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Abstract 

My research investigates the aesthetics of visual complexity in the practice and 

perception of visual art and design. The aim is to understand visual complexity in terms of 

the relationship between the objective properties of images and subjective properties of 

perception. I take a computational and empirical approach to this subject, incorporating 

methods from information theory, computer graphics, complexity theory and experimental 

psychology. For testing, I create cellular automata programs to generate stimulus images, 

and borrow other types of visual material from students and professional artists, designers 

and craftspeople. Visual complexity is measured in two ways: Firstly, an objective measure 

of complexity is based on the compression of digital image files, which provides an 

information-based scale of order to randomness. Secondly, psychophysical techniques are 

employed to measure the subjective complexity of the images and other aesthetic 

judgements. Research in complex systems theory and experimental aesthetics suggests that 

we can expect an inverted ‘U’ correlation between the two measures of complexity. 

This project makes an original contribution to knowledge with empirical evidence for 

the hypothetical correlation of information-based and perceived complexity. With cellular 

automata images from simple to complex the results show an inverted ‘U’ correlation; the 

measures diverge as images approach randomness. The file compression measure fares less 

well with art and design images in these tests, however, perhaps because of the wide variety 

of visual material. Preference is more variable than judgements of complexity, and art-

trained participants rated images higher than untrained participants. The implication is that 

although the file compression measure does not entirely correspond with human 

perception, the correlation we have found tells us that we can understand visual complexity 

as a mixture of order and chaos. A balance of complexity allows for visual exploration and 

pattern-finding which contributes to aesthetic value. The findings also provide a basis for 

creative experimentation in art and design practice. 



   v

Contents 
Aesthetic Complexity: Practice and Perception in Art & Design 

Copyright Notice ............................................................................................................................... ii 

Acknowledgements .......................................................................................................................... iii 

Abstract ..............................................................................................................................................iv 

Contents..............................................................................................................................................v 

Chapter 1 

Aesthetics & Complexity 

Introduction.............................................................................................................................1 

Visual Complexity ........................................................................................................2 

Background: Art Practice and Research ...................................................................7 

Research Focus...........................................................................................................10 

Aesthetics ...............................................................................................................................13 

Perception ...................................................................................................................13 

Beauty ..........................................................................................................................14 

Art and Design ...........................................................................................................15 

Taste .............................................................................................................................16 

The Aesthetic..............................................................................................................18 

Working Model of the Aesthetic .............................................................................21 

Complexity.............................................................................................................................24 

Identifying Complexity..............................................................................................26 

Computational Complexity ............................................................................28 

Cellular Automata............................................................................................29 

Mapping Complexity .................................................................................................31 

Uniformity ........................................................................................................34 

Order and Information...................................................................................34 

Fractals ..............................................................................................................36 

Chaos and Randomness .................................................................................38 

Complexity .......................................................................................................40 

Measuring Complexity...............................................................................................42 

Measuring Visual Complexity........................................................................44 

Project Outline ......................................................................................................................46 



   vi

Planned Contribution to Knowledge ......................................................................47 

Chapter 2 

Mapping Theory and Practice 

Introduction...........................................................................................................................49 

Aesthetic Theory...................................................................................................................50 

Perceptual Aesthetics.................................................................................................51 

Environmental Aesthetics and Affordances ...............................................52 

Aesthetic Theories of Art .........................................................................................55 

The Open Concept of Art .............................................................................56 

The Decline of Perception in Aesthetic Theory.........................................57 

The Institutional Theory of Art ....................................................................59 

Visual Models of Art.......................................................................................60 

Relational Aesthetics .......................................................................................64 

Summary......................................................................................................................66 

Empirical Aesthetics.............................................................................................................68 

Establishment of the Field........................................................................................68 

The Measurement of Perceptions.................................................................69 

The Measurement of Perceived Complexity ...............................................75 

The Influence of Information Theory ....................................................................81 

Concepts from Information Theory.............................................................82 

Visual Order and Randomness......................................................................84 

The Influence of the Computer ....................................................................87 

The Computational Approach to Visual Perception .................................91 

Aesthetic Measures ....................................................................................................95 

Eye-Tracking....................................................................................................95 

Aesthetic Preference .......................................................................................96 

Edge Detection................................................................................................98 

Fractal Measures ..............................................................................................99 

Data Compression.........................................................................................102 

Summary....................................................................................................................106 

Aesthetic Practice................................................................................................................107 

Simplicity and Minimalism......................................................................................108 

The Grid ....................................................................................................................116 



   vii

Computer Art ...........................................................................................................119 

Fractal Art .................................................................................................................122 

Visualizing Complex Information .........................................................................126 

Audio-Visual Art ......................................................................................................132 

My Art Practice.........................................................................................................138 

Summary of Context ..........................................................................................................147 

Identifying the Components of Visual Complexity ............................................151 

Visual Complexity and Image File Compression ................................................153 

Locating Visual Complexity....................................................................................155 

Chapter 3 

Approaching Visual Complexity in Art & Design 

Research Focus....................................................................................................................158 

Methodology........................................................................................................................159 

Ontology and Epistemology...................................................................................159 

Problems with Empirical Aesthetics .....................................................................160 

Philosophical Problems ................................................................................160 

Practical Problems.........................................................................................163 

Methodological Approach ......................................................................................165 

Methods................................................................................................................................167 

Quantitative Methods..............................................................................................168 

Measuring Objective Complexity................................................................168 

Measuring Subjective Complexity...............................................................169 

Qualitative Methods.................................................................................................170 

Semi-Structured Interviews..........................................................................170 

Transcription Coding and Analysis.............................................................170 

Plan.............................................................................................................................172 

Chapter 4 

Investigating the Spectrum of Visual Complexity 

Trial 1: Objective Measure.................................................................................................174 

Trial 2: Subjective Measure................................................................................................178 

Test 1: Monochrome CA and Random Images .............................................................180 

Method.......................................................................................................................180 

Participants .....................................................................................................181 



   viii

Materials..........................................................................................................181 

Procedure........................................................................................................184 

Results........................................................................................................................184 

Data Transformation ....................................................................................187 

Analysis ......................................................................................................................190 

File Types .......................................................................................................191 

Preference and Complexity Ratings............................................................193 

Average Responses........................................................................................193 

Influence of Art Training .............................................................................194 

Inferential Statistics .......................................................................................196 

Statistical significance....................................................................................199 

Summary....................................................................................................................200 

Discussion: Visual Resolution .....................................................................201 

Test 2: CA and Random Images in Colour.....................................................................202 

Method.......................................................................................................................203 

Materials..........................................................................................................203 

Participants .....................................................................................................205 

Procedure........................................................................................................205 

Results........................................................................................................................205 

Analysis ......................................................................................................................206 

Effect of Art Experience..............................................................................208 

Discussion .................................................................................................................209 

Summary....................................................................................................................211 

Chapter 5 

Visual Complexity and Aesthetic Judgement 

Introduction.........................................................................................................................212 

Test 3: Images from Art and Design.....................................................................213 

Hypotheses................................................................................................................213 

Test 3a: Psychology Laboratory........................................................................................214 

Method.......................................................................................................................214 

Materials..........................................................................................................214 

Stimuli .............................................................................................................216 

Participants .....................................................................................................217 



   ix

Setting..............................................................................................................217 

Variables and Units of Measurement .........................................................218 

Procedure ..................................................................................................................219 

Results........................................................................................................................219 

Discussion .................................................................................................................223 

Compression Ratio........................................................................................223 

The Problem with Borders ..........................................................................224 

Interviews with Participants ..............................................................................................227 

Interview Procedure ................................................................................................228 

Transcription.............................................................................................................229 

Coding........................................................................................................................229 

Structural Coding...........................................................................................230 

Pattern / Focused Coding............................................................................230 

Results........................................................................................................................233 

Questions about the Task ............................................................................234 

Comfort with the Procedure........................................................................234 

Complexity Criteria .......................................................................................235 

Preference Criteria.........................................................................................239 

Quality Criteria...............................................................................................242 

Art Training....................................................................................................243 

Comments about the Task...........................................................................244 

Analysis: Categorizing the Codes...........................................................................245 

Summary....................................................................................................................248 

Test 3b: Art Gallery ............................................................................................................249 

Method.......................................................................................................................249 

Participants .....................................................................................................249 

Setting..............................................................................................................250 

Procedure ..................................................................................................................251 

Results........................................................................................................................251 

Ranked Average Scores ................................................................................251 

Correlations ....................................................................................................253 

Test 3 Findings....................................................................................................................255 

Comparing Results between Tests 3a and 3b ......................................................255 



   x

Combined Results from Tests 3a and 3b .............................................................258 

Visualizing Data.............................................................................................258 

Artists vs. Non-Artists..................................................................................263 

Hypothesis Evaluation ............................................................................................264 

Summary....................................................................................................................265 

Chapter 6 

Conclusions 

Summary of Findings .........................................................................................................267 

Answers to Research Questions ............................................................................267 

Focal Theory ..................................................................................................268 

Contextual Theory.........................................................................................269 

Data Theory ...................................................................................................270 

Contribution to Knowledge ...................................................................................272 

Implications .........................................................................................................................274 

Measures of Complexity..........................................................................................274 

Visual Information...................................................................................................277 

The Spectrum of Complexity and the Window of Visibility .............................279 

The Spectrum of Complexity and Colour Spectra ..............................................282 

Maps, Measures and Models of Complexity ........................................................283 

Impact on My Art Practice................................................................................................285 

Future Directions................................................................................................................289 

References.......................................................................................................................................292 

Appendices .....................................................................................................................................305 

Appendix A: Test 1 Instructions ......................................................................................305 

Appendix B: Copyright Law..............................................................................................305 

Appendix C: Interview Transcript....................................................................................306 

Appendix D: List of Codes ...............................................................................................310 

Appendix E: Coding Results .............................................................................................312 



Aesthetics & Complexity  Introduction 

 1  

Chapter 1 

Aesthetics & Complexity 

Introduction 
This project investigates the aesthetics of visual complexity. If you look around now, 

you will probably see mostly plain and simple areas (such as a clear sky or plain walls), 

regular patterns in smaller areas (clothing and furnishings), and perhaps some irregular 

patterns (carpet, grass or clouds). Besides anything living (people, pets and plants), the 

most complex visual things around are probably objects of aesthetic value. Why artworks 

tend to be complex, and how visual complexity relates to aesthetic value, are the questions 

I aim to answer in this research. 

The first chapter outlines the scope and direction of the research. It begins with a 

general introduction to its focus – the aesthetics of visual complexity. This includes an 

account of the personal context for the research, including a brief description of previous 

academic work and the art practice from which the current research developed. My art 

practice uses computational models from complexity theory as creative tools, and it 

supports the current project as a source of visual material. Before the contextual literature 

review in Chapter 2, it is necessary to clarify the meanings of aesthetics and complexity. The 

context of the project can be described as the intersection of these two fields. They are 

dealt with in two sections in Chapter 1 which summarise the development of the fields, 

delineate their main concerns and offer definitions of terms which are used throughout the 

thesis. The section on aesthetics also introduces a working model of the aesthetic which is 

used in the thesis as an explanatory and analytical tool. This preliminary discussion of the 

contextual theory serves to outline the project and develop its research questions. 
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Some of the most significant issues are identified earlier in Chapter 1, and are 

discussed further throughout the thesis. Chapter 2 presents a review of contextual theory 

and practice in the field of aesthetics. It is divided into three sections, covering theoretical 

contributions to the field, empirical investigations, and creative aesthetic practice. Chapter 

3 identifies the methodology of the project and outlines the chosen methods. Chapter 4 

comprises the initial empirical investigations, which focus on the visual complexity of 

stimuli based on images of cellular automata programs. The purpose of these tests is to 

examine a broad range of visual information in order to obtain an overall picture of the 

spectrum of complexity. An initial contribution to knowledge is made by extending the 

range of visual complexity under investigation with the chosen methods. The tests in 

Chapter 5 develop the findings of the earlier tests and focus on images from contemporary 

art and design practices. Chapter 6 summarizes the results and describes how the tests 

contribute to knowledge by extending the psychological and computational methods into 

the field of art and design. An original contribution to knowledge is made with empirical 

evidence for a perceptual threshold of visual complexity: Perceived complexity describes an 

inverted U-shape correlation with visual complexity as measured by image file 

compression. In conjunction with measures of aesthetic perception, the information-based 

measure reveals that complexity can be understood as a balance of order and chaos. 

Visual Complexity 
‘A variety of patterns at different levels’ is a reasonable preliminary characterization of 

visual complexity. For example, a painting exhibits patterns at many levels: Below the range 

of our perception, patterns of protons, neutrons and electrons form specific chemical 

elements which combine into hundreds of different molecules in the pigment, binder and 

support. The mechanical and optical properties of these minerals, oils and fibres determine 

the painting’s construction by the artist and its appearance to the viewer. At the visual level 

their crystalline, fluid and woven textures combine to form a record of the artistic process 

which is revealed in the layers of paint and the traces of brushstrokes (Figure 1). 
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Figure 1 Titian, The Martyrdom of Saint Lawrence (1548–1557), oil on canvas (cross-

section, magnified ×120). This section, from part of a figure in a red cloak, reveals 

layers of red lacquer and particles of carbon black, lead white and cinnabar pigments 

in oil. The opaque white layer reflects light that reaches it through the translucent red 

glaze, intensifying the surface colour. 

On the surface of a painting we perceive forms, which may be abstract or 

representational, well-defined or ambiguous. These forms have colour, texture and position 

relative to each other and to the whole picture. The way that these formal relations have 

been handled by the artist may be recognised as a style. From the visual level, we may 

notice themes in the content of the work – that which is signified implicitly as opposed to 

being represented explicitly. We may also perceive the relation of this particular work to the 

artist’s oeuvre, and see how it fits the pattern of the artist’s output. Similarly, we may see 

how the work relates to its genre and the rest of the art world, to art history, and if not also 

to current political or philosophical concerns, then almost certainly to our own experience. 

These are all examples of various patterns at different levels in a painting, and each of them 

has a bearing on the perception and judgement of visual art. The perception of these 

complex aesthetic patterns and their inter-relations provides the basis of our understanding 

and appreciation of visual art and design. At the centre of them all is the level of visual 

perception, and this is the focus of the current research project. 
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In common with this project, Rudolph Arnheim’s book Art and Visual Perception 

(1974) employs psychological findings to contribute to understanding the aesthetic 

perception of art. Using Gestalt psychology, Arnheim explains how we derive meaning 

from our sensory impressions. Gestalt means ‘complete form’ in German, and the theory 

consists of laws that describe how we perceive whole shapes by grouping individual 

sensory elements. We make sense of art by perceiving forms and patterns from pictorial 

elements that coexist in a hierarchy of visual levels. Arnheim describes this kind of 

aesthetic comprehension as an attempt to derive generalities from the particular in a work 

of art, a task which is 

… laborious, but not different in principle from trying to describe the nature of other 

complex things, such as the physical or mental make-up of living creatures. Art is the 

product of organisms and therefore probably neither more nor less complex than 

these organisms themselves. (Arnheim, 1974 p.2) 

Arnheim suggests that art is as complex as the beings that create it, but how does this 

complexity arise? The complexity of living beings stems partly from an accumulation of 

evolutionary history, in a progression from simple bacteria to complex social animals. The 

parts and mechanisms that endow beings with the property of life are among the most 

complex things we know, and they also provide some of the richest visual material, as 

anyone knows who has tried to paint flesh, fur, feathers or foliage.1 Therefore, one source 

of complexity in art is the pictorial representation of these visually-complex beings. Non-

living things, on the other hand, tend to be simpler in construction and in appearance. 

Amongst both living and non-living things, some of the most common forms of naturally-

occurring pattern are fractals (Figure 2). These self-similar patterns can be seen in clouds, 

ferns, coastlines, lightning, snowflakes, and trees (Figure 3). 

                                                 
1 Drawing and painting can offer a deeper understanding of the visual world than, say, photography, because 

they involve a hands-on re-creation of perceptual objects and effects. To draw (make) a picture of a scene is to 

draw (take) visual information from it. 
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Figure 2 Artificial fractals. These images show variations of two parameters: branching 

angle (left to right), and number of branches (top to bottom). 

 
Figure 3 Natural fractals: branches and leaves of oak and beech trees. 
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Images of fractals are less common in art than they are in nature. Unlike art, which 

often has a variety of different patterns, a fractal image has the same pattern at all levels, so 

it can be described more succinctly, and is less complex. Artificial fractals are a little less 

complex than natural fractals because they tend to have more regularity, whereas natural 

fractals do not repeat exactly, which makes them more complex, and visually more 

interesting. Images of natural fractals have even been shown to reduce physiological stress 

(Taylor, 2006). Nevertheless, despite this particular physiological benefit they have less 

aesthetic value than works of art and design, which are generally more complex. For 

example, Mandelbrot (2004a) notes that Hokusai’s Great Wave off Kanagawa (Figure 4) is 

striking partly because it is one of the earliest visualizations of natural fractals in art, but 

what makes it more visually interesting is that it also has plain areas, repetitive patterns and 

irregular shapes. My hypothesis is that visual complexity sustains interest in an image by 

allowing our visual system to engage in pattern-finding and interpretation. The images that 

provide the richest visual information for this perceptual interest are those with a variety of 

patterns at different levels. In general, then, artworks are more complex than clouds, but by 

how much? That is what the project aims to find out. 

 
Figure 4 Katsushika Hokusai, The Great Wave off Kanagawa (1829–1832), woodcut print. 
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To find out how complex art is, we need a way of measuring visual complexity. 

Arnheim gives us a clue as to how we might begin to make these measurements – through 

a process of description. For example, we could start by listing the visual elements in an 

image and their formal properties. Instead of a purely qualitative approach like Arnheim’s, 

however, this project employs concepts from information theory to formalize a model of 

visual complexity and support a quantitative analysis of images. With a quantitative 

approach, the size of a description provides a basic measure of complexity, since something 

that is more complex takes longer to describe. In this project, the ‘descriptions’ are based 

on digital image files, which allows for a computational analysis of aesthetics. Conceptual 

tools from complexity theory and techniques from experimental psychology are brought to 

bear on this computational approach to visual complexity. In this way, we can proceed to 

investigate the relation of complexity to the perception and understanding of visual art by 

using quantitative measurement of objective and subjective aesthetic properties as a basis 

for carrying out tests on a variety of images. How we choose to select or create images for 

the tests will be critical to interpreting the data (a matter discussed further in Chapter 3), 

but what is most important for this study is that the material should represent a range of 

visual complexity and reflect contemporary visual art practice. The next section briefly 

describes the role of my own art practice in developing and supporting the current research 

focus. 

Background: Art Practice and Research 
I am led to this research by my interest in the natural world and our relation to it 

through art and science. I have always been fascinated by the aesthetic experiences of art 

and nature, and by the way that scientific understanding enriches aesthetic perception. 

During my first degree, a lecture on the concept of entropy in art led me to investigate the 

science of chaos. Part of the appeal lay in the images used to describe these processes, 

which came from computational models, so I began to explore ways of using these models 

as tools for visual creativity. This was my introduction to cellular automata – programs 



Aesthetics & Complexity  Introduction 

 8  

composed of many ‘cells’ that interact according to simple rules to produce surprisingly 

complex behaviour. Because cellular automata are easily visualized on grids, these programs 

now form a significant part of my art practice, and they are used extensively in this project. 

At first I calculated the programs by hand and then later on computers, but of these early 

experiments the only exhibited works were needlepoint pieces (Figure 5). Images of these 

new computational tools from complexity theory could look dated on digital screens and 

prints, but as hand-stitched artefacts they were more original and more visually interesting. 

From the use of craft techniques to visualize computational processes, my master’s 

degree involved an examination of craft and its relation to fine art. For this work, however, 

I rejected the use of a computer, for two reasons: Firstly, calculating the programs by hand 

makes the point that complex patterns can be generated by very simple processes (a 

computer just speeds things up considerably), with the artwork itself acting as visual 

evidence. Secondly, making the pieces by hand, instead of mechanical or digital production, 

gives a more appealing visual quality – the ‘aura’ of an original artefact. Small imperfections 

and natural variations increase the formal complexity of the surface pattern, resulting in a 

visual characteristic similar to the appealing irregularity of natural fractals. This led to a re-

interpretation of Walter Benjamin’s (1936) concept of aura in aesthetic terms, and to the 

realisation that in digital reproduction there is no change in aura, unlike in mechanical 

reproduction, since digital copies are exactly identical. The study culminated in the 

suggestion that the visual appeal of the hand-made is a result of the enriched complexity of 

surface pattern that comes with manual techniques compared to mechanical or digital 

production. In relation to this conjecture, the current project explores the more general 

question of how visual complexity relates to aesthetic value. 

Looking at the needlepoint pattern in Figure 5, it is not obvious how it is designed, 

but it is apparent that it is designed and not just the result of chance occurrences. The 

appearance of living things has a similar kind of visual property, which sometimes leads to 

the misconception that they too are designed rather than the result of a complex 
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evolutionary history. In fact, the needlepoint pattern is based on a cellular automaton 

program of just a few simple rules, which starts from a single stitch and gets progressively 

more complex. 

 
Figure 5 Elementary Cellular Automata #110 (2003), needlepoint (detail, work in 

progress). 

