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Abstract—Physiological monitoring can be useful in a number
of scenarios to evaluate or diagnose the status of individuals or
groups, for health or mental reasons. The devices used to collect
this data have become increasingly portable, but deriving useful
metrics from such data can often take significant processing
- a commodity not always available in mobile environments.
This paper presents and evaluates a system designed to easily
process physiological signals in mobile environments by utilis-
ing commonly-available smartphone hardware to collaboratively
transform collected data.

I. INTRODUCTION

Physiological monitoring is the practice of using sensors
to read, store, process and interpret physiological data from
organic beings, including biofeedback signals associated with
heart, brain, muscle and other organ activity. Physiological
monitoring can provide a plethora of useful health, fitness
and other related data in real-time. Useful measures such as
pulse, respiration rate and blood oxygen levels have been
successfully used to diagnose and aid in the treatment of
conditions such as sleep apnoea [1], as well as assisting in
the monitoring of cardiac systems [2].

Some physiological monitoring devices collect data in a
form that is inherently useful without any processing or anal-
ysis performed upon it, such as heart-rate or blood pressure
data. However, there are a number of data points that can
only be extracted through extensive processing. For example,
respiration rate can be obtained through complex processing
of a number of physiological signals. This kind of complex
processing on a number of data streams in real-time can
present problems to current physiological processing methods,
as mobile environments often lack processing resources.

Complex physiological monitoring in real-time can already
be performed using fixed processing resources such as servers
or cloud platforms. However, a number of environments exist
in which transmission to these resources is not viable. Poor or
non-existent broadband communications coverage in remote
areas effectively nullifies the use of remote processing to per-
form data transformations. In addition, traditional processing
resources (such as workstations or servers) are not portable
and require uninterrupted power supplies, which are generally
not available in remote or highly mobile environments.

In order to provide an suitable source of processing re-
sources for these environments, existing mobile devices (such
as smartphones or tablets) can be used to process desired data
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transformations. Unfortunately, while the processing ability of
mobile CPUs has increased dramatically over recent years,
power drain and battery capacity remain bottlenecks. In order
to extend the monitoring lifetime of these mobile devices,
any data analysis required can be processed in a collaborative
fashion to balance resource drain across contributing devices
- preventing any single device from taking too much of the
work and depleting itself. Mobile devices have the advantage
of not requiring an uninterrupted power source, allowing them
to be used as processors while running off battery power - and
be charged using a portable generator or solar cells.

A system designed to facilitate the distributed processing
of physiological data can be evaluated through a comparison
to existing methods of mobile processing - namely, a single
device handling all processing required. Successful scaling of
processing across multiple mobile devices would allow for
more complex processing to be performed upon physiological
data, allowing for new opportunities in medical monitoring
and evaluation in remote environments.

The remainder of this paper is structured as follows: Sec-
tion II provides a background of physiological monitoring and
justification for the work. Section III presents the design of
a system for performing processing of physiological data on
Android smartphones and PC hardware. Section IV evaluates
the effectiveness and viability of using the system to monitor
and process data in real-time. Finally, Section V concludes.

II. PHYSIOLOGICAL PROCESSING

Physiological monitoring generally consists of a few compo-
nents; a monitoring device used to collect data, a processing
resource used to transform data into useful information (if
necessary), and a transmission device used to communicate
the results to a centralised source for analysis by experts
(such as a doctor or medical technician). Currently, situations
that require complex data analysis on physiological signals
utilise the communications link to transmit data to fixed-
location processing resources, such as a server or Cloud
computing cluster. In remote and mobile environments, this
is often not an option as there are many places lacking in
communications, electrical and processing infrastructure. By
reducing the reliance of monitoring systems on external re-
sources, physiological monitoring can be extended into remote
communities that stand to benefit from increased medical
responsiveness.
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Initially, monitoring systems were largely confined to clinics
and hospitals due to size and low mobility, but advance-
ments in mobile monitoring systems [3]-[5] have provided
greater flexibility in usage environments. By utilising readily-
available sensor devices with low power requirements, long-
term monitoring can enhance the quality of care for active
patients, as well as providing numerous advances to research
associating physiological markers with mental states, such as
the measurement and analysis of stress levels [6].

