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Oxford OX1 3SY 
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Fax:  
E-mail:    

+44 (0) 1865-281535 
+44 (0) 1865-281535 
noel.mccarthy@zoo.ox.ac.uk 

 

"Population genetic approaches to assigning the source of human pathogens: host 
associated genetic import in Campylobacter jejuni." MS # EID-06-0620 
 
Dear Dr. Drotman, 
 
Many thanks for considering this manuscript for publication in Emerging Infectious Diseases. 
The reviewers have read the manuscript very carefully and provided many constructive 
comments. We have focussed in particular on simplifying the text and making it clearer to an 
audience of microbiologists and epidemiologists. We chose EID specifically to reach this 
audience and are grateful for help in making the manuscript more appealing to these target 
groups. The revised manuscript is significantly shorter than our first submission and has an 
improved narrative flow. 
 
The reviewers and editorial boards comments are considered in turn in the order raised. 
 
Reviewer 1 
 
1. the title is too general and suggests microbiological proof of the import of genetic material.  
Should be reformulated in a way that it is more covering the contents of the paper. 
As the reviewer notes we don’t have microbiological proof of the import of genetic 
material, but do present population genetic proof that it occurs in natural populations of 
this species. This is central to one aspect of the paper, which reviewer 2 identifies as “a very 
interesting subtheme that I think should be emphasized more.” We are therefore keen to 
keep this second part of the title, “host associated genetic import in Campylobacter jejuni”, 
as it is. For the first part of the title “Population genetic approaches to assigning the source 
of human pathogens”, this could be made more specific by replacing the “Human 
pathogens” with either “freely recombining human pathogens” or with just 
“Campylobacter jejuni”. We prefer to keep it more general than C. jejuni since the 
approach is of more broad relevance and this is worth highlighting. The second part of the 
title makes explicit that the example used is C. jejuni. If it was preferable in your 
judgement, we would be happy to add the words “freely recombining”to the title.  
 
2. Abstract: the last sentence claims a wide-use of this approach. However, like the comparison 
between Salmonella and Campylobacter is totally different (as indicated by the authors), the 
general use of this approach is too ambitious. 
We wanted to emphasize that it has wider application than in C.jejuni alone but agree that 
the description as a general approach may suggest universal applicability. We now specify 
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that the approach is applicable only “to pathogens that undergo frequent genetic 
recombination”. 
 
3. page 4, line 22: the comparison with Salmonella is made. Please compare the results of this 
Campylobacter study and the validity of the attribution with the Salmonella studies (compare 
predicted assigned accuracy) (in the discussion). 
We are now quite explicit in the introduction about why methods that work for Salmonella 
do not work well for Campylobacter. This comparison should make the point of the paper 
significantly more accessible to bacterial epidemiologists. We do not try to compare results 
quantitatively in the discussion since this 1) is dependent on the availability of similar 
reference populations and 2) is not well known even for Salmonella where very good work 
has been done but accuracy has not been tested in an absolutely empirical fashion, let alone 
for C. jejuni. 
 
4. page 6-7: the use of the training set should be described more clearly. 
We have made several changes. Firstly we introduce the general approach at the end of the 
introduction. Secondly we have removed the (distracting) general description of what 
STRUCTURE software can do and only describe the approach that was employed here. 
Thirdly we have described training sets in a more concrete fashion. (second half of the first 
paragraph of “Population Assignment” under methods). 
 
5. page 8; line 26: what is the ''assignment accuracy'' in relation to the 67%?  
6. page 8, line 30: this means that 37% of the 67% gap is closed? 
We now make it clear that the results presented below this point refer to “the proportion of 
the gap” between perfect prediction and the value expected by random guessing. 
 
7. page 8, lines 52 and 54: I cannot relate these 58% and 16% to the data in Table 4. Please make 
clear to the reader! 
8. pages 8-9, lines 56 resp 1-2: the, for the paper, essential prediction of 80% correct, does not 
follow clearly from the description you have given. 
Table 4 shows results of analyses that assign individuals to one of three possible host 
sources (sheep, cow, chicken). These results relate to analyses involving assignment to one 
of two possible sources (either ruminant versus chicken or sheep versus cow) to further 
explore the results shown in Table 4 . The text has been reworked to make this distinction 
absolutely clear.  
 