In complex systems theory, Stephen Wolfram (2007) and Stuart Kauffman (2003; 

2008) argue that the value of computational models such as cellular automata is that they 

offer an explanation for the complexity of life on earth that complements the explanatory 

power of Darwinian evolutionary theory, which by itself does not account for many of the 

complex structures we see in nature: “…the snowflake’s delicate sixfold symmetry tells us 
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that order can arise without the benefit of natural selection” (Kauffman, 2003 p.47). My 

understanding is that although Darwin’s theory explains the mechanism by which particular 

phenotypes are selected over others, it fails to explain how their complex structures are 

generated in the first place. 

I consider the attraction of visual complexity to be similar to the appeal we find in 

natural forms, which are neither too ordered and dull, nor too chaotic and confusing. My 

inference is that they hold our interest because their perceptible organisation invites a visual 

exploration which engages us aesthetically. The formal structure of an image is what is 

represented by the concept of visual complexity. In general, a more complex image 

provides a more fertile ground for visual exploration. Therefore, images that are too 

complex to understand in one glance invite us to look again, but unless they repay further 

exploration by offering a meaningful relation of visual elements (as opposed to a random 

arrangement), we are likely to lose interest. I suggest that visual complexity is what holds 

our attention, once it is captured initially, by affording an opportunity to exercise our 

powerful visual senses. 

Research Focus 
I am not only interested in finding out what visual complexity is, but also what it does. 

So in addition to studying objective formal properties, the project also aims to investigate 

the subjective perception of visual complexity, in order to create a balanced study of both 

sides of the aesthetic. We need to establish what it is, however, before we can look at what 

it does. Therefore, measuring visual complexity and determining its formal properties, as an 

initial step, provides a route to understanding how it is produced by the artist and 

perceived by the audience. From this starting-point, the research questions are formulated. 

To describe the stages of research, I have adapted the model of Philips & Pugh2 (2000): 

Firstly, the focal theory sets out a plausible argument for the scope and purpose of the 
                                                 
2 Philips and Pugh’s model comprises four similarly-named categories – focal theory, background theory, data theory 

and contribution – with a slightly different emphasis on the content of the research stages. 
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project; contextual theory comprises a structured critique of relevant material and a mapping 

of the field; this leads to the data theory, which justifies the methods, details the test 

procedures and presents the results; finally the contribution interprets the results, identifies 

their contribution to knowledge, and discusses the impact of the findings for the field. 

These stages are discussed in more detail next, and are summarised in the form of research 

questions at the end of this chapter. 

The project focus is based on the premise that visual complexity is a significant 

aesthetic element in the creation and perception of art and design. The hypothesis is that 

visual complexity provides a ground for visual exploration (pattern-finding and 

interpretation) that sustains interest and contributes to aesthetic value. Whereas too little 

complexity (such as simple repetitive patterns) can be uninteresting, and too much 

complexity (chaos or randomness) can be confusing, we tend to find a middle ground of 

complexity in the images that hang in our homes and galleries. From this initial 

observation, we arrive at the two-sided question of what makes visual complexity 

aesthetically valuable, and why valued aesthetic work is often visually complex. This can be 

re-formulated into a single research question for the focal theory: What is the relationship 

between visual complexity and aesthetic value? 

We can begin to develop a structured answer by measuring visual complexity and 

aesthetic judgements of a set of visual artefacts. Once a suitable measure of complexity is 

established, having tested it for feasibility, the aim is to proceed through a series of 

empirical tests on images of varying complexity. A statistical analysis of the data will 

determine the correlation between measures of complexity and its perception, and give us a 

quantitative answer to the question of aesthetic value and visual complexity. In addition, 

qualitative methods can inform these results through interviews with test participants. Due 

to the practical difficulty of being able to represent and measure the visual properties of 

three-dimensional artefacts, the study is limited to two-dimensional visual material. 
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To support this line of enquiry, we need to develop a theoretical base by reviewing 

literature from the field and mapping the practices that form the context of this project. 

This stage constitutes the contextual theory of the research. Primarily, it involves an 

examination of contemporary aesthetics to determine current knowledge of the perception 

of visual complexity. This material includes not only the traditional philosophical side of 

aesthetics, art discourse and art practice, but also recent scientific contributions from the 

emerging field of empirical aesthetics. The early stages of this project identified that the 

majority of publications on visual complexity come from scientific fields. Amongst these 

diverse topics are: visual development in infants, mapping whale behaviour patterns, and 

optimising the readability of radar images and naval charts. The review of empirical 

aesthetics necessitates a brief summary of information theory, which underpins the 

techniques from experimental psychology and digital image processing that form the basis 

of this project’s methods. In addition, the literature review covers aspects of complexity 

theory that pertain to visual perception, and examples of visual art practice that engage 

with or manifest aesthetic complexity. These examples of practice are not limited to the 

most complex artworks, but include artefacts and designs that represent samples from a 

wide spectrum of visual complexity, from minimalism to horror vacui.3 The contextual 

review answers the question of what is known about the aesthetics of visual complexity, 

and with what methods this knowledge can be acquired. 

With the contextual theory in place, we are able to make decisions about the data 

theory and its research methods: in this case, how to measure the complexity of an image 

and the aesthetic judgements of a viewer. Once the methods are selected and trialled, we 

can start to design the tests and prepare the necessary apparatus. Only then can we begin to 

acquire our data and start the analysis, from which we will be able to determine the 

complexity of the visual artefacts, and how their visual complexity relates to aesthetic 

judgments. The final analytical stage evaluates the tests according to the methodology, 

                                                 
3 In an artistic composition, horror vacui is the absence of empty spaces (literally ‘fear of emptiness’). 
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allows refinement of the procedures, and develops a sustained line of enquiry between the 

experiments. Knowledge structured from the contextual research is used to interpret the 

results and is re-evaluated in light of the project’s findings. A final summary assesses the 

impact of the new results on the field, identifies remaining gaps in knowledge, and 

highlights potential areas for extending the research in the future. 

Aesthetics 
Before we go any further into the details of this project, it is necessary to clarify its 

context to provide a foundation for the remaining research. The focus is visual complexity 

– how it is used by artists and designers and perceived by an audience. Its context, 

therefore, consists of the areas in which the making and perception of art are analysed and 

discussed. These areas are united by the term aesthetics. The following section examines the 

development of aesthetics as an academic discipline, identifying its central issues and 

elaborating their relevance to this project. 

Perception 
The word ‘aesthetic’ has its origins in the ancient Greek αίσθητά (aestheta), meaning 

‘things perceptible by the senses’, as opposed to νοητά (noeta) – ‘things thinkable or 

immaterial’ (OED, 2009). ‘Aesthetic’ is an adjective, whereas ‘aesthetics’ is the name for the 

field of study concerned with aesthetic experiences and aesthetic properties. The field 

acquired this modern meaning primarily from Alexander Baumgarten’s use of the word in 

his two-volume book Aesthetica of 1750/1758: “things known are to be known […] as the 

object of logic; things perceived are to be known […] as the object of the science of 

perception, or aesthetic” (Baumgarten, in: Bennett, 1996, p.47). At that time, the idea of 

aesthetics as a science never really took hold, but the word stuck with what had already 

become a philosophical discipline that centred on questions relating to perception. 

Sensory perception has a variety of modalities. The traditional division of the senses 

into five categories represents the individual natures of these modes of perception: vision, 
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hearing, smell, taste and touch. This list of five appears to be based on the visible sense 

organs: eyes, ears, nose, mouth and skin. Science now shows that each of these organs is 

the receptor part of a sensory system that includes specific neural pathways and areas of 

the brain. An alternative way of categorizing the senses is by the type of stimulus, which we 

could reduce to three: mechanical (hearing, touch), chemical (smell, taste) and 

electromagnetic (vision). Perceptually, though, we experience more than five sensory 

modes, including temperature, pressure, hunger, pain, balance, and spatial orientation. The 

categorisation of sensory modalities is sensitive to the description of their objective and 

subjective features, and therefore it is critical to a study of perception, especially one that 

tries to relate the physical properties of objects to subjective sensory perceptions. In the 

contemporary scientific study of perception, this field is known as psychophysics, and it 

provides a basis for the methods in the current project. We will see later on in the 

contemporary literature how sensory modalities are treated in relation to aesthetic 

questions. Some of the themes explored relate to general issues that apply to all sensory 

modes of the aesthetic, but the primary concern of this project is with the perceptual 

aesthetics of vision. 

Beauty 
When we turn our attention to the senses, one of the first things we notice is that 

some perceptions are pleasing and some are not. Our name for this sensory pleasure is 

beauty, and the objects or events from which this pleasure is derived we call beautiful. The 

concept of beauty provided a foundation for aesthetics as a discursive practice that can be 

traced from Plato and Aristotle to the beginning of the nineteenth century. Initially, beauty 

was considered to be a property of objects that is revealed to us via the senses. In Plato’s 

aesthetics, for example, beauty is an ideal (transcendental) form of reality that is actualised 

in objects to greater or lesser degrees: God designs forms, nature or craft makes them, whilst 

art represents these things. Plato denounced art because he regarded it as mere imitation of 

objects that are themselves imperfect manifestations of beautiful ideal forms; thus art is at a 
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‘third remove from reality’. In this ancient Greek thought, we see the beginnings of 

aesthetics as being concerned with the core subject of perception via the concepts of art 

and beauty. 

As the discipline of aesthetics develops, the idea of beauty is gradually transformed 

from being an objective property of artefacts to a subjective property of perceptions. In the 

eighteenth century, the aesthetics of philosophers in the midst of this transformation – 

such as Shaftesbury, Hutcheson, Burke and Hume – are partially subjectivized, but still 

remain rooted in objective formal properties (Dickie 1971, p.30). By the nineteenth 

century, beauty no longer resides in the object but ‘in the eye of the beholder’. The 

philosopher Arthur Schopenhauer, for example, thought that anything can be beautiful – it 

just depends on directing aesthetic attention, and William Blake said “Every eye sees 

differently. As the eye, such the object.” (Frye 1969, p.19). The objective-subjective duality 

of perception remains closely connected to issues in contemporary aesthetics, and has a 

bearing on the current project in its methodological choices and interpretation of results. 

This project does not focus on the concept of beauty per se, but it does investigate 

subjective aesthetic judgements of preference (how much an image is liked) and quality 

(how good a work of art is) in relation to the perception of visual complexity in art. 

Art and Design 
Aesthetics is naturally associated with the practices of art and design because the arts 

are understood to involve objects and events that please the senses. So in addition to 

questions about perception in general, aesthetics uses concepts such as beauty to explore 

questions about the perception of visual art and design. This broad category of aesthetics is 

also known as the philosophy of art. Art affords aesthetic experiences by presenting 

perceptible properties. Aesthetic theories of art attempt to explain how we experience, 

understand and evaluate this visual material. Consequently, aesthetics brings together 

science and philosophy in the study of the arts. This makes the aesthetics of art a far-

reaching discipline whose area of study can be approached from many different angles, and 
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makes for a place of lively debate. How well-integrated are its different areas, and the 

extent to which communications between them flow, is presented in the contextual review 

that follows this chapter. For now, we note that this combination of art, science and 

philosophy means that the aesthetics of art has the potential to be a truly inter-disciplinary 

field. The current project is designed to integrate creative, empirical and critical research 

methods in an investigation of the aesthetics of visual complexity. 

A central occupation of philosophical aesthetics is the definition of art, which can be 

divided into two distinct functions: classificatory and evaluative. While the former relates to 

the conditions that make an artefact a work of art, the latter deals with what makes a good 

work of art. Evaluating aesthetic objects in these terms is fundamental to the practices of 

art and design. For aesthetic philosophy, therefore, the criteria for such evaluations provide 

a basis for defining art practices and products. Inasmuch as the definition of art relies on 

criticism rather than art objects, the aesthetics of art constitutes a form of meta-criticism. 

The discourses of art and its aesthetics thus run parallel in a similar way to that of literature 

and literary criticism – their readerships are quite different (and this is perhaps why so 

many books on visual aesthetics have so few illustrations). There was a time when the 

Western concept of art was limited to so few practices that it was a relatively easy task to 

identify a work of art amongst other objects. Today the range of practice is much wider, 

and the criteria employed by artists, critics, buyers and curators are less easy to identify. In 

an artworld that supposedly accepts any kind of object or event as a candidate for art 

status, being able to recognise and use these criteria is a basic requirement for engaging in 

its practice and discourse. We see in Chapter 2 how this situation is addressed in the 

contemporary philosophy of art and design. 

Taste 
In the 18th century, the concepts of beauty and taste occupied a central place in 

aesthetics, not only in the philosophy of sensory perception but also in the philosophy of 

art. At this time, the meaning of ‘aesthetic’ is further developed by Immanuel Kant in the 
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Critique of Judgement (originally published 1790). Kant restricted its use to denote matters of 

taste, that is, the judgement of sensory perceptions (Levinson, 2003). He begins his analysis 

by saying, “The judgement of taste is not cognitive […] and so not logical, but is aesthetic – 

which means that it is one whose determining ground cannot be other than subjective.” (2007, 

p.35, original emphasis). It is the subjective aspect of aesthetic judgement that distinguishes 

it from judgements of reason and ethics (which had been treated in two previous critiques 

by Kant) and that defines the aesthetic as a judgement of taste. Kant describes four types 

of subjective judgement: the agreeable, the good, the beautiful and the sublime. Judgements 

of the agreeable and the good are both ‘interested’ (tied to desires), whereas judgements of 

the beautiful and the sublime are not, and on this basis they are defined as aesthetic 

judgements of taste: 

Taste is the faculty of judging an object or mode of representation by means of a 

delight or aversion apart from any interest. The object of such a delight is called beautiful. 

(Kant 2007, p.42, original emphasis). 

Here, the concept of beauty is employed by Kant to distinguish judgements of taste 

from rational or ethical judgements. At this point in 18th century aesthetics, beauty has 

become a tool of philosophical inquiry rather than a constraint to its focus. In Kant’s 

emphasis, besides beauty, we also find the first conception of aesthetic judgement as being 

disinterested, which is one of the defining characteristics of his aesthetic, along with 

subjectivity and universality. This formulation of aesthetics is amongst the most influential 

and long-lasting, but the concept of taste loses favour in aesthetic discourse as it comes to 

be associated with the privileged power relations of authoritative institutions and 

individuals. 

Today, ‘taste’ is a term rarely used in talking about art. In a contemporary artworld in 

which the aesthetic judgements of gallerists and curators apparently have a great deal of 

influence (as evidenced in Art Review’s annual ‘Power 100’ list, for example), it is perhaps 

worth re-evaluating the concept of taste and re-introducing the term in today’s art 
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discourse. I believe that the concept of taste still has currency in the production and 

consumption of aesthetic material, whether it is talked about or not. It would explain the 

success of those who make a living based on their judgement and selection of aesthetic 

material, such as D.J.s in dance music culture who may develop a higher profile than many 

of the artists whose work they present. It would also explain the almost reverential attitude 

towards figures such as the late radio D.J. John Peel, whose listeners trusted his judgement 

and were willing to appreciate (or endure) the various types of new and experimental music 

that he was known for championing. Ostensibly, the purpose of a critic is to proclaim what is 

good and what is not, but the value of a critic’s function improves as we get to know their 

taste, whether we share it or not. We could say similar things about the job of the curator. 

As the roles of artist and curator become increasingly blurred in contemporary practices, 

such as that of Nicolas Bourriaud, whose role we could describe as a D.J. of the artworld 

(see Postproduction, 2005), aesthetic judgement remains a significant element in the day-to-

day transactions of art, whether or not we choose to call it ‘taste’. 

The Aesthetic 
As the concepts of beauty and taste lose currency in aesthetic philosophy, they are 

gradually replaced by discourse about what defines the aesthetic. In language, ‘aesthetic’ 

serves as a predicate to a particular kind of experience, object, property, concept or 

judgement. In trying to construct a definition of the aesthetic, philosophy attempts to 

clarify the relationship between these various aspects and to identify which is the most 

fundamental. Nick Zangwill (2008) argues for the primacy of aesthetic judgements, as 

follows: 

Aesthetic properties are those that are ascribed in aesthetic judgments; aesthetic 

experiences are those that ground aesthetic judgments; aesthetic concepts are those 

that are deployed in aesthetic judgments; and aesthetic words are those that are 

typically used in the linguistic expression of aesthetic judgments. 

Nevertheless, it is plausible that aesthetic concepts are more fundamental, because if 

they are ‘deployed’ in aesthetic judgements, then they must be prior to and independent of 
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those judgements, and aesthetic language too. On the other hand, one could also argue for 

the primacy of aesthetic experience, without which there would be little to discuss at all. With 

the current project’s focus on perception, aesthetic experience is perhaps the more 

fundamental, but actually this matter is not directly relevant to the project because it has 

little practical consequence in terms of its methods. What is most significant is the fact that 

all these aspects of the aesthetic are closely interconnected, and we should be mindful of 

their relationships in our analysis of visual complexity. 

Kant’s concept of the aesthetic is defined by disinterestedness in practical desires 

except for an appreciation of the aesthetic experiences that art affords. Kant describes his 

aesthetic as subjective (personal) and universal (normative) (2007, p.42). When we make an 

aesthetic judgement, it cannot be anything other than subjective because it is not based on 

reason or ethics, but at the same time it is also an evaluation. In this sense, aesthetic 

judgements are not just explicit statements of preference; implicitly they are universal 

invitations for others to agree with us. If we say “I like this wine”, we make what Kant 

called a judgement of agreeableness, but if we say “that painting is beautiful”, we make a 

judgement of taste. We make such a statement as if beauty were a property of that painting, 

even though we also know it as a judgement based on subjective experience. To state that 

one likes something is a claim beyond dispute, but to state that something is beautiful is to 

make a claim that can be argued against. Aesthetic judgements are thus normative because 

they make this claim to truthfulness. Unlike objective universal judgements, which are 

based on shared concepts or criteria, aesthetic judgements are grounded in personal 

experience. Kant’s normative aesthetic forms a central element of analytical philosophy, 

but in continental philosophy the subjectivity of aesthetic judgement undermines its claim 

to truth, which leads to the denial of normativity and to the view that all such judgements 

are only ‘relative’. We return to this issue in the methodological discussion in Chapter 3, 

but for now we note that the current project rejects the continental view and accepts the 

normative aspect of the aesthetic. 
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In philosophical terms, aesthetics tries to define the necessary and sufficient conditions 

of the aesthetic, that is, to identify all the properties that things must have to be properly 

called aesthetic. An example of this approach is that of Monroe Beardsley (1958), for 

whom the value of an aesthetic experience depends on having three properties: unity, 

intensity and complexity. For Beardsley, these three properties are the ‘essences’ of the 

aesthetic. The value of this essentialist approach is that it has the potential to say whether 

an artefact is aesthetic and why it is worth looking at, but its usefulness crucially depends 

on its relation to actual practices in the artworld. From Kant onwards, the field had 

become focused on essentialist definitions of the various aspects of the aesthetic 

(experiences, properties, etc.) and of art. By the 1950s, the increasing diversification of art 

objects and the development of new practices strained the relationship with essentialist 

definitions of art. Similarly, perceptual definitions of the aesthetic also suffered amidst an 

increasingly conceptual artworld. Beardsley’s aesthetic straddles the division between the 

theory discussed thus far and the theories dominant in contemporary aesthetics, which are 

examined in the following chapter. The dividing line is marked by the influence of 

Wittgenstein, who challenged the philosophical practice of essentialist definition. 

Beardsley’s (1958) theory represents the first response to the neo-Wittgensteinian challenge 

– to avoid defining art at all (he only defined the aesthetic). We take up this discussion in 

the next chapter, beginning with the more constructive responses to this challenge. 

To summarise this preliminary discussion of aesthetics, we can say that the field is 

chiefly concerned with perceptions (which are natural phenomena), properties (of art and 

nature), and practices (of making, perceiving and understanding art). The field is divided 

along the lines of the various methods employed in its study and the purposes for which 

those studies are undertaken. Here we have introduced the philosophy of aesthetics, and 

have focused on the discursive tradition of this field. In the next chapter we develop this 

line of enquiry into contemporary culture, and expand the context into the artistic and 

scientific explorations of the aesthetic. Broadly speaking, all aesthetics is connected with 
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the study of perception, since almost everything we know comes to us via the senses, but 

discourse in the philosophical field has shifted – in parallel with art practice – from the 

perceptual to the conceptual. This move seems to be out of line with a contemporary 

cultural environment that is increasingly designed to be perceived, and in which there 

appears to be a tendency towards the aestheticization of everyday objects. The aesthetics of 

technological products, for example, is now considered much more than it used to be. 

Dieter Rams’ designs for Braun led the way in this regard; the third of his ten design 

principles is ‘good design is aesthetic’ (Design Museum, 2007). Jonathan Ive presently 

continues the trend with sleek, functional and colourful designs for Apple Inc., such as the 

iMac, iPod and iPhone. Given this situation, perhaps aesthetics should look again at how we 

sense and make sense of the surrounding visual culture, in order to understand a little more 

about why we appreciate the things that we do in terms of perception. This is one 

motivation for the current project – to re-evaluate perceptual aesthetics in general, but to 

focus specifically on the property of visual complexity in the practice of art and design. 

