.17 0.06 0.00 0.14 0.16 0.05 0.13 0.13 0.00 0.06 0.02 0.02 0.10

AERMS 0.00 0.01 0.16 0.10 0.01 0.13 0.09 0.03 0.08 0.05 0.00 0.03 0.06 0.01 0.09

Mic 0.01 0.03 0.06 0.10 0.03 0.11 0.05 0.02 0.06 0.01 0.10 0.00 0.07 0.01 0.02

Vsx 0.21 0.04 0.02 0.17 0.03 0.08 0.02 0.01 0.04 0.03 0.11 0.02 0.10 0.05 0.03

Vsy 0.30 0.08 0.00 0.18 0.07 0.04 0.06 0.08 0.13 0.03 0.20 0.04 0.11 0.05 0.05

Vsz 0.30 0.08 0.07 0.20 0.08 0.04 0.10 0.08 0.18 0.05 0.31 0.05 0.13 0.07 0.05

Vwx 0.30 0.09 0.14 0.22 0.09 0.05 0.12 0.08 0.20 0.07 0.33 0.08 0.13 0.08 0.09

Pwr 0.30 0.12 0.19 0.44 0.17 0.07 0.15 0.11 0.20 0.13 0.34 0.47 0.24 0.21 0.13

Edx 0.31 0.26 0.34 0.44 0.41 0.12 0.25 0.16 0.37 0.25 0.37 0.48 0.59 0.61 0.48

Edy 0.31 0.51 0.62 0.56 0.43 0.22 0.42 0.05 0.54 0.36 0.44 0.57 0.67 0.73 0.55
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Figure C.15: A graphical presentation of the EVSM for tool 5 with rubber sleeve. 

 

  

 

 

Table C.5: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 6 with 

rubber sleeve. 

 

Principal Component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC 10 PC 11 PC 12 PC 13 PC 14 PC 15

Fx 0.33 0.46 0.53 0.20 0.14 0.29 0.71 0.39 0.49 0.37 0.38 0.60 0.45 0.73 0.44

Fy 0.33 0.45 0.49 0.20 0.07 0.18 0.40 0.34 0.39 0.33 0.34 0.51 0.32 0.32 0.26

Fz 0.32 0.29 0.27 0.18 0.06 0.16 0.27 0.27 0.35 0.32 0.21 0.19 0.31 0.30 0.17

Strain 0.32 0.22 0.21 0.08 0.06 0.08 0.18 0.20 0.31 0.22 0.20 0.19 0.12 0.27 0.03

Vwy 0.29 0.18 0.20 0.07 0.04 0.08 0.18 0.17 0.29 0.21 0.18 0.16 0.11 0.20 0.00

AE 0.12 0.06 0.14 0.02 0.02 0.04 0.18 0.16 0.13 0.19 0.06 0.12 0.04 0.16 0.04

AERMS 0.10 0.02 0.14 0.02 0.00 0.04 0.17 0.06 0.07 0.00 0.00 0.06 0.00 0.13 0.05

Mic 0.07 0.00 0.13 0.00 0.07 0.00 0.15 0.04 0.01 0.00 0.01 0.05 0.02 0.12 0.08

Vsx 0.00 0.04 0.12 0.02 0.07 0.05 0.00 0.00 0.00 0.06 0.07 0.00 0.07 0.05 0.09

Vsy 0.00 0.15 0.09 0.04 0.09 0.06 0.01 0.00 0.07 0.07 0.09 0.10 0.07 0.02 0.09

Vsz 0.13 0.16 0.01 0.05 0.10 0.07 0.03 0.01 0.10 0.09 0.12 0.10 0.10 0.00 0.25

Vwx 0.32 0.17 0.05 0.12 0.18 0.22 0.03 0.03 0.10 0.09 0.13 0.10 0.24 0.06 0.27

Pwr 0.33 0.88 0.24 0.19 0.22 0.24 0.09 0.22 0.12 0.40 0.28 0.15 0.35 0.07 0.30

Edx 0.33 0.33 0.24 0.25 0.29 0.27 0.14 0.30 0.35 0.40 0.34 0.31 0.39 0.16 0.44

Edy 0.34 0.44 0.36 0.87 0.20 0.81 0.30 0.65 0.36 0.43 0.63 0.34 0.48 0.26 0.51
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Figure C.16: A graphical presentation of the EVSM for tool 6 with rubber  sleeve. 

 

 

 

Table C.6: The Eigenvalue Sensory Matrix(EVSM) of the system for tool 7 with  

copper sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.31 0.82 0.38 0.50 0.22 0.78 0.64 0.28 0.39 0.45 0.47 0.49 0.57 0.39 0.54

Fy 0.30 0.49 0.37 0.27 0.20 0.13 0.43 0.07 0.30 0.11 0.41 0.47 0.25 0.18 0.45

Fz 0.30 0.25 0.27 0.26 0.16 0.10 0.25 0.02 0.23 0.10 0.31 0.26 0.25 0.16 0.43

Strain 0.29 0.16 0.26 0.06 0.14 0.03 0.23 0.01 0.20 0.05 0.19 0.21 0.16 0.13 0.20

Vwy 0.29 0.12 0.23 0.04 0.10 0.02 0.20 0.00 0.18 0.03 0.18 0.17 0.14 0.13 0.20

AE 0.28 0.12 0.22 0.01 0.06 0.01 0.11 0.02 0.17 0.05 0.14 0.13 0.10 0.06 0.15

AERMS 0.26 0.10 0.13 0.02 0.06 0.01 0.10 0.02 0.17 0.06 0.08 0.13 0.06 0.04 0.15

Mic 0.24 0.10 0.06 0.04 0.01 0.01 0.06 0.05 0.08 0.06 0.05 0.12 0.06 0.01 0.00

Vsx 0.22 0.02 0.01 0.06 0.01 0.02 0.01 0.07 0.01 0.21 0.01 0.00 0.03 0.00 0.04

Vsy 0.21 0.04 0.01 0.07 0.10 0.05 0.11 0.15 0.14 0.22 0.06 0.03 0.03 0.05 0.04

Vsz 0.13 0.15 0.25 0.13 0.17 0.06 0.12 0.20 0.17 0.30 0.14 0.07 0.13 0.11 0.05

Vwx 0.05 0.19 0.29 0.14 0.18 0.06 0.12 0.26 0.19 0.34 0.19 0.07 0.17 0.14 0.08

Pwr 0.27 0.24 0.32 0.15 0.21 0.11 0.14 0.37 0.24 0.34 0.22 0.18 0.34 0.19 0.13

Edx 0.28 0.35 0.32 0.18 0.32 0.13 0.27 0.38 0.43 0.40 0.33 0.19 0.40 0.26 0.18

Edy 0.30 0.36 0.33 0.27 0.80 0.56 0.30 0.71 0.49 0.43 0.46 0.53 0.41 0.79 0.38
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Figure C.17: A graphical presentation of the EVSM for tool 7 with copper sleeve. 

 

 

 

 
 

Table C.7: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 8 with 

copper sleeve. 

 
Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.31 0.48 0.47 0.11 0.50 0.37 0.51 0.30 0.58 0.33 0.48 0.08 0.81 0.35 0.79

Fy 0.30 0.47 0.36 0.10 0.11 0.16 0.31 0.23 0.47 0.31 0.35 0.06 0.51 0.28 0.34

Fz 0.30 0.32 0.19 0.10 0.06 0.08 0.25 0.14 0.27 0.17 0.26 0.05 0.20 0.22 0.18

Strain 0.30 0.26 0.16 0.06 0.02 0.06 0.23 0.11 0.19 0.15 0.22 0.01 0.14 0.20 0.14

Vwy 0.29 0.11 0.14 0.05 0.03 0.05 0.15 0.10 0.06 0.05 0.18 0.02 0.07 0.15 0.08

AE 0.03 0.07 0.00 0.03 0.03 0.03 0.14 0.09 0.05 0.02 0.17 0.04 0.06 0.10 0.02

AERMS 0.02 0.05 0.04 0.03 0.03 0.03 0.14 0.08 0.04 0.00 0.08 0.08 0.05 0.07 0.02

Mic 0.93 0.23 0.26 0.16 0.34 0.10 0.10 0.08 0.09 0.07 0.05 0.10 0.02 0.03 0.01

Vsx 0.22 0.01 0.07 0.06 0.06 0.02 0.00 0.02 0.02 0.04 0.04 0.11 0.01 0.00 0.05

Vsy 0.24 0.00 0.08 0.08 0.07 0.03 0.03 0.02 0.07 0.12 0.12 0.16 0.01 0.03 0.07

Vsz 0.26 0.03 0.13 0.11 0.08 0.11 0.08 0.04 0.07 0.19 0.15 0.19 0.01 0.07 0.17

Vwx 0.31 0.05 0.20 0.11 0.18 0.12 0.11 0.09 0.09 0.25 0.20 0.29 0.04 0.10 0.20

Pwr 0.31 0.12 0.31 0.11 0.26 0.28 0.14 0.19 0.19 0.30 0.27 0.36 0.04 0.21 0.20

Edx 0.31 0.32 0.36 0.21 0.42 0.39 0.23 0.58 0.28 0.47 0.39 0.52 0.06 0.37 0.21

Edy 0.31 0.50 0.52 0.20 0.66 0.75 0.61 0.65 0.43 0.56 0.40 0.64 0.07 0.69 0.21
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Figure C.18: A graphical presentation of the EVSM for tool 8 with copper  sleeve. 

 

 

 

Table C.8: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 9 with  

copper sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.90 0.56 0.23 0.21 0.30 0.30 0.74 0.65 0.62 0.79 0.34 0.32 0.70 0.87 0.65

Fy 0.29 0.55 0.21 0.20 0.26 0.23 0.31 0.42 0.38 0.36 0.25 0.30 0.25 0.22 0.50

Fz 0.29 0.24 0.20 0.17 0.22 0.20 0.28 0.37 0.34 0.08 0.19 0.25 0.25 0.21 0.29

Strain 0.28 0.13 0.17 0.16 0.16 0.19 0.19 0.31 0.31 0.04 0.12 0.19 0.18 0.17 0.11

Vwy 0.26 0.10 0.08 0.12 0.15 0.08 0.18 0.18 0.24 0.03 0.10 0.17 0.13 0.06 0.08

AE 0.08 0.08 0.06 0.11 0.14 0.04 0.11 0.13 0.23 0.02 0.05 0.16 0.08 0.03 0.07

AERMS 0.06 0.04 0.06 0.03 0.14 0.04 0.05 0.10 0.23 0.01 0.04 0.06 0.06 0.02 0.06

Mic 0.19 0.03 0.08 0.02 0.08 0.02 0.02 0.10 0.04 0.04 0.03 0.02 0.02 0.01 0.05

Vsx 0.23 0.00 0.09 0.04 0.04 0.04 0.10 0.06 0.01 0.04 0.02 0.02 0.01 0.01 0.03

Vsy 0.27 0.01 0.13 0.05 0.05 0.04 0.11 0.06 0.00 0.04 0.02 0.04 0.00 0.00 0.01

Vsz 0.28 0.01 0.24 0.06 0.08 0.05 0.12 0.03 0.00 0.12 0.00 0.08 0.01 0.00 0.01

Vwx 0.29 0.17 0.28 0.07 0.08 0.08 0.17 0.00 0.06 0.12 0.03 0.11 0.02 0.02 0.05

Pwr 0.29 0.23 0.31 0.09 0.17 0.15 0.18 0.06 0.07 0.14 0.13 0.14 0.12 0.07 0.17

Edx 0.30 0.26 0.41 0.10 0.22 0.20 0.18 0.10 0.10 0.15 0.53 0.54 0.15 0.22 0.29

Edy 0.30 0.38 0.63 0.20 0.78 0.83 0.25 0.27 0.29 0.40 0.68 0.56 0.54 0.25 0.30
 

 

 

 



Appendices 

     27 

Principal Component Analysis

S
e
n
s
o
r

 

 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

High Eigenvalue

Low Eigenvalue

High PCF  (Fx, PC1) Tool  9

 

Figure C.19: A graphical presentation of the EVSM for tool 9 with copper  sleeve. 

