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Abstract—Designing a reliable and trusted routing scheme for 

resource-constrained Wireless Sensor Networks (WSNs) is a 

challenging task due to the lack of infrastructure and the 

highly dynamic network topology. To ensure trustworthy end-

to-end communications between wirelessly connected sensor 

nodes, a considerable amount of bidirectional traffic must be 

relayed either between neighboring sensor nodes or between 

source sensor nodes and the base station. Such scenarios may 

lead to an added routing overhead, higher energy depletion 

rate and network life time minimization. The existing trusted 

routing protocols focus on trusted data dissemination while 

lacking the consideration of the restricted resources of sensor 

nodes and low-power radio link failures. To solve this problem, 

we propose a reliability-oriented routing scheme that takes into 

account the link reliability and residual energy of sensor nodes, 

thus allowing for better trustworthy data exchange, traffic 

balancing and network lifetime extension. Based on real 

testbed experiments and large-scale simulations, the attained 

results show the benefits stemming from the adoption of our 

scheme to be a reliable and energy efficient data delivery 

platform for potential trusted data exchange models. Our 

results show that the scheme is able to reduce energy 

consumption without affecting the connectivity of the network.   

Keywords-wireless sensor networks; reliable routing; energy 

awareness; real-time packet encapsulating.  

I.  INTRODUCTION  

Sensor nodes in Wireless Sensor Networks (WSNs) are 
mainly battery operated and have limited energy and 
processing capabilities. In order for large deployments to be 
cost-effective, sensor nodes are resource-constrained in 
terms of energy capacity, radio transmissions, processing 
capabilities, and memory storage [18]. A reliable data 
delivery and energy efficiency play a key role in WSN 
research. Many protocols have been proposed to provide 
energy efficiency and reliable data transfer of packets in 
WSNs [19]. However, the main drawbacks of the existing 
trusted routing protocols for WSNs are that they are unaware 
of the communication patterns and the energy status of relay 
sensor nodes and they do not explicitly pursue balanced 
energy usage in their routing schemes. This results in the 
arbitrary routing of traffic to sensor nodes with potentially 
low energy capacity. This significantly reduces the life time 
of these sensor nodes and can adversely affect the entire 
WSN. This paper focuses on a reliable delivery of data that 
can be ensured through the careful selection of error free 
links, rapid recovery from packet loss and the avoidance of 
overloaded relay sensor nodes. Since link failure and packet 
loss are unavoidable, sensor networks must tolerate a certain 

lack of reliability without a significant effect on packet 
delivery performance, data aggregation accuracy or energy 
consumption. In this paper we present an effective hybrid 
approach that minimizes the tradeoff between energy, 
reliability, cost and agility. Our scheme adaptively reduces 
control traffic in favor of a metric that measures the 
reception success ratio of representative data packets. Based 
on this approach, the proposed routing scheme can achieve 
moderate energy consumption and high packet delivery ratio 
even in environments featuring high link failure rates.  

 

II. RELIABILITY AND ENERGY EFFICIENCY  

Densely deployed WSNs consist of a large number of 
sensor nodes in the areas of interest. Once the data of interest 
is detected, sensor nodes generate packets and forward them 
to the base station based on multihop routing through 
neighboring nodes. This clearly shows the need for a reliable 
data transport in error prone nature of WSNs. In the 
literature, enormous number of routing protocols has been 
proposed to provide reliable data delivery [1,2,19]. Although 
the majority of these proposed protocols achieve a higher 
packet delivery ratio in the network, performance of such 
protocols has not been investigated under interference-prune 
network scenarios [3]. In addition, they do not support end-
to-end reliable data delivery [4,17]. On the other hand, as 
nodes in WSNs are battery operated, it is not practically 
feasible to frequently replace the batteries. Energy 
consumption needs to be minimized in order to prolong the 
network lifetime. There have been many protocols proposed 
for energy efficiency [5,6,19,20]. However, these protocols 
still suffer from high energy consumption due to continuous 
polling and require extra transmission and retransmission to 
cope with the frequent link failures [19].  

Although the authors of the aforementioned protocols 
claim to achieve reliable data delivery and energy efficiency, 
large-scale simulations results were not provided to validate 
their experimental results or vice versa. Also such protocols 
were not well investigated in the real-time context [19]. 

