Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W.T.A. Harrison, J. Simpson and M. Weil

trans-Bis{1-[2-(2,6-diisopropylanilino)phenyl]-3-isopropylimidazolin-2-ylidenyl- κC^2 }diiodidopalladium(II) benzene disolvate

Christopher G. Daly, Kuldip Singh and Warren B. Cross

Acta Cryst. (2011). E67, m668

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The journal publishes over 4000 structures per year. The average publication time is less than one month.

Crystallography Journals Online is available from journals.iucr.org

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Bis{1-[2-(2,6-diisopropylanilino)phenyl]-3-isopropylimidazolin-2-ylidenyl- κC^2 }diiodidopalladium(II) benzene disolvate

Christopher G. Daly, Kuldip Singh and Warren B. Cross*

Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England

Correspondence e-mail: wbc2@le.ac.uk

Received 17 April 2011; accepted 24 April 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.012 Å; *R* factor = 0.063; *wR* factor = 0.128; data-to-parameter ratio = 17.2.

In the title complex, $[PdI_2(C_{24}H_{31}N_3)_2] \cdot 2C_6H_6$, the Pd^{2+} ion is located on an inversion centre in a slightly distorted squareplanar geometry. The angle between the I_2C_2 square plane and the mean plane of the *N*-heterocyclic carbene ring is 79.8 (2)°, with I-Pd-C-N torsion angles of -81.1 (6) and -78.2 (5)°. The Pd-carbene and Pd-I distances are 2.016 (6) and 2.5971 (10) Å, respectively.

Related literature

For a review of *N*-heterocyclic carbenes in late transition metal catalysis, see: Díez-González *et al.* (2009). For the synthesis of the pro-ligand and crystal structures of related complexes, see: Cross *et al.* (2011).

Experimental

Crvstal data

 $\begin{bmatrix} PdI_2(C_{24}H_{31}N_{3})_2 \end{bmatrix} \cdot 2C_6H_6 & \gamma = 76.411 (8)^{\circ} \\ M_r = 1239.45 & V = 1417.0 (10) \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 1 \\ a = 8.998 (4) \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 12.000 (5) \text{ Å} & \mu = 1.46 \text{ mm}^{-1} \\ c = 13.839 (6) \text{ Å} & T = 150 \text{ K} \\ \alpha = 81.572 (8)^{\circ} & 0.16 \times 0.11 \times 0.06 \text{ mm} \\ \beta = 78.819 (9)^{\circ} \end{array}$

Data collection

Bruker APEX 2000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{min} = 0.338, T_{max} = 0.831$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.128$ S = 0.885500 reflections

11207 measured reflections 5500 independent reflections 3317 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.106$

319 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.92$ e Å⁻³ $\Delta \rho_{min} = -1.27$ e Å⁻³

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* and *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The University of Leicester is thanked for a graduate studentship to CGD.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2410).

References

- Bruker (1998). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2000). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Cross, W. B., Daly, C. G., Ackerman, R. L., George, I. R. & Singh, K. (2011).
- Dalton Trans. 40, 495–505. Dícz-González, S., Marion, N. & Nolan, S. P. N. (2009). Chem. Rev. pp 3612–
- Diez-González, S., Marion, N. & Nolan, S. P. N. (2009). Chem. Rev. pp 3612– 3677.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, m668 [doi:10.1107/S1600536811015431]

trans-Bis{1-[2-(2,6-diisopropylanilino)phenyl]-3-isopropylimidazolin-2-ylidenyl- κC^2 }diiodidopalladium(II) benzene disolvate

C. G. Daly, K. Singh and W. B. Cross

Comment

Bifunctional catalysis, in which an electrophilic metal and a nucleophilic ligand act together to activate a substrate, can enable reactions that are not possible using classical catalytic transformations that occur only at the metal centre. We are interested in catalysts in which an *N*-heterocyclic carbene ligand tethers a nucleophilic amido donor to the metal. Previously, we have reported tridentate amido-bis(NHC) (CNC) complexes of palladium and platinum, a bidentate amido-NHC (C,*N*-dipp) complex of palladium and a complex [*trans*-(C₂₄H₃₁N₃)PdI₂(py)], in which the amine-NHC ligand binds to Pd only through the carbene (Cross *et al.*, 2011). In the synthesis of [*trans*-(C₂₄H₃₁N₃)PdI₂(py)], we isolated a single-crystal of the title complex.