As well as monitoring individuals, it is possible to use dis-
tributed physiological sensors to monitor groups. By analysing
and aggregating physiological data from the group, conclu-
sions can be drawn regarding the state of the entire group.
Group monitoring has a range of possible usage scenarios,
such as monitoring the life-signs of miners in underground
tunnels in order to hasten awareness of emergency situations
[7], or monitoring a population for symptoms of influenza
to locate outbreaks [8]. Applications for this technique can
also be found in monitoring psychophysiological status of
participants in training exercises [9], and determination of
traffic flow within city areas [10] for civic planning purposes.
This wide range of uses could be further extended if devices
were made more mobile and available, through the use of
commodity hardware for implementation purposes.

Relatively simple sensors, such as pedometers or heart rate
monitors, are available to monitor various high-level physi-
ological data points for use by consumers, often integrating
with exercise trackers or social networks. Because the data is
generally collected in its final desired form, little transforma-
tion is required. For many users, simple data collection and
transmission provides a satisfactory view of the desired result.

An example is illustrated in Figure 1, which represents a
typical use case for a casual consumer using basic physiolog-
ical monitoring devices. A Bluetooth-enabled heart rate mon-
itor is worn during exercise, which transmits pulse rate (HR)
data to the user’s smartphone or logs it for later collection.
This data is then transformed using a simple mathematical
algorithm into R-R interval, a representation of peak distance
between heartbeat waves. Both resulting variables can then be
uploaded to activity trackers or social media sites, allowing
users to compare exercise habits or encourage other activity.
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Fig. 1. Simple transformation from Heart Rate to R-R Interval

Other applications, particularly involving cardiac-related
monitoring [2] or psychophysiological analysis [6], require
more complex data transformations. A physiological transfor-
mation is the process of taking raw physiological measure-
ments and applying algorithms that can extract other useful

information, which is in turn used for activities such as disease
diagnosis and measuring physical and mental stress levels.

In addition to simple physiological measures such as pulse
and blood pressure, the human body can be monitored for
electrical signals produced by specific parts of the body. In a
healthy human heart, the sinoatrial node produces a bioelectric
pulse designed to contract heart muscles and produce the
standard human heart rate of 72 beats per minute. Electrical ac-
tivity like this can be measured using surface electrodes, with
position of electrode determining the object being monitored.
This technique of monitoring the heart through collection of
surface electrical activity is called electrocardiography [11],
and is one of a number of electrical signals used in biofeedback
and physiological monitoring.

There are many electrical signals that can be collected from
the human body for purposes of disease diagnosis and health
analysis. Electrocardiographs (ECGs) [11] are commonly used
to assess and diagnose cardiac problems, but can also be
analysed to produce other data such as pulse and respiratory
rate [12]. Photoplethysmographs [13] are a signal produced
most commonly by pulse oximeters, which measure blood
oxygen saturation and are used for cardiac-related analysis
and respiration detection [14].

Transforming signal data such as electrocardiography or
photoplethysmography into useful metrics can involve ad-
vanced signal processing algorithms [15], which can require
significant computing time to complete. Additionally, even
for routine transformations it can be a multi-step process. To
ensure result accuracy, data is often filtered and normalised
prior to signal processing, which further adds to computation
time.
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Fig. 2. Complex transformation chain for extracting several data points from
a PPG

Figure 2 illustrates the derivation of several useful points
of data from a photoplethysmograph (PPG), using a pulse
oximeter attached to a subject. Obtaining the heart rate (HR)
is a simple time-domain peak detection operation [16] and
blood oxygen saturation (SpO2) is a simple calibration func-
tion applied to the pulse oximeter’s output connections. By
comparison, determining respiratory rate from a PPG is a com-
putationally expensive process [14], requiring multiple wavelet
transforms [17]. These types of signal processing algorithms
take significant processing time to complete (depending on
size of dataset), making it impractical to provide real-time
results without dedicated computational resources.

While a simple transformation (such as Figure 1) could be
handled by even a small embedded processor, continuous or



concurrent complex transformations require significant compu-
tational resources to complete in a timely fashion. Depending
on scenario and environment, it is not always realistic to carry
static processing resources, particularly if part of a highly-
mobile group. To avoid the unwieldy scenario of transporting
powerful workstations to process collected data, a cluster of
heterogeneous mobile devices can instead be used to collab-
oratively process work. In the event that further resources are
needed, on-demand Cloud or on-site resources can be utilised,
at a price.