9. page 11, line 10: ...despite the lack of identifiable host specific markers... You may speculate 
that there are markers as there is ''something chicken'' in the poultry strains. Can the step be 
made from the MLST-data to the specific marker? Or do you expect that it is only the circulation 
of the genetic pool in the host without any biological relevance? (if your reply is that I missed 
the message of the paper, it may be because the way it is 
written is a bit confusing...) 
We have removed the phrase “despite the lack of identifiable host specific markers”, which 
did not make anything clearer. We have also substantially reworked our description of host 
differences to make clear that there is a strong neutral component to the differences, as 
shown by the involvement of 6 out of 7 loci in the exchange, but also that selective 
differences are possible, particularly in parts of the genome that we have not surveyed. We 
have substantially reworked this section, as described more fully in the reply to the 
comments of reviewer 2. 
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10. page 11, line 29-30: analysing more strains may not solve this problem when the strains are 
rapidly exchanged between the ruminant species! 
We agree with the reviewer that analyzing more strains (or indeed more genes per isolate) 
may not allow differentiation between cattle and sheep derived isolates. This possibility was 
presented in the preceding sentence. The order of these sentences is now reversed to ensure 
that the possible lack of differentiation between these two host species stands out more 
clearly. 
 
11. page 12, line 57: will this estimation of the burden of human illness based upon the MLST 
data more reliable than the estimation of the BoI based upon (for example) case control studies? 
This approach to estimating burden of disease is complementary to other approaches such 
as case-control studies. How accurate it will be is dependent on how good the reference 
populations representing different sources become. At present there are large and 
increasing food animal isolate collections although isolates from a range of environmental 
sources are limited. Our hope is that 1) the increasingly widespread application of this 
inherently standardized approach will ensure sampling of the full range of source 
populations and 2) further refinement of analysis will increase accuracy. In this setting the 
approach can add a lot to what is known by case-control methods and can indeed 
contribute to case control and other approaches (e.g. case-case) by allowing identification 
of meaningful subgroups of isolates which likely have different origins. Making this 
comparison seems premature in the current manuscript.  
 
12. page 12-13, lines 57, resp 3: when there is exchange of strains what disturbs the host 
association, will the differences between chicken and ruminants the most obvious one as there 
may be much more exchange of strains between strains that live in a more open environment 
(ruminants and wild birds)? Please speculate about that. 
Chicken and ruminant isolates are far more similar to each other than to those from other 
sources on currently available databases. In particular, we are involved with work led by 
collaborators which shows very little overlap between isolates from wild birds on an open 
free-range farm and those from either chickens or cattle on that farm. Since this work is 
unpublished, we prefer to avoid making explicit statements on this topic in the paper. 
 
13. conclusion of the paper: I am not convinced that this a kind of generic approach (or the 
approach may be generic but the chance that the outcome is usefull strongly depends on the 
biology of the microbe). At least this restriction should be made!! 
We fully accept that the generalisability is to organisms sharing similar genetic properties 
and now make this explicit in the conclusion. 
 
14. Figure 1: the downloaded version does not have colours. 
We have changed the figure to greyscale to avoid inadequate contrast when printed in 
black and white. 
 
Reviewer  2 
Since the method depends upon population statistics, it is not likely to be useful for single 
outbreaks of a particular strain, but should be useful to find the source of continued low level 
food borne infections, if most of the infections are caused by practices in a single industry, i.e. 
chicken farms. 
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The method can be in some cases used to assign single “unknown” isolates. As examples of 
this, among the fully sequenced C. jejuni genomes 2 are from known sources, one being 
isolated from poultry (isolate RM-1221) and the other from a human involved in a cow’s 
milk outbreak (isolate 81-176). Assigning these based on the reference datasets we used in 
the paper predicted their origin as chicken (99% probability) and cattle/sheep (97% 
probability) respectively. We have now clarified that this is a potential use in the paper, but 
also indicating the limitations, and that in some cases uncertainty will persist.  
 
However, it also has a very interesting subtheme that I think should be emphasized more. 
Particular clonal groups and particular MLSTs do not give good discrinination, but particular 
alleles do. This suggests that there are particular alleles favored when the bacteria grow in 
particular species. Thus there are host specific alleles. Since the MLST was done on only seven 
gene pieces, this proposal is very surprizing. Homologous recombination is providing the signal.  
What the signal is depends upon the piece size being recombined in.   
In the manuscript, there is the suggestion that the piece size is a few hundred bases from a study 
of piece size for peices coming from other species. 
This recombination fragments size estimate comes from a publication that uses a standard 
population-genetic approach within the C. jejuni species. A similar estimate using different 
methods and study populations, again within species C. jejuni (not published in a peer 
reviewed journal), further supports the relatively short recombination fragment size. This, 
along with 6 of the 7 MLST genes in our sample having alleles predictive of host, is strong 
evidence that the signal is not due to adjacent genes in linkage disequilibrium with one or 
more of the MLST loci. 
 