The solid state structure of the title complex is shown in Fig. 1. Two NHC and two iodide ligands are coordinated to the square planar Pd, which is located at an inversion centre. The Pd-carbene distance of 2.016 (6) Å is *ca* 0.05 Å longer than in the corresponding complex [*trans*-($C_{24}H_{31}N_{3}$)PdI₂(py)] (Cross *et al.*, 2011), as a consequence of the strong *trans*- influence of the NHC ligand.

Experimental

The title complex was an unexpected by-product in the synthesis of $[trans-(C_{24}H_{31}N_3)PdI_2(py)]$ (Cross *et al.*, 2011). Crystals of the title complex were grown by slow evaporation from benzene.

Refinement

Hydrogen atoms were included in calculated positions at distances C—H = 0.95 to 1.00 Å and N—H = 0.88 Å in riding mode on the bonded atoms with $U_{iso}(H)$ set to 1.5 $U_{eq}(C)$ for methyl H atoms and 1.2 $U_{eq}(C/N)$ for all other H atoms. The final difference map was essentially featureless with some residual electron density in the close proximity of iodine atom.

Figures

Fig. 1. The molecular structure of the title complex, with 50% probablity ellipsoids. Two molecules of benzene and H atoms except N—H have been omitted for clarity. Symmetry operation $^{i} = -x + 2, -y, -z$.

trans-Bis{1-[2-(2,6-diisopropylanilino)phenyl]-3- isopropylimidazolin-2-ylidenyl- κC^2 }diiodidopalladium(II) benzene disolvate

Crystal data

$[PdI_2(C_{24}H_{31}N_3)_2] \cdot 2C_6H_6$	Z = 1
$M_r = 1239.45$	F(000) = 628
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.452 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.998 (4) Å	Cell parameters from 580 reflections
b = 12.000 (5) Å	$\theta = 2.4 - 23.4^{\circ}$
c = 13.839 (6) Å	$\mu = 1.46 \text{ mm}^{-1}$
$\alpha = 81.572 \ (8)^{\circ}$	T = 150 K
$\beta = 78.819 \ (9)^{\circ}$	Block, yellow
$\gamma = 76.411 \ (8)^{\circ}$	$0.16 \times 0.11 \times 0.06 \text{ mm}$
$V = 1417.0 (10) \text{ Å}^3$	

Data collection

Bruker APEX 2000 CCD area-detector diffractometer	5500 independent reflections
Radiation source: fine-focus sealed tube	3317 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.106$
ϕ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1998)	$h = -11 \rightarrow 11$
$T_{\min} = 0.338, T_{\max} = 0.831$	$k = -14 \rightarrow 14$
11207 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.128$	H-atom parameters constrained
<i>S</i> = 0.88	$w = 1/[\sigma^2(F_o^2) + (0.035P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5500 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
319 parameters	$\Delta \rho_{max} = 0.92 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.27 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and isotro	pic or e	auivalent	isotropic	c disi	placement	parameters	$(Å^2$)
				P						1	/

Pd1 1 0000 0 0000 0 0000 0 024	15(2)
1.0000 0.0000 0.0000 0.027	rJ (2)
II 1.08790 (6) 0.17737 (4) 0.03915 (4) 0.037	73 (18)
N1 0.7871 (6) 0.1906 (5) 0.3084 (4) 0.029	91 (14)
H1 0.7552 0.2298 0.2546 0.035	5*
N2 0.7258 (6) 0.0747 (5) 0.1601 (4) 0.024	45 (13)
N3 0.6700 (6) 0.1348 (5) 0.0142 (4) 0.029	92 (14)
C1 0.7838 (7) 0.0734 (5) 0.0618 (5) 0.026	52 (16)
C2 0.5403 (8) 0.1765 (6) 0.0799 (5) 0.038	32 (19)
H2 0.4453 0.2227 0.0639 0.046	ō*
C3 0.5740 (7) 0.1388 (6) 0.1722 (5) 0.029	96 (17)
H3 0.5071 0.1533 0.2332 0.036	ō*
C4 0.8000 (7) 0.0118 (6) 0.2392 (5) 0.027	75 (16)
C5 0.8455 (8) -0.1079 (6) 0.2430 (5) 0.030	05 (17)
H5 0.8274 -0.1468 0.1927 0.037	7*
C6 0.9170 (8) -0.1699 (6) 0.3198 (5) 0.033	38 (18)
H6 0.9530 -0.2510 0.3204 0.041	*
C7 0.9359 (8) -0.1155 (6) 0.3943 (5) 0.037	70 (19)
H7 0.9790 -0.1591 0.4491 0.044	! *
C8 0.8928 (8) 0.0033 (6) 0.3907 (5) 0.031	9 (17)
H8 0.9082 0.0398 0.4433 0.038	8*
C9 0.8277 (7) 0.0710 (6) 0.3129 (5) 0.026	65 (16)
C10 0.6882 (8) 0.1564 (6) -0.0949 (5) 0.035	54 (19)
H10 0.7875 0.1056 -0.1231 0.043	3*
C11 0.6985 (10) 0.2798 (7) -0.1303 (6) 0.059	9(3)