 

 

 

Table C.9: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 10 with  

aluminium sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.31 0.53 0.55 0.56 0.12 0.48 0.20 0.82 0.61 0.37 0.86 0.66 0.49 0.11 0.48

Fy 0.31 0.47 0.10 0.26 0.06 0.33 0.15 0.39 0.46 0.19 0.22 0.39 0.24 0.10 0.38

Fz 0.31 0.29 0.05 0.03 0.06 0.29 0.14 0.16 0.06 0.18 0.18 0.33 0.22 0.04 0.27

Strain 0.30 0.12 0.04 0.01 0.04 0.17 0.13 0.15 0.05 0.10 0.10 0.31 0.21 0.03 0.25

Vwy 0.18 0.06 0.02 0.01 0.03 0.17 0.05 0.08 0.04 0.09 0.09 0.29 0.13 0.01 0.10

AE 0.04 0.05 0.03 0.02 0.03 0.16 0.03 0.05 0.04 0.07 0.08 0.19 0.05 0.00 0.08

AERMS 0.02 0.04 0.04 0.02 0.02 0.14 0.03 0.03 0.03 0.00 0.05 0.12 0.04 0.01 0.06

Mic 0.43 0.87 0.28 0.44 0.06 0.12 0.11 0.21 0.10 0.04 0.09 0.10 0.07 0.08 0.01

Vsx 0.25 0.03 0.12 0.05 0.07 0.06 0.04 0.02 0.00 0.07 0.04 0.01 0.01 0.04 0.01

Vsy 0.26 0.03 0.14 0.06 0.07 0.03 0.08 0.02 0.03 0.12 0.02 0.03 0.08 0.05 0.04

Vsz 0.30 0.00 0.15 0.09 0.11 0.12 0.15 0.03 0.10 0.12 0.09 0.04 0.13 0.05 0.08

Vwx 0.30 0.09 0.16 0.11 0.21 0.19 0.16 0.10 0.24 0.21 0.15 0.04 0.25 0.05 0.10

Pwr 0.31 0.10 0.29 0.20 0.33 0.21 0.19 0.10 0.29 0.27 0.16 0.07 0.29 0.20 0.13

Edx 0.31 0.42 0.45 0.37 0.43 0.29 0.21 0.11 0.35 0.52 0.20 0.15 0.43 0.51 0.23

Edy 0.31 0.44 0.55 0.64 0.44 0.53 0.78 0.29 0.37 0.59 0.24 0.23 0.49 0.82 0.62
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Figure C.20: A graphical presentation of the EVSM for tool 10 with aluminium 

sleeve. 

 

 

 

 

Table C.10: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 11 with  

aluminium sleeve. 

 

Principal component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.81 0.40 0.56 0.60 0.34 0.45 0.35 0.59 0.79 0.29 0.30 0.48 0.31 0.29 0.74

Fy 0.29 0.23 0.43 0.19 0.13 0.15 0.31 0.27 0.23 0.17 0.22 0.40 0.26 0.19 0.27

Fz 0.29 0.16 0.13 0.18 0.09 0.12 0.11 0.22 0.16 0.13 0.13 0.39 0.16 0.16 0.18

Strain 0.29 0.11 0.12 0.15 0.06 0.08 0.11 0.17 0.13 0.04 0.09 0.38 0.14 0.12 0.12

Vwy 0.28 0.07 0.11 0.10 0.05 0.05 0.10 0.12 0.01 0.03 0.06 0.29 0.06 0.08 0.09

AE 0.25 0.02 0.10 0.09 0.03 0.03 0.07 0.06 0.01 0.03 0.00 0.27 0.05 0.04 0.07

AERMS 0.24 0.01 0.03 0.03 0.01 0.01 0.07 0.04 0.01 0.03 0.02 0.19 0.05 0.03 0.03

Mic 0.24 0.13 0.03 0.09 0.01 0.03 0.06 0.03 0.04 0.03 0.03 0.12 0.00 0.04 0.01

Vsx 0.21 0.14 0.04 0.12 0.00 0.06 0.00 0.05 0.05 0.06 0.11 0.07 0.02 0.14 0.00

Vsy 0.04 0.16 0.09 0.15 0.04 0.10 0.08 0.07 0.06 0.07 0.15 0.02 0.02 0.16 0.03

Vsz 0.15 0.19 0.10 0.17 0.07 0.15 0.10 0.09 0.08 0.08 0.18 0.01 0.07 0.24 0.08

Vwx 0.28 0.31 0.12 0.20 0.08 0.28 0.10 0.17 0.11 0.22 0.20 0.03 0.21 0.28 0.17

Pwr 0.29 0.34 0.13 0.24 0.23 0.39 0.11 0.27 0.13 0.32 0.24 0.04 0.22 0.38 0.17

Edx 0.30 0.37 0.24 0.29 0.58 0.42 0.22 0.37 0.16 0.45 0.38 0.14 0.31 0.38 0.25

Edy 0.30 0.55 0.58 0.53 0.67 0.56 0.29 0.47 0.46 0.71 0.73 0.29 0.76 0.59 0.45
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Figure C.21: A graphical presentation of the EVSM for tool 11 with aluminium 

sleeve. 
 

 

 

 

Table C.11: The Eigenvalue Sensory Matrix (EVSM) of the system for tool 12 with 

aluminium sleeve. 

 

Principal Component Analysis

Sensor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Fx 0.30 0.55 0.49 0.17 0.39 0.80 0.60 0.75 0.35 0.23 0.67 0.71 0.43 0.38 0.25

Fy 0.30 0.55 0.21 0.16 0.15 0.36 0.26 0.41 0.33 0.19 0.35 0.42 0.38 0.25 0.18

Fz 0.30 0.16 0.16 0.13 0.12 0.21 0.21 0.30 0.14 0.08 0.32 0.33 0.26 0.21 0.14

Strain 0.28 0.05 0.14 0.10 0.09 0.13 0.06 0.22 0.06 0.04 0.15 0.27 0.24 0.09 0.05

Vwy 0.22 0.05 0.13 0.09 0.00 0.13 0.03 0.20 0.03 0.01 0.12 0.08 0.23 0.04 0.03

AE 0.22 0.01 0.11 0.04 0.01 0.11 0.02 0.14 0.02 0.00 0.00 0.02 0.17 0.03 0.02

AERMS 0.06 0.01 0.04 0.09 0.01 0.11 0.00 0.11 0.02 0.00 0.01 0.01 0.02 0.02 0.02

Mic 0.05 0.10 0.10 0.10 0.02 0.10 0.07 0.05 0.02 0.01 0.04 0.01 0.01 0.03 0.01

Vsx 0.22 0.11 0.11 0.14 0.05 0.01 0.07 0.01 0.03 0.08 0.06 0.02 0.04 0.06 0.02

Vsy 0.24 0.12 0.11 0.14 0.09 0.01 0.11 0.03 0.09 0.12 0.10 0.04 0.14 0.07 0.07

Vsz 0.28 0.12 0.18 0.19 0.11 0.02 0.12 0.03 0.12 0.28 0.10 0.13 0.15 0.12 0.08

Vwx 0.29 0.18 0.21 0.21 0.18 0.09 0.13 0.05 0.20 0.30 0.11 0.14 0.19 0.29 0.11

Pwr 0.30 0.23 0.24 0.22 0.24 0.13 0.15 0.08 0.26 0.37 0.15 0.16 0.29 0.34 0.17

Edx 0.30 0.31 0.35 0.25 0.28 0.23 0.47 0.09 0.51 0.51 0.34 0.19 0.33 0.51 0.57

Edy 0.82 0.37 0.59 0.30 0.78 0.23 0.48 0.19 0.59 0.57 0.35 0.19 0.44 0.51 0.71
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Figure C.22: A graphical presentation of the EVSM for tool 12 with aluminium  

sleeve. 
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Appendix D: System Cost and Utilisation (For 

Chapter 9) 
 

9.4. 1.1 Selection of Sensory Features  

 

1- Tool without sleeve 

 

The same method for the SCF classification which is used in the chapter 8, section 

8.4.1, the three systems have the average sensitivity as shown in Figure D.1 for the 

tool without sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other 

systems. 
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Figure D.1: Comparison between the systems sensitivity for  tools without sleeve. 
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Table D.1: First system with the SCFs sensitivity (LR) for the  tools without sleeve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table D.2:Second system with the SCFs sensitivity (LR) for the  tools without 

sleeve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tools without sleeve 

Tool  2 Tool  3 

Sensor 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensor 

Signal 

SP 

method 

Sens- 

itivity 

Edy power 0.826 Pwr power 0.924 

Edy average 0.826 Pwr std 0.909 

Vsy power 0.808 Pwr range 0.797 

Vsy std 0.794 Pwr min 0.707 

Fy skew 0.793 Strain min 0.647 

Edx skew 0.787 Vwy power 0.596 

Vsz max 0.774 Mic average 0.586 

Fy std 0.738 Mic power 0.583 

Pwr power 0.737 Vwy min 0.580 

Edy max 0.714 Vwy max 0.578 

 Average               0.779  Average 0.690 

Tools without sleeve 

Tool  2 Tool  3 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Edy range 0.714 Vwy average 0.575 

Edy std 0.672 Vsz skew 0.573 

Edy skew 0.671 Vsy max 0.536 

Pwr std 0.666 Strain range 0.535 

Fy range 0.660 Vsz max 0.524 

Vsy range 0.650 Fx average 0.522 

Vsz std 0.625 Pwr max 0.520 

Edy average 0.592 Vsz average 0.508 

Pwr range 0.574 Edy std 0.501 

Fy min 0.568 Edy skew 0.499 

  Average               0.639 Average 0.529 
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Table D.3: Third system with the SCFs sensitivity (LR) for the  tools without sleeve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2- Tool with rubber sleeve 

The three systems have the average sensitivity as shown in Figure D.2 for the tool 

with rubber sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other  

systems.  
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Figure D.2: Comparison between the systems sensitivity for  tools with rubber. 

Tools without sleeve 

Tool  2 Tool  3 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Vsx kurtosis 0.111 Fy std 0.143 

AE range 0.109 Vwy kurtosis 0.141 

Fx std 0.107 Fy power 0.134 

Fz average 0.099 Fx min 0.124 

Vwx range 0.090 AE kurtosis 0.124 

Fz max 0.088 Vsz kurtosis 0.119 

AERMS max 0.086 Vsy average 0.107 

AERMS power 0.086 Vsx skew 0.103 

Edy kurtosis 0.084 AE average 0.094 

Vwx kurtosis 0.080 Vwy std 0.093 

  Average               0.094 Average 0.118 
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Table D.4: First system with the SCFs sensitivity (LR) for the tools with rubber 

sleeve. 

 

 

 

Table D.5: Second system with the SCFs sensitivity (LR) for the tools with rubber 

sleeve. 