If this is so, then the MLST genes that are critical for discrimination (The genes giving 

discrimination were never named or discussed and I would like to see this included in the paper) 
are the host specific genes.  However, I would expect the observed piece size for 
homologous recombination to possible be much larger for within species homologous transfer, 
particularly for host specific genes which are advantageous in the current environment.  This 
question should be discussed in more detail.   
We have substantially reworked our discussion of these issues to make our findings more 
explicit and the logical flow clearer. In particular, we now state (1) that the genes chosen 
for MLST encode for core metabolic function and are unlikely to be selected for host 
specific import. (2) Neutral processes are on their own capable of generating such patterns. 
(3) Consistent with a neutral process, 6 of the 7 MLST fragments were involved in the host-
specific import into ST21 complex. For these reasons we don’t include separate discussion 
for each gene in the paper.  
 

Also, I do not see how they arrived at the figure of 86 loci that will have host specific properties, 
particularly whan they do not know piece size. 
This estimate is based on extrapolating this apparently approximately homogeneous 
recombination process to the entire genome. Since we estimate the number of genes 
involved, rather than the number of events, it does not matter that we do not know the 
average size of the fragment, although our estimate may be conservative insofar as we have 
not detected all the events affecting the gene. The calculation was based on the 185 non 
ST21 members of the ST21 complex excluding the ST300 isolates (with conflicting alleles). 
These isolates had 67 informative alleles (excluding the 4 giving completely erroneous 
predictions). This indicates an average of 0.36 informative alleles per isolate among the 7 
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studied loci, i.e.  5.2% of all genes. This was then extrapolated to the full genome by 
multiplying by 1654, an estimate of the total number of genes. What should and should not 
be excluded in this calculation and whether it should be based on ST or isolate is somewhat 
arbitrary. Different approaches to these exclusions etc give estimates ranging from 69 to 
115 genes, with the main message not being a precise number but just that it suggests that 
there is a lot of host associated import. In this resubmission we have changed this estimate 
to be based on ST rather than alleles for consistency with Figure 1 results (and the 
arguments for using the ST approach there) and made it conservative (and easier to 
explain) by including only alleles predictive of a host where that prediction was correct. We 
have described the calculation explicitly in the text.   
 
Particular comments: 
Abstract: the statement "That this is in part because bacteria import those alleles present in other 
Campylobacter in the same host by homologous recombination" should be given more 
explination in the abstract.  I assume this statement does not mean that alleles being picked up 
are selectively neutral because there would be no reason for these to present particularly in a 
particular host--particularly for a species like C. jejuni that shows high variability and high rates 
of homologous transfer.  If particular clones are preferentially found in particular species of 
animals as would be required if the transferred loci are selectively neutral, then why why were 
STypes and clonal complexes  such poor predictors of host source? 
The abstract has been substantially reworked. We give a more full explanation of the 
processes that give rise to the host specific recombination that we have identified. We have 
not included explanation of why ST and clonal complex are poor predictors of host source 
in the abstract due to limits of space but have described the main problems (discrimination 
for ST and loss of the information provided by recombination when considering clonal 
complex) clearly in the discussion. The reason that the signal is there even in selectively 
neutral loci is the combination of very frequent recombination and a marked dominance of 
within host species transmission compared to between host species transmission which is 
now made explicit in the abstract. 
 
The discussion at the end of page ten does not seem to correspond to Fig1B. Type 300 is two 
alleles away, mixed source, why is it predicted to be blue? But the text suggests all two step 
groups are correctly assigned? In mixed groups are the numbers from the different hosts different 
such that your ideas are supported?  i.e. most 300 type are from ruminates? How does one treat 
these large groups like 369 and 642 which are from mixed sources and the allele is blue? This 
figure is important but needs to be more carefully explained and perhaps redrawn giving relative 
number in size of box.  Maybe all the impressive data is from groups with a small number of 
isolates and if all groups had a large enough set of isolates, isolates would come from both 
sources. 
The reviewer raises the interesting question of whether the results from Figure 1B would 
be very different if isolates were the unit of analysis rather than ST. We had started with 
isolates in the analysis for Fig. 1A but decided that this analysis could produce a false 
positive result if local expansions of a particular ST in one species contributed a significant 
proportion of the overall signal. Our results are robust to this possible confounding factor 
and therefore are preferable. In fact the results were almost identical and highly significant 
for either approach. We persisted with the ST approach for the Fig 1B on the same basis 
and to be consistent. Again however, considering isolates rather than ST does not alter the 
conclusion. Specifically, for the STs where the result was wrong (an allele predicted one 
species and the isolates came from another) only 1 isolate was involved for each of STs 8, 
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268, 369 and 615. Where an allele predicted one source and we observed that ST in more 
than 1 source then 1 isolate was predicted correctly and 1 incorrectly for ST 43 and 31 
predicted correctly and 3 incorrectly for ST262. For ST 300 where we had conflicting 
alleles (1 predicting bovid and one predicting chicken origin) there were 2 bovid isolates 
and 1 chicken.  
 