In order to alleviate the strain on external resources for this
method of analysis, the devices collecting and transmitting the
physiological data should be able to handle some or all of the
processing occurring. While mobile devices have previously
been used for similar purposes [18], it is noted that such de-
vices are often resource-limited: particularly considering low
battery capacities. For the system to cope with devices with
different levels of ability or power resources processing should
be distributed across all devices such that their weighted load
provides a more efficient use of group resources [19]. This
would allow the system to monitor groups for longer and with
greater responsiveness than otherwise possible, which is an
important consideration in situations involving health-critical
monitoring subjects such as cardiac rehabilitation patients.

Enhancing the mobility of physiological processing systems
could provide benefits in a wide range of areas. By tracking
physiological data of groups of soldiers, remote assistance
can be provided to assess casualties, as well as provide early
notification of potential medical emergencies. In addition, it
can be used for evaluation purposes - by establishing baseline
heart-rate variability markers for participants, stress levels
during training in mobile environments can be assessed [20].
This provides the potential for early discovery of stress-
related problems in soldiers, which can have significant effects,
both while participating in battle [21] and upon returning
home [22].

Similarly, miners could be equipped with monitoring de-
vices and small processing units could be built into existing
safety equipment. This would allow the system to include
other types of sensors looking for issues with air quality
or poisonous gasses, able to be entirely processed by the
mobile units. By collating data from these units, it would
be possible to locate areas with poor habitability and alert
workers to avoid certain areas. While mine workers are likely
to be able to carry larger battery reserves for processing than
individuals in other scenarios, efficient distribution of work
processing would allow for more accurate monitoring, as more
available processing could cater for lower intervals between
sensor readings.

Available communications are an important part of most
systems requiring significant amounts of processing resources,
as it allows the system to offload excess tasks to more capable
processing facilities, such as Cloud computing. Environments
which are naturally unsuitable to mobile broadband commu-
nications networks such as heavy forest, mountainous or hilly
terrain and areas suffering from heavy snowfall are difficult

to operate these kinds of systems in, as communications are
often disrupted or completely unavailable. Without the ability
to offload some or all of the processing to these external
resources via those mobile networks, the system may have to
severely reduce functionality in order to remain even slightly
useful - generally an undesirable scenario.

The issues highlighted in this section provide insight into
some of the areas of physiological monitoring and processing
that could be improved. Shifting to a more mobile paradigm
would abate or entirely solve some of the issues. Mobile
devices operate on portable power supplies, removing the
requirement for traditional processing resources to be con-
nected to fixed power supplies, and introducing the option of
recharging mobile batteries through use of a portable generator
or solar cells. The devices are also less heavily reliant on
the presence of reliable mobile broadband communications
networks, as they should be able to process all requisite phys-
iological transformations in a collaborative fashion, without
having to offload processing to fixed or Cloud computing
resources. The devices are also completely portable and can
be used while mobile, allowing the use of physiological mon-
itoring and processing in a wider range of situations. Finally,
mobile devices are almost ubiquitous, making implementation
accessible due to a lack of special hardware requirements.

III. MOBILE DISTRIBUTED PHYSIOLOGICAL PROCESSING
SYSTEM

To provide a platform for distributed physiological mon-
itoring and transformation processing, careful consideration
is required while designing an architecture to suit potential
usage environments, such as those described in Section II. In
order to ensure compatibility with existing devices and in-
teroperability with existing physiological monitoring systems,
standard interfaces are designed through which data access
and transformation requests may be made. Specific roles
within the system are defined, with responsibilities allocated
in such a way to provide a scalable architecture that is easily
configurable in mobile environments.

A. Architecture

The proposed system is a generic architecture for processing
real-time physiological transformations that is designed to
manage the packaging and distribution of processing to other
devices. Any available device can be utilised for processing,
including nearby smartphones, other mobile devices such as
tablet computers, workstations or laptops and Cloud Comput-
ing resources.