 

 

 

 

 

 

Tools with rubber sleeve 

Tool 4 Tool 5 Tool  6 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Pwr std 0.776 Vwy power 0.809 Pwr power 0.880 

Edx max 0.769 Strain kurtosis 0.787 Pwr Std 0.847 

Pwr power 0.728 Fy min 0.751 AE Min 0.654 

Edx range 0.665 Fy kurtosis 0.721 Fx kurtosis 0.579 

Fx average 0.635 Fx min 0.678 Mic kurtosis 0.543 

Fx min 0.623 Vwy min 0.672 AE Std 0.524 

Fx range 0.586 Vwy average 0.671 Vsx Std 0.486 

Pwr kurtosis 0.577 Vwy max 0.666 AE Skew 0.474 

Fz std 0.576 Vsx max 0.647 Pwr Min 0.469 

Edx kurtosis 0.574 Fz skew 0.645 AERMS Min 0.455 

                Average 

 

0.651   Average               0.704 Average 0.591 

Tools with rubber sleeve 
Tool 4 Tool 5 Tool  6 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Fz range 0.548 Vsz max 0.628 AERMS skew 0.454 

AERMS max 0.542 Fz min 0.628 Pwr average 0.447 

Fz min 0.541 Vsz range 0.626 Pwr skew 0.430 

Vsx skew 0.535 Fy skew 0.617 Mic max 0.420 

AERMS min 0.534 Fx std 0.539 Vsz std 0.409 

AE std 0.533 Fy range 0.529 AE range 0.405 

AERMS average 0.529 AE kurtosis 0.525 Vsz average 0.396 

Vsx std 0.524 Strain std 0.518 Vsz power 0.392 

Vsx power 0.517 Fx power 0.496 Mic range 0.379 

Vsx range 0.514 Vsz kurtosis 0.486 Edx max 0.363 

                Average 

 

0.531   Average               0.559 Average 0.409 
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Table D.6: Third system with the SCFs sensitivity (LR) for the tools with rubber 

sleeve. 

 

 

3- Tools with copper sleeve 

 

The three systems have the average sensitivity as shown in Figure D.3 for the tool 

with copper sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other 

systems. 
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Figure D.3: Comparison between the systems sensitivity for  tools with copper 

sleeve. 

Tools with rubber sleeve 
Tool 4 Tool 5 Tool  6 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Strain kurtosis 0.122 Strain average 0.124 Vwy max 0.149 

Pwr skew 0.118 Vsz power 0.113 Strain skew 0.147 

Edy kurtosis 0.117 AERMS skew 0.112 Vsx max 0.145 

AE average 0.115 Fx max 0.102 Edy std 0.138 

Pwr range 0.114 AERMS power 0.094 Vsy std 0.137 

Vsz max 0.103 Strain range 0.091 Fz average 0.136 

Vsz std 0.102 Vsx min 0.089 Vwx skew 0.132 

Vsy average 0.100 Vsx kurtosis 0.088 Vsx skew 0.130 

Mic max 0.097 Vwx power 0.082 Vsy range 0.119 

Vsz range 0.094 Fy average 0.078 Vwx max 0.118 

                Average 0.108   Average               0.097 Average 0.135 
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Table D.7: First system with the SCFs sensitivity (LR)  for the tools with copper 

sleeve. 

 

 

 

Table D.8: Second system with the SCFs sensitivity (LR) for the tools with copper 

sleeve. 

 

 

 

 

 

 

 

 

Tools with cupper sleeve 

Tool 7 Tool 8 Tool  9 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Fx max 1.023 Mic skew 0.790 Vwy power 0.962 

Fx average 0.862 Edy skew 0.752 Vwy max 0.941 

Pwr power 0.854 Mic std 0.750 Vwy average 0.927 

Pwr max 0.815 Pwr min 0.724 Vsx average 0.925 

Vsz range 0.795 Pwr std 0.692 Vwy min 0.912 

Pwr std 0.795 AERMS max 0.621 Fz average 0.707 

Pwr range 0.778 Vsx std 0.600 Fy average 0.670 

Pwr min 0.737 Vsz kurtosis 0.585 Fy min 0.647 

Vsz kurtosis 0.706 Pwr power 0.580 Vwy skew 0.639 

Fx std 0.703 AE std 0.573 Pwr power 0.594 

                Average 0.806   Average               0.666 Average 0.792 

Tools with cupper sleeve 

Tool 7 Tool 8 Tool  9 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Fx power 0.684 Mic range 0.571 Fy power 0.576 

Vsx std 0.680 Pwr range 0.565 Fy max 0.545 

Vsy std 0.676 Fy min 0.554 Vwx kurtosis 0.534 

Fy skew 0.668 Vsz min 0.551 Pwr std 0.530 

Fx range 0.661 AE min 0.533 Vsy skew 0.473 

Fy kurtosis 0.639 Vsz range 0.531 Fz kurtosis 0.471 

Vsz std 0.603 AE range 0.528 Vwx min 0.450 

Vsx max 0.591 Vsx skew 0.516 Fz max 0.438 

Fy std 0.584 AERMS range 0.514 AERMS kurtosis 0.428 

Fy max 0.577 AE power 0.501 Fx average 0.424 

                Average 

 

0.636   Average               0.536 Average 0.487 
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Table D.9: Third system with the SCFs sensitivity (LR) for the tools with copper 

sleeve 

 

 

4-Tools with aluminium sleeve 

 

The three systems have the average sensitivity as shown in Figure D.4 for the tool 

with aluminium sleeve. It can be observed that the first system has the most 

sensitivity features for fixturing system stability and tool wear detection compared to 

the other systems. 

first system Second system Third system
0

0.2

0.4

0.6

0.8

1

1.2

1.4

System Number

T
h
e
 R

e
la

tiv
e
  
S

e
n
s
iti

v
ity

(A
v
e
ra

g
e
 o

f 
s
lo

p
s
)

0.571

Sensory characteristic Features (SCFs)
                    Tool 10

0.721

0.125

First  system Second  system Third  system
0

0.2

0.4

0.6

0.8

1

1.2

1.4

System Number

T
h
e
 R

e
la

tiv
e
 S

e
n
s
iti

v
ity

(A
v
e
ra

g
e
 o

f 
s
lo

p
s
)

Sensory characteristic Features (SCFs)
                    Tool  11

0.585 0.526

0.122

First  system Second  system Third  system
0

0.2

0.4

0.6

0.8

1

1.2

1.4

System Number

T
h
e
 R

e
la

tiv
e
 S

e
n
s
iti

v
ity

(A
v
e
ra

g
e
 o

f 
s
lo

p
s
)

Sensory characteristic Features (SCFs)
                    Tool  12

0.119

0.542
0.635

 

Figure D.4: Comparison between the systems sensitivity for  tools with aluminium 

sleeve. 

Tools with cupper sleeve 

Tool 7 Tool 8 Tool  9 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Mic kurtosis 0.193 Edx skew 0.141 Vwx std 0.204 

Vsx power 0.187 Edx power 0.140 Strain max 0.200 

Vsy skew 0.186 Fy range 0.139 Vwx power 0.198 

Fx min 0.181 Edx average 0.138 Edy max 0.197 

Fy average 0.176 AERMS skew 0.132 Vwx skew 0.197 

Mic range 0.175 Mic kurtosis 0.118 Mic power 0.193 

Mic skew 0.156 Strain max 0.110 Pwr skew 0.184 

Mic average 0.155 Pwr kurtosis 0.091 Vsy power 0.176 

Mic power 0.148 Fx average 0.087 AE power 0.167 

Fx kurtosis 0.138 Vwx min 0.085 Fz std 0.165 

                Average 0.169   Average   0.118 Average 0.188 
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Table D.10: First system with the SCFs sensitivity (LR) for the tools with 

aluminium sleeve. 

 

 

 

Table D.11: Second system with the SCFs sensitivity (LR) for the tools with  

aluminium sleeve. 

 

 

 

 

 

 

Tools with  aluminium  sleeve 

Tool 10 Tool 11 Tool  12 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Mic max 0.816 Fx max 0.642 Edy min 0.728 

Pwr std 0.798 Strain kurtosis 0.621 Edy average 0.667 

Pwr power 0.763 Fz kurtosis 0.609 Edy power 0.660 

Mic range 0.753 Vwy skew 0.598 Mic std 0.653 

Vwy range 0.706 AE kurtosis 0.597 Mic skew 0.627 

Fx min 0.703 Vsz average 0.562 Vsz max 0.619 

Vsx range 0.695 Vsx max 0.561 Edy max 0.617 

Vsy kurtosis 0.693 Fy skew 0.556 AERMS range 0.611 

Edx std 0.675 Vsy average 0.555 AE skew 0.603 

Fy power 0.616 Vwy power 0.554  std 0.573 

  Average 

 

0.721   Average               0.585 Average 0.635 

Tools with  aluminium  sleeve 

Tool 10 Tool 11 Tool  12 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Fx power 0.614 Vwy max 0.549 AE min 0.561 

Fx std 0.603 Vwy average 0.543 AE power 0.556 

Mic min 0.591 Vwy min 0.536 AE std 0.554 

Fz average 0.589 Mic skew 0.531 AE range 0.549 

Edx skew 0.581 Mic power 0.531 Fz min 0.546 

Fy kurtosis 0.551 Mic average 0.527 Edy kurtosis 0.540 

Edy std 0.551 Fy power 0.521 AE max 0.536 

Fx range 0.547 AE average 0.513 Fz std 0.533 

Edy range 0.546 Vwx skew 0.508 AERMS power 0.526 

Mic skew 0.537 Edx range 0.502 Mic average 0.519 

                Average 

 

0.571   Average               0.526 Average 0.542 
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Table D.12: Third system with the SCFs sensitivity (LR) for the tools with 

aluminium sleeve. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Tools with  aluminium  sleeve 

Tool 10 Tool 11 Tool  12 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Fy min 0.147 Fx min 0.151 Strain kurtosis 0.153 

Pwr kurtosis 0.145 Strain range 0.135 Vsx min 0.139 

Fz range 0.144 4Strain power 0.128 Fz skew 0.136 

Strain average 0.141 Vwx min 0.127 Pwr skew 0.134 

AERMS average 0.134 Fy min 0.126 AERMS kurtosis 0.125 

Strain min 0.122 Pwr range 0.118 Vwx power 0.115 

Vsz kurtosis 0.116 Vsy range 0.118 Vwy power 0.113 

Vwx power 0.107 Strain average 0.116 Edy skew 0.110 

Fy average 0.098 Vsz min 0.104 Fy kurtosis 0.089 

Vsz power 0.097 AERMS min 0.102 Vsy std 0.082 

Average 

 

0.125 Average               0.122 Average 0.119 
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Appendix E: System Cost and Utilisation (For 

Chapter 9) 

9.4.1.2 Selection of Principal Component Feature (PCFs) Method 

 

 

1- Tools without sleeve 

 

The three systems have the average sensitivity as shown in Figure E.1 for the tool 

without sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other 

systems. 
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Figure E.1: Comparison between the systems eigenvalue of tools without sleeve. 
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Table E.1: First system with the PCFs eigenvalue (PCA) for the tools without sleeve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table E.2: Second system with the PCFs eigenvalue (PCA) for the tools without 

sleeve 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tools without sleeve 
Tool  2 Tool  3 

Sensory 

Signal 

PC 

metho

d 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Edx PC1 0.869 Pwr PC 2 0.931 

Edy PC 11 0.782 Edx PC 3 0.864 

Edy PC 15 0.698 Edy PC 6 0.862 

Edy PC 13 0.682 Fx PC 2 0.797 

Edy PC 7 0.631 Fx PC 11 0.701 

Fx PC 14 0.576 Fx PC 10 0.689 

Fx PC 10 0.569 Fx PC 14 0.673 

Fx PC 6 0.563 Fx PC 10 0.609 

Edx PC 14 0.560 Fx PC 4 0.604 

Edy PC 15 0.533 Edy PC 9 0.601 

  Average               0.646 Average   0.733 

Tools without sleeve 

Tool  2 Tool  3 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Fx PC 1 0.532 Fx PC 14 0.585 

Fx PC 14 0.526 Edy PC 13 0.569 

Edy PC 10 0.525 Edy PC 5 0.539 

Fx PC 15 0.517 Edy PC 2 0.517 

Fx PC 4 0.505 Edy PC 11 0.501 

Edy PC 1 0.470 Fy PC 1 0.464 

Fx PC 2 0.464 Fx PC 4 0.464 

Edx PC 6 0.442 Fx PC 15 0.463 

Fx PC 11 0.440 Fy PC 15 0.456 

Edy PC 13 0.439 Fy PC 7 0.446 

  Average               0.486 Average 0.500 
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Table E.3: Third system with the PCFs eigenvalue (PCA) for the tools without 

sleeve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2- Tools with rubber sleeve 

 

The three systems have the average sensitivity as shown in Figure E.2 for the tool 

with rubber sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other 

systems. 
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Figure E.2: Comparison between the systems eigenvalue of tool with rubber sleeve. 