 

III. TRUSTWORTHY ENERGY EFFICIENT ROUTING 

The proposed solution considers both characteristics of 
resource limitations and communication patterns in favour of 
reliable and energy-efficient data dissemination. The work 
here is built on our existing reliable load-balancing routing 
(RLBR) scheme stated in [7,8,9], and extending the 
experiments to include an outdoor sensor network testbed 
comprising interference-prone channels, and large-scale 
simulations to validate these experiments. 

 



A. Minimizing Packets Transmissions   

      Since all sensor nodes in the sensor network have the 

chance to participate in relaying data packets in a multihop 

fashion, this routing participation requires a given number of 

transmissions. Hence, the routing scheme should minimize 

these transmissions to improve the energy-efficiency and 

cost-effectiveness of low-power, duty-cycled WSNs. 

Therefore, aggregating smaller, relayed, data packets into 

larger encapsulated packets bounded by the maximum packet 

data unit could significantly minimize the number of packet 

transmissions and improve energy savings. However, in real-

time applications, these encapsulated data packets vary in 

their deadlines and sensitivity to end-to-end delay.  These 

deadlines are governed by the importance of the sensing 

measurements. The average end-to-end delay is the sum of 

all single-hop delays along the selected route rj. Due to in-

flight aggregation, encapsulated data packets tend to be 

delayed at each intended relaying sensor node waiting to be 

encapsulated with other arriving or locally generated data 

packets for a given holding time ∆tenc . This time is known as 

the per-relay encapsulating delay. In this case, the average 

(ni-to-b) end-to-end delay ∆tni,rj,b is estimated in-flight on 

route rj between sensor node ni at the point of data 

encapsulation and the base station b by summing the 

individual  delays as stated in [10]. However, the total 

accumulated per-relay encapsulating delay including 

propagation on route rj must not exceed the remaining time 

∆tleft which is the time left before the associated real-time 

deadline tdeadline expires. In other words, per-relay 

encapsulating delay ∆tenc needs to be bounded in order to 

avoid missing the application-specific packet delivery 

deadlines. If a data packet arrives at relay sensor node ni at a 

time tarrive to be aggregated with other data packets, ∆tenc 
must be bounded and the encapsulated packet sent at an 

appropriate release time trelease. Subsequently, this dispatched, 

encapsulated, data packet might also be re-encapsulated on 

further hops and ∆tenc must permit receipt withinthe packets 

delivery deadlines. In the case where ∆tenc< 0, ∆tni,rj,b is 

negative and the arriving packet must be relayed 

immediately without encapsulating delay. In other cases the 

arriving packet can be delayed for ∆tenc as expressed in 

equation 1. Since the packet encapsulates more than one data 

element over the route of N-i relay sensor nodes, the 

encapsulated packet at relay node ni must be dispatched once 

either sensor node ni reaches its memory limit or one of these 

packets reaches the end of its minimum dispatch time 

min(trelease). This time must satisfy the accumulated condition 

in equation 2 over a route of N-i sensor nodes. 
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B. Estimating Energy Depletion Rate 

To consider the benefit of energy balancing of the 
proposed routing scheme, it is instructive to allow gauging of 

the energy discharge behavior in terms of energy depletion 
rate R(eni) of sensor node ni. The total residual energy 
capacity of a sensor node’s battery eni is divided into energy 
levels, and at the beginning it is assumed that the initial 
energy capacity “init_eni” of all sensor nodes are identical. If 
sensor node ni transmits, receives or overhears packets, its 
energy capacity decreases to lower levels according to the 
current consumption model of the mote system. The energy 
depletion rate R(eni) at which the residual energy capacity eni 
of node ni is reduced can be expressed in equation 3 which is 
only valid for tni,r,ni+1 > 0. Where tni,r,ni+1 is the time spent for 
sensor node ni for transmitting or forwarding this packet to 
node ni+1 over route r. Assuming that transmitting time 
equals receiving time for packets of the same size, tni,r,ni+1 is 
also identical to the time spent for node ni for receiving or 
aggregating a packet from node ni-1. R(eni) is measured in 
energy unit per second.  
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Consequently, from an energy efficiency point of view, 
the functional lifetime Tni of an individual sensor node ni, in 
which sensor node ni can participate in constructing the route 
r with sufficient energy, is obtained by dividing the initial 
energy capacity level (init_eni) by energy depletion rate 
R(eni) as in equation 4. 
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Given these assumptions, the maximum relay sensor 
node’s lifetime Tni is achieved by minimising (1/Tni) given in 
equation 5. Logically the maximum lifetime of a given route 
r is determined by the weakest intermediate or relaying 
sensor node, which is that with the highest cost. While 
Pni,r,ni+1 is the probability of forwarding a packet to the next 
hop ni+1 through the route r, Pni,r,ni-1 is the probability of 
receiving a packet from node ni-1 through the route r. Hence, 
R(eni) is a bidirectional function of the energy expenditure 
for relaying the projected network traffic by receiving and 
transmitting packets at a given energy depletion or 