In describing these results in the text we have now included type 300, the lack of which 
seemed to cause confusion. It is the only type for which we had alleles that conflicted in 
their prediction of source. It was not referred to in the text before which referred to the 4 
two types (519, 748, 302 and 722) where there were two alleles predicting the same source – 
in which case all isolates from these types came from the predicted source as stated. We 
have also amended the legend of Figure 1B to emphasize prediction first and origin of 
predicted ST second to communicate the idea of this figure more clearly. 
 
Legend of table 3--"from" not "form" 
Page 11, line 55-- remove "of" 
Done. 
 

EID Editorial Board Comments to the Authors: 
Carefully consider all the review comments.  We at EID consider reader-friendliness an 
important factor in our final acceptance decisions. Our reviewers find that the current version of 
this paper is difficult to interpret for clinical microbiologists and epidemiologists. This 
shortcoming in particular needs to be addressed to make the paper useful to the broad EID 
audience. 
In addition to the clarification resulting from the constructive comments of the reviewers 
we have improved the clarity for a mixed audience by 
1. Stripping out non-essential material (such as alternative population genetic approaches 
not actually applied here and some description of issues in past work that were prominent 
in the introduction) 
2. Dealing with the epidemiological and biological parts of the discussion separately before 
combining them in the conclusion. 
3. Minimising specifically population genetic terminology where alternatives are available.  
 Parts of the discussion remain which are technical, considering statistical limitations of the 
method as applied. We think that these are necessary to include and have tried to keep 
them discrete – but would be happy to make them an appendix if this is felt to improve 
readability. 
 
Many thanks for your further consideration of this work. 
 
Sincerely, 

Noel McCarthy MPH MSc (Medical Statistics) MRCPI  MFPH   
Wellcome Trust Clinical Training Fellow 
Honorary Consultant Epidemiologist, Health Protection Agency 
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KEYWORDS 

Bacterial typing techniques; Epidemiology; Population genetics; Population dynamics; 

Zoonoses; Campylobacter jejuni; Public Health; Disease reservoirs; Ecology; Communicable 

disease control

SUMMARY OF CONCLUSION

Campylobacter jejuni genomes carry a host signature allowing attribution of isolates to animal 

sources and offering insights into the biology of multi-host microbial species.
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Abstract
Many human infections are zoonotic with a broad host range being particularly typical of 

emerging diseases. Establishing the sources of human infection supports effective disease 

control measures. Host association of the foodborne zoonosis Campylobacter jejuni was 

evaluated by analysis of multilocus sequence typing data for 713 isolates from poultry and 

bovids (cattle and sheep). The commonly used summary measures of genotype : sequence type 

and clonal complex, performed poorly, while a method using the full allelic profile achieved 

80% accuracy in distinguishing isolates from these two host groups. We explored the 

biological basis for the better performance of allelic profiles. We show that strains isolated 

from particular hosts have imported a substantial number of alleles while circulating in that 

host species. These results imply that (1) although Campylobacter do jump frequently between 

host, the bulk of transmission is within species and (2) lineages can acquire a host signature 

and potentially adapt to the host through recombination. Assignment using this signature 

allows improved prediction of source in pathogens that undergo frequent genetic 

recombination such as Campylobacter.
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Many human pathogens inhabit several animal host and environmental reservoirs, with 

a broad host range being particularly characteristic of emerging diseases (1). Identification of 

the relative contributions of pathogen sources and transmission routes is necessary to underpin 

evidence based disease control programmes (2). One approach to address it, microbial source 

tracking, is the application of microbial typing to isolates from human cases and possible 

sources in the food chain to allow attribution of disease to food sources at individual case and 

population levels (3 ,4). Evidence-based control programs based on this information have 

worked well with Salmonella at a population level in Denmark (4). 