Working Model of the Aesthetic 
I now present a model of the aesthetic that provides the conceptual framework for 

this project (Figure 6). The model is based on three key elements – artist, artwork and 

audience – from which a fourth element is developed – the artworld. These elements 

provide an ontological base for the thesis that allows for the identification of the aesthetic. 

Of these four the artwork is the primary element, but it is also important to recognise that 

behind every artwork is an artist, and in front of the work there must be an audience. 

Including these roles reflects the position that unless an artist engages with the artworld 

public, an artefact cannot lay claim to being a work of art. That the audience contributes to 

an artwork is a well-established principle, as described by Marcel Duchamp in his lecture 

The Creative Act, 1957: 
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All in all, the creative act is not performed by the artist alone; the spectator brings the 

work in contact with the external world by deciphering and interpreting its inner 

qualification and thus adds his contribution to the creative act. (Stiles & Selz, 1996, 

p.819) 

In addition, the model illustrates the idea that art is essentially a form of 

communication, and that whatever the medium it always carries a message. The arrows in 

the illustration signify both the direction of communication and the temporal sequence of 

the process. Communication is an essential element of art, but the current project does not 

focus on interpretation and meaning; it is less concerned with semantics than with the syntax 

of visual complexity. The scope is limited to the aesthetic perception of visual complexity, a 

formal property of the art object, which is why the artwork is central to this model. 

 
Figure 6 The working model of the aesthetic. 

In this model, the aesthetic is identified as residing in the interactions with an 

artwork – firstly by those who produce it and secondly by those who perceive it. The 

aesthetic is an active process of experiencing art and making judgements based on the 

evaluation of those experiences. The artist uses her judgement in the production of an 

artwork to make decisions about how the creation of the work should proceed. More often 

than not, this involves a kind of continual adjustment until the aesthetic properties of the 

artwork meet the requirements of the intended aesthetic experience that the work is to 
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afford the audience. In turn, the audience makes aesthetic judgements about an artwork 

and the artist based on their sensory perceptions, which include the most basic judgement 

of whether to continue looking or not. This project’s hypothesis is that visual complexity 

sustains aesthetic interest in looking by providing a ground for visual exploration. 

Together, the processes of production and perception constitute the artworld – the 

culture in which art is made and appreciated. In this conceptual model, the artworld is 

comprised of many such processes of aesthetic production and perception. Figure 6 shows 

only a single artwork for the sake of clarity, but the model symbolizes many artists 

producing multiple artworks which are seen by lots of people in various times and 

locations. Each of these historical or potential situations constitutes a unique context for 

the perception of an artwork which affects the quality of aesthetic experience it affords. 

The model does not attempt to represent this kind of detail, but it is implied. Also implied 

are the many other roles besides artist and audience that populate the artworld, such as 

curator, critic, dealer and gallerist, to name but four. Instead, the model focuses on the core 

structure of art practice and is centred on the artwork. We return to the model in Chapter 

2, where it is used to structure the methodology, and in Chapter 3 it provides an analytical 

tool for aesthetic theory. 

A key part of the model is the location of the aesthetic in the interaction between 

object (artwork) and subject (artist or audience). This objective-subjective duality is present 

in many aspects of the aesthetic described thus far – attributes of sensory modes, aesthetic 

properties, theories of art, and so on – and the way in which we deal with this issue affects 

the nature of the investigation. The current project investigates visual complexity in both 

objective and subjective terms, and the relation between these two aspects of the aesthetic 

is a significant element in the development of this thesis. The focus of the thesis can be 

described as the intersection of the fields of aesthetics and complexity. Having introduced 

some key concepts of aesthetics, we next take a look at complexity. 
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Complexity 
First, a word about terminology: ‘Complexity’ stems from the Latin root plexus, 

meaning ‘plaited’ or ‘woven’, and so complex literally means ‘plaited together’ or 

‘interwoven’ (OED, 2009). In aesthetic terms, what is woven together are the various 

patterns at different levels that are available to visual perception, which we described at the 

beginning of this chapter. In this thesis, the term ‘complex’ carries its usual meaning as the 

opposite of ‘simple’. Complexity comes in degrees, however, and the thesis explores visual 

complexity as a scale from simple to complex. So while ‘complex’ generally refers to one 

extreme of this scale, ‘complexity’ can refer to the whole range. Similarly, ‘complexity 

theory’ is a term used to describe many different areas of study, some of which focus only 

on the most complex phenomena whilst others investigate a wide range of complexity. 

This project explores a wide range of visual complexity. To avoid ambiguity I occasionally 

refer to this range with the phrase ‘spectrum of complexity’. 

By looking at how complexity is understood, we may begin to learn more about its 

manifestation in visual art and design. In this way, the scientific literature on complexity 

can contribute to understanding its production and perception in art. The objects of study 

in this field of science are complex systems. One of the first people to propose a definition 

of complex systems was the economist Herbert Simon, who in 1969 described them as 

being “made up of a large number of parts that have many interactions” (1996, p.183). 

Examples of complex systems include an ants’ nest, the stock market, the weather system 

and the brain. Each of these systems displays some kind of autonomy from the workings 

of its constituent elements. For example, we do not find the blueprints for the ants’ nest in 

any individual, and yet it emerges in their collective behaviour. Similarly, many people have 

tried to find rules that characterize the behaviour of a stock market, the pattern of which 

depends on many variable interactions of individual brokers, bankers and businesses. In 

contrast to these examples, the objects of study in the current project are two-dimensional 

artworks, and these are not complex systems. The artworks under investigation are static 
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objects, not dynamic systems. The implication is that what we can learn from complexity 

science may be limited by the scope of the project. 

Visual complexity does involve complex systems, however, in its perception. 

Perceiving visual complexity requires very complex structures (the visual system) and 

produces complex phenomena (conscious sensory awareness), but the project focus is 

limited to the formal complexity of visual images, and not the complexity of these 

biological and psychological mechanisms. Therefore, whilst some of the dynamic aspects of 

complexity theory may be inapplicable to this project, we may yet find use for some of its 

concepts and models. Indeed, one of the central concerns of complexity science is to 

unearth patterns of behaviour that are common to many different systems, such that 

understanding mechanisms of complexity in one type of process may inform activity in 

other fields. The proof of the applicability of such concepts to other fields is the 

responsibility of each individual researcher, and it often requires an element of faith or 

intuition to begin such an investigation. Nevertheless, there are suggestions that it is 

possible, at least in principle, such as this comment by Herbert Simon which also supports 

the hypothesis of the current project: “The aesthetics of natural sciences and mathematics 

is at one with the aesthetics of music and painting – both inhere in the discovery of a 

partially concealed pattern” (1996, p.2). For the purposes of the present study of visual 

complexity, 

The field of complex systems provides a number of sophisticated tools, some of them 

concepts that help us think about these systems, some of them analytical for studying 

these systems in greater depth, and some of them computer based for describing, 

modelling or simulating these systems. (Nicolis & Rouvalis-Nicolis, 2007) 

The aim of this section is to present some of the useful concepts that can help us think 

about visual complexity in preparation for the contextual review in the next chapter. The 

review serves to identify the analytical methods appropriate for a study of visual complexity in 

the field of art. The present section also introduces computational tools for modelling complexity 

which are used in my art practice and in this project’s tests. 
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Identifying Complexity 
When we come across a system that is neither regular nor random – when it has a 

structure that is not easy to comprehend – then we call it ‘complex’. The most complex 

things we know are living beings. Indeed, life itself appears to be a special property of these 

most complex organic structures: 

Life is a level of complexity that almost lies outside our vision; is so far beyond 

anything we have any means of understanding that we just think of it as a different 

class of object, a different class of matter… (Adams, 1998) 

The same could be said of consciousness – of sensory capabilities and mental 

faculties – in terms of a Cartesian dualist philosophy: The complexity of mental 

phenomena seems so far removed from the material realm that we understand mind and 

matter as separate classes. To a complexity theorist, however, life and consciousness are 

regarded as emergent properties of complex systems, and the physical world does not simply 

divide along the lines of our limited understanding. Emergence is a crucial concept in 

complexity theory, and though it is difficult to define it can be summed up in the idea that 

the whole is greater than the sum of its parts. To take a basic example, the physical state of matter 

as solid, liquid or gas is an emergent collective property of a group of molecules. A single 

molecule of a substance cannot be said to be in any one state without reference to its 

relation to other molecules, and so the concept becomes redundant when a single molecule 

is considered in isolation. In terms of visual perception, we could say that the Gestalt 

grouping of picture elements into recognisable shapes or patterns is an emergent 

phenomenon. A perceived pattern emerges from the relationship of constituent elements, 

and cannot be found in the properties of the elements alone. 

Often, emergent properties cannot be predicted, even when armed with complete 

knowledge of the constituent elements. For that reason, emergence can be understood as 

the introduction of novelty to a system; what emerges is something new, not present until the 

elements in the system interact. This creative aspect of complex systems is evidenced as 

much in the evolutionary history of life on earth as it is in the development of art. In this 
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sense, the artworld can be understood as a complex system – an idea which forms the 

subject of Niklas Luhmann’s Art as a Social System (2000). From the complexity-based 

theory of biologists Maturana and Varela (1980), Luhmann borrows the concept of 

autopoiesis (literally ‘self-making’) to describe the self-sustaining organisation of the artworld. 

The same concept also applies to the working model of the aesthetic outlined earlier, in 

which the artworld is represented as a system composed of many interacting feedback 

processes of art production and perception. Autopoiesis can be understood as another 

characteristic of complex systems; living things make themselves, whilst other complex 

systems sustain yet more systems and beget new properties. Of course, the idea can be 

applied to other social systems too (it has found currency in management theory, for 

example), and this demonstrates the transferability of knowledge from complexity science 

to fields such as art and aesthetics. In transferring ideas from complexity theory we should 

always take account of particular details, therefore, but we may also be forced to talk in 

more general terms or in terms of patterns at different levels of abstraction. 

Some complexity theorists see their discipline as not just a part of traditional science, 

but as a new way of approaching scientific problems in general. For example, the title and 

contents of Wolfram’s A New Kind of Science (2002) reflect this aim. Others who share this 

view have described complexity theory in terms of Thomas Kuhn’s (1996) concept of a 

paradigm, that is, a shift in the beliefs that undergird the practice of science: 

Complexity is emerging as a post-Newtonian paradigm for approaching from a 

unifying point of view a large body of phenomena occurring in systems constituted by 

several subunits, at the crossroads of physical, engineering, environmental, life and 

human sciences. (Nicolis and Rouvas-Nicolis, 2007) 

What has changed in this new approach is the scientific view of complex systems, 

from being regarded as prohibitively problematic to being legitimate objects of scientific 

study. Now that computers offer a means of dealing quickly with large quantities of data, 

the way is open for an analysis of complexity in the many different fields in which it arises. 

Because it appears in so many different guises, there is no hard and fast definition of 
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complexity agreed upon by all – partly also because it is still an emerging field. At this stage, 

we have identified some of the characteristics of complexity, namely: interactivity, self-

organisation, emergence and autopoiesis. While these are useful concepts in the theory of 

dynamic systems, they are less applicable to the aesthetics of static two-dimensional art. 

The gap between visual art and models of dynamic systems can be bridged with a 

computational approach, which is outlined in the following section. 

Computational Complexity 

Complex systems are the kind of thing that science had struggled to cope with until 

the rise of computing, because they were just too complicated to be amenable to analysis. 

Digital computers enable the modelling of complex systems, and offer a way of dealing 

with problems that were previously intractable: “Part of the rise of the complex systems 

research agenda can be tied to the use of theoretical computation as a new way to explore 

such systems” (Nicolis & Rouvalis-Nicolis, 2007). In this context, computers are used less 

for their capacity to perform sophisticated calculations than for their ability to carry out a 

great number of operations in a very short time. Cellular automata, for example, are based 

on very simple operations, but what makes them difficult to compute is the sheer number 

of cells and their interactions. So for the study of complex systems, the computer is more 

of a labour-saving device than a particularly ‘clever’ machine. But the computer also 

provides a measure of complexity in terms of the amount of time or the number of 

operations that it takes to perform a task, and this is what is meant by ‘computational 

complexity’. 

The computational approach to complexity is exemplified by the work of Stephen 

Wolfram, a scientist who gained a PhD on particle physics at the age of 20. Wolfram 

contributed to the field of complexity mainly through his work on cellular automata, which 

are computational models of complex systems. In 1986, he founded the first journal in the 

field – Complex Systems, but is a somewhat controversial figure in the scientific community 

partly because his recent method of disseminating findings does not conform to the usual 
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peer-reviewed publication system, choosing instead to self-publish funded by a successful 

software business. The two ventures are related, since Wolfram’s Mathematica software was 

initially developed to aid his research into complex systems. Mathematica is used in the 

current project to generate images, analyse data and visualize the results. 

Published in 2002, A New Kind of Science (NKS) presents Wolfram’s 20-year 

investigation of complexity and computation. Its method is to exhaustively examine various 

types of simple programs, such as cellular automata, and to explore their behaviour over a 

range of complexity, thus providing a kind of natural history of the computational domain. 

NKS shows that different kinds of simple program exhibit the same range of behavioural 

patterns, and makes the claim that all computational systems above a certain threshold of 

complexity are essentially equivalent. Wolfram proposes that we can understand everything 

in the natural world as a computation, and that doing so allows us to apply what we learn 

from the study of simple programs to situations in real life. The current project is 

supported by Wolfram’s work, since it uses his ideas about complexity to develop images 

for testing which are made with CA programs implemented in Mathematica. Because cellular 

automata play a significant part in the context and the content of the current project, we 

introduce them next. 

Cellular Automata 

A cellular automaton is a system of ‘cells’ that evolve in discrete time steps according 

to a set of rules (Weisstein 2009). In the simplest possible CA, each cell can have two 

different ‘states’, and these can be represented by two colours: black for ‘on’ and white for 

‘off’, for example. At each time step, every cell uses a set of rules to determine its next 

state, based on its current state and those of its neighbours. The set of rules has to include 

every potential configuration of states, but can often be described simply in words, for 

example: ‘If both neighbouring cells share the same state, then remain in the same state; 

otherwise change state on the next step’. The simplest CA comprises a single row of cells – 

it is a one-dimensional CA. With states represented as colours, we would see cells change 
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state at each time step, but with a 1D CA, instead of watching a row of cells change colour 

over time, we could stack the rows in sequence, adding them successively below the last. In 

this way, we can visualise the evolution of a 1D CA over a portion of time in a single 2D 

image. This is what the rule specification looks like for the CA we described in words: 

 
Figure 7 Visualization of the 1D CA rule ‘If neighbouring cells have different states, 

then change state on the next step’, rule number 150 of Wolfram’s elementary CA. 

The rule as depicted above can be interpreted as follows: The top part (1 cell + 2 

neighbours) specifies all potential current conditions of the cell, and the lower part specifies 

the resulting state. This rule is known as number 150 in Wolfram’s numbering scheme, 

derived from the rule’s unique pattern of cells in the lower half of the rule specification. 

Black cells are interpreted as ‘1’ and white as ‘0’ to give the binary number 10010110, which 

is 150 in decimal. Figure 8 shows how the rule evolves when starting with initial conditions 

of a row of white ‘off’ cells with a single black ‘on’ cell in the centre. 

 
Figure 8 Evolution of elementary CA rule 150. 

It is often impossible to predict the outcome (the type of pattern that will result) 

even when the rules are known and understood. This is because we are talking of an 

emergent property. Of the simplest 1D CA, with only two states and two neighbours taken 

into account, there are 256 different rules. Wolfram calls these the ‘elementary’ cellular 
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automata (eCA). Because they are relatively few in number, are simple to generate and 

understand, and because they display a wide range of complex behaviour/patterns, they 

make a good model for the science of complex systems. The fact that they are also easily 

visualized means that CA are ideal for use in the current investigation. Next we look at 

ways of mapping the variety of CA patterns that comprise a spectrum of visual complexity. 

Mapping Complexity 
Wolfram (1984) mapped out four levels of complexity based on the visual 

appearance of patterns generated by cellular automata: 

Class 1. Simple: homogeneous, no variation in structure. 

Class 2. Periodic: simple sequences, regular or nested patterns 

Class 3. Chaotic: aperiodic, irregular patterns. 

Class 4. Complex: complicated localized structures, mixture of order and randomness. 

These classes are represented in Figure 9. In the first image, the class 1 CA rule 

specifies that every possible configuration leads to a black cell, and the resulting image is 

completely black after a few steps. The class 2 CA image has a regular diagonal pattern, and 

repeats in a square tessellation. The class 3 image is a ‘non-repeating pattern’ with an 

overall texture but with chaotic variations on a small scale. The unpredictability of this rule 

(number 30 in the eCA) allows for its use in Wolfram’s Mathematica software as the basis of 

its random number generator. The last image shows complex structures within regular 

patterns, and is the only form of class 4 rule in the elementary CA. 

 
Figure 9 Examples of elementary cellular automata in Wolfram’s four classes of 

complexity. 

1 2 3 4 
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Wolfram’s classification constitutes a qualitative analysis of complexity, in which the 

categories are not rigorously defined but are based on the perception of visual properties 

that reflect the structure and operation of CA. Li and Packard (1990) examine the 

distribution of eCA types in “rule space” (an abstraction of the possible forms that CA 

rules can take), and organise the same rules into five categories (A, B, C, D, and E). Their 

classification makes a distinction between two types of periodic (B, C) and chaotic (D, E) 

rule, where Wolfram has only one of each (classes 2 and 3), and places Wolfram’s class 4 

rules into either a periodic or chaotic group depending on which aspect of the pattern is 

taken into consideration (which reflects the characterisation of class 4 eCA as having both 

order and randomness). Li and Packard’s scheme elaborates, rather than contradicts, 

Wolfram’s classification. For the purposes of the current investigation, Wolfram’s system is 

favourable, since it is based on visual properties, rather than the more mathematical 

scheme of Packard and Li. Wolfram also investigated the proportions of the four classes of 

complexity in various types of CA. The elementary CA contain approximately 50% class 1, 

and 25% each for classes 2 and 3. The results for CA with more colours and more 

neighbours are illustrated in Figure 10. It shows that random patterns are the most 

common in many of the CA types, and complex patterns are the rarest. 

 
Figure 10 Proportions of complexity classes in various types of CA. Wolfram, 2002, 

p.948. (k = number of colours, r = number of neighbours on either side) 

Christopher Langton’s Ph.D. thesis (1991) comprised a quantitative examination of 

the same patterns of behaviour in cellular automata by defining and manipulating a value 

he called the λ (lambda) parameter which measured the activity of the systems. As the value 

of the λ parameter was increased, Langton observed “a phase transition between highly ordered 

and highly disordered dynamics, analogous to the phase transition between the solid and fluid 
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states of matter” (1990 p.13, original emphasis). Increasing the lambda parameter is like 

turning up the temperature of a system, in which a substance changes from an ordered 

crystalline solid to a chaotic boiling liquid. The result is that “CAs exhibiting the most 

complex behaviour – both qualitatively and quantitatively – are found generically in the 

vicinity of this phase transition” (Langton, 1990 p.13). Langton coined a phrase to describe 

the location of these most complex structures – ‘the edge of chaos’. His results show that 

as the λ parameter is increased, the types of pattern encountered can be recognised from 

Wolfram’s classification, except that the sequence in which they appear is: 1, 2, 4, 3 (see 

Figure 11). The significant point is that the complex CA (class 4) are found between 

regions of order (classes 1 and 2) and disorder (class 3). 

 
Figure 11 Location of the Wolfram classes in Langton’s lambda space. (Langton, 

1990, p.32) 

It is fair to describe the work of Wolfram, Li & Packard, and Langton as mappings of 

complexity, because they look at the entire spectrum of complexity and establish what is to 

be found where. This classificatory exercise is more than just taxonomy though, because 

Langton’s mapping is structured according to critical quantitative parameters of the 

programs. Cellular automata are particularly useful in this regard because their visual display 

allows us to use our sensory perception as a form of analysis (in other words, there appears 

to be a correspondence between their computational structure and their appearance). 
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Wolfram’s qualitative mapping is thus augmented by Langton’s quantitative measurement, 

and the location of different types of visual pattern is given meaning in the context of a 

measurable spectrum of complexity. The following sections examine the types of visual 

forms and patterns that are mapped out by classification systems of Wolfram and Langton. 

Uniformity 

Uniform images are the simplest possible. They are not particularly interesting in 

themselves but they are important in establishing a base level for a measure of complexity. 

All uniform visual arrays are essentially identical in terms of structure – they may differ in 

colour (type of picture element), but the defining characteristic is that all the elements of a 

uniform class I image are identical; there is no differentiation of picture elements. 

Therefore, a description of this type of image can be quite short. We need to specify the 

colour of the elements just once, and the only other parameter that really makes a 

difference to analysis is the number of elements (the dimensions of the array). Altering the 

number of elements in a uniform image rarely alters it perceptually, however, since all the 

elements are identical. Thus a single-pixel image looks identical to a uniform image of the 

same physical size composed of many pixels. The idea that a description of a pattern can be 

shortened and simplified is central to the field of information theory. The following section 

discusses this concept in relation to class 2 patterns. 

Order and Information 

In a paper that established the field of information theory, Claude Shannon (1948) 

measured information in ‘bits’ (binary digits), and defined information content in terms of 

order, or rather its complement, entropy. In physics, entropy is the disorder of a system; in 

information theory, the entropy of a message is inversely proportional to its predictability. 