dissipation rate of txnnrn iii
eP )(

1,, ×
+

 and rxnnbn iii
eP )(

1,, ×
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respectively. 
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    Similarly, for a wireless sensor network of m sensor 
nodes, where every sensor node has k available routes 
towards the base station, the entire network’s functional 
lifetime TWSN can be maximized by minimising the reciprocal 
of the functional lifetime of the entire network which is given 
in equation 6. 
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C. Minimizing the Variance in Energy Levels 

In the initial stages of parent selection process, sensor 
nodes with the best link reliability probability Pni,r,ni+1 are 
considered first based on link quality estimated values, 
whereas sensor nodes with the highest residual energy 
capacity levels are considered afterwards. Thus, a parent is 
selected if it offers a reliable route, but when the traffic load, 
e.g., aggregated or relayed load, increases, the remaining 
battery capacity of each sensor node is also accounted as the 
second prime metric in the parent selection process to 
construct routes along which all sensor nodes have the actual 
available battery capacity levels exceeding a given threshold. 
The cost function selects the route that requires the lowest 
energy per bit. If there is no such route, then it picks that 
route which maximizes the minimum battery level by 
utilizing the principle of max-min cost function of the 
Conditional Max-Min Battery Capacity Routing 
(CMMBCR) stated in [11]. To ensure a longer network 
lifetime, the strategy of minimizing the variance in energy 
capacity levels is employed to dissipate up all batteries 
powers uniformly to avoid some nodes suddenly running out 
of energy and disrupting the network. Hence, routes should 
be chosen such that the variance in battery levels between 
different routes is reduced. However, few energy levels leads 
to a low performance in energy balance, for instance, if there 
is only one energy level, then all routes will use this only 
energy level for all times and the most reliable route will be 
used frequently until it is exhausted. From energy cost point 
of view, the residual energy capacity level eni sensor node ni 
defines the refusal or readiness of this node to respond to 
route requests and forward data traffic. The maximum 
lifetime of a given route is determined by the weakest 
intermediate sensor node, which is that with the highest cost. 

 

D. Link Reliability 

In route maintenance phase, the value of routing metric 
is to be used first from the routing table, and then to select a 
valid parent on a route rj from multiple available routes 
according to the metric values. Based on link reliability as a 
primary cost metric, it can be assumed that a given number 
of sensor nodes are distributed arbitrarily and each node ni 

sends a packet at a given transmitting power tx
nrn iji

P
1,, +

and 

has a multihop route rj of hcni,rj,b hops to the base station b. 
hcni,rj,b is the hop count of the route rj between ni and b, 
which is greater than or equal zero. If sensor node ni can’t 
reach the base station b, hcni,rj,b is set to infinity. In view of 
that, the likelihood of relaying a packet originated at node ni 
is expressed in equation 7, which is the probability Pni,rj,b of 
relaying a data packet towards the base station b through the 
selected route rj. Where lqni,r,ni+1 is the link quality between 
sensor node ni and its current parent (upstream neighbor 
node) ni+1 along route rj. In other words, Pni,r,b counts for the 
readiness of node ni of forwarding a packet based on its 
residual energy capacity level eni and link quality lqni,r,ni+1 to 
its intended upstream neighbor node ni+1 that receives the 
packet and relay it towards the base station b.   
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In case the base station is unreachable, Pni,rj,b is 

approaching zero as the cost or route rj in terms of hop count 
hcni,rj,b is perpetuating to infinity. Otherwise, Pni,rj,b is 
normalized to one and the cost hcni,rj,b is zero; this means that 
no packets are being sent or relayed by sensor node ni.  