Source tracking depends on accurate estimation of the frequency of different subtypes 

in each host reservoir. In Salmonella, particular serotypes and phage subtypes are stably found 

in the same host (3). The biology underlying this success is firstly that specific clones are well 

adapted to specific hosts and secondly that the serophage type is a stable and reliable indicator 

of a specific clone. For other organisms it can be much harder to find reliable host associated 

markers. One example, Campylobacter jejuni, is the main cause of bacterial gastroenteritis in 

the western world and the most common bacterial zoonosis. Phenotyping has not worked well. 

Genetic methods of discrimination show enormous diversity within the species, with studies 

typically reporting about half as many genotypes as there are strains in the study (5-12). Many 

common genotypes are broadly distributed, while for rare genotypes it is not possible to 

estimate the relative frequency of genotypes in different host reservoirs accurately. These 

difficulties have meant that although host associations have been identified for particular 

genotypes, no generally useable approach has been developed.

Here, we develop an approach using multilocus sequence typing (MLST) data to 

identifying the reservoir of origin of a strain. We develop and test the approach using isolates 

from known sources, namely cattle, sheep and poultry, allowing us to compare our prediction 
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with the true origin of each strain. The resulting method can provide reasonable accuracy even 

for rare or unique genotypes and for clones that are broadly distributed. This success is based 

on exploiting the frequent recombination in Campylobacter, which has served to limit the 

accuracy of approaches based on the Salmonella paradigm. 
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Methods

Data

MLST of C. jejuni is based on sequencing 7 loci of length 402-507 base pairs separated 

from each other by at least 15,000 base pairs in the type strain (10). We used MLST data in 

three different forms. Firstly, the Sequence Type (ST). Each ST is a unique combination of 7 

alleles. STs index the full discrimination available within MLST. Secondly, clonal complex, 

which are groups of closely related STs, e.g. differing at no more than 2 of the 7 alleles. Clonal 

complexes are thought to represent a group of strains that have a single recent clonal origin, but 

for which genetic identity has been broken down by mutation and recombination (10 ,13 ,14). 

Lastly we used the 7 allele fragments assuming that they each provided independent 

information. 

We included all C. jejuni isolates from cattle, sheep and chickens on the pubmlst 

database (www.pubmlst.org) with date-stamp before 1 August 2004 and which had been 

published in peer reviewed literature or for which permission was obtained from those who had 

submitted the data. All but 10 of the isolates on pubmlst were available for inclusion by these 

criteria. Additional typed isolates made available by researchers during the contact process to 

seek permission to include unpublished isolates from the pubmlst database (n=27) were also 

included. It has been shown that C. jejuni recombines with C. coli (15). Those isolates with at 

least 4/7 alleles typical of C. jejuni are included. In total 713 isolates were available by these 

criteria. Isolates were from animal feces, live animals and dead animal tissue. The distribution 

of the data by host type and by year and country of isolation is summarised in Tables 1 and 2. 
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Population assignment
Differences in genotype frequency between populations allow probabilistic assignment 

of isolates to populations, even if there is some sharing of genotypes between those 

populations. We used STRUCTURE, a model-based clustering method designed to infer 

population structure and assign individuals to populations using multilocus genotype data (16). 

The source of the isolates to be assigned was predicted based on a training set that consisted of 

other relevant isolates. In order to do this, we used the USEPOPINFO option, which allows the 

population of origin to be known for some strains (in this case the training set) while for other 

strains (the isolates to be assigned) it is assumed unknown.

STRUCTURE estimates the genotype frequencies in each host species based on all of 

the isolates, as well as estimating the population of origin of isolates of unknown origin, taking 

into account uncertainty due to sample size. To allow maximum use of the data, some analyses 

employed a leave-one-out strategy in which a single isolate was assigned using the remaining 

strains as the training dataset, with the procedure being repeated in turn for each isolate.

The parameters we used for all STRUCTURE simulations were a no admixture model 

with lambda = 1, and gene frequencies uncorrelated between populations. We ran 1000 burn-in 

cycles and 10000 further repetitions for each analysis. Empirical assignment accuracy was 

measured as the average probability pk* with which each isolate was assigned to the correct 

host source k*. Predicted assignment accuracy (Discussion) is estimated as the average of 

∑
= Kk

kp
..1

2 , where each individual is assigned to one of K different sources. 