Regular patterns can be predicted because they have order – they provide little new 

information, and so we can use a compact description of a highly ordered pattern in place 

of an element-by-element description of its content. Irregular patterns are hard to predict 

and describe, and so they have low order and high information content. This principle of 
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information theory provides the basis of data compression in digital image files (Salomon 

2004). Those parts of a message that we can afford to discard in a short description are 

what is redundant. Regular patterns are redundant and can be compressed, whereas 

irregularity is less redundant and less compressible. The size of a compressed file thus 

reflects the amount of disorder or information content in the original data. This fact proves 

to be highly relevant to the current investigation, as it provides a basis for measuring the 

complexity of digital image files, and is taken up again in the following chapter’s review of 

contextual theory and practices. Before we go further, it is worth noting some of the 

subtleties of order as understood in information theory. 

The information-theory concept of order is not quite as intuitive as it may seem. 

Consider the two strings of digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and {1, 0, 3, 2, 5, 4, 7, 6, 9, 8}. 

Which is more ordered? We are likely to say the first one, but why? The second string is 

constructed from the first by swapping pairs of adjacent digits, so it is not un-structured – 

there is no randomness here. So why should it seem less ordered? Actually, it is a 

misleading situation, because in fact the two strings are structurally identical in terms of 

order. The confusion stems from the meaning we attach to the symbols used. The first string 

presents the digits in ascending sequence of their numerical value. But in information 

theory, we disregard the meaning of symbols and focus only on their quantity and variety. 

If we measure information by the length of a description, then each of those two strings 

take the same amount of description (for each we must specify ten symbols and ten 

locations), and are thus equal in terms of order and information. If we had used ten 

meaningless symbols in place of Arabic numerals, we would be unable to perceive any 

difference in order between the two strings. Order enters the frame only when there are 

multiples of things to be ordered (strictly speaking, when there are more possible positions 

than there are types of element). Thus, for example {0, 1, 0, 1, 0, 1, 0, 1, 0, 1} is more 

ordered than {0, 0, 0, 1, 0, 1, 1, 0, 0, 1} because we can form a more compact description 

of the first string ({0, 1} × 5). In the same way that information theory disregards the 
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meaning of elements in the measurement of information, the current project disregards the 

meaning and interpretation of images, and focuses only on the objective formal properties 

of visual complexity and their subjective aesthetic perception. 

Fractals 

Besides simple repetitive patterns such as stripes and checks, Wolfram’s class 2 CA 

images include another type of ordered image, in which pattern repetitions are nested 

within themselves. These intricate self-repeating patterns are called fractals, and are 

exemplified by the Mandelbrot set (Figure 12). 

 
Figure 12 The Mandelbrot set, overview (left) and detail (right). The extraordinary 

variety of patterns in its infinitely complicated boundary reflects the fact that it is a 

superset of many fractals, where each point in the set represents a unique fractal 

pattern called a Julia set. 

Benoit Mandelbrot brought the geometry of these wiggly, grainy and wrinkled forms 

to the field of mathematics, demonstrating how they can be methodically generated and 

precisely measured. The value of this new geometry was that it applied to many of the 

forms we see in nature, which are poorly modelled by the more familiar and regular 

mathematical constructs: “Clouds are not spheres, mountains are not cones, coastlines are 

not circles, and bark is not smooth, nor does lightning travel in a straight line” 

(Mandelbrot, 1982, p.1). The computational study of fractal geometry makes possible the 
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analysis of forms that used to be viewed as ‘pathologically’ problematic but which are 

common in nature. Traditional Euclidean geometry cannot cope with such ‘rough’ forms:  

…the language of mathematics and its characters are triangles, circles and other 

geometric figures, without which one wanders about in a dark labyrinth. […] But they 

have turned out not to be sufficient, “merely” because most of the world is of 

infinitely great roughness and complexity. (Mandelbrot, 2004b) 

Mandelbrot cites Katsushika Hokusai’s famous print The Great Wave off Kanagawa 

(Figure 4) as one of the earliest visualizations of fractals: “Hokusai holds a central role in 

my current view of fractals as a notion familiar to Man, in one form or another, since time 

immemorial” (2004b, p.26). Whereas artificial fractals repeat their pattern regularly, natural 

fractals tend to be more irregular. The Mandelbrot set (Figure 12) is irregular in this sense, 

which may explain why this pattern has been widely reproduced beyond the mathematical 

domain from which it came. Because of the property of self-similarity, it can be difficult to 

judge the scale of fractals (in the absence of a visual cue) because they look similar whether 

nearby or far away. For this reason, the image of fractal tree branches in Figure 3, which 

was taken from a distance of around 12 feet, can also be perceived as a view of the earth 

seen from a great height, like a satellite image of mountains and rivers. These two 

alternative visual interpretations are possible because both are characteristically fractal in 

form. Because fractals have a similar structure at all levels, they are fairly simple, and so a 

description of them need only be fairly short. Indeed, the Mandelbrot set is constructed 

from a surprisingly short algorithm: zn+1 = zn
2 + C. The intricacy of a fractal image such as 

this comes from the depth of iteration of the algorithm (see Figure 2, in which progressive 

stages of iteration are illustrated). Fractals may thus have great depth of detail – which in 

theory is infinite, but in practice is limited by physical constraints – but because fractals 

have only one type of pattern at all levels, they are essentially quite simple. Unlike the many 

different patterns in an oil painting described in the introduction, magnifying part of a 

fractal reveals no new information, but the same pattern repeated at smaller scales. 
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Chaos and Randomness 

Chaos theory began in the 1960s when the meteorologist Edward Lorenz used 

computers to model the weather (Gleick, 1993). When Lorenz resumed a weather 

simulation from halfway, the digits he entered for the system’s variables had unknowingly 

been rounded off, and so the conditions were slightly different from those when it had 

been stopped. This went unnoticed until the system began to diverge from the previous 

run until it no longer resembled the earlier weather model. Lorenz understood its 

significance for complex systems: small differences can dramatically alter the behaviour of a 

chaotic system, so modelling such a system will always be uncertain. Lorenz’s contribution 

has become known as the ‘butterfly effect’. It demonstrates that systems such as the 

weather are sensitive to initial conditions, and this is a characteristic of chaos. 

The butterfly effect is a common expression for the sensitivity of chaotic systems, an 

old idea which is embodied in the rhyme that begins, “For the want of a nail, the shoe was 

lost”. The problem with this expression is that it only stresses one aspect of chaos: while it 

is true that tiny events can have large consequences, there are many such small and large 

events happening all the time. Most of these perturbations do have long-term effects on 

the state of the system, but thankfully not every butterfly causes a tornado! What is most 

important in the idea of the butterfly effect is the instability and unpredictability of the 

system, for these are the characteristics of chaos. Instability is a property of dynamic 

systems, and so this is not applicable to the formal properties of images, whereas 

unpredictability can be applied to images by using the information theory concept of order. 

Information theory treats this visual information as a streamed message in which the 

elements are specified one after another. Regular patterns in the data stream are 

predictable, which makes them redundant, and so they can be compressed (a shorter 

description will suffice). Conversely, irregular patterns are unpredictable, so they have less 

redundancy, and are less compressible. 
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Figure 13 The Lorenz attractor (top, front and side views). 

Lorenz modelled the evolution of simplified weather systems by reducing the 

number of variables. The Lorenz attractor (Figure 13) represents the changing state of a 

three-variable system by plotting its co-varying values in three dimensions. The shape 

described by this path in “phase space” is fractal, and so it comes under the category of 

strange attractors. What this means is that the system does not settle down to a steady state 

(which would describe a single point in phase space) as in class 1 systems, or a periodic 

state (a loop) as in class 2, but that it is constantly and unpredictably changing. A chaotic 

system is not random, because it follows definite rules or laws (weather obeys the laws of 

physics, for example), but the results may be indistinguishable from randomness. In a book 

that brought this science to the wider public, James Gleick characterised chaos as “order 

masquerading as randomness” (1993, p. 20). Upon reading Gleick’s Chaos (1993), I tried 

out for myself an example described in the book: I dropped a leaf into a stream, and 

watched its meandering path downstream. Additional leaves dropped in the same place 

followed a similar path to start with, but gradually diverged until they no longer resembled 

the first. This is in effect a repetition of Lorenz’s experiment, which demonstrates the 

sensitivity to initial conditions of a chaotic system; immeasurably or imperceptibly small 

differences in initial conditions get magnified by the system and lead to unpredictability. 

Randomness is also characterised by unpredictability from one moment to the next, 

but it is expected to be more predictable than chaos overall: A truly random string of 

numbers contains equal proportions of each digit. In that sense, randomness is predictable 
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and ‘smooth’, whereas chaos is ‘lumpy’. Randomness means that there is no pattern from 

one element to the next, but it conforms to statistical regularity overall, just as a fair coin 

toss converges to 50 percent ‘heads’ over time. Similarly, the heights of a randomly selected 

population can be expected to conform to a normal distribution (a bell-shaped curve). It is 

sometimes thought that humans are unable to generate truly random number sequences, 

but there is evidence to the contrary (Persaud, 2005). Because randomness by definition 

has no regularity, a random arrangement contains a maximum of information content, 

lacks redundancy, and cannot be compressed. 

Complexity 

The types of computer-generated pattern that Wolfram classified can also be found 

in nature. After Wolfram published his results, he received many such examples sent to 

him by the public, the most common of which was a particular type of sea snail shell. The 

textile cone shell bears a striking resemblance to some of the CA patterns, with the same 

kind of triangle structures seen in eCA rule number 22 (Figure 14). Wolfram (2002) 

suggests that the shell’s colouration derives from an analogue of the CA rule in the 

interaction of chemical pigments as the snail shell grows along its edge. 

 
Figure 14 Textile cone shell (Textile conus) and rule 22 elementary cellular automata. 

The example of the cone shell displays an irregular pattern of the class 3 type. Like 

the description of randomness earlier, this pattern has local disorder (irregular arrangement 

and size of elements) and global order (similar overall texture). Of the 256 elementary 

cellular automata, Wolfram identifies only one of the 256 elementary CA as complex (class 
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4). This rule (number 110) is illustrated in Figure 15. It is plain to see that rule 110 has a 

mixture of class 2 regularities and class 3 randomness, which by Wolfram’s definition 

makes it a class 4 pattern. By the information theory measure of entropy, the rule 110 

pattern is mid way between order and randomness. The image also has the greatest number 

of different types of pattern of all the elementary CAs, which makes it the most complex in 

terms of the difficulty or size of its description. If we think about the types of two-

dimensional artwork in galleries, we can probably find examples to fit each of the four 

classes of complexity, but I suggest that the majority could fairly be described as containing 

elements of both order and chaos. This project aims to measure the complexity of a range 

of artwork to see just how complex it is in relation to the classes of pattern we have 

identified. Measuring visual complexity allows us to investigate its relation to the aesthetic 

perception of art. The next section looks at some of these measures. 

 
Figure 15 Elementary CA rule 110. This image shows a thousand cells (width) 

evolving over a thousand time steps (downwards), a total of 1 million cells/pixels. 
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Measuring Complexity 
To be measurable, a thing must be quantifiable, but what exactly do we quantify 

when it comes to complexity? Langton (1990) not only made a qualitative mapping of 

complexity in cellular automata, but also measured complexity by quantifying the ‘activity’ 

of each rule (the lambda parameter). An alternative proposal is to measure complexity by 

quantifying difficulty: 

The meaning of this quantity should be very close to certain measures of difficulty 

concerning the object or the system in question: the difficulty of constructing an 

object, the difficulty of describing a system, the difficulty of reaching a goal, the 

difficulty of performing a task, and so on. (Li 1991 p.381) 

From this selection, we can see that measures based on the difficulty of making and 

describing are applicable to art objects. Prominent examples of measures based on 

difficulty-of-description include: information, entropy, algorithmic complexity, and 

minimum description length (Flake 1990; Wolfram 2002). There is no single measure of 

complexity accepted in all areas of complexity science, but amongst the most common is a 

measure of the ‘difficulty-of-description’ type developed independently by Solomonoff 

(1964), Kolmogorov (1965) and Chaitin (1966). It is related to Shannon’s (1948) measure 

of information, and is defined as the length of the shortest algorithm that generates a given 

pattern of data (Flake, 1990). In the field of complex systems, the measure is called 

Kolmogorov complexity, or algorithmic information complexity (AIC). A simple pattern 

requires only a short algorithm to reproduce it, whereas a more complex pattern requires a 

larger one, hence the algorithm’s size is a measure of the pattern’s complexity. 

Murray Gell-Mann, co-founder of the Santa Fe Institute for research in complex 

systems, describes AIC as a “crude” measure of complexity because it does not entirely 

agree with intuitive notions of complexity (2004, p.34). At the top of the AIC scale are 

structures that cannot be compressed, which have no regularities and which are therefore 

random. The problem is that randomness is not the same as complexity, which is generally 
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understood to involve a meaningful (non-random) relation of structural elements, as Gell-

Mann points out: 

This property of AIC, which leads to its being called, on occasion, “algorithmic 

randomness”, reveals the unsuitability of the quantity as a measure of complexity, 

since the works of Shakespeare have a lower AIC than random gibberish of the same 

length that would typically be typed by the proverbial roomful of monkeys. (Gell-

Mann, 1995, p.16) 

Gell-Mann (2004) proposes a refinement of this crude measure, which he calls 

‘effective complexity’ (EC). EC is almost the same as AIC, except that it is based on the 

shortest description of the regularities in a system. With both measures, a uniform structure 

is rated lowest since it has the least information and maximum redundancy. A random 

structure has maximum information, but no regularities (patterns), and thus rates low in 

terms of EC, instead of being rated highest by AIC. A complex structure with lots of 

different patterns will require a larger description, and so it would be rated high in EC, in 

accordance with our intuition. Figure 16 illustrates the relationship between the two 

measures. The similarity to Langton’s map of complexity (Figure 11) implies the similarity 

of the lambda parameter scale to an information-based measure of complexity such as AIC.  

 
Figure 16 Effective complexity and algorithmic information complexity. Adapted 

from Flake (1990) p.135 and Gell-Mann (2004) p.59. 
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Technically, AIC is incomputable because we can never be certain that we have 

found the shortest algorithm. Nevertheless, it can be closely approximated with a 

complexity measure known as minimum description length (MDL), which provides a 

practicable equivalent to AIC. The MDL measure can be implemented with the 

information theory method of data compression, which reduces data to its smallest amount 

by removing redundancy. Thus data compression gives us a measure of complexity based 

on difficulty-of-description, which in this case is quantified by the length of the shortest 

description. 

The difference between information-based (AIC, lambda parameter) and intuitive 

(EC, Wolfram’s classification) measures is significant to the current project because it 

encapsulates the objective-subjective duality of complexity and highlights the potential 

difficulties in measuring and understanding complexity in terms of aesthetic perception. 

Nonetheless, there are suggestions of a similarity between human perception and 

computational measures of aesthetic complexity: Wolfram (2002, p.559) says that 

…by far the most common way in which we determine levels of complexity is by 

using our eyes and our powers of visual perception. So in practice what we most often 

mean when we say that something seems complex is that the particular processes that 

are involved in human visual perception have failed to extract a short description. 

Measuring Visual Complexity 

The early stages of this research project located the majority of publications on visual 

complexity in the sciences of perception, rather than in aesthetics or the science of 

complex systems. Amongst the many different methods of measuring visual complexity, 

one stood out from the others since it seemed the most straightforward and compatible 

with images of artworks. Don C. Donderi (2006a) finds a correlation between subjective 

estimations of visual complexity and the size of compressed digital image files. Donderi’s 

method began with research conducted for the Canadian Ministry of Defence, which 

measured the difficulty of reading naval charts and radar images in order to determine the 

optimal information density of visual displays. Donderi quantified the complexity of images 
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based on their information content by measuring the size of compressed image files. The 

subjective complexity of the visual displays was measured by magnitude estimation scaling 

(MES), a psychological technique in which participants report a quantitative estimate of 

their perceptions. The results show a strong correlation (0.78, p < 0.001) between 

subjective complexity ratings and the logarithm of compressed file sizes. We now know 

that data compression is a form of the MDL measure of complexity, which is equivalent to 

AIC. Donderi’s finding supports the notion of an information-based measure of visual 

complexity and suggests that it may work for images of art as well as the simpler graphic 

displays in those experiments. 

Donderi’s methods for measuring objective complexity by file compression and 

subjective complexity by MES may be suitable for the current investigation. However, we 

have seen that these information-based measures rate randomness the highest, and that 

what we understand as complexity is actually somewhere in between order and 

randomness. The first implication is that Donderi’s experiments examined only the lower 

range of visual complexity, a point acknowledged by Donderi & McFadden (2005 p.78). It 

also implies that the correlation between subjective and objective complexity may break 

down for the most information-dense (random) images, in the same way that the 

correspondence between AIC and EC diverges with increasing randomness (Figure 16).  

Donderi (2006b, pp.87–88) makes the link with Wolfram’s statement of the issue 

(2002, p.559) in terms of a ‘threshold of perception’: We fail to perceive the inherent 

patterns (which can be revealed by mathematical analysis) in some chaotic images such as 

class 3 CA images, and so they appear random because they are beyond our threshold of 

perception. The peak of the graph in Figure 16 represents this perceptual threshold, 

beyond which our perception of complexity diverges from information-based measures. 

The suggestion is that the correlation between objective complexity (AIC) and subjective 

complexity (MES) will diverge for the most complex/random images. Empirical evidence 

for this hypothesis of a perceptual threshold is yet to be seen. Thus we have identified a 
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gap in knowledge of visual complexity which has the potential to contribute to 

understanding its role in the aesthetics of visual art. Being able to determine the 

performance of Donderi’s file-size measure over a wider range of complexity – mapping 

the perceptual correlation with informational complexity – also provides a firm footing for 

the investigation into the perception of complexity in art and design artefacts because it 

maps the region of the spectrum of complexity that these artefacts are assumed to occupy. 

Project Outline 
The focus of this project is on the aesthetic properties of visual complexity in art and 

design. The hypothesis is that visual complexity sustains interest and contributes to 

aesthetic value by affording grounds for visual exploration (pattern-finding). The aim is to 

understand the relationship between objective properties of images with the subjective 

properties of perception. The objective is to find a method of measuring the visual 

complexity of contemporary art and design in order to contribute to this understanding. 

The philosophy of aesthetics helps us to understand the practice and perception of visual 

art. With knowledge of complexity from systems theory and order from information 

theory, we have a collection of tools that we can use to approach the subject of visual 

complexity. The computational approach to visual complexity necessitates a quantitative 

formulation of aesthetic properties which at first may seem alien to the more qualitative 

studies undertaken in the tradition of philosophical aesthetics, but importantly it allows for 

the measurement of aesthetic properties and empirical investigation. 

In summary, the focus of the research is as follows: 

Focal theory: Why is visual complexity interesting? Why are good artworks often 

visually complex? What is the relationship between visual complexity and aesthetic value? 

Contextual theory: What is visual complexity? How do we perceive it? Where is visual 

complexity in art and design? Where is contemporary aesthetic discourse? 
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Data theory: How can we measure visual complexity? How can we measure aesthetic 

perception? Do the measures work with the whole range of complexity, including images 

from art and design? 

Contribution: What is the relationship between objective and subjective visual 

complexity? Does art training affect perception of and preference for complexity? How 

does the complexity of an image relate to preference and quality? 

Planned Contribution to Knowledge 
This research project aims to make a contribution to knowledge initially by mapping 

aesthetic discourse across the domains of art, philosophy and science. The literature review 

presents a structured critique of theory and practice relating to the aesthetics and science of 

visual complexity. Its aim is to collate a novel review of relevant material that is 

unrestricted by a disciplinary focus, insofar as it goes beyond the range of material written 

by and for art practitioners to include foundational texts and current papers from 

experimental psychology, computer science and complex systems theory. The purpose of 

this review is to establish a map of current knowledge in order to identify the gaps to which 

this project can contribute and to identify the methods by which this knowledge can be 

created. 

The principal contribution to knowledge is made by extending empirical research 

methods to the field of art and design. Techniques from experimental psychology and 

computer science are applied to material from contemporary creative practices. The aim is 

to add to knowledge by testing these methods with novel material and to extend the range 

of material, specifically in terms of the range of visual complexity, to assess the 

performance of visual complexity measures. One of the objectives is to investigate a wide 

range of complexity to test the hypothesis that there is a perceptual threshold of 

complexity, and to determine whether an information-based measure will support the 

hypothesis, as predicted by Donderi (2006b). Examining a wide range of visual complexity 
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by using cellular automata images allows for a mapping that can be compared with the 

findings of Wolfram and Langton. Using the method of MES with these images then 

allows for the results to be correlated with the subjective aesthetic response. This provides 

a connection between findings in complexity theory and empirical psychology, and 

establishes a base for further investigations on visual material from contemporary visual art 

practices. 

In addition to the empirical investigation of visual complexity, this project draws on 

art practice to explore novel methods of creating artwork. Creative practice plays a role in 

exploring the aesthetics of visual complexity from the artist’s point of view, but also 

provides a source of visual material for use as stimuli in the empirical tests. The tests offer 

a novel method of evaluating this artwork, allowing for precise quantitative measurement 

which is complemented by the qualitative data gathered in interviews with test participants. 