H11A	0.5979	0.3307	-0.1104	0.088*
H11B	0.7263	0.2885	-0.2026	0.088*
H11C	0.7778	0.3002	-0.1008	0.088*
C12	0.5553 (11)	0.1221 (9)	-0.1295 (6)	0.071 (3)
H12A	0.5662	0.0382	-0.1172	0.107*
H12B	0.5585	0.1460	-0.2006	0.107*
H12C	0.4561	0.1599	-0.0930	0.107*
C13	0.7948 (8)	0.2525 (6)	0.3867 (5)	0.0264 (16)
C14	0.6834 (8)	0.2513 (6)	0.4726 (5)	0.0293 (17)
C15	0.6914 (8)	0.3156 (6)	0.5452 (5)	0.0370 (19)
H15	0.6181	0.3148	0.6047	0.044*
C16	0.8014 (9)	0.3811 (6)	0.5353 (6)	0.043 (2)
H16	0.8035	0.4250	0.5866	0.052*
C17	0.9087 (9)	0.3814 (6)	0.4490 (6)	0.041 (2)
H17	0.9838	0.4273	0.4415	0.049*
C18	0.9109 (8)	0.3185 (6)	0.3745 (5)	0.0308 (17)
C19	0.5504 (9)	0.1905 (6)	0.4850 (5)	0.039 (2)
H19	0.5708	0.1432	0.4282	0.047*
C20	0.5396 (10)	0.1076 (7)	0.5800 (6)	0.060 (3)
H20A	0.6394	0.0533	0.5819	0.090*
H20B	0.4587	0.0649	0.5814	0.090*
H20C	0.5139	0.1514	0.6376	0.090*
C21	0.3993 (9)	0.2773 (7)	0.4780 (6)	0.057 (2)
H21A	0.3738	0.3240	0.5338	0.086*
H21B	0.3162	0.2366	0.4799	0.086*
H21C	0.4103	0.3276	0.4156	0.086*
C22	1.0365 (8)	0.3122 (7)	0.2834 (6)	0.042 (2)
H22	0.9868	0.3124	0.2247	0.051*
C23	1.1199 (9)	0.4138 (7)	0.2635 (6)	0.057 (2)
H23A	1.0434	0.4866	0.2581	0.086*
H23B	1.1940	0.4070	0.2015	0.086*
H23C	1.1752	0.4124	0.3182	0.086*
C24	1.1573 (9)	0.1988 (7)	0.2928 (6)	0.053 (2)
H24A	1.2033	0.1944	0.3523	0.079*
H24B	1.2388	0.1961	0.2342	0.079*
H24C	1.1071	0.1336	0.2978	0.079*
C25	0.5767 (11)	0.4395 (7)	0.2054 (8)	0.060 (3)
H25	0.5044	0.3906	0.2232	0.072*
C26	0.6599 (13)	0.4465 (9)	0.1094 (8)	0.078 (3)
H26	0.6473	0.4008	0.0623	0.093*
C27	0.7615 (12)	0.5211 (9)	0.0835 (8)	0.079 (3)
H27	0.8176	0.5285	0.0181	0.095*
C28	0.7792 (12)	0.5832 (8)	0.1533 (9)	0.071 (3)
H28	0.8497	0.6335	0.1365	0.085*
C29	0.6973 (12)	0.5746 (8)	0.2475 (8)	0.071 (3)
H29	0.7099	0.6198	0.2950	0.085*
C30	0.5984 (10)	0.5019 (7)	0.2729 (7)	0.056 (3)
H30	0.5439	0.4948	0.3388	0.067*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0217 (4)	0.0279 (4)	0.0209 (4)	-0.0004 (3)	-0.0016 (3)	-0.0040 (3)
I1	0.0378 (3)	0.0405 (3)	0.0365 (3)	-0.0119 (2)	0.0001 (2)	-0.0124 (2)
N1	0.036 (4)	0.024 (3)	0.025 (3)	0.003 (3)	-0.016 (3)	0.003 (3)