The permutation test (Figure 1A) was performed by randomly permuting the actual host 

species amongst the predictions obtained from STRUCTURE repeated 10,000 times.
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Results
There were 330 MLST genotypes among 713 isolates. Two isolates (ST-284 and ST-

327) had 4 alleles typical of C. jejuni and 3 typical of C. coli. All others had 5 or more typical 

C. jejuni alleles. Table 3 shows assignment accuracy when using the whole dataset and a leave-

one-out strategy to assign strains to three host species; cow, sheep and chicken based on the 

seven alleles, the clonal complex, the ST and combinations thereof. Since random guessing 

would be correct one third of the time, comparison of how much improvement genotype 

information made above random assignment is more informative than the percentage correct, 

i.e. what proportion of the gap between 33% correct expected using random assignment and 

100% correct with perfect prediction has been closed. Assignment using the 7 alleles closed 

37% of this gap compared to 10% for sequence type and 13% for clonal complex. Prediction 

did not improve substantially when ST or clonal complex information was added to allele 

information. These overall results emphasize the limits to using a sequence type or clonal 

complex as a summary of multilocus sequencing typing when predicting host of origin. We 

therefore used alleles in all further analysis as well as exploring the basis for the better 

performance of this approach.

Prediction of host of origin to three host sources based on alleles is shown in more 

detail in Table 4. The method performed much better in distinguishing strains from chicken 

and those from cow or sheep than in distinguishing between strains from the two bovid species. 

When we performed further analysis restricted to cattle and sheep isolates we achieved an 

assignment accuracy of 58% between these two species compared to 50% expected by chance, 

and thus explained only 16% of remaining uncertainty showing little detectable host 

association between these two closely related host species. Further comparison of chicken 

isolates with a combined population from cattle and sheep gave improved resolution and 
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allowed correct prediction 80% of the time (60% of uncertainty removed) indicating 

substantial host association. 

Given the nature of the dataset, we must consider possible confounding factors such as 

differences in time or location of sampling, which may lead either to completely spurious 

associations or to overestimates of their magnitude. Indeed, there was evidence for modest time 

and geographical effects within our dataset. For example, in a comparison of UK chicken 

isolates from 1997 or earlier and 1998 or later (Table 5) 66% were could be assigned to the 

population of the correct period based on allelic profile. Similarly, considering UK and Dutch 

chicken isolates, 69% were assigned to the correct country. We therefore performed additional 

analyses where host was negatively associated with time and/or space (Table 5). Late UK 

chicken isolates (1998-2003) were assigned using early UK chicken (1997 or earlier) and late 

UK bovid isolates (1998-2003) as training sets, giving 77% assignment to chicken. UK 

chicken isolates were assigned using non-UK chicken and UK bovid isolates as training sets, 

giving 64% assignment to chicken. These analyses showed that host effect is stronger than that 

of time or space and that our results are not simply the result of confounding due to these 

factors.

In order to explore the mechanism underlying the better performance observed for 

allele based assignment and to better understand the biological processes producing this host 

signature in the bacterial genome we investigated assignment within ST-21 complex. This 

clonal complex comprises a substantial proportion of isolates and is highly diverse (5 ,10 ,17 

,18). There were 252 ST-21 complex isolates in our sample. Of these 188 were not ST-21 but 

differed at between 1 and 3 alleles from the central genotype. We assigned these 188 isolates to 

chicken or bovid host based only on the alleles at which they differed from ST-21, using all 

non ST-21 complex isolates as the training set. 66% of isolates were assigned to the correct 
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host. This analysis suggests that ST-21 complex isolates are picking up alleles that are 

characteristic of the host population. In order to demonstrate that this deviation from 50% is 

not a sampling artefact or chance effect, we restricted analysis to the 88 unique ST-host 

combinations, which largely eliminates the possible effects of clonal expansion within host, 

and performed a permutation test to assess the possible role of chance. 67% of these 

combinations were correctly assigned, which was a higher proportion than observed in any of 

10,000 iterations in a permutation test (Figure 1A). 

The overall accuracy of host assignment based on imported alleles is hampered by the 

fact that many of these alleles are individually too rare for their frequency in particular host 

gene pools to be estimated accurately. Imported alleles that are frequently observed give more 

accurate host prediction. To illustrate this visually (Figure 1B) we use as predictors only those 

alleles that are both found in at least 10 different ST-host combinations in the non ST-21 

complex isolates and are also substantially differentiated between the chicken and bovid 

populations (based on a 65% cut off). All 4 isolates having 2 alleles both of which are 

suggestive of either chicken or bovid origin are indeed from the predicted source. In one case 

two potentially informative alleles gave conflicting information, one suggesting bovid origin 

and one chicken. Isolates with this ST came from both sources. Of the 24 STs with only 1 

informative allele available, 18 are correctly assigned and only 4 incorrectly with 2 STs 

isolated from both chicken and bovid sources.
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Discussion

These analyses confirm the association of C. jejuni genotypes with host species, 

demonstrating a clear distinction between isolates obtained from chickens and those obtained 

from bovids, when alleles are considered independently in statistical analysis. This finding was 

robust to sampling differences in time and place, suggesting that host effects were stronger 

than geographic and temporal effects, an important consideration if these associations are to be 

employed in epidemiological investigations. Moreover, populations of C. jejuni in farm 

animals such as bovids and chickens may be rather similar compared to those from other hosts 

(5 ,9) so that the approach may be even more accurate when considering C. jejuni from a more 

diverse host range. The distinction between cow and sheep isolates is much weaker. 