Together, the creative and empirical work make for a balanced analysis of the aesthetics of 

visual complexity by investigating both objective and subjective aspects of the topic, and by 

considering both the production and the perception of visual art. 
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Chapter 2 

Mapping Theory and Practice 

Introduction 
The aim of this chapter is to support the development of the research through an 

exposition of the historical, theoretical and practical contributions to the field of aesthetics. 

In keeping with the trans-disciplinary methodology of the project, this contextual review 

covers the various manifestations of aesthetics as it appears in the domains of art, 

philosophy and science. The material centres on the aesthetics of visual perception and 

visual art, which together define the context of the study. Within this context, the critical 

review examines ways of understanding, realizing, and analysing visual complexity. 

Evaluating these practices provides a basis for selecting the appropriate research methods. 

The aim is to map contemporary aesthetic discourse and situate the project within the field, 

in order to define its contribution to knowledge and its engagement with current practice. 

The structure of this review is designed to progress from the general foundation of 

aesthetics and complexity discussed in the previous chapter to the more specific questions 

concerning visual complexity which are at the core of this project. In trying to provide a 

solid grounding for the research, this overview of contemporary aesthetic discourse takes 

us from its philosophy, through scientific investigations, to artistic engagement. The 

sections are arranged in order from the theoretical pursuit of the aesthetic, to the practical 

analysis of visual complexity, and finally the creative application of aesthetics. This 

structure aims to present the relevant issues in an order which will allow for a coherent 

development of the thesis. Accordingly, it involves a narrowing of focus towards the issues 

surrounding the aesthetic perception of visual complexity in two-dimensional art and 

design. 
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Aesthetic Theory 
The previous chapter introduced some of the concepts central to aesthetic discourse. 

It brought us up to the point where the main concern of the field was to identify the 

essential features of art and the aesthetic that allow for philosophical definitions in terms of 

necessary and sufficient conditions. For the purposes of this project, the division between 

aesthetics then and now is marked by the influence of Wittgenstein. The new line of 

aesthetic thought developed in what has been called ‘analytic’ philosophy – a generally 

Anglo-American discourse in the Kantian tradition, contrasted with the ‘continental’ 

philosophy of central Europe. As described by Noël Carroll, 

The purpose of the analytic philosophy of art is to explore the concepts that make 

creating and thinking about art possible. Some of these concepts include: the very 

concept of art itself, as well as the concepts of representation, expression, artistic 

form, and aesthetics. (1995, p.5) 

This thesis follows the analytical tradition of aesthetic philosophy. In part, this is a 

pragmatic decision, because the continental philosophies are of less utility for this project. 

More significantly, the continental attachment to post-modern scepticism of scientific 

method is incompatible with the methodology adopted in this project. A more detailed 

examination of this issue is presented in the methodological discussion in Chapter 3. 

From the preliminary discussion in the previous chapter, we have identified the 

central concerns of aesthetics as perceptions, properties and practices. Each of these 

concerns has both objective and subjective aspects which apply in varying degrees to the 

natural and/or artificial. Jerrold Levinson (2003) identifies three foci of aesthetics: art, 

aesthetic properties and aesthetic experiences. Yet the aesthetic properties Levinson lists, 

such as beauty, ugliness, and sublimity, are in fact indistinguishable from aesthetic 

experiences; we certainly attribute them to objects, but that doesn’t mean that they are 

intrinsic properties of the objects. As such, these attributes may be described as subjective 

aesthetic properties (in the sense that they are personal and variable) as plausibly as they 
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may be called objective properties. Therefore, the way in which we structure the field 

depends on how we negotiate the objective-subjective duality of aesthetics. Instead of 

getting embroiled in the finer points of this distinction, my stance is to accept the duality of 

aesthetic experiences and to regard the aesthetic as the interaction between object and 

subject. This position is represented in the working model of aesthetics, which identifies 

the aesthetic with these interactions. 

Perceptual Aesthetics 
Philosophical aesthetics can be divided into the study of art and the study of 

perception. The former pertains to questions about art objects: how we recognise them as 

art, why we find them pleasing, and how they should be evaluated. The other side of 

aesthetics concerns the phenomena that comprise aesthetic experiences, which include 

natural forms and scenes as well as human-made things. A proponent of perceptual 

aesthetics of art is Monroe Beardsley, who classifies an artwork as “an arrangement of 

conditions intended to be capable of affording an experience with marked aesthetic 

character” (1982, p.299). For Beardsley, aesthetic objects are a subset of perceptual objects, 

“some of whose qualities, at least, are open to direct sensory awareness” (1982, p. 31). 

A key notion in perceptual aesthetics is experience. In Beardsley’s philosophy 

aesthetic experiences have value when they fulfil at least one of three primary aesthetic 

criteria: unity, intensity and complexity. Artworks are good if they afford these aesthetic 

experiences. Richard Lind suggests that perceptual interest should be distinguished from 

theoretical interest, because “while the latter is an inquisitiveness about hidden organization, 

the former is a curiosity about manifest organization.” (1995, p.120). It is this kind of 

manifest organisation of visual art and design that is under investigation in this project. The 

hypothesis that visual complexity sustains interest is supported by Lind’s description of 

aesthetic value in terms of perceptual interest: 
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Satisfying perceptual interest is a cognitive skill; infants spend hours perceptually 

“making sense” of simple objects. The perceptual skills of adults are so well honed, 

however, that we hardly ever notice we are habitually satisfying this goal-oriented 

interest. Only when an unusual arrangement defies instantaneous clarification do we 

find ourselves consciously interested in making sense of it, as when, for instance, we 

are confronted for the first time with the non-objective complexity of a Jackson 

Pollock. (Lind, 1995, p.120) 

Lind claims that this formulation solves several of the traditional problems of 

philosophical aesthetics. One of these is the problem of the disinterested attitude which, 

since Kant, has often been maintained as an essential aspect of aesthetic perception 

because it helps to mark the distinction from non-aesthetic interest. Lind dispenses with 

disinterest as a necessary feature of aesthetic judgement, replacing it with an interest in the 

act of perception itself. The fact that Lind describes this aesthetic interest as a “cognitive 

skill” suggests that it is something that can be learned. We might assume that the teaching 

of this kind of skill is to be found in art and design schools, if anywhere, but can it actually 

be taught or is it something that is only implicitly developed in an artistic education? This 

question is beyond the scope of the present investigation, although it is possible to explore 

its implications: If aesthetic perception is a skill, and not merely a given sub-personal 

mechanism, then regardless of how it is learned we might expect to find differences in 

perception between people who have undergone an education at art school and those who 

have not. The tests in this project investigate the difference in aesthetic perception between 

two groups – those who practice art and design and have received an art education, and 

those who have not. 

Environmental Aesthetics and Affordances 

The way in which a skill is acquired depends on the learning environment, which 

includes environmental conditions as well as the social and cultural context. Since 

perception in humans predates the culture of art, the environment plays a large part in 

shaping our perception through the evolution of perceptual mechanisms. Thus we are 

perceptually sensitive to the environment in which we have evolved, and we can 
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understand more about aesthetic perception by looking at how we perceive the 

environment. This approach can be called ‘environmental aesthetics’. 

An example of this kind of understanding is The Ecological Approach to Visual Perception 

(1986) by J.J. Gibson, which describes our relation to the perceptual environment in terms 

of “affordances”. According to Gibson the purpose of perception is action, and since the 

need for action varies from time to time, the affordances to be acted upon also vary. 

Gibson pictured the entire visual world as a dynamic visual array. He described a perceiver 

whose moving eyes passively “pick up” a stream of visual information from the array. The 

invariants in the stream signify stable objects and the flux signifies movement or change, 

either of the observer or the environment. Visual systems tend to be ‘tuned’ to recognise or 

respond to the perceptible properties of affordances. This explains why we tend to like 

pictures of natural scenes with wide open spaces and clumped trees with a source of 

running water; such environments afford food and shelter, with a good vantage point to 

spot both predators and prey. Constable’s The Hay Wain (1821) falls into this category of 

images – at least it does so for Westerners, with its North-European landscape. Other 

cultures have preferences for their own familiar terrain, but we all share the same basic 

understanding of the affordances of the environment and have inherited the same 

perceptual mechanisms. In addition, we all share a similar ability to perceive affordances, 

not just in natural environments but also in designed artefacts. 

Gibson’s ecological theory (1971; 1978) of passive ‘pick-up’ of visual information 

challenges the conventional view that perception involves representation and 

interpretation. As such, Gibson’s view represents a minority amongst psychological 

theories of perception (Bruce, Green and Georgeson 2003, p.80). As a perceptual theory, 

Gibson’s method stands outside the psychological consensus because it is non-empirical, 

but it is also at odds with art discourse: During the 1970s, Ernst Gombrich developed an 

argument with Gibson in Leonardo, the journal of art, science and technology. Gombrich’s 

contribution to psychological discourse on perception is presented in Art and Illusion 
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(1977), which draws on the conventional psychological theories that Gibson rejects. 

Nevertheless, Gombrich described Gibson’s Perception of the Visual World (1950) as 

“exciting”, and he recognised that “psychology has come alive to the immense complexity 

of the processes of perception, and no one claims to understand them completely” (1977, 

p.21). 

Despite the arguments against Gibson’s approach to aesthetics from art and 

psychology, the concept of affordances retains currency in the discourse of design. In the 

context of visual display design, Donderi (2006b, p.81) interprets Gibson’s affordances as 

“visual information that allows the perceiver to act” which are “in the visual information 

stream whether or not the observer acts on them.” Graphic design and product design can 

take advantage of our ability to perceive affordances by using visual cues which allow the 

user to interact with a designed artefact. The idea of designing an artefact that can be used 

in this way is embodied in one of Dieter Rams’ design principles: “good design makes a 

product understandable” (Design Museum, 2007). The psychologist Don Norman 

introduced Gibson’s concept of affordances to the field of design in The Psychology of 

Everyday Things (1988), later published as The Design of Everyday Things (1998). Norman says 

that the concept “has caught on, but not always with true understanding”, and admits that 

some of the blame lies with himself for failing to stress the point that affordances are those 

that are perceived, and not just those properties that are inherent in a physical artefact. For 

that reason, Norman suggests that ‘perceived affordances’ might have been a more accurate 

phrase to use, because 

…in design, we care much more about what the user perceives than what is actually 

true. What the designer cares about is whether the user perceives that some action is 

possible (or in the case of perceived non-affordances, not possible). (Norman 2009). 

The application of these principles is particularly relevant to interface design in 

human-computer interaction (HCI). Besides the distinction of real and perceived 

affordances, Norman is also careful to distinguish between affordances and cultural 
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conventions. An example of a cultural convention in HCI is the scroll bar, which nowadays 

is generally moved in one direction to make the text on screen scroll in the opposite 

direction. Norman suggests that good design should follow cultural conventions, but what 

is most important in usable products is that the desired controls should be perceived so 

that the desired actions can be discovered. This understanding of affordances is also 

applicable to interactive art, in which the audience has some control over the appearance or 

behaviour of the artwork. Indeed, the manipulation of perceivable controls and their 

actions may be a focal point for the interactive artist, who is freer to play with affordances 

and the expectations of the audience than is the designer of marketable products. On the 

other hand, the emerging field of critical design (the term coined by Dunne 1999) is less 

constrained by market forces and company briefs and thus, like art, it is able to exploit the 

perception of affordances in the creation of challenging artefacts and situations. 

Aesthetic Theories of Art 
Except for the kind of interactive art mentioned above, looking at art does not 

usually require ‘action’ of the sort Gibson described, and so the ecological theory of 

affordances is not wholly applicable to the aesthetics of art. The aesthetic theory of art 

focuses on a very particular aspect of the human environment, but what it shares with the 

ecological theory is a grounding in perception. We discussed in the previous chapter the 

division of aesthetics into the study of perception and the study of art. Aesthetic theories 

of art are those that tie together these two different aspects and enable a definition of art in 

terms of perception: 

…the aesthetic definition of art puts one in a position to say why art is valuable. Art is 

valuable because it affords aesthetic experience. Thus if we can say why having 

aesthetic experiences are valuable, then we are also on our way to saying why art is 

valuable. The value of art will be derived from the value of having aesthetic 

experiences. (Carroll, 1995, p.167) 

We also discussed previously the move away from objective properties to subjective 

properties of perception, and noted that the definition of art – a traditional aspect of 



Mapping Theory and Practice  Aesthetic Theory 

 56  

aesthetics – has also shifted in this direction. The following section examines this shift in 

more detail. 

The Open Concept of Art 

Although Wittgenstein had considered aesthetic matters in some of his writings, his 

influence on philosophical aesthetics is indirect since it stems from interpretations of his 

more general philosophy. Of his writings on aesthetics, one notable remark is that “The 

subject is both very big and entirely misunderstood as I see it.” (Wittgenstein 1966). The 

idea that influenced the course of aesthetics comes from the publication in 1953 of 

Philosophical Investigations (Wittgenstein 2001) on language and knowledge, and it is 

summarised as follows: 

The idea that in order to get clear about the meaning of a general term one had to find 

the common element in all its applications has shackled philosophical investigation. 

(Wittgenstein 1972, p.19) 

Wittgenstein was referring to the philosophical practice of forming ‘closed’ concepts 

based on common elements or essences. ‘Game’ is an open concept because there are no 

essential features shared by all the things we know as games (football, chess, computer 

games, hide-and-seek), and yet we are able to use the word without ambiguity. What games 

share is a kind of ‘family resemblance’, claimed Wittgenstein. Only three years after 

Wittgenstein’s Investigations, Morris Weitz published the influential paper The Role of Theory in 

Aesthetics (1956). Weitz considered previous aesthetic theories of art as sharing the 

philosophical practice of essentialist definition. The problem with an essentialist definition 

of art is that the practices and products of art change, and so an aesthetic definition 

becomes redundant as a gap appears between theory and practice. To Weitz, therefore, any 

attempt to define art in terms of essential physical features of artworks is ultimately 

doomed to fail. As he saw it, “The problem is not “what is art?”, but “what sort of concept 

is ‘art’?”” (1956, p.30). Weitz arrived at the conclusion that a closed concept of art is 

incompatible with the open practice of art; therefore art is an open concept. 
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Weitz used Wittgenstein’s ‘open concept’ because art changes (but we still call it art), 

and used the ‘family resemblance’ argument because there are a number of overlapping 

properties (essences) that are shared by some but not all works of art. Hence, there are 

shared characteristics which are too sparse and mutable to be relied upon for the task of 

traditional essentialist definitions of art, and yet we can still use the word ‘art’ to refer to the 

practices and products that possess these essences. Strengths and weaknesses in the family 

resemblance argument can be illuminated with biological analogy: Much of the time, 

resemblances reveal actual connections. The taxonomy of species at first relied on visual 

identification, and only later conformed to relationships based on understanding of 

hereditary theory and genetics. We can see that chimps are very much like us, and indeed 

we share an almost identical genetic makeup. But resemblances may derive from family 

inheritance or from convergent evolution4, and we cannot always tell on the surface which 

is the case. A true family relation is one of shared inheritance of the sort that could be 

validated with genetic tests (such tests on fossilized and extant animals reveal our natural 

history and the evolution of species). So, as in biology, it is possible to be misled by 

appearances, and the family resemblance concept is not quite strong enough to get to the 

actual aesthetic inheritance. This is the argument used by Maurice Mandelbaum (1965) to 

criticise Weitz’s employment of Wittgenstein’s family resemblance concept, noting its lack 

of “genetic connections”. 

The Decline of Perception in Aesthetic Theory 

In the same way that Wittgenstein sought to end philosophy – and failed heroically, 

Weitz’s argument to end the definition of art by a closed concept also failed. Weitz had a 

valid point, though, about the ever-changing nature of art and the failure of aesthetic 

theories to survive much beyond their contemporary artistic practices. Although the family 

                                                 
4 An example of convergent evolution is the similar structure of octopus and human eyes. This fact baffled 

biologists for some time, since the two species are so far apart on the tree of life. The reason is that 

adaptation to similar environmental pressures led to the development of similar systems, and so the ‘family 

resemblance’ of these eyes belies the actual evolutionary path of the two species. 
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resemblance argument has been challenged for its weakness, the point about an aesthetic 

theory having to cope with the expansive variety of art is increasingly relevant. The 

strongest theories since Weitz have accepted this point, and in doing so they have moved 

the aesthetics of art further from the aesthetics of visual perception. For a brief period after 

Weitz’s essay, there was a hiatus on the definition of art, but this did not last for long: 

…had it not been for the neo-Wittgentseinians the temptation to define art might 

never have appeared so inviting. For nothing taunts a philosopher so well as the claim 

that something is impossible (Carroll, 2000, p.5). 

The aesthetic definition of art resumed with Arthur Danto’s concept of the artworld 

(1964) and George Dickie’s institutional theory (1974). Their theories came about in a 

situation where the distinction between ordinary objects and artworks could no longer be 

taken for granted because of artists’ appropriation of everyday objects (the ‘readymade’) 

and the incursion of art into sites beyond the gallery. Danto’s essence of art is “something 

that the eye cannot descry – an atmosphere of artistic theory, a knowledge of the history of 

art: an artworld” (1964, p.580). For Danto, the artworld is “a world consisting of works of 

art, a self-enriching community of ontologically complex objects” (1993, p.204). This 

context allows us to distinguish between two objects which are perceptually identical, of 

which only one is a work of art. Reciprocally, the artworld also provides a context in which 

the ‘transfiguration of the commonplace’ (Danto 1981) can take place; everyday objects are 

transformed into works of art by their incorporation into the institutional mechanism of 

the artworld. Danto’s canonical example is a mundane cardboard box used for containing 

and transporting Brillo soap pads, and Warhol’s work of art Brillo Box (1964). The artworld 

is both what makes this box a work of art and what enables us to recognise it as such for 

the purposes of philosophical definition. 

Weitz’s open concept of art is evaluative, whereas Danto and Dickie offer 

classificatory or descriptive definitions of art. Classificatory definitions allow us to answer 

the question ‘is this art?’ In a sense, this has been a non-question in art practice for around 
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a hundred years, since Duchamp made the point that the more interesting and more 

difficult question is ‘what is good art?’ Danto’s theory avoids the difficult problem of 

classifying contemporary art in terms of the perceptual properties of art products, and 

instead provides a definition based on practice. As a defining ‘essence’ of art, the concept 

of the artworld is explicitly non-visual and thus non-aesthetic in the traditional sense of 

visual perception. Similarly, Dickie’s aesthetic theory is not based on the sensory 

perception of art, but relies on the identification of the social mechanisms of art. The 

difference is that Danto emphasises the importance of art history and art theory for 

ontologically identifying art, whereas Dickie emphasises the sociological aspects of the art 

world. Both are concerned with the context of art, and both are non-perceptual. 

The Institutional Theory of Art 

Dickie opposes the idea of a special ‘aesthetic attitude’, as adopted by Beardsley. He 

argues against Beardsley’s three aesthetic conditions of value (unity, intensity and 

complexity), and against essentialist approaches to the aesthetic, saying that aesthetic 

perception differs only in motivation and not in perceptual qualities. In other words, Dickie 

thinks that in the appreciation of art we do not use anything other than our usual powers 

of perception. Like Danto, Dickie’s theory is non-perceptual; it is based on the same things 

that the eye ‘cannot descry’ – namely, the artworld. The institutional theory has undergone 

a few revisions, the latest of which Dickie calls ‘the art circle’ because it is based on a 

circular definition. Normally in philosophy, such definitions are avoided as being a vicious 

circle in logic, but Dickie defends the theory as a ‘virtuous’ circle. The art circle (1997) 

comprises these five statements: 

1. An artist is a person who participates with understanding in the making of a work of art. 

2. A work of art is an artefact of a kind to be presented to an artworld public. 

3. A public is a set of persons the members of which are prepared in some degree to 

understand an object which is presented to them. 
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4. The artworld is the totality of all artworld systems. 

5. An artworld system is a framework for the presentation of a work of art by an artist to 

an artworld public. 

The five statements of the art circle flesh out the institutional theory of art by 

identifying the operative elements and their relationships. Substituting Danto’s somewhat 

vague notion of the artworld for a precise definition strengthens the theory overall by 

providing a more usable framework for classifying art. Despite its greater precision, the art 

circle still has the flexibility to accommodate new art practices and products. Note that 

although Dickie’s theory avoids the problematic essentialist definition of artwork 

properties, it nevertheless relies on the identification of the essential ontological elements 

that comprise the artworld: artist, artwork and audience. It is of course possible that these 

elements might change in the future artworld, just as the properties of artworks have 

changed, in which case the theory may need to be revised. 