IV. EVALUATION SETTINGS 

In this section we evaluate our protocol, using testbed 
experiments as well as simulation. The experiments were 
conducted using 30 Crossbow TelosB motes (TPR2420CA) 
[12] running the TinyOS-2.x [13]. The TelosB combines a 
low-power 8MHz MCU with 10kbytes RAM, integrated 
antenna and an IEEE 802.15.4–compliant CC2420 RF 
transceiver chip [21]. The CC2420 provides the data link 
layer and offers a data rate of up to 250kbps. The TelosB 
operates within the 2.4GHz ISM band and employs the 
OQPSK modulation scheme. The interested reader should 
consult [12,14] for more details about TelosB-2.4 GHz 
platform which is  designed for low-power WSNs. The 
TelosB motes are deployed randomly and commence 
transmitting with the same residual power capacity using 
fresh AA batteries.  The only exception is the base station 
which is powered via a USB port on a laptop running Linux. 
This acts as a bridging device that has IEEE802.15.4 
coordinator functionality [21].  

The simulated network is composed of a 100 static sensor 
nodes uniformly deployed and arranged in a square sensor 
field of 10x10 grid with uniform 10m spacing between motes 
and a single stationary base station deployed at one corner to 
ensure a deep routing tree. IEEE 802.15.4 is used as the 
MAC and physical layer protocol with bandwidth of 
250Kbps, consistent with our experimental parameters. The 
wireless medium is simulated in ns-2 using the multipath 
shadowing propagation model [15] as it characterizes the 
realistic propagation behavior of an outdoor environment. 
The energy consumed for communications are measured by 
implementing the ns-2 radio energy model configured with 
power parameters matching those of the Chipcon 2.4GHz 
CC2420 [21]. At the beginning of each simulation, each 
sensor node is assigned with the same initial energy level. 
The base station features a persistent energy supply as is 
usually the case in real WSN applications. Our routing 
scheme is evaluated experimentally and using large-scale 
simulations and compared to TinyOS-2.x MultihopLQI 
protocol [13,16]. As the simulation part is still in progress, 
few simulation results are presented here in terms of 
different numbers of source nodes between 30 and 70. 
Evaluation metrics include network connectivity, to assess 
the significance of wireless link reliability on packet loss 
probability; average end-to-end delay in terms of delivery 
rate; average dissipated energy and network lifetime. 



V. PERFORMANCE EVALUATION RESULTS 

A. Experimental  Testbed Results 

1) Network Connectivity: Packet loss in WSNs typically 

depends on complex set of parameters, including the 

location of each sensor nodes in relation to the base station, 

spacing between sensor nodes, gain of mote’s antenna, the 

environmental conditions that affect the quality of the 

channel, and the number of hops traversed that the packet 

must travel along to be delivered successfully towards the 

base station. Figure 1 shows that selected relay nodes along 

the routing path that can send directly to the base station 

have different packet loss readings, which depend on their 

distances and locations in relation to the base station. To 

keep the results independent of the transmitting power, the 

results are averaged for many runs with the lowest 

transmitting power output of -20dBm and various distances, 

i.e., 1, 2, 3, 4, 5 meters, between the base station and the last 

hop sensor nodes that can send directly to the base station. It 

can be observed that our scheme can choose the most 

reliable relay sensor node with the lowest packet loss ratio. 

However, the effective relay selection approach used by our 

routing scheme could lead to additional computation 

overhead. Conversely, MultihopLQI depends only on 

individual link quality values that are provided by physical 

layer of the RF transceiver. This could yield parent sensor 

nodes with higher packet reception loss of more than half of 

the transmitted packets towards the base station due to 

asymmetric links problem and poor connectivity. This 

higher per-hop packet loss causes MultihopLQI to increase 

packet retransmissions to deliver the packet successfully 

towards the base station; thereby resulting in larger amount 

of energy expenditure. 

TinyOS-2.x MultihopLQI uses only link quality information 

at the physical layer of each beacon individually. This pure 

reliance on one form of channel state information (CSI) 

leads MultihopLQI to inappropriately react with the 

asymmetric links which is a typical feature of low-power 

WSNs [17]. The proposed solution (RLBR) solves the 

asymmetric link problem by taking the average of the link 

quality values to provide better packet delivery ratio 

estimations. It also uses bidirectional link estimations based 

on required retransmissions for active bidirectional 

monitoring of link status. This allows the proposed solution 

to properly switch to alternate parents when exceeding a 

threshold of maximum transmission failures. As illustrated 

in figure 2, with the MultihopLQI protocol, sensor node 1 

chooses sensor node 4 as its parent, but it never recieves 

acknowledgement packets back from node 1. This is a result 

of an asymmetric link between 1 and 4 that makes node 4 

unreachable for node 1’s packets. To solve this problem 

using averaged link quality values, sensor node 1 will 

switch to an alternate neighboring node. For example, node 

2 becomes a valid parent after the maximum transmission 

failure threshhold is exceeded due to link asymmetry and 

transmission range. The proposed routing protocol builds its 

multihop route in the deployed topology in terms of end-to-

end delivery delay and hop count (hc). During the beginning 

of the transmission or epoch, the proposed routing protocol 

has a slightly higher delivery delay due to the overheads of 

route configuration. However, it immediately improves the 

packet delivery performance with lower retransmissions and 

much lower control packet rate. As a result, the end-to-end 

packet delay decreases gradually despite traversing a longer 

route. 
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Figure 1.  Network Connectivity 