In order to effectively manage groups of sensor nodes,
a hybrid peer-to-peer network architecture is used to group
monitoring devices for data collection and processing. Posi-
tioned in the center of all monitored networks, a supervisor
is manually selected, based on a number of metrics such as
remaining power resources, processing ability and strength of
connection to both other nodes and upstream. The supervi-
sor maintains connections to managers, receives data from
monitoring devices and provides an interface for clients to



interact with. If stationary, high-powered devices are available
(such as wireless base-stations), these static supervisors can
more effectively replace the role of a manager in the system.
A simple topological example is presented in Figure 3. In
this example, the laptop takes the place of the supervisor
and manager, while the smartphones act as both monitors and
Processors.
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Fig. 3. Device topology in a mobile simple usage scenario

Individual processors perform tasks as directed by the
manager, which would often be their own processing. If power
or processing resources on other processors are depleted, the
manager would re-allocate work to other nodes with abundant
resources, and processing can continue unimpeded. If all
processors have depleted resources, processing is restricted to
collection and transmission - the manager would then send all
results upstream to Cloud computing resources for processing.
The benefits and disadvantages of processing at each of these
layers is modelled in Figure 4. Importantly, it is noted that
latency and difficulty of device access increases dramatically
as processing is shifted further away from individual nodes,
as fast and reliable network connections can be difficult to
procure in some usage scenarios.
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Fig. 4. Benefits and Disadvantages of Processing Layers

To allow the manager to balance load evenly across the
network, nodes are also required to report their current state
to the supervisor. This includes details such as current load,
remaining power resources, current processing details and
others. Because the stream registration system already exists
for data collection and transmission purposes between client
and server, the existing stream methods can be repurposed to
report device state alongside any sensor data.

The manager balances load and resources by monitoring
the state of clients, allowing it to distribute work to low-load
devices with plentiful resources. The supervisor also keeps
aggregate state details, such as an average power resource level
of the group. In turn, the supervisor provides the manager with
supplementary data, allowing it to decide if the network is
unable to cope with current workload for a sustained period
of time. In this event, the manager would trigger offloading of
workload to Cloud Computing resources (if accessible).

As mentioned previously, the proposed system categorises
resources into four roles; processors, monitors, managers and
supervisors. Any resource can be used in any of these roles,
though suggestions for optimal selection are noted below,
where each role is described in detail.

1) Supervisor: The supervisor is the overarching controller
of the entire system. Its primary role is as an interface to the
system for all external entities, including monitors, managers
and clients. The supervisor hosts the RESTful interface to the
system, as well as collating all data received from monitoring
nodes, passing transformation requests to the manager (along
with required data streams) and tracks node state for load
balancing purposes. As the supervisor has to deal with a sub-
stantial amount of incoming requests, it is recommended that
a device with good processing ability and network throughput
is utilised in this role.

2) Manager: The manager only directly interacts with
the supervisor and processing nodes, and acts as a load
balancer for all processing resources. It retrieves node state
from the supervisor and uses either utility functions or a
decision tree to determine where transformation tasks should
be sent for processing. For smaller networks, the manager
can share resources with the supervisor. However, due to the
considerable workload assigned to the manager, a dedicated
device is recommended for use in larger monitoring networks.

3) Monitor: A monitoring device has a single purpose; to
receive raw sensor data and package it in a form suitable
for transmission to the supervisor. The configuration of the
monitor should be flexible enough to enable it to interact
with any sensor that could be attached to the device. In
most networks, these will be low-powered devices. If the
device is required to poll multiple sensors for data with high
responsiveness, the multi-threaded nature of this task will
require substantially more powerful hardware.

4) Processor: Processing resources are the workhorse of
the network. The manager distributes transformations to the
processors to be completed in as little time as possible, but the
nature of the networks allows significant scaling. In portable
environments, even low-end smartphones can act as capable
processors. If heavy transformational work is required, dedi-
cated processing servers or even Cloud computing resources
can be utilised in this role.

Each role must be fulfilled in some manner for the network
to function properly, but in many instances a single device
will fill many roles. As an example, most processors will also
be monitors in order to report their state to the supervisor.
In smaller networks, the supervisor and manager may share



resources. However, when monitoring large sensor networks
each role can be filled by appropriate resources to ensure
optimal network reliability and responsive transformation pro-
cessing.