N2	0.019 (3)	0.035 (3)	0.018 (3)	-0.002 (3)	-0.002 (2)	-0.008 (3)
N3	0.021 (3)	0.033 (3)	0.030 (4)	0.005 (3)	-0.009 (3)	-0.003 (3)
C1	0.026 (4)	0.025 (4)	0.028 (4)	-0.006 (3)	-0.003 (3)	-0.004 (3)
C2	0.024 (4)	0.049 (5)	0.037 (5)	0.003 (4)	-0.004 (4)	-0.008 (4)
C3	0.019 (4)	0.041 (4)	0.026 (4)	0.000 (3)	-0.002 (3)	-0.003 (3)
C4	0.020 (4)	0.040 (4)	0.020 (4)	-0.007 (3)	-0.002 (3)	0.003 (3)
C5	0.034 (4)	0.035 (4)	0.027 (4)	-0.013 (3)	-0.005 (3)	-0.006 (3)
C6	0.035 (4)	0.029 (4)	0.032 (5)	-0.003 (3)	0.002 (4)	-0.005 (4)
C7	0.044 (5)	0.036 (5)	0.029 (4)	-0.006 (4)	-0.010 (4)	0.003 (4)
C8	0.031 (4)	0.035 (4)	0.029 (4)	0.000 (3)	-0.009 (3)	-0.011 (4)
C9	0.026 (4)	0.029 (4)	0.020 (4)	-0.002 (3)	0.002 (3)	-0.001 (3)
C10	0.040 (5)	0.045 (5)	0.013 (4)	0.006 (4)	-0.005 (3)	0.000 (3)
C11	0.074 (7)	0.061 (6)	0.033 (5)	0.004 (5)	-0.013 (5)	0.001 (4)
C12	0.086 (8)	0.103 (8)	0.033 (5)	-0.019 (6)	-0.024 (5)	-0.015 (5)
C13	0.029 (4)	0.023 (4)	0.029 (4)	-0.002 (3)	-0.015 (3)	-0.005 (3)
C14	0.028 (4)	0.029 (4)	0.032 (4)	-0.003 (3)	-0.002 (3)	-0.011 (3)
C15	0.039 (5)	0.037 (5)	0.032 (5)	-0.003 (4)	0.000 (4)	-0.009 (4)
C16	0.055 (5)	0.027 (4)	0.045 (5)	0.002 (4)	-0.008 (4)	-0.015 (4)
C17	0.035 (5)	0.034 (4)	0.052 (6)	-0.003 (4)	-0.009 (4)	-0.005 (4)
C18	0.032 (4)	0.032 (4)	0.026 (4)	0.002 (3)	-0.011 (3)	-0.002 (3)
C19	0.052 (5)	0.047 (5)	0.020 (4)	-0.015 (4)	-0.002 (4)	-0.012 (4)
C20	0.063 (6)	0.070 (7)	0.047 (6)	-0.026 (5)	-0.003 (5)	0.004 (5)
C21	0.042 (5)	0.075 (7)	0.057 (6)	-0.013 (5)	-0.016 (5)	-0.003 (5)
C22	0.036 (5)	0.062 (6)	0.034 (5)	-0.017 (4)	-0.011 (4)	-0.003 (4)
C23	0.047 (5)	0.065 (6)	0.062 (6)	-0.024 (5)	-0.005 (5)	0.001 (5)
C24	0.031 (5)	0.070 (6)	0.051 (6)	0.004 (4)	-0.001 (4)	-0.020 (5)
C25	0.063 (6)	0.041 (6)	0.069 (7)	0.004 (5)	-0.014 (6)	-0.002 (5)
C26	0.094 (9)	0.064 (7)	0.075 (8)	-0.001 (6)	-0.019 (7)	-0.025 (6)
C27	0.075 (8)	0.077 (8)	0.065 (8)	-0.003 (6)	0.016 (6)	0.000 (6)
C28	0.078 (8)	0.053 (7)	0.082 (8)	-0.023 (6)	-0.019 (7)	0.018 (6)
C29	0.084 (8)	0.050 (6)	0.073 (8)	0.000 (6)	-0.023 (6)	0.002 (6)
C30	0.058 (6)	0.032 (5)	0.062 (7)	0.005 (4)	0.002 (5)	0.002 (5)
Geometric p	arameters (Å, °)					