Differentiation between these species might be demonstrable if substantially greater genetic 

information were available. However the minor differences observed may be a sampling 

artifact with these species sharing a common gene pool. 

The allele based method that we have used goes a long way towards solving the 

problem of excess discrimination in Campylobacter typing. Many alleles show differences in 

frequency between hosts. These alleles provide useful information on source for STs that are 

too rare to allow estimates of their frequency in different hosts, for example because they are 

entirely absent from training sets. 

There are some limitations to the implementation of our approach as presented in this 

paper, which must be considered in any more extensive application. The current estimate of 

80% accuracy in distinguishing chicken isolates from bovid ones may be somewhat over 

optimistic if sampling effects are important. Sampling effects would include the nature of the 

sample (feces, meat etc.) as well as time and place. For example, the dominant Campylobacter

types found on processed carcasses have been shown to differ from those found on the live 
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poultry entering the processing plant (19). Nonetheless, we have shown that the easily 

identifiable sampling effects are overwhelmed by the host effect. Moreover, the analysis within 

ST-21 complex (Figure 1) is robust to both identified and unidentifiable sampling effects and 

we do not therefore believe that this is a major problem.

A further limitation of our allele-based application of STRUCTURE is that it assumes 

allelic independence, which is clearly violated for the dataset analyzed. There are two different 

ways of estimating assignment accuracy. The first, which we have used throughout this paper, 

is a holdout procedure, whereby source of origin of strains for which the actual origin is known 

is predicted using the rest of the sample as a training set, providing an unbiased empirical 

measure of accuracy. For purposes of prediction of isolates where the source is unknown, this 

procedure is not possible so it would be desirable to use estimates of accuracy that the 

algorithm itself provides. Because STRUCTURE assumes each allele is independent, its 

estimate of the accuracy with which it estimates the frequency of a particular multilocus 

genotype frequency is often overconfident. For example, in differentiating chicken isolates 

from those originating in cattle and sheep, STRUCTURE predicts 91% accuracy for itself, but 

empirically it only achieves 80% on average. A better estimate of uncertainty would be

necessary for predictive purposes. More sophisticated genetic models that reflect the 

dependence amongst the loci should achieve more accurate assignment as well as better 

estimates of statistical uncertainty.

Accepting these limitations this approach nonetheless demonstrates the ability to assign 

isolates probabilistically to populations. When broad reference populations from the full range 

of possible sources are available it will be possible to apportion groups of isolates, such as 

those affecting a human population over a period of time, to their sources, although precision 

in the attribution of C. jejuni may be less than with for example, Salmonella, where host 
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species appear to harbour more differentiated populations (3). Prediction is possible with 

individual isolates, in some cases to a single source, although in some cases prediction will 

suggest a range of populations rather than one. For example, two of the fully sequenced C. 

jejuni genomes are from known sources, one being isolated from poultry (isolate RM-1221) 

(20) and the other from a human involved in a cow’s milk outbreak (isolate 81-176) (17 ,18). 

Assigning these based on the reference datasets we used in the paper predicted their origin as 

chicken (99% probability) and cattle/sheep (97% probability) respectively. 

The broad host range of C. jejuni spanning a range of mammalian, avian and other 

species make it a good model to study features that may be informative of the ecology of multi-

host pathogens. C. jejuni imports fragments from other members of the species, which have 

been estimated to be typically a few hundred base pairs in length (21). Our analysis within 

ST21 complex demonstrates that isolates in this complex have imported genetic material 

prevalent in the population of Campylobacter carried by their host species (Figure 1). This 

observation implies firstly that there is persistent differentiation in allele frequencies between 

different host species and secondly that many of the ST21 isolates represent lineages that have 

persisted within the same host species long enough to import a substantial number of alleles. 