B. Interface

Connections to the physiological monitoring and processing
system will be made to servers through a RESTful [23]
web API using XML, allowing connections by any software
that implements the correct interface. Monitoring devices also
register users, streams and transmit data using this API,
which then serves data and transformation requests by external
clients. Using a RESTful interface provides an accessible
and compatible connection interface to physiological data and
transformations, supporting a broad range of applications and
existing sensor products. Presenting a standardised interface
to users assists in the integration of existing systems, as well
as the development of analysis suites. To ensure the interface
is as accessible as possible, the XML-based communications
can be utilised over HTTP and HTTPS connections.

While user and monitor data stream registration and au-
thentication is reasonably simple, some XML messages can
be relatively complex, particularly those concerning chained
physiological transformation requests. A chained” transfor-
mation is effectively a series of physiological analysis func-
tions performed on a set of data, such as that depicted in
Figure 2. Listing III-B depicts a sample XML message passed
via HTTP POST to the supervisor. The message defines a two-
stage transformation that processes one set of data based on
an existing stream, then passes the results along with another
stream to a second transformation.

<?xml version="1.0"?>
<Transformation>
<Transform>
<Name>ECG2IBI</Name>
<Input>
<StreamID>1</StreamID>
<Format>ECG</Format>
</Input>
<Output>
<Name>someIBI</Name>
<Report>True</Report>
</Output>
</Transform>
<Transform>
<Name>MergeData</Name>
<Input>
<StreamID>2</StreamID>
<Format>PPG</Format>
</Input>
<Input>
<Name>exampleIBI</Name>
<Format>IBI</Format>
</Input>
<Output>
<Name>SPC</Name>
<Report>True</Report>
</Output>
</Transform>
</Transformation>

Listing 1: Complex XML Transform Request

Upon submission of a correctly-created XML document
conforming to the above structure, the supervisor will sched-
ule work to be completed across any available processing
resources. Transformations may not necessarily be completed
on a single processor (as each part may be executed sepa-
rately), so the complexity of the transformation may determine
how long the data will take to return. The server conforms
to standard RESTful HTTP rules, correctly returning HTTP
status codes to signify success or failure.

C. Implementation

To ensure ease of use and cross-platform compatibility, the
system is developed as a series of applications, divided by role.
The resulting software should execute on any cloud platform
(such as Amazon EC2 [24] or Google App Engine [25]), PC-
compatible system or Android [26] smart-phone, allowing a
broad range of devices to be deployed to support the operation
of the system.

All roles in the system are implemented as a standalone
Python [27] scripts. The system takes advantage of the XML
message syntax specified previously to serve user requests
and stores monitoring data using a database engine. For
configurability and accuracy’s sake, the Mako [28] templating
engine is used to generate XML messages.

1) Supervisor: Data received from monitoring agents (as
well as the supervisor’s own internal metadata) can be
stored using any storage engine supported by SQLAlchemy
[29]. SQLAIchemy provides a layer of abstraction above the
database, and allows users to easily change the storage engine
to suit. While the default SQLite [30] file-based database
engine can provide for lightweight scenarios and small tests,
it can run into concurrency issues with higher volumes of
transactions. In this instance, it is beneficial to switch to a more
concurrent engine, such as PostgreSQL [31] or MySQL [32].

To provide a high-performance interface to clients, Cher-
ryPy [33] is used to serve user requests. This has the advantage
of providing a thread-pooled server, allowing more than one
user request to be processed concurrently - an important con-
sideration, with the potential amount of data being received.

2) Manager: The majority of the manager’s functionality
resides around communications with the supervisor and dis-
tribution of transformation processing to available processor
nodes. To distribute the transformation processing, Paral-
lelPython [34] has been utilised with modifications. Load
balancing and task distribution has been modified for the
purposes of evaluation, and to distinguish the difference in
availability of local vs Cloud Computing resources.

The manager is not a particularly resource-heavy applica-
tion; as such, it is possible to execute it on a device already
being used in another role. This is only recommended for use
in small-scale scenarios, and placing the manager on the same
device as the supervisor may result in impeded performance.