Tools without sleeve 

Tool  2 Tool  3 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

Strain PC 13 0.217 Vwx PC 14 0.172 

Vsz PC 9 0.216 Strain PC 3 0.171 

Vwx PC 2 0.216 Edx PC 2 0.168 

Pwr PC 1 0.214 Fz PC 3 0.167 

Fx PC 5 0.211 Vwy PC 4 0.166 

Vsy PC 1 0.209 Vsz PC 12 0.166 

Pwr PC 4 0.206 Strain PC 11 0.166 

Fz PC 11 0.197 Vwx PC 9 0.166 

Vsz PC 7 0.197 AERMS PC 15 0.166 

Strain PC 2 0.196 Vwy PC 10 0.163 

  Average               0.208 Average 0.167 
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Table E.4: First system with the PCFs eigenvalue (PCA) for the tools with rubber 

sleeve. 
 

 

 

 

Table E.5: Second system with the PCFs eigenvalue (PCA) for the tools with rubber 

sleeve. 
 

 

 

 

 

Tools with rubber sleeve 

Tool  4 Tool  5 Tool 6 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen

- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

Fx PC 2 0.807 Vwy PC 2 0.881 Pwr PC 2 0.879 

Edy PC 7 0.694 Fx PC 6 0.833 Edy PC 5 0.871 

Fx PC 8 0.685 Edy PC 11 0.732 Edy PC 1 0.810 

Edy PC 4 0.645 Fx PC 6 0.712 Fx PC 6 0.729 

Fx PC 9 0.607 Fx PC 10 0.667 Fx PC 3 0.706 

Edy PC 11 0.563 Edy PC 9 0.666 Edy PC 13 0.646 

Edy PC 7 0.547 Edy PC 13 0.617 Edy PC 6 0.626 

Edy PC 11 0.538 Edy PC 5 0.607 Fx PC 6 0.598 

Fx PC 7 0.535 Edy PC 2 0.592 Fx PC 11 0.526 

Edy PC4 0.519 Fx PC 8 0.591 Fy PC 4 0.512 

                Average 0.614   Average               0.690 Average 0.691 

Tools with rubber sleeve 

Tool  4 Tool  5 Tool 6 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Edy PC 1 0.500 Edy PC 6 0.570 Edy PC 7 0.509 

Edy PC 13 0.490 Edy PC 11 0.563 Fx PC 1 0.493 

Edy PC 13 0.486 Edy PC 11 0.550 Fy PC 5 0.491 

Fx PC 6 0.479 Edy PC 2 0.544 Edy PC 14 0.480 

Fx PC 14 0.471 Fx PC 14 0.520 Fx PC 9 0.464 

Fx PC 10 0.470 Edy PC 8 0.509 Fy PC 11 0.447 

Edx PC 3 0.470 Fx PC 14 0.499 Fx PC 3 0.445 

Fy PC 9 0.467 Fy PC 15 0.495 Fx PC 11 0.443 

Fy PC 2 0.455 Fx PC 5 0.486 Edx PC 2 0.439 

Fy PC4 0.450 Edx PC 2 0.482 Edy PC 12 0.435 

 Average 0.473   Average               0.522 Average 0.464 
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Table E.6: Third system with the PCFs eigenvalue (PCA) for the tools with rubber 

sleeve. 

 

 

 

3- Tools with copper sleeve 

 

The three systems have the average sensitivity as shown in Figure E.3 for the tool 

with copper sleeve. It can be observed that the first system has the most sensitivity 

features for fixturing system stability and tool wear detection compared to the other 

systems. 
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Figure E.3: Comparison between the systems eigenvalue of tools with copper sleeve. 

Tools with rubber sleeve 

Tool  4 Tool  5 Tool 6 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Vwy PC 8 0.224 AE PC 2 0.172 Strain PC 2 0.201 

Pwr PC 11 0.221 Fy PC 14 0.164 Fy PC 11 0.196 

Vwx PC 14 0.217 AE PC 2 0.162 Pwr PC 3 0.195 

Vsz PC 12 0.215 AERMS PC 11 0.159 Pwr PC 3 0.192 

Vwx PC 4 0.212 Edx PC 3 0.158 Fz PC 1 0.190 

AE PC 4 0.207 Fz PC 14 0.155 Strain PC 7 0.187 

Fz PC 6 0.206 Pwr PC 5 0.153 AE PC 5 0.185 

Strain PC 6 0.204 Strain PC 1 0.152 Vwx PC 3 0.184 

Pwr PC 12 0.204 Fz PC 11 0.147 Vwy PC 2 0.182 

Edx PC 7 0.202 Fz PC 7 0.146 Strain PC14  0.182 

 Average 0.211   Average               0.157 Average 0.189 
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Table E.7: First system with the PCFs eigenvalue (PCA) for the tools with cupper 

sleeve. 

 

 

 

Table E.8: Second system with the PCFs eigenvalue (PCA) for the tools with cupper 

sleeve. 
 

 

                                                                                                                                     

 

 

 

 

 

Tools with copper sleeve 

Tool  7 Tool  8 Tool 9 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Fx PC7 0.824 Mic PC 1 0.933 Fx PC 1 0.897 

Edy PC 13 0.796 Fx PC 13 0.808 Fx PC 14 0.870 

Edy PC 8 0.785 Fx PC 15 0.788 Edy PC 6 0.834 

Fx PC 4 0.784 Edy PC 8 0.752 Fx PC 12 0.792 

Edy PC 13 0.707 Edy PC 8 0.693 Edy PC 15 0.776 

Fx PC 2 0.640 Edy PC 5 0.662 Fx PC 1 0.744 

Fx PC 1 0.572 Edy PC 3 0.652 Fx PC 3 0.702 

Edy PC 10 0.564 Edy PC 9 0.641 Edy PC 12 0.680 

Fx PC 3 0.535 Edy PC 11 0.610 Fx PC 2 0.654 

Edy PC 13 0.528 Fx PC 3 0.584 Fx PC 6 0.650 

 Average 

 

0.673   Average               0.712 Average 0.760 

Tools with copper sleeve 

Tool  7 Tool  8 Tool 9 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Fx PC1 0.497 Edx PC 9 0.575 Edy PC 7 0.626 

Fy PC9 0.494 Edy PC 14 0.564 Fx PC 12 0.620 

Fx PC1 0.492 Edx PC 1 0.524 Fx PC 13 0.561 

Edy PC6 0.491 Edy PC 14 0.523 Edy PC 2 0.560 

Fx PC3 0.465 Fy PC 5 0.514 Fy PC 11 0.551 

Fy PC2 0.465 Fx PC 2 0.505 Edx PC 10 0.544 

Edy PC13 0.459 Fx PC 8 0.500 Edy PC 6 0.535 

Fx PC3 0.450 Edy PC 14 0.497 Edx PC 10 0.531 

Fy PC12 0.447 Fx PC 11 0.484 Fy PC 11 0.503 

Fy PC7 0.434 Fx PC 12 0.479 Fy PC 10 0.422 

                Average 0.469   Average               0.516 Average 0.545 
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Table E.9: Third system with the PCFs eigenvalue (PCA) for the tools with cupper 

sleeve. 

 

 

4. Tools with aluminium sleeve 

 

The three systems have the average sensitivity as shown in Figure E.4 for the tool 

with aluminium sleeve. It can be observed that the first system has the most 

sensitivity features for fixturing system stability and tool wear detection compared to 

the other systems. 
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Figure E.4 : Comparison between the systems eigenvalue of tools with aluminium 

sleeve. 

Tools with copper sleeve 

Tool  7 Tool  8 Tool 9 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

Vsz PC5 0.199 Vwx PC 2 0.184 Vwy PC 2 0.175 

Strain PC 2 0.199 Vwy PC 14 0.180 Vwy PC 4 0.175 

Vwy PC 14 0.197 Vsz PC 1 0.173 Pwr PC 8 0.174 

Vwy PC 5 0.197 Fz PC 8 0.168 Pwr PC 9 0.174 

Fy PC 12 0.196 AE PC 3 0.167 Fz PC 13 0.172 

Vwx PC 9 0.194 Fy PC 9 0.156 Vwy PC 13 0.172 

Pwr PC 14 0.193 Fsy PC 13 0.155 Strain PC 15 0.171 

Strain PC 12 0.192 Strain PC 5 0.155 Vwx PC 5 0.170 

Edx PC 11 0.191 Vsz PC 8 0.154 Vwx PC 5 0.168 

Vwx PC 13 0.187 Strain PC 13 0.152 Strain PC 2 0.166 

 Average 0.194   Average               0.164 Average 0.171 
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Table E.10: First system with the PCFs eigenvalue (PCA) for the tools with 

aluminium sleeve. 

 

 

 

 

Table E.11: Second system with the PCFs eigenvalue (PCA) for the tools with 

aluminium sleeve. 