Visual Models of Art 

We can visualise the circular relation of Dickie’s theory as follows (Figure 17): 

 
Figure 17 Visual representation of Dickie’s (1997) art circle. 
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This diagram illustrates the definitional connections of Dickie’s five statements (in 

numbered circles) that link the elements of the artworld (in shaded boxes). By slightly re-

arranging the visualisation of the art circle, we can see that it is structurally similar to the 

working model of the aesthetic (Figure 18). The two models share a common set of 

ontological categories – artist, artwork, audience or artworld public, and artworld. From 

these visualizations, we can see that Dickie’s statement 3 leads nowhere. It fails to 

adequately define ‘public’ in general terms, and equally fails to separate fully from the 

ontological category ‘artworld public’. For this reason, it seems superfluous to the theory 

and it weakens the definitional relation of persons in the artworld with Danto’s concept of 

the artworld. If we were to modify the theory to fit our working model, we would replace 

the compound term ‘artworld public’ with the singular ‘audience’, which means that we 

could dispense with the superfluous statement 3. Statement 4 would then need to be 

reformulated along the lines of ‘the audience is the set of persons who, by engaging with 

artwork (i.e., appreciating, presenting, trading, criticising…), populate the artworld’, and 

statement 5 as ‘the artworld is constituted by the practices and products of those who make 

and engage with artworks’. The core theoretical structure would thus remain in place apart 

from the excision of the third statement. 

 
Figure 18 Visual representation of Dickie’s art circle mapped onto the working model 

of aesthetics. 
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It seems that Dickie never thought to visualize the art circle, since the texts in which 

the theory is published lack any such diagrams. In contrast, Arnold Berleant did illustrate 

his concept of the ‘aesthetic field’, which is related to the institutional theory of art. The 

central thesis of Berleant (1970) is that all factors of the aesthetic should be taken into 

consideration in regard to understanding the appreciation of art, thus aesthetics should be 

considered as a complex field of interacting contextual and aesthetic properties. This is 

certainly a significant point and an attractive idea, but the diagram itself (Figure 19) is 

difficult to read, and adds little in terms of explanation to Berleant’s thesis. Each element is 

connected to every other, and the arrows connect in both directions at once, which means 

that it actually says very little at all about the relationships between the elements except to 

say that they all influence each other at all times. In contrast to Dickie’s institutional theory, 

Berleant’s model employs four ontological categories: artist, artwork, audience and 

performer. The last of these is not present in Dickie (1997), whereas Berleant considers it 

an essential aspect of the aesthetics of classical music, for example, in which the composer 

occupies the role of artist and the musicians are the performers. The role of performer is of 

less relevance to the field of visual art on which the institutional theory is based, since it is 

not a defining element common to its practice. For the purposes of the current project, 

therefore, the role of the performer can be justifiably disregarded, as can Berleant’s model. 
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Figure 19 Berleant’s (1971) diagram of the aesthetic field. 

In examining the practice of computer art, Stroud Cornock and Ernest Edmonds 

(1973) visualize a series of art practices. They develop a theory of different art systems 

using a series of images to describe the relationship between artwork and audience (Figure 

20). The art systems represented are dynamic in varying degrees, from the traditional 

passive viewing of an artwork to a fully interactive relationship. These diagrams do not 

include the role of the artist, because the purpose of the study concerns a particular form 

of art practice and does not aim to offer a universal theory of art. Instead, the diagrams 

illustrate what goes on in the everyday experience of an artwork, where the artist is not 

usually present and is not a necessary part of the work. It would be possible to incorporate 

these models into the working model of aesthetics, which would place the dynamic art 

systems in the larger context of the artworld and refine the working model to a more 

specific kind of practice. But because the focus of the current project excludes dynamic 

and interactive art, however, Cornock and Edmond’s model is not deployed in this thesis. 
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Figure 20 Cornock & Edmonds (1973). Visualization of art systems: (a) static; (b) 

dynamic-passive; (c) dynamic-interactive; (d) dynamic-interactive (varying); (e) matrix. 

Key: A = artwork, S = spectator, E = environment, T = time, P = participant, M = 

modifier. 

Relational Aesthetics 

By avoiding the problems of defining art based on essential properties, Dickie claims 

that the art circle offers a workable theory that allows room for changing art practices: 

“The institutional theory allows the freedom for which Weitz quite correctly is so anxious 

to preserve in his attack on traditional theories of art.” (Dickie, 1997, p.110). In so doing, 

Dickie’s theory distances the aesthetic from the perceptual, as does Danto’s concept of the 

artworld. A more recent contribution to this development comes from Nicolas Bourriaud’s 

Relational Aesthetics, which is an “aesthetic theory consisting in judging artworks on the basis 

of the inter-human relations which they represent, produce or prompt” (2002, p.112). Like 

Danto and Dickie, Bourriaud attempts to grapple with the incursion of the everyday into 

the world of art, the difference being that Bourriaud’s theory mainly addresses art events 

rather than art objects. The theory focuses on the non-perceptual social relations that are 

engendered in art practices of the 1990s (notably, of those practices represented in 

Bourriaud’s own curatorial projects). The examples of relational art include the work of 

Rirkrit Tiravanija, Felix Gonzales-Torres, Vanessa Beecroft, and Liam Gillick. Because 

some of this artwork would be indistinguishable from everyday happenings were it not for 
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the context of the artworld, they represent the type of practice for which the institutional 

theory was developed. According to Bourriaud, what makes these practices ‘relational’ is 

that they “take as their theoretical horizon the realm of human interactions and its social 

context, rather than the assertion of an independent and private symbolic space” of, for 

example, Modernist art (2000, p.14). This relational art, Bourriaud says, takes Duchamp’s 

notion of the audience as contributor to the artwork a step further, “by postulating 

dialogue as the actual origin of the image-making process” (2002, p. 26). 

We can use the working model of aesthetics to understand Bourriaud’s concept. This 

can be illustrated with a personal story of when I met the artist Xavier Roux at an 

exhibition in Washington DC in 2007. Xavier’s artwork involved sitting with him on a 

portable wheelbarrow/chair that he had made, and engaging in discussion with the artist. 

(Part of the work required those who engaged with the artist to report back if dreams 

about the wheelbarrow were experienced later on.) In our discussion I explained my 

research, drawing the working model of the aesthetic (Figure 6). He re-drew the diagram to 

illustrate his own practice – he omitted the artwork from the diagram, joining the artist and 

audience with a single line. For Xavier, he explained, this direct interaction is the artwork, 

and is the kind of practice described in Bourriaud’s relational aesthetics. 

Bourriaud defines the practice of art as “an activity consisting in producing 

relationships with the world with the help of signs, forms, actions and objects” (2002, 

p.107). Whilst this definition is certainly inclusive in the way that Weitz (1956) advocated, it 

is difficult to see how it is useful in separating what artists do from any other field of 

human enquiry or creativity (admittedly, Bourriaud does not rely on this definition to 

support his theory). A more serious criticism of Bourriaud comes from Claire Bishop 

(2004), who questions what kind of interaction is actually desirable in relational aesthetics: 

Is the meaning (and therefore also value) of relational art actually developed “collectively”, 

as Bourriaud suggests, and if so, why is it that the artist still appears to be in control and 

remains the one person to whom these artworks are attributed? Looking back at Dickie’s 
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art circle, an artist is someone who “participates with understanding in the making of a work 

of art” (Dickie 1997, my emphasis). Only with understanding comes the right to 

authorship. The audience-participants in Bourriaud’s examples of relational art cannot be 

said to have full understanding. In fact the opposite seems to be the case with the work of 

Tiravanija and Gillick, in which the audience has no instruction for participation and the 

‘rules of the game’ are unclear if not actually obscured or withheld. Bishop also notes that 

“the quality of the relationships in “relational aesthetics” are never examined or called into 

question.” (2004, p.65). It is a reasonable point, and it seems the same could be said for the 

similarly non-perceptual theories of Danto and Dickie: Both relational aesthetics and the 

institutional theory of art lack the explanatory power of the earlier closed-concept 

definitions of art such as Beardsley’s. These non-perceptual aesthetic theories of art are 

unable to explain why we value some artworks over others or why we should do so. The 

current situation is that in the context of non-perceptual aesthetics, “political, moral, and 

ethical judgments have come to fill the vacuum of aesthetic judgment” (Bishop, 2004, 

p.77). My thesis is that an empirical investigation of aesthetics has the opportunity to fill 

some of these gaps in the non-perceptual theories of art. But whether a return to a 

perceptual theory of art also has the potential to account for the aesthetic judgement of 

‘everyday’ artworks and relational art practices remains to be seen. 

Summary 
Historically, aesthetic discourse has served to theorize the practices of making and 

appreciating art, whether it is concerned with perception in general or with art in particular. 

Philosophy has provided the ontological and epistemological foundations for an 

investigation of aesthetic questions. Contemporary aesthetic theories have to contend with 

an artworld which is more diverse than ever before, simultaneously made more inter-

connected and more fragmented in the process of globalization. The most successful 

aesthetic theories are those that survive as art history accumulates and the density of 

available information increases. Amongst the most successful today include the theories 
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that incorporated Wittgenstein’s ideas on definition, in which meaning is defined by use. 

This idea has shaped aesthetic theory by changing its focus from the products to the 

practices of art, and in so doing the field has moved away from perception. 

Contemporary aesthetics is dominated by the a-perceptual theories of Weitz, Danto, 

Dickie and now Bourriaud. Most of these theories are essentially answers to the question 

‘what is art?’, but we have noted that this is an old question in art, and that the more 

interesting question is what makes good artworks valued in the way that they are. 

Bourriaud’s theory claims to provide such a criteria, but it only applies to a specific subset 

of contemporary art practice, and even in that regard it is not without problems. In an 

article entitled Is Psychology relevant to the Arts? (1961), Dickie comes to the firm conclusion 

that it is not: “I am convinced that  the  problem of  the  description of  the  nature of  

aesthetic experience is  not  a  task to which the  techniques of  empirical  science  are 

relevant” (p.302). On the contrary, I believe that empirical investigation can fill the gaps in 

non-perceptual art theory by explaining why we value art and what makes it good. Even as 

contemporary art practice and theory have moved away from the traditional perceptual 

core of aesthetics, we still perceive and understand art through our senses. For this reason, 

I suggest that we should look again at the perceptual aspects of visual art which are 

neglected in contemporary aesthetic theory. 

My argument is that visual complexity is a contributing factor in aesthetic value, and 

that a theory of aesthetic value has the opportunity to fill the gaps in the non-perceptual 

theories of art. Visual complexity is just one of these perceptual aspects, but it is a valuable 

one because it encompasses other, more fundamental perceptual properties, such as the 

quantity, variety and order of picture elements. If we can understand how visual complexity 

is manifested objectively and perceived subjectively, then we may be able to learn how it 

contributes to the aesthetic perception of visual art. The next section of this chapter 

presents the findings of empirical aesthetics that explore these questions in terms of the 

measurable objective and subjective properties of visual complexity. 
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Empirical Aesthetics 
This section provides a history and evaluation of developments in the scientific study 

of aesthetic perception. It is presented in approximately chronological order, beginning 

with an introduction to the issue of psychophysical measurement. The review narrows 

from the general to the more specific concerns of this project – from the foundation of 

empirical aesthetics as an academic discipline to the development of experimental methods 

within the field. Because the focus is on visual perception, this review is largely restricted to 

aesthetics of visual art. The discussion incorporates the application of concepts from 

complex systems and information theory which were introduced in Chapter 1, and puts 

these in relation to empirical knowledge of visual perception. 

Establishment of the Field 
One aspect that distinguishes empirical aesthetics from philosophical and artistic 

aesthetics is a willingness to adopt a quantitative approach to the subject. Whether aesthetic 

objects and aesthetic perceptions can be justly quantified without losing significant 

properties has remained in debate since the beginnings of empirical aesthetics. Dickie 

(1961), for example, rejects psychological findings as irrelevant to aesthetic questions, and 

would not admit of their value to art theory. We negotiate some of these difficulties in this 

chapter and the next. Primarily, these problems arise due to the subjectivity of perception. 

The subjectivity of sensory perception causes two problems for empirical studies: 

Firstly, perceptions are not directly accessible to inspection for experimental purposes, and 

secondly they are highly variable. If we can accept a general abstraction of aesthetic 

perceptions, then the latter problem can be resolved through duplication of tests and 

averaging of results. In this way we can approximate the trends of an individual or a group. 

But we are still left with the former difficulty, namely, how to measure these subjective 

perceptions in the first place. What is required is some way of quantifying the psychological 

events of perception. Perceptions generally vary along a continuum, e.g. from dark to 

bright or cold to hot, and the challenge is to partition the continua in such a way that they 
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can be measured. If they can be measured, then their relationship to the intensity of 

physical stimuli can be determined. The field that concentrates on the relationship of 

physical properties to perceptual properties is known as psychophysics. Thus the primary 

task of early psychophysical measurement was the construction of a perceptual scale, which 

is where the following section begins the review of empirical aesthetics. 

The Measurement of Perceptions 

One of the oldest psychophysical procedures is called equisection – the partition of 

continua into equal-appearing divisions. If a scale is divided in two, the method is called 

bisection. This method was invented by Joseph Plateau (1801–1883), when he gave eight of 

his artistic friends black and white oil paints and asked them to paint a mid grey between 

the two (Stevens, 1975, p.154). Even though the artists carried out this task rather 

unscientifically in different locations and lighting conditions, the greys they produced were 

very similar when viewed in the same setting (Laming & Laming, 1996). From this simple 

beginning, it is then only a small step to repeat such tasks and to build a scale by continued 

subdivision. 

Just how far can we take this process of subdivision? This is what concerned Ernst 

Heinrich Weber (1795–1878), who formulated the idea of the ‘just-noticeable difference’ 

(JND). Weber’s method was to present a subject with a stimulus and to adjust it slightly 

until the subject reported that they could perceive a difference. For example, in one 

experiment a blindfolded subject holds a weight and reports when they notice a difference 

as weights are added. The results showed that the JND grows in proportion to the 

stimulus, i.e. if the weight being held is doubled, so does the amount that needs to be 

added to achieve a noticeable difference. JND values are given with reference to the 

percentage of trials in which the subject detects a difference – usually 50%, although other 

values are sometimes used. Through these experiments, Weber had created a law that 

related physical stimuli to psychological perceptions. He had found that the JND is a 

constant proportion of the strength of the stimulus, which can be written as: 
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k=
Φ
ΔΦ  

where Φ (phi) is the stimulus intensity, ∆Φ is the JND (∆ means ‘difference’), and k is a 

constant that signifies the proportion of the JND to the stimulus. N.B. Even though it 

relates to perceptions, the JND is measured in the physical units of the stimulus, i.e. how 

much of the stimulus is perceived. 

The JND amounts to a perceptual threshold; it represents the discriminating ability 

of our senses. Although Weber’s formula describes a relative threshold, the same idea can 

be applied to the extremes of sensory continua in order to determine an absolute 

perceptual threshold (e.g. how quiet a sound we can hear), which provides a useful upper 

or lower point of reference for a perceptual scale. In psychophysics, there are three 

common methods used to find perceptual thresholds: the method of limits, the method of 

constant stimuli, and the method of adjustment. 

The method of limits was invented by Wilhelm Wundt (1832–1920). It involves the 

steady increase or decrease of stimuli until they are reported as being perceived or not. 

Different results are found depending on whether the ascending or descending method of 

limits is used, so some experimenters use both methods and then average the results. The 

biophysicist Georg von Bekesy (1899–1972) offered an alternative called the ‘staircase 

method’: The stimulus is reduced until it passes below the threshold, then increased until it 

is perceived again, and so on until a steady value is found. In order to reduce the errors of 

habituation and expectation, the method of constant stimuli presents a random succession 

of various intensities, and the subject reports whether they are perceived. In the method of 

adjustment, the subject controls the stimulus level, and their task is either to match another 

reference level or to adjust it to a given threshold. 

Weber is often credited as ‘the father of psychophysics’ for his foundational work on 

the JND, but others claim the title for Gustav Theodor Fechner (1801–1887) because he 

was the first to bring a quantitative approach to the problem and to measure perceived 
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sensations. After he became aware of Weber’s work, Fechner made a significant 

contribution to the establishment of psychophysics as a science via the publication of 

Elemente der Psychophysik in 1860 (Fechner 1966). What we currently recognise as 

psychophysics forms only one of two domains prescribed by Fechner; the one that he 

called ‘outer psychophysics’, which relates physical events to the mental. ‘Inner 

psychophysics’ would deal with the relation between mental and neural events. Although it 

does not exist as yet, a field of inner psychophysics may be realised as the relatively young 

disciplines of neuroscience and consciousness studies continue to develop. 

Fechner formulated the first psychophysical function – a quantitative relation of 

stimulus intensity to perceived sensation – which had a great influence on psychophysics 

(Stevens, 1975, p.7). He reasoned that if we could create equal units of sensation, then by 

counting the number of units between two stimuli levels – as in those found by equisection 

– we would be able to measure sensations. To Fechner, Weber’s JND provided such a unit. 

He named his psychophysical function in honour of Weber, but it is now known as the 

Weber-Fechner law: 

Ψ = k log Φ 

Ψ represents sensation, k a constant, and Φ the stimulus intensity. N.B., the Greek letter Ψ 

(psi) denotes psychological measurements, while the letter Φ (phi) denotes physical values. 

In formulating this function, Fechner had made the assumption that the JND 

formed perceptually equal divisions of a sensory scale: He assumed that as the physical size of 

the JND (∆Φ) increases with stimulus intensity (Φ), as Weber had found, its perceptual size 

(∆Ψ) does not. This meant that his psychophysical equation described a logarithmic 

relationship between stimulus and sensation. In other words, as one value (the stimulus 

intensity) is multiplied, the other (perceived sensation) is only added. It turns out that 

Fechner’s logarithmic equation only holds true for a few perceptions, because his 

assumption about the JND was wrong. Despite suggestions for an alternative to the 
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logarithmic function in 1728 by Gabriel Cramer (Stevens, 1975, p.3) and by Plateau in 1872 

(Laming & Laming, 1996), the Weber-Fechner law continued to be used for the next 

hundred years (Wixted, 2002). 

Stanley Smith Stevens (1906–1973) was the first to successfully challenge Fechner’s 

law, and had a large impact on experimental psychology. Whereas Fechner’s measure was 

based on the units of the JND, which were defined by the experimenter, Stevens’ approach 

was to ask the subject to quantify their own sensations. Instead of trying to construct a 

scale, he reasoned, let us use the one that the subjects bring with them – the concept of 

numbers that we use so frequently in our daily transactions. In the first applications of this 

method during the 1950’s, the experimenter provided a value for the first stimulus, and 

subjects were asked to apply successive numbers in relation to this value. Stevens soon 

realised that this was unnecessary. Subsequent tests abandoned the fixing of the first value, 

leaving it to the discretion of each subject, and later equalised their various scales to a 

common modulus. When Stevens’ method – called magnitude estimation scaling (MES) – 

was applied to psychophysical experiments, the results did not accord with Fechner’s 

function (Stevens, 1957). In the influential paper To Honour Fechner and Repeal his Law, 

Stevens (1961) argued that “a power function, not a log function, describes the operating 

characteristic of a sensory system.” (p.80). Stevens’ power law, as it is known, is written: 

Ψ = k Φ β 

Again, Ψ is the perceived sensation, Φ the stimulus intensity, and as Stevens said: “The 

constant k depends on the unit of measurement and is not very interesting; but the value of 

exponent β serves as a kind of signature that may differ from one sensory continuum to 

another.” (1975, p.13). 

When the results of magnitude estimation are plotted, the graphs show logarithmic 

curves like those in Figure 21a. If the function is instead plotted on logarithmic axes 

(Figure 21b) the results produce straight lines, the slope of which can be used to determine 
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the value of the exponent β, by dividing the y value by the x value. For example, the slope 

of the dashed line in Figure 21b can be calculated by reading its end point, which has x and 

y values of 6 and 2 respectively (if we count the notches on the axes), and so the value of β 

is 2/6 ≈ 0.3. 

 
Figure 21: Linear and logarithmic plots of idealised psychophysical functions: how 

perceived sensation (Ψ) varies with stimulus intensity (Φ) for different β values. 

Exponents with β values less than 1 indicate sensory continua such as loudness (β = 

0.67) for which sensation increases more slowly than the stimulus, which enables us to hear 

a very wide range of volumes. Conversely, continua that increase more rapidly than the 

stimulus value have an exponent greater than 1, which is the case for electric shock (β = 

3.5). For continua with an exponent of around 1, perceptions are proportional to the 

stimulus, as in estimations of coldness and visual length (Stevens, 1975, p.15). The 

differences in sensitivity to stimulus intensity, which are characterised by Stevens’ power 

law exponent β, often reflect evolutionary adaptations. It is not hard to see why being more 

or less sensitive to particular situations is useful, for example, the survival value of visual 

accuracy in estimating distance. The results of Stevens’ method of magnitude estimation 

demonstrated that many sensory continua are better described by a power law relation than 

by Fechner’s logarithmic function. Stevens’ power law is an example of the occasionally 

Ψ Ψ

Φ Φ
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surprising effectiveness of empiricism and mathematics to describe patterns in our world, a 

matter of which he was well aware: 

Regardless of how successful quantification may prove to be in all the rest of science, 

in psychophysics it has yet to shake off all suspicion, for there lingers in many of us a 

feeling, not only that human experience is somehow inscrutable, but also that 

measurement, because of some flinty rigor, may lacerate the human spirit if we probe 

too deeply with the aid of scales and numbers. (Stevens, 1975 p.51) 

Stevens’ method demonstrates that it is possible to measure what was previously 

considered un-measurable, and the results of this method fit the power law relation for 

which he argued. Although these are valuable contributions to the field of psychophysics, 

there have been a few issues with his work. One of these concerns the way in which 

Stevens treats the measures derived from his experiments as ratio scales. Some have 

objected to the assumption of a ratio scale, and say that such methods first require 

empirical proof that perceptions actually behave this way (e.g. Narens, 1996). Such 

arguments are matters of representational measurement theory, and are too complicated to 

describe here (see chapter 1 of Wixted, 2002 for a concise overview). Despite these issues, 

Stevens’ ideas about the different types of scales used in measurement remain amongst his 

most influential contributions to psychology (Teghtsoonian, 2001). 