3) Monitor: The monitoring agent is written in Python,
with the primary aim of configurability and extensibility. The
default agent uses a simple configuration file to initialise
connections to servers, such as the supervisor, and to configure



outgoing data streams. As the configuration file is a Python
script itself, the monitor should be able to port data from any
monitoring device into a format appropriate for transmission
to the supervisor, including Bluetooth and serial connections,
assuming appropriate connectivity is available.

The monitor script itself is fully multi-threaded, providing
the ability to collect and transmit data from many sources at
once. This allows the monitor to transmit device state infor-
mation along with physiological data, providing the supervisor
with useful data on battery and load levels. Data collation
and transmission rate is configurable, and monitor collection
rate is configurable on a per-device basis. Monitoring devices
themselves can be used as low-power transmitters, or paired
with the processing script to become mobile transformation
processors - particularly useful in mobile scenarios.

4) Processor: The processor is a relatively simple script
used as part of the ParallelPython [34] distributed processing
library, written in Python. As such, it runs on similar platforms
to all other scripts. This is beneficial, as it means that any
device chosen to use for testing can be used as a processing
agent, and initialising Cloud Computing resources for process-
ing is as simple as executing a single script.

All system scripts have been tested and execute success-
fully on desktop PCs (using Python 2.6 and 2.7), all Cloud
computing resources (using both Unix-like operating systems
and Microsoft Windows) and several mobile devices running
the Android mobile operating system (using SL4A [35] with
Python 2.6). It is recommended that Android devices use the
SQLite engine, while any supervisor using a PC (such as a
laptop) can use any other supported database management
system.

IV. EVALUATION

In this section, the suitability of the system in particular
situations is evaluated, primarily using performance (or system
responsiveness) as a comparative metric. Latency is also
evaluated as an additional factor that can inhibit performance,
based on the architectural and physical location of processing
resources. Performance of the system is heavily related to the
processing power of the devices upon which it is implemented.
As such, we evaluate implementation performance across a
series of different architectures, including multiple mobile
devices, a mix of mobile/local and mobile/Cloud. Implementa-
tion responsiveness is a good indicator of the system’s ability
to perform transformations in a timely fashion, providing
insight into performance during real-world scenarios.

The equipment used in the evaluation is as follows; 3
devices running Android 4.0 (HTC One X, HTC Desire,
Acer Iconia A500), a workstation running Windows 8 (Intel
15-2500K) and an Amazon Linux EC2 Instance (High-CPU
Medium). This selection of devices allows us to evaluate each
level of resources as defined in Figure 4, from peer-level
(mobile devices) to local (workstation) and Cloud computing
(Amazon EC2).

To evaluate the effectiveness of the system in a typical usage
scenario, an appropriate amount of test data was generated

to support the execution of three data transformations in a
chain. This transformation chain consists of three steps. It
performs a Discrete Fourier Transform upon a randomly-
generated sample of data typical of Electrocardiogram output,
then takes resulting data and performs some basic arithmetic
upon the output of approximate complexity to transforming
R-R interval to heart rate. It then combines results from the
previous two transformations to evaluate the processing and
transmission of sizable data sets. Finally, the results of the
first and third transform are returned to the Supervisor (and
from there, to the Client).

A. Responsiveness

For the system to be considered useful in a wide range
of potential usage environments, it must respond to user
requests as quickly as possible, a term referred to as respon-
siveness. System responsiveness can be a key consideration
when attempting to retrieve data related to health, as lack
of responsiveness can have disastrous effects. Additionally,
responsiveness provides a useful metric to compare transfor-
mation processing capability of a single device (as traditionally
used) as opposed to a cluster of devices, such as this paper
proposes.

This test compares the performance of the physiological
monitoring and processing system on a single device (HTC
Desire) compared to multiple (Desire, One X), as well as util-
ising locally-available resources (Workstation), which would
not typically be available in mobile environments.
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Fig. 5. Responsiveness, ordered by request time

As expected, the system in single-device mode (as would
traditionally be used in a mobile environment) performs
poorly. The rapid increase in request time is indicative of the
device being unable to cope with the workload being allocated
to it.

Using a second mobile device as an additional Processor
proved more successful than anticipated - even outperforming
the local resources available. This reduced the inevitable
reduction in system responsiveness to a minimum, decreasing
at a much lower rate compared to both the single-device and
local resources setups. The two-device setup almost halved
request time in comparison to the single-device, providing
impressive levels of scalability.