Atomic displacement parameters $(Å^2)$

Pd1—C1	2.016 (6)	C14—C19	1.513 (9)
Pd1—C1 ⁱ	2.016 (6)	C15—C16	1.377 (9)
Pd1—I1 ⁱ	2.5971 (10)	C15—H15	0.9500
Pd1—I1	2.5971 (10)	C16—C17	1.382 (10)
N1—C9	1.390 (8)	C16—H16	0.9500
N1—C13	1.421 (8)	C17—C18	1.359 (9)

N1—H1	0.8800	C17—H17	0.9500
N2—C1	1.359 (8)	C18—C22	1.518 (9)
N2—C3	1.393 (8)	C19—C21	1.517 (10)
N2—C4	1.421 (8)	C19—C20	1.530 (10)
N3—C1	1.338 (8)	С19—Н19	1.0000
N3—C2	1.373 (8)	C20—H20A	0.9800
N3—C10	1.478 (8)	C20—H20B	0.9800
C2—C3	1.359 (9)	C20—H20C	0.9800
С2—Н2	0.9500	C21—H21A	0.9800
С3—Н3	0.9500	C21—H21B	0.9800
C4—C5	1.395 (9)	C21—H21C	0.9800
C4—C9	1.414 (9)	C22—C24	1.536 (10)
C5—C6	1.380 (9)	C22—C23	1.542 (10)
С5—Н5	0.9500	C22—H22	1.0000
C6—C7	1.355 (9)	C23—H23A	0.9800
С6—Н6	0.9500	С23—Н23В	0.9800
С7—С8	1.382 (9)	С23—Н23С	0.9800
С7—Н7	0.9500	C24—H24A	0.9800
C8—C9	1.389 (9)	C24—H24B	0.9800
С8—Н8	0.9500	C24—H24C	0.9800
C10-C11	1.508 (10)	C25—C30	1.348 (11)
C10-C12	1.531 (10)	C25—C26	1.394 (12)
C10—H10	1.0000	C25—H25	0.9500
C11—H11A	0.9800	C26—C27	1.389 (13)
C11—H11B	0.9800	C26—H26	0.9500
C11—H11C	0.9800	C27—C28	1.355 (13)
C12—H12A	0.9800	C27—H27	0.9500
C12—H12B	0.9800	C28—C29	1.371 (12)
C12—H12C	0.9800	C28—H28	0.9500
C13—C14	1.399 (9)	C29—C30	1.353 (12)
C13—C18	1.425 (9)	С29—Н29	0.9500
C14—C15	1.375 (9)	С30—Н30	0.9500
C1—Pd1—C1 ⁱ	180.0 (5)	C14—C15—C16	122.7 (7)
C1—Pd1—I1 ⁱ	92.78 (18)	C14—C15—H15	118.7
C1 ⁱ —Pd1—I1 ⁱ	87.22 (18)	C16—C15—H15	118.7
C1—Pd1—I1	87.22 (18)	C15—C16—C17	118.5 (7)
C1 ⁱ —Pd1—I1	92.78 (18)	C15—C16—H16	120.7
I1 ⁱ —Pd1—I1	180.00 (2)	C17—C16—H16	120.7
C9—N1—C13	123.0 (6)	C18—C17—C16	122.6 (7)
C9—N1—H1	118.5	C18—C17—H17	118.7
C13—N1—H1	118.5	C16—C17—H17	118.7
C1—N2—C3	109.4 (5)	C17—C18—C13	117.5 (7)
C1—N2—C4	126.2 (5)	C17—C18—C22	122.2 (7)
C3—N2—C4	124.0 (5)	C13—C18—C22	120.2 (6)
C1—N3—C2	111.1 (6)	C14—C19—C21	110.5 (6)
C1—N3—C10	122.9 (6)	C14—C19—C20	112.6 (6)
C2—N3—C10	125.9 (6)	C21—C19—C20	112.0 (7)
N3—C1—N2	106.0 (6)	C14—C19—H19	107.1