 

 

 

 

 

Tools with aluminium sleeve 

Tool  10 Tool  11 Tool 12 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Mic PC 2 0.874 Fx PC 1 0.805 Edy PC 1 0.816 

Fx PC 11 0.857 Fx PC 9 0.793 Fx PC 6 0.795 

Fx PC 8 0.822 Edy PC 13 0.763 Edy PC 6 0.783 

Edy PC 5 0.816 Fx PC 15 0.735 Fx PC 8 0.753 

Edy PC 6 0.784 Fy PC 11 0.725 Fx PC 13 0.707 

Fx PC 4 0.657 Fy PC 10 0.705 Edy PC 14 0.706 

Edy PC 8 0.642 Edy PC 5 0.674 Fx PC 9 0.669 

Edy PC 15 0.620 Fx PC 4 0.597 Fx PC 8 0.598 

Fx PC 2 0.609 Edy PC 14 0.590 Edy PC 9 0.592 

Edy PC 10 0.593 Fx PC 9 0.588 Edy PC 11 0.587 

Average 0.727 Average               0.698 Average 0.701 

Tools with aluminium  sleeve 

Tool  10 Tool  11 Tool 12 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Fx PC 7 0.562 Edy PC 1 0.582 Edx PC 9 0.574 

Edy PC 1 0.554 Edx PC 7 0.581 Edy PC 15 0.568 

Fx PC 7 0.548 Edy PC 7 0.564 Fx PC 5 0.549 

Fx PC 7 0.532 Fx PC 10 0.560 Fy PC 14 0.547 

Edy PC 8 0.527 Edy PC 5 0.548 Edx PC 13 0.513 

Edx PC 15 0.516 Edy PC 12 0.531 Edy PC 12 0.511 

Edx PC 2 0.508 Fx PC 15 0.483 Edx PC 7 0.508 

Edy PC 15 0.491 Edy PC 1 0.470 Edx PC 10 0.505 

Fx PC 10 0.490 Edy PC 2 0.458 Fx PC 1 0.493 

Fx PC 12 0.476 Fx PC 5 0.448 Edy PC 14 0.478 

             Average 0.520   Average               0.522 Average 0.524 
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Table E.12: Third system with the PCFs eigenvalue (PCA) for the tools with 

aluminium sleeve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tools with aluminium  sleeve 

Tool  10 Tool  11 Tool 12 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

 

AE PC 3 0.160 Fz PC 14 0.178 Fy PC 13 0.188 

Fz PC 9 0.159 Pwr PC 8 0.174 Vsz PC 12 0.188 

Vwx PC 7 0.158 Strain PC 3 0.174 Fy PC 13 0.181 

Vsz PC 8 0.151 Fy PC 7 0.168 Vwx PC 12 0.179 

Fy PC 9 0.149 Vsz PC 1 0.168 Vsz PC 13 0.175 

Strain PC 10 0.149 Vwx PC 11 0.167 Vwx PC 8 0.175 

Vwx PC 1 0.146 Vwx PC 7 0.166 Pwr PC 11 0.171 

Edx PC 15 0.146 Fz PC 3 0.163 Fx PC 7 0.167 

Vsz PC 13 0.145 Fz PC 15 0.163 AE PC 12 0.166 

AERMS PC 11 0.140 Vsy PC 4 0.161 Pwr PC 6 0.163 

 Average 0.150   Average               0.168 Average 0.175 
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Appendix F: System Optimisation                          

(For Chapter 9) 

10.4.2.1 Linear Regression (LR)  Method 

 

 

1- Tools without sleeve 

 

From Tables D.1 and D.2, it can be observed that there is no significant difference in 

the average sensitivity for both systems for the three tools without sleeves. For the 

tool 2, the cost of first and second systems is  different (£22894, £22509). But it is 

still can be optimised by increasing the system utilisation by replacing the sensory 

characteristic features of the power and eddy current (Edx) sensor from the first 

system with the Edy sensory signals from the second system to reduce the cost and 

still have the sensitivity level. For the tool 3, the difference in the cost between the 

first and second systems is too high. 

 

            Table  F.1: Sensors utilisation for the tool 2 without sleeve using LR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool 2 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 6.66% 6.66% 6.66% 

Vsy 20% 10% 20% 

Vsz 10% 10% ------ 

Pwr 10% 20% ------ 

Edx 10% -------- ------ 

Edy 30% 40% 60% 

UA Average 

Utilisation 
14.44% 17.33% 28.88% 

System Cost £22894 £22509 £22065 

Average 

Sensitivity 
0.779 0.639 0.755 



Appendices 

     50 

        Table F.2: Sensors utilisation for the tool 3 without sleeve using LR. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table F.1, the overall average utilisation has increased in the first 

system from 14.44% up to 28.88 % and from 17.33% up to 28.88 % in the second 

system and the cost is reduced by 10.9 % from £24789 to £22065. In addition, for 

three tools without sleeve the average sensitivity of the system did not significantly 

change as can be seen in Table F3. In fact the average sensitivity has increased to 

0.755 compared with the second system of tool 2. 

 

Table F.3: The optimised system (1st and 2nd system) for the tools without sleeve 

using LR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool 3 

Sensor U 

1
st
 sstem 

U 

2nd system 

Optimised 

System 

Dynamometer -------- 3.33% ------ 

Strain 10% 10% ------ 

Vwy 30% 10% 40% 

Mic 20% ------- 20% 

Vsy ------ 10% ------ 

Vsz ------ 30% ------ 

Pwr 40% 10% 40% 

Edy ------ 20% ------ 

UA Average 

Utilisation 
25% 13.33% 33.33% 

System Cost £70807 £77577 £8087 

Average 

Sensitivity 
  0.690  0.529 0.683 

Tools without sleeve 

Tool 2 Tool  3 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

Edy power 0.826 Pwr power 0.924 

Edy average 0.826 Pwr std 0.909 

Vsy power 0.808 Pwr range 0.797 

Vsy std 0.794 Pwr min 0.707 

Fy skew 0.793 Vwy power 0.596 

Fy std 0.738 Mic average 0.586 

Edy max 0.714 Mic power 0.583 

Edy range 0.714 Vwy min 0.580 

Edy std 0.672 Vwy max 0.578 

Edy skew 0.671 Vwy average 0.575 

  Average               0.755 Average 0.683 
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2- Tools with rubber sleeve 

 

From Tables D.4 and D.5, it can be observed that there is no significant difference in    

the average sensitivity for both systems for the tools with rubber sleeves. For the 

tool 4, the cost of first and second systems is slightly different (£21755, £22078). 

But it is still can be optimised by increasing the system utilisation by replacing the 

sensory characteristic features of the AE sensor from the first system with the forces 

sensory signals from the second system to reduce the cost and still have the 

sensitivity level. 

Table F.4: Sensors utilisation for the tool 4 with rubber sleeve using LR. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F.5: Sensors utilisation for the tool 5 with rubber sleeve using LR. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool 4 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 13.33% 6.66% 13.33% 

AE ----- 20% ----- 

Vsx ----- 40% ----- 

Pwr 30% ------ 30% 

Edx 30% ------ 30% 

UA Average 

Utilisation 
24.44% 22.22% 24.44% 

System Cost £21755 £22078 £21755 

Average 

Sensitivity 
0.651 0.531 0.651 

                                       Tool 5 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 13.33% 16.66% 16.66% 

Strain 10% 10% 10% 

Vwy 40% ------ 40% 

AE ----- 5% ----- 

Vsx 10% ----- ----- 

Vsz ------ 30% ----- 

UA Average 

Utilisation 
18.33% 15.41% 22.22% 

System Cost £21536 £22878 £21159 

Average 

Sensitivity 

0.704 0.559 0.703 
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Table F.6: Sensors utilisation for the tool 6 with rubber sleeve using LR slope. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table F.5, for the tool 5, the overall average utilisation has increased in 

the first system from 18.33% up to 22.22% and from 15.41% up to 22.22% in the 

second system and the cost is reduced by 14.6 % from £24789 to £21159. In 

addition, for three tools with rubber sleeve the average sensitivity of the system did 

not significantly change as can be seen in Table F.7. In fact the average sensitivity 

has increased to 0.703 compared with the second system of tool 5. 

Table F.7: The optimised system (1st and 2nd system) for the tool with rubber sleeve 

using  LR slope. 

                                      Tool 6 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 3.33% 3.33% ------- 

AE 20% 10% 25% 

Mic ----- 20% 10% 

Vsx 10% ------ ----- 

Vsz ------ 30%  

Pwr 30% 20% 40% 

Edx ------ 10%  

UA Average 

Utilisation 
15.83 15.55% 25% 

System Cost £22145 £22590 £8319 

Average 

Sensitivity 
0.591 0.409 0.575 

Tools with rubber sleeve 

Tool 4 Tool 5 Tool  6 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Pwr Std 0.776 Vwy power 0.809 Pwr power 0.880 

Edx Max 0.769 Strain kurtosis 0.787 Pwr std 0.847 

Pwr power 0.728 Fy min 0.751 AE min 0.654 

Edx range 0.665 Fy kurtosis 0.721 Mic kurtosis 0.543 

Fx average 0.635 Fx min 0.678 AE std 0.524 

Fx Min 0.623 Vwy min 0.672 AE skew 0.474 

Fx range 0.586 Vwy average 0.671 Pwr min 0.469 

Pwr kurtosis 0.577 Vwy max 0.666 AERMS min 0.455 

Fz Std 0.576 Fz skew 0.645 AERMS skew 0.454 

Edx kurtosis 0.574 Fz min 0.628 Pwr average 0.447 

                Average 

 

0.651   Average               0.703 Average 0.575 
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3- Tools with copper sleeve 

 

From Tables D.7 and D.8, it can be observed that there is no significant difference in 

the average sensitivity for both systems for three tools with copper sleeves. For the 

tool 7, for example, the cost of first and second systems is relatively different 

(£22094, £23204). But it is still can be optimised by increasing the system utilisation 

by replacing the sensory characteristic features of the accelerometer sensor(Vsz) 

from the first system with the forces sensory signals from the second system to 

reduce the cost and still have the sensitivity level. 

 

Table F.8: Sensors utilisation for the tool 7 with copper sleeve using LR slope. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool 7 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 10% 20% 16.66% 

Vsx ----- 20% ----- 

Vsy ----- 10% ----- 

Vsz 20% 10% ----- 

Pwr 50% ------- 50% 

UA Average 

Utilisation 

26.66% 15% 33.33% 

System Cost £22094 £23204 £18620 

Average 

Sensitivity 

0.806 0.636 0.792 
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Table F.9: Sensors utilisation for the tool 8 with copper sleeve using LR slope. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F.10: Sensors utilisation for the tool 9 with copper sleeve using LR slope. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table F.8, the overall average utilisation has increased in the first 

system from 26.66%% up to 33.3% and from 15% up to 33.3% in the second system 

and the cost is reduced by 24 % from £24789 to £18620. In addition, the average 

sensitivity of the system did not significantly change as can be seen in Table F.9. In 

                                       Tool 8 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer ----- 3.33% ------ 

AE 10% 20% 10% 

Mic 20% 10% 30% 

Vsx 10% 10% ----- 

Vsz 10% 20% ----- 

Pwr 30% 10% 40% 

Edy 10% ------ 10% 

UA Average 

Utilisation 
15% 12.22% 22.5% 

System Cost £10242 £21827 £8009 

Average 

Sensitivity 
0.666 0.536 0.662 

Tool 9 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 10% 16.66% 16.66% 

Vwy 50% ------ 50% 

AE ------ 5% ------ 

Vsx 10% ------ ------ 

Vsy ----- 10% ------ 

Vwx ----- 20% ------ 

Pwr 10% 10% ------ 

UA Average 

Utilisation 

20% 12.33% 33.33% 

System Cost £20806 £21797 £18883 

Average 

Sensitivity 

0.792 0.487 0.752  
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fact the average sensitivity has increased to 0.792 compared with the second system 

of tool 7 . 

Table F.9: The optimised system (1st and 2nd system) for the tool with copper 

sleeve using LR. 
 

 

 

4- Tools with aluminium sleeve 

 

From Tables D.10 and D.11, it can be observed that there is no significant difference 

in   the average sensitivity for both systems for the three tools with aluminium 

sleeve.  

For the tool 10, the cost of first and second systems is relatively different (£21628, 

£19450). But it is still can be optimised by increasing the system utilisation by 

replacing the sensory characteristic features of the accelerometer sensors and eddy 

current (Edx) from the first system with the forces sensory signals and sound sensor 

from the second system to reduce the cost and still have the sensitivity level. 