 

Figure 2.  Asymmetric Links 

2) Average End-to-End Packet Delivery Performance: 

The proposed routing protocol provides a faster recovery 

from the broken links due to the hybrid approach utilizing 

backup neighboring routing tables. This can be seen in figure 

3 (a) when a link is broken at 100ms after the transmission 

time. Once an alternative energy-efficient and reliable route 

is established, using consecutive repair phases, the average 

end-to-end delay decreases considerably. Consequently, the 

average throughput is improved even though the number of 

hops has increased, which may affect the timeliness of data 

packets. This chosen, reliable, route requires a lesser number 

of retransmissions to successfully deliver a data packet at an 

average delivery rate of 99.6% after 40ms from the time at 

which the route was broken compared to the benchmark, 

MultihopLQI which provides an average delivery rate less 

than 78% after the same epoch. Progressively, the RLBR 

achieves a higher delivery rate. Conversely, MultihopLQI 

begins with a higher delivery rate and initially achieves a 

lower average end-to-end delivery delay. This is because the 

route configuration start-up time required by the RLBR for 

updating routing tables and the parent selection process takes 

some time. As MultihopLQI maintains only a state for one 

parent node at a time , neither routing tables nor blacklisting 

are used. However, this results in the additional energy cost 

associated with the significantly increased packets 

retransmissions required to successfully deliver a data 

packet. In view of the cost of beaconing route messages, e.g., 

control packets, over long run of few hours, the beaconing 

rate is adaptive on a per sensor basis. It starts with a slightly 

high rate in the RLBR at the beginning due to the rapid 

establishment of the routing tree then begins to decrease and 



stabilizes at a lower rate. Figure 3 (b) illustrates, on hourly 

basis, the average number of route messages that were 

transmitted per sensor node in order to build and maintain 

the routing tree. The message beaconing pattern in the RLBR 

is slightly raised at the fourth hour due to an intentional link 

failure This failure was introduced to demonstrate the rapid 

reconstruction of an alternative, but longer,  route.. Once 

again it adaptively embarks on a steady rate pattern in order 

to become stable eventually. By comparison, MultihopLQI 

avoids routing tables by only maintaining a state for the best 

parent sensor node at a given time It keeps transmitting 

control beacons at a constant rate of 30 beacons per second, 

considerably higher than RLBR. This rate increases linearly 

over long periods. 
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      a. Delivery Rate vs. Link Failure 
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b. Control Overhead 

Figure 3.  Packet Delivery Performance 

In order to jointly evaluate the reliability and delivery 
performance of the routing scheme, a number of intermediate 
wireless sensor nodes were switched-off or removed to 
create broken routes between source sensor nodes and the 
base station. Figures 4 (a) and (b) illustrates the end-to-end 
delivery performance of RLBR and MultihopLQI 
respectively in terms of end-to-end delay and hop count 
when a route is broken after packet number 150. The RLBR 
reacts efficiently and responds swiftly to recover from a 
broken link along the preselected path. It maintains an 
alternative, energy-efficient and reliable route to recover. 
This route reconfiguration time is 66.40ms. This newly 
constructed route is used temporarily as a backup route to 
deliver source-originated data packets in a timely manner 
towards the base station. However, the alternative route may 
require additional hops, leading to an increase in the average 
end-to-end packet delivery delay. In this case it is slightly 
increased to 81.32ms. In contrast, MultihopLQI is incapable 
of rapidly recovering from broken routes if a wireless mote 
on a preselected route is removed. Even though 
MultihopLQI results in a shorter average end-to-end delay 
for packet delivery of about 78.43ms, recovering from the 
broken route takes a much longer time (98.52ms). Overall, 
MultihopLQI lacks stability, frequently restructuring its 
routing tree in response to changes in its LQI, hardware-
based, reliability metric. Although MultihopLQI did recover 
from link failure, its delivery ratio was noticeably reduced 
after a shorter time. This leads to a lower average packet 
delivery rate for MultihopLQI as compared to the RLBR, 
validating the earlier results shown in figure 3 (a).  