Using three devices for processing still resulted in perfor-
mance gains over two devices, though to a lesser degree.
Figure 5 shows the response time of requests ordered by the
time of request, showing us the performance of the system over
the period of execution. The third device generally improves
performance, but the low intensity level of transformations
ensures that the overhead of managing three devices starts to
detract from the gains of having more available processing
power. In the event that transformations were of higher in-
tensity, the benefit of having additional processing devices is
likely to be more clear.

B. Latency

Latency between monitoring devices and processing re-
sources can have a large impact on the usefulness of data
processed by the system. If real-time feedback is required
(particularly in the event of health monitoring), the asso-
ciated decrease in responsiveness due to physical distance
to processing resources can be problematic. To evaluate the
responsiveness of the system over multiple layers of resources,
as described in Figure 4, transformations are requested from a
mobile device. This mobile device, acting as both Supervisor
and Manager, utilises itself as a Processor as well as available
resources at individual layers. Latency from the Supervising
mobile device to the Peer was relatively small ( 10ms),
highly variable to the Workstation ( 30-90ms), and typical of
international transit to the Amazon Cloud computing resources
( 200-260ms).
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Figure 6 illustrates the total request time by each pro-
cessing layer. The easily-accessible Peer layer provides the
most responsive processing, with Local and Cloud computing
resources taking significantly longer to respond to Client
transformation requests. However, this is likely due to the
low complexity of transformations being performed on the
data - more complex transforms would encourage the higher
processing capability of Local and Cloud resources to be more
significant.

Figure 7 demonstrates the difference made if transforma-
tions are of higher intensity, with the benefits of low-latency
connections displaced by the time taken to process each
transformation. However, all available processing options are
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still preferable to solo-processing with a mobile device. Local
resources become the most attractive option in this experiment
when using high-intensity transformations, though allocat-
ing significantly higher levels of Cloud computing resources
would alter this outcome.

This evaluation suggests that mobile devices collaboratively
processing physiological transformations can, in most circum-
stances, provide an adequate level of system responsiveness.
It outperforms local and Cloud computing resources in situa-
tions where latency to these resources is high, connectivity
is unstable or transformations are reasonably low-intensity.
The more powerful resources are recommended for use in
situations where connectivity is stable or transformations are
high-intensity, and using these resources has the additional
benefit of reducing power consumption by the monitoring
devices. However, particularly low-intensity transformations
may consume less power to process on mobile devices than to
transmit over communications with high power consumption,
such as 3G/4G (commonly used mobile data networks).

V. CONCLUSION

Physiological monitoring provides significant benefits in
the areas of disease diagnosis, rehabilitation evaluation and
assessing subjects for stress, amongst other uses. Existing
physiological monitoring techniques generally monitor and
store physiological data for later submission to centralised
processing servers that can perform physiological analysis and
transformations upon the collected data.

To enable real-time monitoring of physiological measures,
devices rely either on the presence of fixed processing re-
sources or a reliable communications network that it can use
to relay data to processing servers for transformation. Several
environments exist in which physiological monitoring would
be beneficial for health or evaluation reasons, but are unsuit-
able for existing monitoring techniques. These environments
tend to be mobile environments, where fixed power supplies
(and therefore fixed processing resources) are unavailable, or
where communications networks have little penetration, such
as highly remote or heavily forested areas.

In order to reduce reliance on these two environmental vari-
ables and improve physiological monitoring by expanding the



range of potential usage environments, a shift to a more mobile
paradigm is recommended. By encouraging the use of existing
mobile devices as a collaborative processing framework to
perform physiological data transformations, both problems
are alleviated. Smartphones contain their own portable power
supplies, that can be recharged periodically using a generator
or photovoltaic cells. The devices are also extremely portable,
having been specifically designed for use while mobile.

This paper presented an evaluation of the viability of
using mobile devices to collaboratively process physiological
transformations, which determined that such a technique is
scalable and viable for use in real-world situations. In several
environments, distributed mobile processing actually offers
greater benefits than using traditional methods or Cloud
Computing, as latency to local mobile devices is significantly
lower than external resources.
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