 

 

 

 

 

 

Tools with copper sleeve 

Tool 7 Tool 8 Tool  9 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

 

Fx Max 1.023 Mic skew 0.790 Vwy power 0.962 

Fx average 0.862 Edy skew 0.752 Vwy max 0.941 

Pwr power 0.854 Mic std 0.750 Vwy average 0.927 

Pwr Max 0.815 Pwr min 0.724 Vwy min 0.912 

Pwr Std 0.795 Pwr std 0.692 Fz average 0.707 

Pwr range 0.778 AERMS max 0.621 Fy average 0.670 

Pwr Min 0.737 Pwr power 0.580 Fy min 0.647 

Fx Std 0.703 AE std 0.573 Vwy skew 0.639 

Fx power 0.684 Mic range 0.571 Fy power 0.576 

Fy Skew 0.668 Pwr range 0.565 Fy max 0.545 

                Average 

 

0.792   Average               0.662 Average 0.752 
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Table F.10: Sensors utilisation for the tool 10 with aluminium sleeve using LR. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F.11: Sensors utilisation for the tool 11 with aluminium sleeve using LR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool 10 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 10% 16.66% 16.66% 

Vwy 10% -------- ------ 

Mic 10% 20% 30% 

Vsx 10% ------ ------ 

Vsy 10% ------ ------ 

Pwr 20% ------ 20% 

Edx 10% 10% ------ 

Edy ---- 20% ------ 

UA Average 

Utilisation 
11.42% 16.66% 22.22% 

System Cost £21628 £19450 £18717 

Average 

Sensitivity 

0.721 0.571 0.685 

                                       Tool 11 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 10% 3.33% 10% 

Strain 10% ----- ----- 

Vwy 20% 30% 50% 

AE 5% 5% ----- 

Mic ----- 30% 20% 

Vsx 10% ----- ----- 

Vsy 10% ----- ----- 

Vsz 10% ----- ----- 

Vwx 10% ----- ----- 

Edx 10% ----- ----- 

UA Average 

Utilisation 
10.55% 17.08% 26.66% 

System Cost £23997 £19790 £18913 

Average 

Sensitivity 
0.585 0.526 0.571 
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Table F.12: Sensors utilisation for the tool 12 with aluminium sleeve using LR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table F.10, the overall average utilisation has increased in the first 

system from 11.42%% up to 22.22% and from 16.66% up to 22.22% in the second 

system and the cost is reduced by 24.5 % from £24789 to £18717. In addition, for 

another tools with copper sleeve, the average sensitivity of the system did not 

significantly change as can be seen in Table F.13. In fact the average sensitivity has 

increased to 0.685 compared with the second system of the tool 10. 

 

 Table F.13: The optimised system (1st and 2nd system) for the tools with 

aluminium sleeve using LR. 

                                       Tool 12 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer ------ 3.33% ------ 

AE 10% 30% 20% 

Mic 20% 10% 20% 

Vsz 20% ------ ------ 

Edy 40% 10% 40% 

UA Average 

Utilisation 
22.50% 13.33% 26.66% 

System Cost £10250 £19912 £8394 

Average 

Sensitivity 
0.635 0.542 0.628 

Tools with aluminium sleeve 

Tool 10 Tool 11 Tool  12 

Sensory 

Signal 

SP 

method  

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Sensory 

Signal 

SP 

method 

Sens- 

itivity 

 

Mic Max 0.816 Fx max 0.642 Edy min 0.728 

Pwr Std 0.798 Fz kurtosis 0.609 Edy average 0.667 

Pwr power 0.763 Vwy skew 0.598 Edy power 0.660 

Mic range 0.753 Fy skew 0.556 Mic std 0.653 

Fx Min 0.703 Vwy power 0.554 Mic skew 0.627 

Fy power 0.616 Vwy max 0.549 Edy max 0.617 

Fx power 0.614 Vwy average 0.543 AERMS range 0.611 

Fx Std 0.603 Vwy min 0.536 AE skew 0.603 

Mic Min 0.591 Mic skew 0.532 AE min 0.561 

Fz average 0.589 Mic power 0.531 AE power 0.556 

                Average 

 

0.685   Average               0.571 Average 0.628 
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Appendix  G: System Optimisation (Chapter 9) 

9.4.2.2 Principal Component Analysis (PCA) Method 

 

1- Tools without sleeve 

 

From Tables  E.1 and E.2, it can be observed that there is no significant difference in 

the average sensitivity for both systems for the three tools without sleeves. For the 

tool 2, for example, the cost of first and second systems is slightly different 

(££19420, £19035). But it is still can be optimised by increasing the system 

utilisation by replacing the sensory characteristic features of the eddy current 

sensor(Edx) from the first system with the forces sensory signals from the second 

system to reduce the cost and still have the sensitivity level. 

Table G.1: Sensors utilisation for the tool 2 without sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table G.2: Sensors utilisation for the tool 3 without sleeve using PCA. 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool  2 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 10% 20% 13.33% 

Edx 20% 10% ------- 

Edy 60% 30% 60% 

UA Average 

Utilisation 
30% 20% 36.67% 

System Cost £19420 £19420 £19035 

Average 

Eigenvalue 

0.646 0.486 0.610 

Tool  3 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 20% 20% 10% 

Pwr 10% ------ 10% 

Edx 10% 10% ------- 

Edy 20% 40% 60% 

UA Average 

Utilisation 
15% 23.33% 26.66% 

System Cost £19487 £19420 £19035 

Average 

Eigenvalue 
0.733 0.500 0.671 
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As shown in Table G.1, the overall average utilisation has increased in the first 

system from 30% up to 36.67%and from 20% up to 36.67%in the second system and 

the cost is reduced by 23 % from £24789 to £19035. In addition, for another tools 

without sleeve, average sensitivity of the system did not significantly change as can 

be seen in Table G.3. In fact the average sensitivity has increased to 0.610 compared 

with the second system of the tool 2. 

 

Table G.3: The optimised system (1st and 2nd system) for the tool with copper 

sleeve using PCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-  Tools with rubber sleeve 

 

From Tables E.4 and E.5, it can be observed that there is no significant difference in 

the average sensitivity for both systems for the three tools with rubber sleeves. For 

the tool 5, for instance, the cost of first and second systems is slightly different 

(£19298, £19420). But it is still can be optimised by increasing the system utilisation 

by replacing the sensory characteristic features of the accelerometer sensor(Vwy) 

from the first system with the eddy current signals (Edy) from the second system to 

reduce the cost and still have the sensitivity level.  

       

 

Tools without  sleeve 

Tool 2 Tool  3 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Edy PC 11 0.782 Pwr PC 2 0.931 

Edy PC 15 0.698 Edy PC 6 0.862 

Edy PC 13 0.682 Fx PC 2 0.797 

Edy PC 7 0.631 Fx PC 11 0.701 

Fx PC 14 0.576 Fx PC 10 0.689 

Fx PC 10 0.569 Edy PC 9 0.601 

Fx PC 6 0.563 Edy PC 13 0.569 

Edy PC 15 0.533 Edy PC 5 0.539 

Fx PC 1 0.532 Edy PC 2 0.517 

Fx PC 14 0.526 Edy PC 11 0.501 

  Average               0.610 Average 0.671 
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 Table G.4: Sensors utilisation for the tool 4 with rubber sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table G.5: Sensors utilisation for the tool 5 with rubber sleeve using PCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table G.6: Sensors utilisation for the tool 6 with rubber sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool  4 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 13.33% 20% 10% 

Edx ------ 10% ------ 

Edy 60% 30% 70% 

UA Average 

Utilisation 
36.66% 20% 40% 

System Cost £19035 £19420 £19035 

Average 

Eigenvalue 

0.614 0.473 0.611 

                                       Tool  5 

Sensor U 

1
st
 system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 13.33% 13.33% 13.33% 

Vwy 10% ------- ------- 

Edx ------ 10% ------ 

Edy 50% 50% 60% 

UA Average 

Utilisation 
24.44% 24.44% 36.66% 

System Cost £19298 £19420 £19035 

Average 

Eigenvalue 

0.690 0.522 0.656 

                                       Tool  6 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 16.66% 20% 13.33% 

Pwr 10% ------ ----- 

Edx ----- 10% ----- 

Edy 40% 30% 60% 

UA Average 

Utilisation 
22.22% 20% 36.66% 

System Cost £19102 £19420 £19035 

Average 

Eigenvalue 
0.691 0.464 0.650 
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As shown in Table G.5, the overall average utilisation has increased in the first and 

second systems from 24.44% up to 36.66% and the cost is reduced by 23 % from 

£24789 to £19035. In addition, for other tools without sleeve, the average sensitivity 

of the system did not significantly change as can be seen in Table G.7. In fact the 

average sensitivity has increased to 0.656 compared with the second system of tool 

5. 

Table G.7: The optimised system (1st and 2nd system) for the tool with rubber 

sleeve using PCA. 

 

 

 

3- Tools with copper sleeve 

 

From Tables E.7 and E.8, it can be observed that there is no significant difference in 

the average sensitivity for both systems for the three tools with copper sleeves.  

For the tool 8, for example, the cost of first and second systems is relatively different 

(££19065, £19420). But it is still can be optimised by increasing the system 

utilisation by replacing the sensory characteristic features of the force sensor from 

the first system with the eddy current sensory signals from the second system to 

reduce the cost and still have the sensitivity level.  

 

 

 

Tools with rubber  sleeve 

Tool 4 Tool 5 Tool  6 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

 

Fx PC 2 0.807 Fx PC 6 0.833 Edy PC 5 0.871 

Edy PC 7 0.694 Edy PC 11 0.732 Edy PC 1 0.810 

Fx PC 8 0.685 Fx PC 6 0.712 Fx PC 6 0.729 

Edy PC 4 0.645 Fx PC 10 0.667 Fx PC 3 0.706 

Fx PC 9 0.607 Edy PC 9 0.666 Edy PC 13 0.646 

Edy PC 11 0.563 Edy PC 13 0.617 Edy PC 6 0.626 

Edy PC 7 0.547 Edy PC 5 0.607 Fx PC 6 0.598 

Edy PC 11 0.538 Edy PC 2 0.592 Fx PC 11 0.526 

Edy PC4 0.519 Fx PC 8 0.591 Edy PC 7 0.509 

Edy PC 1 0.500 Edy PC 6 0.570 Edy PC 14 0.480 

                Average 

 

0.611   Average               0.659 Average 0.650 
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Table G.8: Sensors utilisation for the tool 7 with copper sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table G.9: Sensors utilisation for the tool 8 with copper sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table G.10: Sensors utilisation for the tool 9 with copper sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Tool  7 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 16.66% 26.66% 13.33% 

Edy 50% 20% 60% 

UA Average 

Utilisation 
33.33% 23.33% 36.66% 

System Cost £19035 £19035 £19035 

Average 

Eigenvalue 

0.673 0.469 0.669 

                                       Tool  8 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 10% 16.66% ------ 

Mic 10 ------ 10 

Edx ----- 20% 20% 

Edy 60% 30% 70 

UA Average 

Utilisation 
26.66% 22.22% 33.33% 

System Cost £19065 £19420 £7450 

Average 

Eigenvalue 
0.712 0.516 0.660 

                                       Tool  9 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 23.33% 16.66% 20% 

Edx ----- 20% ----- 

Edy 30% 30 40% 

UA Average 

Utilisation 
21.66% 22.22% 30% 

System Cost £19035 19420 £19035 

Average 

Eigenvalue 

0.760 0.545 0.757 
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As shown in Table G.9, the overall average utilisation has increased in the first 

system from 26.66% up to 33.3% and from 22.2% up to 33.3% in the second system 

and the cost is reduced by 60% from £24789 to £7450. In addition, the average 

sensitivity of the system did not significantly change as can be seen in Table G.10. 

In fact the average sensitivity has increased to 0.660 compared with the second 

system of tool 8. 

 

Table G.10: The optimised system (1st and 2nd system) for the tool with copper 

sleeve using PCA. 