We have surveyed 7 loci and found on average 0.32 host-specific alleles in the 81 STs 

other than ST21 that were members of ST21 complex, i.e. just under 5% of the alleles in this 

analysis. The imported genes were approximately evenly distributed between them, involving 6 

of the 7 loci. The MLST loci were chosen because they represent core metabolic functions of 

C. jejuni (10) and are not obvious candidates for host adaptation. Therefore, we are probably 

observing the neutral level of genetic import. Extrapolating linearly from these seven loci to 

the 1654 gene coding sequences in the C. jejuni genome (22) gives an estimate of 76 genes 

with alleles typical of a particular host species within each ST21 complex isolate. This is 
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obviously a rough estimate since it is based on fairly limited data and because recombination 

and selection at other genes may behave differently. However this approximate estimate 

demonstrates the potential for substantial adaptation to the most recent host by homologous 

recombination. Indeed, homologous recombination may be an important factor in allowing a 

single bacterial species to stably colonize a wide range of host species while adapting to some 

extent to each. 

In conclusion, a population genetic approach has allowed host assignment in C. jejuni

where host specific markers are unavailable but host species populations are differentiated by 

allele frequency at a range of loci. Host association appears stronger than temporal and 

geographical effects. Homologous recombination generates a host signature in the C. jejuni

genome and analyses taking advantage of this signal have improved accuracy of host 

prediction. The inherent standardization and portability of sequence typing in combination with 

the availability of such improved assignment techniques support the application of this 

approach to clarify aspects of C. jejuni epidemiology on a global scale and application to the 

study of other suitable microbes.
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Table 1. Isolates by year of isolation and host species.

Year Chicken Cattle Sheep Total

1981 0 4 0 4

1982 2 1 2 5

1983 0 3 0 3

1984 0 1 0 1

1986 0 2 0 2

1988 2 18 0 20

1989 0 1 0 1

1990 54 1 0 55

1991 30 6 0 36

1992 1 3 0 4

1993 8 6 1 15

1994 6 1 0 7

1995 12 1 0 13

1996 35 0 0 35

1997 2 0 0 2

1998 40 41 68 149

1999 10 38 38 86

2000 15 6 0 21

2001 45 83 5 133

2002 0 0 2 2

2003 13 0 0 13

Unspecified 34 29 43 106

Total 309 245 159 713
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Table 2. Isolates by country and host species.

Country Chicken Cattle Sheep Total

Canada 0 5 0 5

Czech Republic 8 0 0 8

Denmark 6 1 0 7

Netherlands 53 4 0 57

New Zealand 5 1 0 6

Northern Ireland 1 2 0 3

UK 217 218 158 593

USA 17 13 1 31

Unknown 2 1 0 3

Total 309 245 159 713

Page 26 of 31

ScholarOne support: (434) 817-2040 ext. 167

Emerging Infectious Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review

21

Table 3. Capacity of alleles, overall sequence type and clonal complex information to predict 

host species for C. jejuni isolates from cattle, sheep and chickens.

Genotype information used Percent correct Percent of uncertainty removed*

Alleles 58 37

ST 40 10

Clonal complex (1) † 42 13

Clonal complex (2) † 42 13

Alleles plus ST 60 40

Alleles plus clonal complex† 58 37

* Random selection would be expected to predict correctly 33% of the time. The proportion of 

the remaining uncertainty (67%) that is resolved is given here.

† Clonal complex (1) substituted ST for clonal complex where no clonal complex is assigned 

and Clonal complex (2) substituted a missing value code. Clonal complex (1) was used in 

addition to alleles to assess “Alleles plus clonal complex”.
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Table 4. Predicted host compared to actual host among C.jejuni from cattle, sheep and 

chickens. 

Predicted host

Host

Sample

size (n) Chicken Cow Sheep

Chicken 309 66% 14% 19%

Cow 245 12% 50% 38%

Sheep 159 10% 36% 54%

Table 5. Subpopulations for comparisons considering time and geography.

Description of source Number

Early* UK chickens 114

Late† UK chickens 78

All UK chickens 217

Dutch chickens 53

Non UK chickens 92

Late† UK cattle and sheep 273

*1990 – 1997 = early

†1998 – 2003 = late
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Figure 1. Prediction of source of origin within ST-21 complex. 
A. Observed accuracy of prediction (arrow) compared with distribution of values obtained by 
permuting host labels so that the alleles varying from central genotype are not informative on 
host of origin. 
B. Prediction of origin using only alleles for which substantial reference information is 
available. Light grey lines indicate presence of an allele different from ST-21 present mainly in 
chickens in the reference population  (i.e. an allele that would predict chicken origin) and dark 
grey those present mainly in bovids (i.e. predicts bovid origin). Light grey boxes are STs found 
only in chickens and dark grey only in bovids. Mixed boxes indicate STs found in bovids and 
chicken. 
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