N3—C1—Pd1	126.8 (5)	C21—C19—H19	107.1
N_2 —C1—Pd1	127.1 (5)	C20-C19-H19	107.1
$C_3 - C_2 - N_3$	106.8 (6)	C19—C20—H20A	109.5
C_{3} C_{2} H_{2}	126.6	C19—C20—H20B	109.5
N3_C2_H2	126.6	$H_{20A} - C_{20} - H_{20B}$	109.5
$C_2 = C_3 = N_2$	106.7 (6)	C19 - C20 - H20C	109.5
$C_2 = C_3 = H_3$	126.7	$H_{20A} - C_{20} - H_{20C}$	109.5
N2_C3_H3	126.7	H20B_C20_H20C	109.5
$C_{5} - C_{4} - C_{9}$	120.7 (6)	$C_{10} - C_{21} - H_{21A}$	109.5
$C_{5} - C_{4} - N_{2}^{2}$	120.7(0) 119.4(6)	C19 - C21 - H21R	109.5
$C_{2} = C_{1} = N_{2}$	119.4 (0)		109.5
$C_{1} = C_{1} = C_{1}$	119.9(0) 110.0(7)	121A - 021 - 1121D	109.5
C6 C5 H5	119.9 (7)		109.5
	120.0	$H_{21} = C_{21} = H_{21} C$	109.5
C4—C5—H5	120.0	H2IB-C2I-H2IC	109.5
$C_{1} = C_{0} = C_{3}$	120.2 (7)	$C_{18} = C_{22} = C_{24}$	110.1(0)
С/—Сб—Нб	119.9	C18 - C22 - C23	113.9 (7)
С5—С6—Н6	119.9	C24—C22—C23	108.9 (6)
C6—C7—C8	120.2 (7)	С18—С22—Н22	107.9
С6—С7—Н7	119.9	C24—C22—H22	107.9
С8—С7—Н7	119.9	С23—С22—Н22	107.9
C7—C8—C9	122.3 (7)	С22—С23—Н23А	109.5
С7—С8—Н8	118.9	С22—С23—Н23В	109.5
С9—С8—Н8	118.9	H23A—C23—H23B	109.5
C8—C9—N1	122.3 (6)	С22—С23—Н23С	109.5
C8—C9—C4	116.5 (6)	H23A—C23—H23C	109.5
N1—C9—C4	121.3 (6)	H23B—C23—H23C	109.5
N3—C10—C11	111.4 (6)	C22—C24—H24A	109.5
N3—C10—C12	109.1 (6)	C22—C24—H24B	109.5
C11—C10—C12	112.4 (7)	H24A—C24—H24B	109.5
N3—C10—H10	107.9	C22—C24—H24C	109.5
C11—C10—H10	107.9	H24A—C24—H24C	109.5
C12—C10—H10	107.9	H24B—C24—H24C	109.5
C10-C11-H11A	109.5	C30—C25—C26	120.2 (10)
C10-C11-H11B	109.5	C30—C25—H25	119.9
H11A—C11—H11B	109.5	С26—С25—Н25	119.9
C10—C11—H11C	109.5	C27—C26—C25	119.2 (10)
H11A—C11—H11C	109.5	С27—С26—Н26	120.4
H11B—C11—H11C	109.5	C25—C26—H26	120.4
C10-C12-H12A	109.5	C28—C27—C26	118.8 (10)
C10-C12-H12B	109.5	С28—С27—Н27	120.6
H12A—C12—H12B	109.5	С26—С27—Н27	120.6
C10-C12-H12C	109.5	C27—C28—C29	121.2 (10)
H12A—C12—H12C	109.5	C27—C28—H28	119.4
H12B—C12—H12C	109.5	C29—C28—H28	119.4
C14—C13—N1	119.1 (6)	C30—C29—C28	120.1 (10)
C14—C13—C18	121.4 (6)	С30—С29—Н29	120.0
N1—C13—C18	119.5 (6)	С28—С29—Н29	120.0
C15—C14—C13	117.3 (6)	C25—C30—C29	120.4 (9)
C15—C14—C19	119.5 (6)	С25—С30—Н30	119.8