 

 

4- Tools with aluminium sleeve 

 

From Tables E.10 and E.11, it can be observed that there is no significant difference 

in the average sensitivity for both systems for the three tools with aluminium  

sleeves.  

For the tool 10, for instance, the cost of first and second systems is slightly different 

(£19065, £19420). But it is still can be optimised by increasing the system utilisation 

by replacing the sensory characteristic features of the sound sensor from the first 

system with the eddy current sensory signals from the second system to reduce the 

cost and still have the sensitivity level.  

 

 

Tools without  sleeve 

Tool 7 Tool 8 Tool  9 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

 

Fx PC7 0.824 Mic PC 1 0.933 Fx PC 1 0.897 

Edy PC 13 0.796 Edy PC 8 0.752 Fx PC 14 0.870 

Edy PC 8 0.785 Edy PC 8 0.693 Edy PC 6 0.834 

Fx PC 4 0.784 Edy PC 5 0.662 Fx PC 12 0.792 

Edy PC 13 0.707 Edy PC 3 0.652 Edy PC 15 0.776 

Fx PC 2 0.640 Edy PC 9 0.641 Fx PC 1 0.744 

Fx PC 1 0.572 Edy PC 11 0.610 Fx PC 3 0.702 

Edy PC 10 0.564 Edx PC 9 0.575 Edy PC 12 0.680 

Edy PC 13 0.528 Edy PC 14 0.564 Fx PC 2 0.654 

Edy PC6 0.491 Edx PC 1 0.524 Edy PC 7 0.626 

                Average 

 

0.669   Average               0.660 Average 0.757 
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Table G.11: Sensors utilisation for the tool 10 with aluminium sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table G.12: Sensors utilisation for the tool 11 with aluminium sleeve using PCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table G.13: Sensors utilisation for the tool 12 with aluminium sleeve using PCA. 
 

 

 

 

 

 

 

 

 

 

 

                                       Tool  10 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 13.33% 16.66% 13.33% 

Mic 10% ------- ------- 

Edx ----- 20% ----- 

Edy 50% 30% 60% 

UA Average 

Utilisation 
24.44% 22.22% 36.66% 

System Cost £19065 £19420 £19035 

Average 

Eigenvalue 

0.727 0.520 0.695 

                                       Tool  11 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 23.33% 10% 20% 

Edx ------ 10% ------- 

Edy 30% 60% 40% 

UA Average 

Utilisation 
26.66% 26.66% 30% 

System Cost £19035 £19420 £19035 

Average 

Eigenvalue 

0.698 0.522 0.697 

                                       Tool  12 

Sensor U 

1
st
 

system 

U 

2nd  

system 

Optimised 

System 

Dynamometer 16.66% 10% 13.33% 

Edx ----- 20% ------ 

Edy 50% 30% 60% 

UA Average 

Utilisation 
33.33% 20% 36.66% 

System Cost £19035 £19420 £19035 

Average 

Eigenvalue 
0.701 0.524 0.697 
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As shown in Table G.11, the overall average utilisation has increased in the first 

system from 24.44%% up to 36.66% and from 22.22% up to 36.66% in the second 

system and the cost is reduced by 23 % from £24789 to ££19035. In addition, for  

another tools with aluminium sleeve, the average sensitivity of the system did not 

significantly change as can be seen in Table G.14. In fact the average sensitivity has 

increased to 0.697compared with the second system of the tool 10. 

 

Table G.14: The optimised system (1st and 2nd system) for the tools with aluminium 

sleeve using PCA. 

 
 

 

 

 

 

 

 

 

 

Tools with aluminium  sleeve 

Tool 10 Tool 11 Tool  12 

Sensory 

Signal 

PC 

method  

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Sensory 

Signal 

PC 

method 

Eigen- 

value 

 

Fx PC 11 0.857 Fx PC 1 0.805 Edy PC 1 0.816 

Fx PC 8 0.822 Fx PC 9 0.793 Fx PC 6 0.795 

Edy PC 5 0.816 Edy PC 13 0.763 Edy PC 6 0.783 

Edy PC 6 0.784 Fx PC 15 0.735 Fx PC 8 0.753 

Fx PC 4 0.657 Fy PC 11 0.725 Fx PC 13 0.707 

Edy PC 8 0.642 Fy PC 10 0.705 Edy PC 14 0.706 

Edy PC 15 0.620 Edy PC 5 0.674 Fx PC 9 0.669 

Fx PC 2 0.609 Fx PC 4 0.597 Edy PC 9 0.592 

Edy PC 10 0.593 Edy PC 14 0.590 Edy PC 11 0.587 

Edy PC 1 0.554 Edy PC 1 0.582 Edy PC 15 0.568 

                Average 

 

0.695   Average               0.697 Average 0.697 
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Appendix H: System Evaluation (For Chapter 9) 

 

9.4.3.1   Linear Regression (LR)  Method) 

 

Same methods which are used to calculate the average sensitivity of the sensory 

signals and signal processing methods using Linear regression (LR) in chapter 8, 

section 8.5.2.1, here it will be applied for the signals for testing 12 tools as in the 

next sections.  

 

1- Tools without sleeve 

 

Figure H.1 show the average sensitivity (As) for the three tools without sleeve, as it 

is clear that the force (Fy) and Power sensors are the higher sensitivity for the tool 2 

and tool 3 respectively. 
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Figure H.1: As values for the sensory signals of tools without sleeve. 
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Figure H.2: Asp values for the signal processing methods of tools without 

sleeve. 

 

Figure H.2 shows the average of the sensitivity of the signal processing methods 

(Asp) for the three tools without sleeve. It presents the power as a signal processing 

method take the higher rank as more sensitive method for tool 2. Meanwhile, the 

skewness (skew) is the more sensitive method for the tool 3. 

Same method in the chapter 9, section 9.5.2.1, here the average of the summation of 

sensitivity coefficients (Ac) of those systems is found to be (0.58, 0.32 and 0.28) for 

the three tools without sleeve . However, to find the effectiveness of the selection of 

the utilised sensors and signal processing methods, the evaluated values can be 

compared with other systems. 

 

2- Tools with rubber sleeve 

 

Figure H.3 shows the average sensitivity (As) for the three tools with rubber sleeve, 

as it is clear that the accelerometer attached to spindle in x axis (Vsx) is the more 

sensitive for the tool 4, however accelerometer attached to the moveable machine 
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table (Vwy) and power sensor are the higher sensitivity for the tool 5 and tool 6 

respectively. 
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Figure H.3: As values for the sensory signals of tools with  rubber sleeve. 
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Figure H.4: Asp values for the signal processing methods of tools with rubber 

sleeve. 

                                      

Similarly, Figure H.4 shows the average of the sensitivity of the signal processing 

methods (Asp) for the three tools with rubber sleeve. It presents the range as a signal 

processing method take the higher rank as more sensitive method for tools 4, 

however the minimum method (min) and standard deviation (std) for the fifth and 

sixth tools. The average of the summation of sensitivity coefficients (Ac) of the 

above systems is found to be (0.29, 0.28 and 0.24) for the three tools with rubber 

sleeve respectively. 

 

3- Tools with copper sleeve 

Figure H.5 shows the average sensitivity (As) for the three tools with copper sleeve, 

as it is clear that the power (Pwr) is the more sensitive for the tool 7, meanwhile the 
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acoustic emission (AE) accelerometer (Vwy) are the higher sensitivity for the tool 8 

and tool 9 respectively. 
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Figure H.5: As values for the sensory signals of tools with copper sleeve. 
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Figure H.6: Asp values for the signal processing methods of tools with copper 

sleeve. 
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The average of the sensitivity of the signal processing methods (Asp) for the three 

tools with copper sleeve as shown in Figure H.6. It presents the standard deviation as 

a signal processing method take the higher rank as more sensitive method for both 

tools 7 and 8 , however the average method is more sensitive for the tool 9. 

The average of the summation of sensitivity coefficients (Ac) of aforementioned 

systems is found to be (0.34, 0.29and 0.31) for the three tools with copper sleeve. 

 

4- Tools with aluminium sleeve 

 

The average sensitivity (As) for the three tools with aluminium sleeve is illustrated 

in Figure H.7, it shows that the sound sensor (Mic) is the more sensitive for both 

tools 10 and 11, whereas the AE sensor is the higher sensitivity for the tool 12. 
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Figure H.7: As values for the sensory signals of tools with aluminium sleeve. 
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Figure H.8: Asp values for the signal processing methods of tools with aluminium 

sleeve. 

 

Figure H.8 shows the average of the sensitivity of the signal processing methods 

(Asp) for the three tools with aluminium sleeve. It presents the standard deviation as 

a signal processing method take the higher rank as more sensitive method for the 

tool 10 , nevertheless the average method is the highest sensitive for both eleventh 

and twelfth tools. The average of the summation of sensitivity coefficients (Ac) of 

those systems is found to be (0.32, 0.30 and 0.31) for the three tools with aluminium 

sleeve 
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Appendix I: System Evaluation (For Chapter 9) 

9.4.3.2  Principal Component Analysis (PCA)  Method 

 

1- Tools without sleeve 

 

Figure I.1 shows the average eigenvalue (Aev) for the three tools without sleeve, as 

it is clear that the eddy current sensor is the more sensitive for both first and second 

tools. Force sensor (Fx) is the higher sensitivity for the third tool. 
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Figure I.1: Aev values for the sensory signals of tools without sleeve. 
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Figure I.2: Apc values for the principal component methods of tools without 

sleeve. 

 

 

The average of the eigenvalue of the principal component methods (Apc) for the 

three tools with rubber sleeve as shown in Figure I.2. It presents the first principal 

component (PC1) as a signal method takes the higher rank as more sensitive method 

for tool 2 , however the second principal component (PC2) method is more sensitive 

for the tool 3.Same method in the chapter 9, section 9.5.2.2, here the average of the 

summation of eigenvalue coefficients (Ec) of those systems is found to be (0.19, 0.20 

and 0.18) for the three tools without sleeve.  

 

2- Tools with rubber sleeve 

 

Figure I.3 shows The average eigenvalue (Aev) for the three tools with rubber 

sleeve, as it is clear that the eddy current sensor(Edy) attached to spindle case in y 

axis is the more sensitive for fourth, fifth and sixth  tools.   
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Figure I.3: Aev values for the sensory signals of tools rubber sleeve. 
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Figure I.4: Apc values for the principal component methods of tools with rubber 

sleeve. 
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Figure I.4 illustrates the average of the eigenvalue of the principal component 

methods (Apc) for the three tools with rubber sleeve. It presents the first principl 

component (PC1) as a signal method takes the higher rank as more sensitive method 

for both tools 4, however the second principal component (PC2) method is more 

sensitive for the tools 5 and 6. The average of the summation of eigenvalue 

coefficients (Ec) of those systems is found to be (0.21, 0.20 and 0.19) for the three 

tools with rubber sleeve.  

 

3- Tools with copper sleeve 

 

The average eigenvalue (Aev) for the three tools with copper sleeve is shown in 

Figure I.5. It is clear that the force sensor (Fx) is the more sensitive for both first and 

third tools. Eddy current (Edy) is the higher sensitivity for the second tool. 
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Figure I.5: Aev values for the sensory signals of tools with copper sleeve 

. 
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Figure I.6: Apc values for the principal component methods of tools with copper 

sleeve. 

        

    

Similarly, Figure I.6 shows the average of the eigenvalue of the principal component 

methods (Apc) for the three tools with copper sleeve. It presents the first principal 

component (PC1) as more sensitive method for all those tools. The average of the 

summation of eigenvalue coefficients (Ec) of those systems is found to be (0.20, 

0.19 and 0.18) for the three tools with copper sleeve.  