To complete this summary of the history of psychophysical measurement, let us look 

briefly at a less significant but interesting contribution which relates to the properties of 

various sensory modes: Stevens (1975) makes a distinction between two types of perceptual 

continua, which are named prothetic (quantitative) and metathetic (qualitative). In hearing, 

loudness forms a prothetic continuum because it varies as a magnitude or scalar quantity. 

On the other hand, the pitch of a sound is metathetic because it depends not only on its 

absolute pitch but also on its relation to other pitches. Another way to clarify the difference 

between the two is to imagine what happens when stimuli are combined. Adding two 
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sounds that differ in volume and pitch will result in an increase of loudness5 (which is a 

prothetic quantity), but not an ‘increase’ in pitch (which is a metathetic quality). This 

suggests that it may be more accurate to think of continua as varying in dimensions, or 

degrees of freedom, instead of a cruder categorisation by quality and quantity. Loudness is 

quantitative because it has only one degree of freedom, as does the linear scale of real 

numbers. Pitch has at least two degrees of freedom; its value is described not only by its 

absolute frequency (middle C = 261.63 Hz) but also by the frequency of the note relative 

to others (C is a semitone above B and a whole tone below D), which is itself an intricate 

affair. Taste has at least five dimensions (salt, sweet, sour, bitter, and umami) and is further 

complicated by its close relation to smell, which has many more. 

These sorts of complex relationships characterise the objects of study in empirical 

aesthetics. The way in which we categorise the elements of such relationships influences 

the type of questions we can ask and the type of answers we may find. The distinction 

between metathetic and prothetic percepts is not widely used in the psychological literature, 

yet these kinds of characteristics are clearly of great concern to those who deal with 

aesthetic matters. Whether the aesthetic perception of visual complexity is best described as 

a quantitative or a qualitative continuum is not yet clear. 

The Measurement of Perceived Complexity 

Fechner was among the first to consider complexity in terms of aesthetic perception. 

In the Vorschule der Aesthetik (1876), he proposed ‘the principle of the aesthetic middle’, 

which stated that too much or too little complexity detracts from aesthetic appreciation. 

This proposition was one of sixteen aesthetic principles published in the Vorschule which 

were empirically unverified at the time, but which were later supported by Berlyne’s (1971) 

findings. In the landmark publication Principles of Physiological Psychology (1874), Wundt 

considered the effect of novelty on aesthetic experience, and observed that the 

                                                 
5 Loudness is the name given to the subjectively perceived intensity of sound; volume is the name of the 

corresponding objectively measured intensity: If the volume of sound is too high, it may be too loud for us. 
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pleasantness of perceptions varies with stimulus intensity in terms of an aesthetic middle. 

Daniel Berlyne (1922–1976) describes the principle in terms of a measurable aesthetic 

‘dimension’: 

If, as one proceeds along a certain dimension, beauty or pleasure or aesthetic value 

rises for a while, reaches a maximum in some intermediate state, and then falls as the 

opposite extreme from the starting point is approached, we have an example of the 

inverted U-shaped curves that are quite often encountered in psychology. (Berlyne, 

1971 p.124) 

 
Figure 22 The Wundt curve (adapted from Berlyne, 1971 p.89). 

Wundt was the first to provide empirical evidence for this psychophysical 

relationship, and the resulting inverted U-shaped curve is named after him (Figure 22). We 

can understand aesthetic complexity in these terms, too. If we can quantify and manipulate 

the complexity of stimulus images, we may be able to carry out an empirical investigation 

to test the hypothesis of the aesthetic middle for visual complexity.  

Measuring subjective perceptions of aesthetic properties can tell us much about 

individual perceptions and individual works of art, but it is difficult to compare and infer 

from these studies due to the variability and specificity of their results. An objective 

measure, on the other hand, can be used to construct a scale to which subjective data can 

be compared. If we can determine the (mathematical) relationship between the two scales, 

we could use the objective method to predict perceptions of other measured artworks. This 
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was among the methods adopted from experimental psychology that Berlyne (1971) 

applied to aesthetic questions. Berlyne’s results led to his theory of aesthetic preference in 

terms of arousal, which can be regarded as a measure of alertness or excitation (1971, p.64). 

His theory, which proposed an inverted U function of preference for arousal values of 

aesthetic variables, “dominated the field of experimental aesthetics for the past several 

decades” (Martindale, Moore & Borkum, 1990, p.53). Seven experiments by Martindale and 

colleagues (1990) provided enough empirical evidence to disprove this theory, they claim. 

Their methods, however, were the same that Berlyne had pioneered and which continue to 

be used (the authors say that the experiments were ones that Berlyne was likely to have 

carried out himself, had he not died suddenly). 

To quantify the intensity of aesthetic stimuli, George D. Birkhoff (1884–1944) 

proposed an ‘Aesthetic Measure’ in a book of the same name (1932). Birkhoff studied the 

forms of 2D abstract shapes and silhouettes of objects, such as vases, and he came up with 

a formula which attempted to capture the ‘unity in diversity’ of beauty (Barrow, 2003, p.2). 

His method was to measure aesthetic value in relation to geometrical properties. The 

aesthetic measure (M) varied in proportion to the amount of order (O), and inversely in 

relation to complexity (C): 

C
OM =  

Birkhoff defined complexity as the number of straight lines that make up a shape, 

while order is derived from a complicated summation of symmetries (Barrow, 2003, p.3). 

With this equation, simple figures such as a square have a high M because they have more 

order than complexity. One problem with this aesthetic measure is that it is impractical to 

apply to most artworks, whose complexity and ambiguity make such measurement virtually 

impossible. Another problem is that it does not account for the complexity of art, nor why 

we tend to value complex images. Contrary to Birkhoff’s results, psychological experiments 

with geometric shapes by H.J. Eysenck (1916–1997) revealed preferences for high order 

and high complexity. Examples of the stimuli are illustrated in Figure 23. The results of 
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Eysenck’s experiments (1941a; 1941b) prompted him to re-formulate the aesthetic measure 

(1971, p.164) as follows: 

M = O × C 

When put this way, M increases with complexity, as opposed to Birkhoff’s formula in 

which M decreases as complexity increases. Yet either theory seems counter-intuitive; it 

seems more likely that the highest preference would be found between the extremes of 

complexity, as Fechner’s principle of the aesthetic middle and the Wundt curve would 

suggest. Birkhoff and Eysenck had empirical support for their respective theories, however, 

and Fechner had not. The difference in both the stimuli and the measure of complexity 

used by each of the experimenters confounds a comparison of their results. But what we 

can say is that Birkhoff merely assumed that complexity was a necessary element of an 

aesthetic measure, whereas Eysenck had demonstrated that complexity was a factor in the 

determination of aesthetic preference. The implication is that Eysenck’s formula was 

supported by his experimental results because he only looked at a section at the low end of 

the complexity spectrum, for which our preference does appear to increase with 

complexity: It is in effect just the left-most section of the Wundt curve (Figure 22), if we 

replace ‘stimulus intensity’ with ‘complexity’. It suggests that if Eysenck had examined a 

wider range of complexity – that is, had he included much more complex stimuli – then it 

is possible that the results would have fitted the Wundt curve, and so the rather simplistic 

equation M = O×C would have had to be revised. 

Eysenck’s (1941b) experiments with geometric figures (Figure 23) led to the proposal 

of what he called T and K factors of aesthetic preference (1941b). The T factor describes a 

general tendency, similar to Birkhoff’s aesthetic measure M, which Eysenck conceived as 

an analogue of (psychologist and statistician) Charles Spearman’s g factor, which is an 

established measure of general intelligence (McWhinnie, 1965, p.35). Within the general T 

factor, i.e. when its effects have been eliminated from the results, another factor is revealed. 

The K factor describes a bipolar division of preference for “…simple polygons, simple 
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rhythms, and highly unified pictures as compared with a preference for complex polygons, 

loose rhythms, and diversified pictures.” (McWhinnie, 1971, p.116). Eysenck’s theory was 

based on the psychology of personality types, and although it did not determine what 

caused these preferences, a study by Harold McWhinnie (1966) suggests that the K factor 

might be attributed to learning as well as personality. 

 
Figure 23 The twelve most-liked (left) and least-liked (right) of Eysenck’s (1941b) 

experiments. 

Eysenck (1941c) also performed tests on colour preference using ten cards based on 

Ostwald’s (1969) colour system. As with his earlier experiments, he found a general 

aesthetic factor (the K factor, in which subjects tended to agree on colour preference 

ranking) and a second bipolar (T) factor – in this case a preference for either saturated or 

unsaturated colours. In Eysenck’s experiments, single groups were tested which were then 

categorised according to the results. A few years later, Frank Barron took the opposite 

approach by starting with different groups of people and comparing their preferences. 

Barron’s (1952) experiments investigated aesthetic preference between artists and non-

artists. His method was to use images from the Welsh Figure Preference Test6 (Figure 24), 

testing preferences for either simple-symmetrical or complex-asymmetrical figures. 

                                                 
6 A non-verbal personality test comprising a set of 400 black and white images and a response choice of 

like/dislike. 
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Figure 24 Example images from the Welsh Figure Preference Test 

Barron concluded that artists had a higher preference for the complex-asymmetrical 

figures. A later experiment using reproductions of artworks (Barron. 1963) found that the 

artist groups also preferred art that was “…modern, radical, experimental, primitive, and 

sensual” (McWhinnie, 1971, p.116). Barron’s tests failed to differentiate between the effects 

of training and personality, since the artists may have had a predisposition for liking 

complex-asymmetrical images before the influence of their art training. Nonetheless, his 

correlation of artistic creativity with preference for visual complexity fits with Eysenck’s 

findings about the K factor, and has been corroborated by later experiments (e.g. 

Eisenman, 1967). 

Berlyne (1971) identifies four variables that contribute to visual complexity: 

Irregularity of arrangement, amount of material, heterogeneity of elements, and irregularity 

of shape (of elements). Berlyne also identified four classes of complexity, compiled from 

his own experiments and those of others, which are comparable to Wolfram’s (2002) 

classification: I. Regular arrangement, small amount of material, homogeneous, regular 

shapes. II. Irregular arrangement, more material, heterogeneous, irregular shapes. III. 

Fewer independent units, symmetry, non-randomised. IV. More independent units, 

asymmetry, randomised (1971, p.198). If there is a problem with this classification, it is that 

it appears a little too complicated or even arbitrary; there are many factors involved in the 

categories which might be better understood in isolation. Nevertheless, Berlyne identifies 
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some of the significant visual properties that contribute to the perception of visual 

complexity. 

In summary, there are two critical factors in aesthetic experiments of visual 

complexity: the way in which complexity is defined and measured, and the range of 

complexity present in the stimuli. There have been many attempts to define complexity in 

terms of aesthetic properties, and many different approaches to its classification and 

measurement. The lack of common measures of visual complexity hinders comparison 

between studies. In addition, the complicated nature of complexity measurement often 

restricts studies to relatively simple geometric shapes which are more amenable to analysis. 

In the next section of this chapter, we examine the influence of information theory on the 

field of empirical aesthetics. We discuss the ways in which it surmounts the limitations of 

previous measures and provides a common ground for the measurement of aesthetic 

properties, particularly for visual complexity. 

The Influence of Information Theory 
In this age of computing technology, information has become a familiar concept, 

though perhaps one that is not always well-understood. It is most frequently used to 

describe abstract quantities of data, particularly in computing, but the origin of the word 

relates to the formation of materials or concepts. To the ancient Greeks, the perception of 

beauty was an experience based on the sensory in-formation of the Platonic forms 

embodied in material objects. The way in which the concept of information became useful 

to contemporary empirical research rests on its modern meaning, with its emphasis on 

quantification. The birth of information theory in the 1940’s coincided with the first digital 

computers, which had resulted from a confluence of mathematics, physics and electronic 

engineering. In effect, computing is applied information theory. Yet the very first digital 

computer – the Z3, built in 1941 by Konrad Zuse – preceded by seven years the paper that 

provided the foundation of information theory – Claude Shannon’s A Mathematical Theory of 

Communication (1948). The significance of Shannon’s paper is that it formalises a theory of 



Mapping Theory and Practice  Empirical Aesthetics 

 82  

communication by quantifying information through the concepts of order, probability and 

redundancy. The quantification of information provides a potentially useful tool for 

scientific experiments because it allows for the measurement of aesthetic properties. In 

addition, information theory offers to art theory and practice a new way of understanding 

aesthetic properties and perceptions. 

Concepts from Information Theory 

Fred Attneave (1919–1991) was amongst the first psychologists to apply information 

theory to aesthetic problems. In Applications of Information Theory to Psychology, Attneave 

credits the idea that information is precisely measurable to Shannon (1948) and Norbert 

Wiener (Cybernetics, 1948), whose work offered a “shiny new tool kit” to which “more than 

a few psychologists reacted with an excess of enthusiasm” (1959a, p.v). Attneave identifies 

the significant element of this new field: 

Perhaps  the most  fundamental  concept  of  information  theory  is  that  of  a 

continuum extending  from extreme lawfulness, or redundancy, or regularity  on one 

hand, to extreme disorder, or unpredictability, or uncertainty on the other. One end of 

this continuum is homogeneity, the other chaos. (Attneave, 1959b, p.503) 

This is the idea, introduced in Chapter 1, upon which various informational measures 

of complexity are based. We noted then that an informational measure is inconsistent with 

the intuitive notion of complexity. The former is a scale of order–randomness, and the 

latter is understood as a scale of simplicity–complexity. Whilst there is some agreement 

between the concepts of order and simplicity (the lower ends of the two scales), there is a 

notable difference between randomness and complexity (the upper ends). The difference is 

not just conceptual, but also perceptual: Attneave (1954, p.188) notes the point that 

random images can give the subjective impression of homogeneity, which is the opposite 

end of the informational scale. An image made of 50% random black and white pixels has a 

maximum measure of information content, but it is homogeneous in texture and may be 

perceived as a simple uniform grey (if the pixels are small enough). 
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One of the earliest writers on information theory and visual aesthetics was Max 

Bense (1910–1990), a scientist-turned-art-theorist who published Aesthetic Information in 

1957. Bense’s ‘information aesthetic’ treats art as a form of communication, modelled on 

the information-theory approach. Bense adapts Birkhoff’s (1932) aesthetic measure to the 

informational framework by substituting elements of the formula M=O/C, replacing order 

with redundancy, and complexity with statistical information (Walther, 2000). In so doing, 

Bense incorporates the central concept of information theory, the scale of order–to–

randomness, into an aesthetic measure. Bense makes a distinction between semiotic and 

numeric aesthetic information; only the latter is open to analysis with information theory, 

which deals principally with quantitative data. 

Like Bense, the communication theorist Abraham Moles (1920–1992) distinguished 

two types of aesthetics information – semantic and aesthetic. Whereas semantic 

information is expressible in symbols and is translatable, aesthetic information is 

untranslatable – it is not the message (its meaning) but the way that the message is 

conveyed (such as its medium, syntax and context). Moles used information theory to 

focus on the aesthetics of music. By its temporal nature, music fits naturally into an 

information theory framework of communication which is based on linear, time-dependent 

sequences. The aesthetic information of an object is a quantitative measure of the 

order/randomness of its internal structure which provides a scale of reference for the 

measurement of perception. Semantic information refers to things external to a sound or 

an image, whilst aesthetic information has to do with the internal set of relations in the 

structure of pictorial or musical elements. Therefore, semantic information is generally 

beyond the scope of analysis for an information-based empirical investigation and the 

application of information theory to aesthetics is restricted to the formal properties of a 

work of art. 

In his information aesthetic, Bense introduced the idea of macro- and micro-

aesthetics: “Macro-aesthetics is concerned with the evident realms of perceptions of the 
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aesthetic object, micro-aesthetics with the not-evident realms of the aesthetic object” 

(Walther, 2000). The micro-aesthetic includes not only the un-perceivable structural 

relations of elements, but also the a-perceptual elements such as the relationship between 

theory and the work (Gianetti, 2004). As such, Bense’s theory deals with ‘pure’ information 

as well as with aesthetic information of a physical nature, but whereas Moles and Attneave 

were writing principally for scientists, Bense was writing for artists. Accordingly, the 

concept of micro-aesthetics has greater potential application in art practice than for an 

empirical investigation, and it is discussed further in the next part of this chapter on visual 

complexity in aesthetic practice. 

Attneave (1954, p.189) employs information theory concepts to describe perception 

as a process of “economical description”, analogous to data compression, in which 

redundant visual information is discarded. In the case of random and chaotic images, we 

reduce their structural detail (what Bense might call micro-aesthetic information) and 

perceive a kind of overall texture (macro-aesthetic) as an economical description of sensory 

visual information: 

Perception might be conceived as a set of preliminary “data-reduction” operations, 

whereby sensory information is described, or encoded, in a form more economical 

than that in which it impinges on the receptors. (Attneave, 1959a, p.82) 

This is an explicit application of concepts from information theory to psychological 

phenomena, but at this stage in the field these are hypotheses that lack empirical support. 

The value of the ideas is that they not only suggest mechanisms of perception but also “the 

types of measurement which are likely to prove appropriate in the quantitative 

psychophysical study of complex perceptual processes” (Attneave, 1954, p.192). The type 

of measurement Attneave proposes is based on an informational scale. 

Visual Order and Randomness 

To explore the visual scale of order–randomness, Attneave (1959b) created patterns 

with stochastic (non-deterministic, i.e. random) processes: Starting with a blank grid, a coin is 
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flipped to decide whether to generate an upward- or downward-sloping diagonal line to fill 

each square in the grid. This random image is then used as a basic repeating unit to form a 

regular pattern. The repeating unit can be altered by randomly changing some of its 

elements as it is repeated, which generates an overall pattern with random deviations from 

the regular repetitive pattern. Information theory allows us to quantify the regularity or 

randomness of the resulting patterns. The question Attneave was exploring was how much 

randomness has to be introduced into the repeating pattern before it is no longer perceived 

as regular. Figure 25 illustrates four images generated with this method, and we can see that 

with only 15 per cent randomness it is already difficult to identify the underlying regular 

pattern. Attneave’s hypothesis was that most people would prefer slightly irregular patterns 

to completely regular ones (1959b, p.505), but unfortunately this was not tested 

experimentally. 

 
Figure 25 Stochastic pattern composition (Attneave, 1959b). A repeating unit is 

composed of a 3x3 grid of random diagonal lines, which is itself repeated 3x3 to form 

a regular pattern (top left). Parts of the unit are altered in each repeat to give patterns 

with 5, 10 and 15 % random deviation from the original pattern. 

Original 5% 

10% 15% 
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Another early contribution to the field of informational aesthetics was made by 

Wilhelm Fucks, who had conducted research on the mathematical analysis of style (1952) 

which predated the advent of information theory. Unfortunately, most of the relevant 

publications by Bense and Fucks are unavailable in English translation, and so they must be 

omitted from this contextual review. Nevertheless, we may at least glimpse something of 

Fucks’ approach with two images from his book Exaktwissenschaftliche Musikanalyse (1965), 

in which he applied information theory to the analysis of music: Figure 26 shows his 

mapping of patterns of musical tones from various pieces of orchestral music onto a grid, 

the dots presumably identifying repeating patterns and correspondences between notes or 

phrases. What is interesting about these graphics is that although they are the result of 

analysis rather than synthesis, they display elements of order and randomness comparable 

to those present in Attneave’s stochastic composition processes (Figure 25) and Bridget 

Riley’s dot paintings (Figure 28). If Fucks’ analytical images represent a valid mapping of 

musical structure, then we may infer that a similar aesthetic of order and randomness is 

involved in musical composition as it is in visual art. From the standpoint of visual art, it is 

intriguing that what may sound like rather dry scientific and information-based analyses 

furnish such appealing images as those produced by Attneave and Fucks. The 

correspondence of musical and visual aesthetic structure also suggests the possibility of a 

universal information aesthetic that may reach across creative disciplines and artistic media. 
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Figure 26 Wilhelm Fucks. Images from Exaktwissenschaftliche Musikanalyse (1965). 

The Influence of the Computer 

The advantage of the informational approach is that it allows for precise 

measurement. The problem with the approach is that the amount of visual information in 

artworks makes this measurement difficult. Arnheim put it like this: 

The problem at hand can be approached also from the other end. Instead of analyzing 

simple groups of elements, one can start with the peculiar patterns we call works of art 

and ask what kind of information they furnish. […] Can a theory fitted to the 

respectable objectives of engineering cope with such mavericks? (1959b, p.503) 

This problem is not surprising, since we have learnt that complexity is associated 

with difficulty of description and that artworks are visually complex. In this situation, it is 

therefore natural to approach the problem by dealing with relatively simple stimuli which 

are easy to make and measure. Before the advent of computing, this seemed to be the only 

option for empirical investigations of visual complexity. The computer solves the problem 

by speeding-up the process of making and measuring stimuli. For example, the images in 

Figure 25 that Attneave said were “extremely laborious” to create by hand through 

stochastic composition processes (1959b, p.506) I managed to reproduce in around ten 

minutes by writing a Mathematica program that took only a few seconds to generate images. 
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Figure 27 shows an image I made based on Attneave’s stochastic procedure, with a 

thousand diagonal elements and 100 per cent randomness. The image also demonstrates 

the property, noted by Attneave, that randomness is perceived as an overall texture. 