 
 

 

a. Proposed Scheme b. TinyOS Collection Layer  

Figure 4.  Recovery from Broken Links    

3) Packet Delivery Cost: Using the MultihopLQI 

protocol, sensor nodes broadcast control packets at a 

constant rate.  In terms of energy,  non-adaptive high rate 

beaconing expends more energy for unnecessary 

transmissions in conditions requiring infrequent topological 

changes. In addition most relayed packets are routed through 

optimal  routes based mainly on link quality. As a result, the 

selected route will be used frequently and the sensor nodes 

along this route will be exhausted quickly. This leads to an 

imbalance in the energy utilization throughout the entire 

network. Compared to MultihopLQI, RLBR makes trade-

offs between routes based on link reliability and energy 

efficiency in favour of a more even  distribution of 

forwarded packets among the relaying sensor nodes. In 

addition, RLBR broadcasts fewer route messages over the 

life of the network. As a result, RLBR consumes only about 

35% of the energy required for route message transmissions 

as compared to MultihopLQI. To estimate the average 

amount of energy consumed by relay sensor nodes for 

delivering a data packet towards the base station, the packet 

delivery cost is used as a routing overhead metric. This cost 

metric accounts for the ratio of the total number of control 

and data packets to the total number of data packets 

received at the base station. On average, RLBR achieves 

higher delivery efficiency while incurring a significantly 

lower control overhead than that of MultihopLQI. 

  

B. Latger-Scale Simulations  Results 

1) Functional Network lifetime: Using simulations of a 

larger network featuring 100 sensor nodes with a range of 

source nodes between 30 and 70 in number, our proposed 

scheme balances the energy consumption and keeps 

updating energy efficient routes. In general, figure 5 shows 

that the network lifetime declines as the number of deployed 

sensor nodes increases, due to the high volume of control 

and data packets that are retransmitted throughout the sensor 

network. Compared with MultihopLQI, the use of RLBR 

results in a slower and a more graceful linear degradation of 

the network lifetime. This leads to a substantial 

improvement in the expected life of a WSN when 

implemented using RLBR. Despite, MultihopLQI’s 

occassional ability to balance the traffic load based on link 



quality estimates, the large numbers of redundant packet 

copies that are retransmitted between different sensor nodes 

depletes the available energy more rapidly. To this end, the 

simulation results agree with the assertion made earlier that 

the proposed scheme can reduce the energy consumed for 

transmissions and maximise the network lifetime.  
 

2) Average Dissipated Energy: Figure 6 illustrates the 

relationship between the average dissipated energy during 

network operation and the number of source nodes at which 

data traffic is generated. As an overall trend it can be seen 

that the averaged dissipated energy by the sensor nodes in 

all routing schemes has an increases  with the number of 

source nodes. Compared with MultihopLQI, the proposed 

routing scheme performs favourably with energy 

consumption increasing linearly with the number of source 

nodes. In contrast, MultihopLQI dissipates more energy for 

the same number of source nodes and the energy dissipation 

increases considerably as the number of generating nodes 

grows. This suggests that RLBR is capable of supporting 

larger WSN’s than MultihopLQI. 
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          Figure 5. Energy Depletion 
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           Figure 6. Network Lifetime 
 

VI. CONCLUSION AND FUTURE WORK 

In this work, a reliability-oriented routing scheme is 
proposed based on per-hop energy balancing and probability 
network connectivity. The results show that it leverages 
recent advancements over the standard network layer 
components provided by the TinyOS2.x. The proposed 
routing scheme consumes less energy while reducing 
topology repair latency and supports various aggregation 
weights by redistributing packet relaying loads. It also 
provides an adaptive control protocol rate that responds to 
fluctuations in network connectivity and energy expenditure. 
From a reliability viewpoint, it creates a routing tree using 
estimated numbers of transmissions and retransmission to the 
base station and link quality estimations based on numbers of 
successfully received packets. Our routing scheme performs 
well with a high success rate of packet delivery and moderate 
energy consumption. While the experiments conducted here 
have highlighted the substantial performance gains of the 
proposed solution, our ongoing work aims to further validate 
the performance of our routing scheme through the inclusion 
of other routing metrics in favor of trustworthy data delivery.  
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