 

4- Tools with aluminium sleeve 

 

Figure I.7 shows the average eigenvalue (Aev) for the three tools with aluminium 

sleeve, as it is clear that the eddy current sensor (Edy) attached to spindle case in y 

axis is the more sensitive for those tools.  However, the sound sensor (Mic) has a 

reasonable sensitivity for tenth tool. 
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Figure I.7: Aev values for the sensory signals of tools with copper sleeve. 
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Figure I.8: Apc values for the principal component methods of tools with aluminium 

sleeve. 
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Appendix J: Signal Simplification  (For Chapter 10) 
 
10.3.1  Linear Regression (LR) method 
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Figure J.1: A graphical presentation of the sensitivity for fresh tool with rubber 

sleeve using LR method. 

 

 

Signal processing method

S
en

so
r

M
ax

  

M
in

 

S
td

P
o

w
er

A
v
er

ag
e

S
k
ew

K
u
rt

o
si

s

R
an

g
e 

F
F

T
1

F
F

T
2

F
F

T
3

F
F

T
4

F
F

T
5

F
F

T
6

F
F

T
7

F
F

T
8

F
F

T
9

F
F

T
1

0

W
av

1

W
av

2

W
av

3

W
av

4

W
av

5

W
av

6

W
av

7

W
av

8

W
av

e9

W
av

e1
0

 Tool with copper sleeve

 

 
Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Low sensitivity

High sensitivity

High  SCF (Vsz, wav9)

High  SCF (Strain, Kurtosis)

 

Figure J.2: A graphical presentation of the sensitivity for fresh tool with copper 

sleeve using LR method. 
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Figure J.3: A graphical presentation of the sensitivity for fresh tool with aluminium 

sleeve using LR  method. 
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Figure J.4: A graphical presentation of the sensitivity for tool with one broken tooth, 
with rubber sleeve using LR method.  
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Figure J.5: A graphical presentation of the sensitivity for tool with one broken tooth, 
with copper sleeve using LR method.  
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Figure J.6: A graphical presentation of the sensitivity for tool with one broken tooth, 

with aluminium sleeve using LR method. 
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Figure J.7: A graphical presentation of the sensitivity for tool with two broken teeth, 
with rubber sleeve using LR method.  
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Figure J.8: A graphical presentation of the sensitivity for tool with two broken teeth, 

with copper sleeve using LR method. 
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Figure J.9: A graphical presentation of the sensitivity for tool with two broken teeth, 

with aluminium sleeve using LR method. 
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Appendix K: Signal Simplification (For Chapter 10) 

 

10.3.2  Range Value (RV) method 

 

Signal processing method

S
en

so
r

M
ax

  

M
in

 

S
td

P
o

w
er

A
v
er

ag
e

S
k
ew

K
u
rt

o
si

s

R
an

g
e 

F
F

T
1

F
F

T
2

F
F

T
3

F
F

T
4

F
F

T
5

F
F

T
6

F
F

T
7

F
F

T
8

F
F

T
9

F
F

T
1

0

W
av

1

W
av

2

W
av

3

W
av

4

W
av

5

W
av

6

W
av

7

W
av

8

W
av

9

W
av

1
0

 Tool with rubber sleeve

 

 
Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

High sensitivity

Low sensitivity

Low  SCF (Vwx, wav6)

High  SCF (AERMS, std)

 

Figure K.1: A graphical presentation of the sensitivity for fresh tool with rubber 

sleeve using Range value  method. 
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Figure K.2: A graphical presentation of the sensitivity for fresh tool with copper 

sleeve using Range value  method. 
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Figure K.3: A graphical presentation of the sensitivity for fresh  tool with aluminium 

sleeve using Range value  method 
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Figure K.4: A graphical presentation of the sensitivity for tool with one broken 

tooth, with rubber sleeve using Range value  method. 
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Figure K.5: A graphical presentation of the sensitivity for tool with one broken 

tooth, with copper  sleeve using Range value method. 
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Figure K.6: A graphical presentation of the sensitivity for tool with one broken 

tooth, with aluminium sleeve using Range value method. 
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Figure K.7: A graphical presentation of the sensitivity for tool with two broken 

teeth, with rubber sleeve using Range value method. 
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Figure K.8: A graphical presentation of the sensitivity for tool with two broken 

teeth, with copper sleeve using Range value method. 
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Figure K.9: A graphical presentation of the sensitivity for tool with two broken 

teeth, with aluminium sleeve using Range value method. 
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Appendix L: Signal Simplification  (For Chapter 10) 

 

10.3.3  Sudden Change In Value (SCIV) method 
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Figure L.1: A graphical presentation of the sensitivity for fresh tool with rubber 

sleeve using SCIV method. 
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Figure L.2: A graphical presentation of the sensitivity for fresh tool with copper 

sleeve using SCIV method. 
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Figure L.3: A graphical presentation of the sensitivity for fresh tool with aluminium 

sleeve using  SCIV  method. 
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Figure L.4: A graphical presentation of the sensitivity for tool with broken one tooth, 

with rubber sleeve using SCIV method 
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Figure L.5: A graphical presentation of the sensitivity for tool with broken one tooth, 

with copper sleeve using SCIV method. 
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Figure L.6: A graphical presentation of the sensitivity for tool with boken one tooth, 

with aluminium sleeve using SCIV method. 
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Figure L.7: A graphical presentation of the sensitivity for tool with broken two teeth, 

with rubber sleeve using SCIV method.  
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Figure L.8: A graphical presentation of the sensitivity for tool with broken two teeth, 

with copper sleeve using SCIV method.  
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Figure L.9: A graphical presentation of the sensitivity for tool with boken two tooth, 

with aluminium sleeve using SCIV  method. 
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Appendix M: Signal Simplification (For Chapter 10) 

 

10.3.4 Correlation Coefficient (CCX3) method  
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Figure M.1: A graphical presentation of the sensitivity for fresh tool with rubber 

sleeve using CCX3 method. 
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Figure M.2: A graphical presentation of the sensitivity for fresh tool with copper 

sleeve using CCX3 method. 



Appendices 

     95 

 

Signal processing method

S
en

so
r

M
ax

  

M
in

 

S
td

P
o

w
er

A
v
er

ag
e

S
k
ew

K
u
rt

o
si

s

R
an

g
e 

F
F

T
1

F
F

T
2

F
F

T
3

F
F

T
4

F
F

T
5

F
F

T
6

F
F

T
7

F
F

T
8

F
F

T
9

F
F

T
1

0

W
av

1

W
av

2

W
av

3

W
av

4

W
av

5

W
av

6

W
av

7

W
av

8

W
av

9

W
av

1
0

 Tool with aluminium sleeve

 

 
Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Low sensitivity 

High sensitivity 

High  SCF (Vsz, FFT9)

High  SCF (Fy, FFT5)

 
 

Figure M.3: A graphical presentation of the sensitivity for fresh tool with aluminium 

sleeve using CCX3 method. 
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Figure M.4: A graphical presentation of the sensitivity for tool with one broken 

tooth, with rubber sleeve using CCX3 method. 
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Figure M.5: A graphical presentation of the sensitivity for tool with one broken 

tooth, with copper sleeve using CCX3 method. 
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Figure M.6: A graphical presentation of the sensitivity for tool with one broken 

tooth, with aluminium sleeve using CCX3 method. 
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Figure M.7: A graphical presentation of the sensitivity for tool with two broken 

teeth, rubber sleeve using CCX3 method. 
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Figure M.8: A graphical presentation of the sensitivity for tool with two broken 

teeth, copper sleeve using CCX3 method. 
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Figure M.9: A graphical presentation of the sensitivity for tool with two broken 

teeth,  with aluminium sleeve using CCX3 method. 
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Appendix N: Signal Simplification (For Chapter 10) 

10.3.4 Correlation Coefficient (CCX20) method  
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Figure N.1: A graphical presentation of the sensitivity for fresh tool without sleeve 

using CCX20 method. 
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Figure N.2: A graphical presentation of the sensitivity for fresh tool with rubber 

sleeve using CCX20 method. 
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Figure N.4: A graphical presentation of the sensitivity for fresh tool with copper 

sleeve using CCX20 method. 
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Figure N.5: A graphical presentation of the sensitivity for fresh tool with aluminium 

sleeve using CCX20 method. 
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Figure N.6: A graphical presentation of the sensitivity for tool with one broken 

tooth, without sleeve using CCX20 method. 
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Figure N.7: A graphical presentation of the sensitivity for tool with one broken 

tooth, with rubber sleeve using CCX20 method. 
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Figure N.8: A graphical presentation of the sensitivity for tool with one broken 

tooth, with copper sleeve using CCX20 method. 
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Figure N.9: A graphical presentation of the sensitivity for tool with one broken 

tooth, with aluminium sleeve using CCX20 method. 
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Figure N.10: A graphical presentation of the sensitivity for tool with two broken 

teeth, without sleeve using CCX20 method. 
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Figure N.11: A graphical presentation of the sensitivity for tool with two broken 

teeth, with rubber sleeve using CCX20 method. 
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Figure N.12: A graphical presentation of the sensitivity for tool with two broken 

teeth, with copper sleeve using CCX20 method. 
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Figure N.13: A graphical presentation of the sensitivity for tool with two broken 

teeth, with aluminium sleeve using CCX20 method. 
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Appendix O: Signal Simplification (For Chapter 10) 

10.3.6  Fuzzy Logic (FL) method 
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Figure O.1: A graphical presentation of the sensitivity for fresh tool with rubber 

sleeve using fuzzy logic method. 
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Figure O.2: A graphical presentation of the sensitivity for fresh tool with copper 

sleeve using fuzzy logic method. 
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Figure O.3: A graphical presentation of the sensitivity for fresh tool with aluminium 

sleeve using fuzzy logic method. 
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Figure O.4: A graphical presentation of the sensitivity for tool with broken one 

tooth, with rubber sleeve using fuzzy logic method. 
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Figure O.5: A graphical presentation of the sensitivity for tool with one broken 

tooth, with copper sleeve using fuzzy logic method. 
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Figure O.6: A graphical presentation of the sensitivity for tool with one broken 

tooth, with aluminium sleeve using fuzzy logic method. 
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Figure O.7: A graphical presentation of the sensitivity for tool with two broken 

teeth, with rubber sleeve using fuzzy logic method. 
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Figure O.8: A graphical presentation of the sensitivity for tool with two broken 

teeth, with copper sleeve using fuzzy logic method. 

 
 



Appendices 

     109 

 

 

Signal processing method

S
en

so
r

 Tool with aluminium sleeve

 

 
Fx

Fy

Fz

Strain

Vwy

AE

AERMS

Mic

Vsx

Vsy

Vsz

Vwx

Pwr

Edx

Edy
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

High sensitivity

Low sensitivity

M
a

x
  

M
in

 

S
td

P
o

w
e
r

A
v

e
ra

g
e

S
k

e
w

K
u

rt
o

si
s

R
a

n
g
e
 

F
F

T
1

F
F

T
2

F
F

T
3

F
F

T
4

F
F

T
5

F
F

T
6

F
F

T
7

F
F

T
8

F
F

T
9

F
F

T
1

0

W
a

v
1

W
a

v
2

W
a

v
3

W
a

v
4

W
a

v
5

W
a

v
6

W
a

v
7

W
a

v
8

W
a

v
9

W
a

v
1

0

Low SCF (Vsy, wav6)

High  SCF (Fy, power)

 
 

Figure O.9: A graphical presentation of the sensitivity for tool with two broken 

teeth, with aluminium sleeve using fuzzy logic method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