C13—C14—C19	123.0 (6)	С29—С30—Н30	119.8
C2—N3—C1—N2	0.5 (8)	C1—N3—C10—C11	-107.3 (8)
C10—N3—C1—N2	178.5 (6)	C2—N3—C10—C11	70.3 (9)
C2—N3—C1—Pd1	-177.1 (5)	C1—N3—C10—C12	128.0 (7)
C10—N3—C1—Pd1	0.9 (9)	C2—N3—C10—C12	-54.3 (9)
C3—N2—C1—N3	-0.4 (7)	C9—N1—C13—C14	-73.6 (8)
C4—N2—C1—N3	173.8 (6)	C9—N1—C13—C18	109.2 (7)
C3—N2—C1—Pd1	177.2 (5)	N1-C13-C14-C15	-177.7 (6)
C4—N2—C1—Pd1	-8.6 (9)	C18-C13-C14-C15	-0.6 (10)
I1 ⁱ —Pd1—C1—N3	-81.1 (6)	N1—C13—C14—C19	-2.4 (10)
I1—Pd1—C1—N3	98.9 (6)	C18-C13-C14-C19	174.7 (7)
I1 ⁱ —Pd1—C1—N2	101.8 (5)	C13—C14—C15—C16	1.1 (11)
I1—Pd1—C1—N2	-78.2 (5)	C19—C14—C15—C16	-174.3 (7)
C1—N3—C2—C3	-0.5 (8)	C14—C15—C16—C17	-0.5 (12)
C10—N3—C2—C3	-178.4 (6)	C15-C16-C17-C18	-0.9 (12)
N3—C2—C3—N2	0.3 (8)	C16-C17-C18-C13	1.4 (11)
C1—N2—C3—C2	0.0 (8)	C16-C17-C18-C22	-175.2 (7)
C4—N2—C3—C2	-174.2 (6)	C14—C13—C18—C17	-0.6 (10)
C1—N2—C4—C5	-57.2 (9)	N1-C13-C18-C17	176.4 (6)
C3—N2—C4—C5	116.1 (7)	C14—C13—C18—C22	176.0 (7)
C1—N2—C4—C9	122.4 (7)	N1-C13-C18-C22	-6.9 (10)
C3—N2—C4—C9	-64.3 (8)	C15-C14-C19-C21	68.8 (9)
C9—C4—C5—C6	0.7 (10)	C13—C14—C19—C21	-106.4 (8)
N2-C4-C5-C6	-179.7 (6)	C15-C14-C19-C20	-57.4 (9)
C4—C5—C6—C7	3.4 (10)	C13—C14—C19—C20	127.4 (7)
C5—C6—C7—C8	-4.1 (10)	C17—C18—C22—C24	100.7 (8)
C6—C7—C8—C9	0.7 (11)	C13—C18—C22—C24	-75.9 (8)
C7—C8—C9—N1	-178.7 (6)	C17—C18—C22—C23	-22.0 (10)
C7—C8—C9—C4	3.2 (10)	C13—C18—C22—C23	161.5 (7)
C13—N1—C9—C8	-6.2 (10)	C30—C25—C26—C27	-2.0 (14)
C13—N1—C9—C4	171.8 (6)	C25—C26—C27—C28	1.4 (16)
C5—C4—C9—C8	-3.9 (9)	C26—C27—C28—C29	-1.0 (16)
N2—C4—C9—C8	176.5 (6)	C27—C28—C29—C30	1.1 (15)
C5—C4—C9—N1	178.0 (6)	C26—C25—C30—C29	2.1 (14)
N2-C4-C9-N1	-1.6 (9)	C28—C29—C30—C25	-1.6 (14)
Symmetry codes: (i) $-x+2, -y, -z$.			