 
Figure 27 A 100x100 grid of randomly-selected diagonal elements. 

A more recent investigation into the role of order and randomness was undertaken 

by Neil Dodgson (2008) who, unlike Attneave, had the benefit of using a computer. 

Dodgson investigated the visual structure of Bridget Riley’s early op-art. Unlike some of 

Riley’s more familiar regular patterns, these pictures contain apparently random elements as 

well as order (Figure 28). Without knowing the particular technique employed by Riley, 
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Dodgson attempted to recreate her work by using computer algorithms to generate similar 

types of images. The algorithms produced regular patterns with random deviations, and the 

proportion of this randomness was manipulated. 

 
Figure 28 Bridget Riley (1965) Fragment 6/9. Screenprint on Perspex, 625 × 721 mm. 

By combining order and randomness in a computational process, Dodgson was able 

to recreate the aesthetic properties of Riley’s artwork, and to generate appealing visual 

complexity. The images that were closest to the original artworks resulted from an 

algorithm in which about one third of the picture elements in a regular pattern were 

randomly added, moved or deleted, such that the images contained two thirds order and 

one third randomness. I agree with Dodgson’s conclusion: 

The particular examples examined here have introduced very limited randomness and 

yet even this limited randomness provides a great deal of complexity. This is a tribute 

to the pattern-detection systems in the human brain. (2008, p.122) 

Dodgson attributes the perception of complexity to a perceptual process of pattern-

detection. Pattern-detection is how we recognise order, complexity, and randomness – all 

of which are kinds of pattern. The formal constraints with which Dodgson structures his 
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images also limit the perceptual grouping of picture elements and thus the type of pattern 

we might perceive. For example, in a regular chequered pattern of black and white squares, 

we would likely perceive only regular perpendicular and diagonal structures. Disrupting this 

regularity by introducing randomness opens up a pattern to alternative perceptual 

groupings. The implication from Attneave (1959b) is that introducing more randomness 

increases perceived complexity only up to a point, beyond which images just appear 

random. In other words, the findings of Attneave and Dodgson imply the existence of a 

threshold to the perception of complexity in relation to an informational measure of 

complexity. This threshold we identified in Chapter 1 (p.45) as also being proposed by 

Wolfram (2002, p.559) and Donderi (2006b, pp.87–88). 

Possible explanations for visual pattern-detection include the Gestalt principles of 

grouping – such as those of figure/ground, similarity, proximity, and symmetry (Bruce, 

Green & Georgeson, 2003) – and Richard Gregory’s (1980) theory of “perceptions as 

hypotheses”. The Gestalt approach could be called ‘bottom-up’ because it describes 

perceived forms as emerging from constituent units, whereas Gregory’s approach is more 

‘top-down’ since it depends on cognitive hypotheses based on prior experience. The first 

significant point following from Attneave’s results, however, is that an image becomes 

more interesting when the number of possible ‘groupings’ or ‘hypotheses’ is increased. The 

second point is that this visual interestingness can be promoted by the combination of 

order and randomness, which gives rise to the perception of visual complexity. The most 

complex image in Dodgson’s paper (also the image that I find most appealing) is the one 

that illustrates the transformations required to get from the regular underlying pattern to 

the final version (Figure 29). The added colours and shapes increase the variety of elements 

and increase the visual complexity of the image. The arrows and crosses invite a visual 

exploration, especially when seen in the context of the original and underlying patterns. 
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Figure 29 How to get from simple order to complexity by introducing randomness. 

The larger image shows how to transform the underlying regular pattern (top left) to a 

representation of Riley’s Fragments 6/4 (bottom left), by moving, adding and deleting 

picture elements. (Dodgson, 2008) 

The Computational Approach to Visual Perception 

After the breakthrough of understanding visual properties in terms of quantifiable 

information, the next logical step is to understand the process of perception in terms of the 

computation of this information. David Marr (1982) describes vision as a “complex 

information-processing system”, whose purpose is to reveal “what is present in the world, 

and where it is” (p.3). We know that the input to this process is a two-dimensional visual 

array (light entering the retina) and that the output is perception of the three-dimensional 

world. The problem for the science of perception is: how does it work? In Marr’s 

approach, this formidable problem is divided into separate problems of understanding the 

computation (what the system does with the array of visual information, and why), the 

algorithm (how those computations are tackled) and the implementation (the mechanism or 

‘hardware’) involved in visual processing. The theory attempts to explain how a visual array 

is processed to give a two-dimensional ‘primal sketch’ of a scene composed of visual 
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primitives such as edges, lines and blobs, and how these primitives are further processed 

into a ‘2½D-sketch’ which includes an indication of depth relative to the observer, and 

then into recognizable 3D objects and scenes. 

Support for Marr’s theory comes from neurophysiology and psychophysics, as 

follows: The primitives that compose the 2½D-sketch are mainly processed in the retina. 

David Hubel and Torsten Wiesel (1962) identified that the outputs of photoreceptors (rods 

and cones) in the retina are linked together to form receptive fields. In the visual system, a 

receptive field is a group of photoreceptor cells in the retina that acts as an information-

processing unit. The way in which the receptors are connected defines a small cluster 

which is divided into a centre and surround. One type of receptive field responds to 

stimulation in the centre, whilst in another type the same stimulus inhibits its response. In 

general, receptive fields give a lower response for overall stimulation, and respond most 

strongly when only one part (either the centre or the surround) is stimulated. This happens 

when an edge is perceived, because a perceived edge is a relative difference in light intensity 

(Marr reserves the word ‘edge’ for perceptual phenomena and ‘intensity gradient’ for the 

physical equivalent). Because this process occurs in the retina, the recognition of ‘edges’ 

(i.e. adjacent light and dark areas) functions at a pre-conscious level of perception 

(Snowden, Thompson, and Troscianko, 2006). The operation of receptive fields has a 

direct bearing on the amount of detail we can perceive: smaller and more densely-packed 

receptive fields enable the perception of finer detail. As with Marr’s distinction between 

‘edges’ and ‘intensity gradients’, ‘detail’ is the perceptual equivalent of what is known as 

spatial frequency, which is defined as the number of cycles (e.g. light and dark stripes) per 

degree of visual angle (Bruce, Green & Georgeson, 2003). 

Naturally, the computational approach involves a mathematical representation of 

these processes and the use of computers to carry out the kind of laborious tasks that 

visual processing requires, but what allows for this is the separability of the levels of 

description. For example: if, instead of perceiving light intensity, the computational task is 
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to add numbers together, it makes no difference to the result whether we use decimal or 

binary systems to represent the numbers, whether the choice of algorithm is efficient, nor 

whether the calculation is implemented mentally or with an abacus or a computer. 

Similarly, light levels and colours can be represented by neurochemical signals or binary 

digits. Separating the problems frees up investigation to explore the most salient features 

because at certain levels of description some computations are equivalent. For example, 2 

+ 2 = 4 is equally true whether performed in the brain or on a computer. In this way, the 

computational approach justifies the use of information technology as an investigative tool 

for visual perception. Computational models based on this approach can be tested 

empirically against human biology and psychology to determine how accurate and useful 

they are. For instance, Marr & Hildreth’s (1980) algorithm, which was designed to model 

the edge-detection process of receptive fields in the retina, has been found wanting as a 

biological theory, but is now used in machine vision and in image-processing software such 

as Photoshop, as illustrated in Figure 30. 

 
Figure 30 Edge-detection in image processing: before (left) and after (right). 

Marr’s separation of the visual processes and subsequent identification of the edge-

detection algorithm means that the computation of these receptive fields can be modelled 

on computers. Its effect on digital images illustrates the identification of edges and lines 

from a visual array; a stronger edge is more visible when contrast is greatest, as seen in 

Figure 30, which was created by using a convolution algorithm similar to Marr’s (the 

Laplacian-of-Gaussian operator). The strongest edges appear to lie on the borders of the 
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lightest and darkest colour patches, and the weakest edges are next to the colours that are 

closest in tone to the mid-grey background. The resulting greyscale image also represents 

the fact that edge-detection is a process independent of colour perception – it only 

depends on light intensity. 

If we accept Marr’s ‘sketch’ theory, the implication is that the perception of visual 

complexity is a function of these visual primitives. More primitives and more types of 

primitives make for greater visual complexity. We have already identified the quantity, 

variety and order of picture elements as significant objective properties of visual 

complexity; now with Marr’s visual primitives we have identified significant subjective 

picture elements: Edges, lines and blobs are the basic perceivable forms, which are further 

distinguished by tone and colour. 

Zeki and Lamb (1994) describe the perception of motion in terms of receptive fields 

in the visual cortex area of the brain. Like those in the retina, these receptive fields are also 

areas in which stimulation of multiple receptors combine to affect the response of a single 

neuron. According to Zeki and Lamb (1994, p.613), artworks stimulate motion-sensitive 

receptive fields in various ways. For example, the static representations of motion in the 

Futurist paintings of Duchamp and Jean Tinguely stimulate different regions to those 

activated by Alexander Calder’s mobiles. Zeki’s ‘neuroaesthetics’ research explores the 

psychophysical relation of visual art to neural activity. By understanding the perceptual 

effects of art in terms of brain function, Zeki postulates that “the artist is, in a sense, a 

neuroscientist, exploring the potentials and capacities of the brain, though with different 

tools” (2009). The conclusion is that because kinetic art activates certain neural responses, 

the artist who makes this artwork exploits the response and intuitively explores the 

structural function of the brain. Whether this neuroaesthetic approach is the only way in 

which we can fully understand how artworks give rise to aesthetic experiences, as Zeki 

maintains, appears to be open to question. The focus and methods of Zeki’s research are 

beyond the scope of the current project, but the modelling of perceptual processes enabled 
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by Marr’s computational approach to vision has potential application for empirical studies 

of visual complexity, as we see in the following section. The strength of Marr’s theory is 

that its separation of the problems allows for the modelling and analysis of perception. 

Furthermore, its separation of the processes justifies the computational modelling and 

analysis of aesthetics by incorporating the concepts of computation and information into a 

theoretical framework of visual perception. 

Aesthetic Measures 
We noted previously that perceptions can be measured with various psychological 

techniques such as magnitude estimation scaling (MES). MES provides a general method 

that can be applied to a variety of subjective perceptions, including visual complexity. In 

the following section we examine some of the contemporary techniques employed in the 

measurement of objective and subjective visual complexity, with a view to identifying the 

appropriate research methods for the current project. The potential of these methods for 

the project is evaluated principally in terms of their ability to cope with images of art and 

design and the strength of their correlation with human perception. 

Eye-Tracking 

Miall & Tchalenko studied artist’s movements during portrait drawing (2001) and 

eye–hand coordination strategies in copying complex lines (2008). Equipment tracked the 

direction of the participants’ gaze whilst drawing, and revealed different patterns of 

drawing strategies in the temporal cycles of looking in turn at the original and the copied 

drawing. Besides eye-tracking, Paul Locher (2003) explored various experimental methods 

to assess the contribution of pictorial balance in aesthetic perception of visual art. Locher’s 

results show that balanced pictorial arrangements attract more fixation on the surface than 

unbalanced arrangements, and confirm that pictorial balance is a significant factor in the 

creation and perception of visual art. 

The eye-tracking technique does not constitute a measure of complexity as such, but 

the quantitative nature of the data it furnishes suggests that some form of informational 
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measure could in theory be applied. In general, it seems that a more complex image invites 

a more complex perceptual exploration as described by the patterns of gaze-fixation 

identified by eye-tracking. It would be interesting to determine the correlation between the 

complexity of the sequence of actions and the visual complexity of the resulting images. 

Certainly, it takes more time to create a complex oil painting than a simpler charcoal 

sketch, and a greater variety of movements are performed in the process of painting with 

oils. Overall, though, despite its relative simplicity and practicality, the eye-tracking method 

is only an indirect measure of visual complexity, and may not be the most appropriate 

technique for the present study. 

Aesthetic Preference 

There have been numerous studies of preference for various types of visual stimuli, 

including many based on the experimental framework of Berlyne (1971) discussed earlier. 

Prominent researchers in the field include Colin Martindale and Paul Locher, each of 

whom has served as president of the International Association for Empirical Aesthetics. 

Both authors have employed an information-based approach to aesthetic measurement in 

relation to the preference for complex images. 

Martindale, Moore & Borkum (1990) carried out experiments based on Berlyne’s 

theory that aesthetic preference is a function of hedonic arousal. The authors identify the 

influence of Berlyne’s aesthetic theory in the number of citations of his work from three 

international conferences on experimental aesthetics: Berlyne is the most-cited author, 

appearing in 39% of the conference papers, followed by Arnheim and Gibson with 15% 

each (Martindale, Moore & Borkum, 1990, p.53). Martindale and colleague’s experiments 

aimed to test the predictions of Berlyne’s theory, such as the prediction that the collative 

variables – including visual complexity – are amongst the most significant determinants of 

aesthetic preference. The first of these experiments focused on random polygons as visual 

stimuli, and complexity was measured in terms of the number of ‘turns’ (corners) present 

in the shapes. Their results were overwhelmingly negative for Berlyne’s predictions, 
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showing that semantic information is more influential than the collative properties in 

predicting aesthetic preference. These results were validated in further experiments which 

used representational drawings and paintings as stimuli. However, when the experiments 

included images of both representative and abstract artworks in addition to random 

polygons, the result is that complexity is a better predictor of preference (Martindale et al., 

1990, p.73). 

Martindale and colleagues (1990) found that their results were not affected by 

knowledge of art. Participants’ art knowledge was measured by indicating how much they 

knew about “art in general” on a numerical scale ranging from “a lot” (1) to “nothing” (7). 

Locher, Smith and Smith (2001) also investigated the role of art experience in the aesthetic 

judgement of visual stimuli. The stimuli included original paintings by Rembrandt, Breugel 

and Vermeer from the New York Metropolitan Museum of Art, and reproductions of 

those artworks in the format of digital images and projected slides. The results show that 

ratings of aesthetic qualities were similar for both art-trained and untrained viewers, and 

that the ratings were comparable for both original images and reproductions. The authors 

name this indifference to stimulus format ‘facsimile accommodation’, and their results 

provide experimental evidence of the comparability of aesthetic evaluation between these 

diverse conditions. It suggests that although the originals were judged to be slightly more 

interesting and pleasing, the effect of reproduction may not be as significant as expected on 

the judgement of aesthetic properties, including visual complexity. 

Marcos Roberts (2007) investigated the divergent experimental evidence for 

Berlyne’s (1971) inverted ‘U’ shape correlation between complexity and preference, 

following on from Martindale’s (1990) challenge to the theory. Unlike the experiments of 

Martindale and Locher, Roberts’ methods were based solely on subjective estimates of 

complexity rather than objective measures. Digital reproductions of artworks of a variety of 

styles including abstract and representational artwork were used as stimuli. From the 

results, Roberts identified that the most significant factors of visual complexity are: a) the 
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amount and variety of picture elements, b) the organization of elements, and c) the 

asymmetry of the elements. 

Edge Detection 

Experimental psychologists have employed Marr’s theoretical framework and used 

edge-detection algorithms to measure visual complexity. Forsythe, Sheehy and Sawey 

(2003) investigate various measures of graphic icon complexity as a way of finding an easier 

method than survey and questionnaire techniques. Of six tested aesthetic measures, the 

strongest correlations are with “structural variability” (r = 0.65, p < 0.008) and “edge 

information” (r = 0.64). The conclusion is that these computational measures match 

perceived complexity closely enough to offer a workable alternative to the costly and time-

consuming surveys of icon design (2003, p.341). Forsythe (2008) uses various image-

processing methods, including edge-detection algorithms, to examine the influence of 

image familiarity on judgements of visual complexity. The analysis reveals a familiarity bias 

in estimates of visual complexity: participants tested over a week already showed that their 

familiarity with images affected their reported perceptions of visual complexity. The 

explanation for this bias is that “when observers are asked to consider the complexity of an 

image, they also process task-irrelevant information, such as its familiarity and 

meaningfulness” (Forsythe 2008, p.124). Forsythe proposes the computational edge 

detection technique as an alternative to perceived complexity that is less susceptible to bias. 

The findings support the idea that a complex image is one with many edges,  

Processing edges takes time, and mainly happens prior to semantic processing: “Regardless 

of experience, a more detailed object will take longer to reach semantic processing, because  

the preprocessing of many edges is perceptually  demanding” (Forsythe et al., 2003, p.341). 

‘Perceptually demanding’ means that it is a difficult and complicated process which takes 

time and effort to achieve. This substantiates the connection between the number of edges 

in an image and its visual complexity, which we have understood as being related to the 

difficulty of description or execution. Weaknesses of this measure in regard to the aesthetic 
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perception of art include the fact that it disregards colour information and focuses only on 

tonal variation. However, since perceptual edge-detection also operates before colour 

processing and has been shown to be a significant factor in the construction of sensory 

percepts (Marr, 1982), this criticism of the measure may be offset with evidence of its 

correlation with human perception. 

Fractal Measures 

As well as a noun, the word ‘fractal’ is an adjective which describes the intricacy of 

these self-similar shapes. This intricacy is known as its fractal dimension. For example, a 

fractal line that almost fills a two-dimensional surface has a fractal dimension greater than 

one but less than two. Another fractal line that is even more intricate covers more of the 

surface and has a higher fractal dimension. Ordinary Euclidean shapes – such as squares 

and circles – have a fractal dimension equal to their topological dimension, which is always 

a whole number (a line = 1, square = 2, cube = 3, etc.). Mandelbrot (1982) defined fractals 

as the shapes for which their fractal dimension is not equal to their topological dimension 

but is a fraction of that number (technically, when the Hausdorff-Besicovitch dimension 

exceeds the topological dimension). Therefore, we can understand the meaning of the 

adjective ‘fractal’ as ‘fractional dimension’, and we can use it as a measure of complexity. 

There are a variety of measures that capture this property, and a number of them 

have been used to quantify the visual complexity of stimuli in aesthetic experiments. For 

example, Julien Sprott (1994) employed two measures, fractal correlation dimension and 

the Lyapunov exponent, to quantify the visual complexity of images. Sprott used iterated 

function systems (IFS) to generate stimulus images of strange attractors, which are fractal 

shapes in phase space (such as the Lorenz attractor in Figure 13). The Lyapunov exponent 

measures the unpredictability of the dynamic process that generates the image (in this case, 

an IFS). It measures the rate at which two adjacent points diverge in phase-space 

(somewhat like measuring divergence of points on the Lorenz attractor, or the divergent 

paths of the leaves that I dropped in a stream to demonstrate the effects of chaos). Sprott 
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generated 7500 fractal images and graded them according to his own aesthetic evaluation 

on a five-point scale. He found a correlation between fractal measures and aesthetic rating: 

the highest-rated images had also had the largest fractal values (Lyapunov exponent = -0.24 

and a fractal dimension = 1.5). 

Aks and Sprott (1996) performed a similar investigation, this time with a group of 

test participants instead of the author’s aesthetic evaluation. These tests measured the 

fractal dimension (F) space-filling of the shapes, and the Lyapunov exponent (L). With 24 

undergraduate students from art and science courses, the result was that the most preferred 

images had values of F = 1.26, and L = 0.37. The authors claim that these values are close 

to those found in natural objects, such as the coastline of Britain, which has a fractal 

dimension of 1.25 (Aks & Sprott, 1996, p.2). A similar preference for images with fractal 

values close to natural forms is reported by Taylor et al. (2003), who investigated the 

aesthetic response to natural, artificial and hand-made fractals. Using a variety of these 

stimuli with a range of fractal dimension between 1.1 and 1.9, the participants’ task was to 

state which of a pair of images of differing fractal values was the most “visually appealing” 

(2003, p.95). The results indicate a grouping of fractal values across all three types of image: 

low preference for the lowest (1.1–1.3) and highest (1.5–1.9) fractal values, and high 

preference for middle range of values (1.3–1.5). Further support for this preference comes 

from Hagerhall et al. (2008), who studied the neurological response to viewing a range of 

fractal images. With electroencephalogram (EEG) monitoring, Hagerhall found that 

Patterns with a fractal dimension of 1.3 elicited the most interesting EEG, with the 

highest alpha in the frontal lobes but also the highest beta in the parietal area, pointing 

to a complicated interplay between different parts of the brain when experiencing this 

pattern. (Hagerhall et al., 2008, p.1488). 

While the results of these three experiments support the idea that medium 

complexity fractal images are the most aesthetically pleasing, it also appears to question the 

suggestion by Aks and Sprott (1996) that the explanation is a connection to natural fractal 

forms. The problem is that natural fractals can be found over the entire range of fractal 
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dimensions. For example, Taylor et al. (2003) collated measures of natural fractals from a 

variety of sources that evidence a range from as low as 1.1 in coastlines up to 1.9 in plants 

(2003, p.92), and their experiments included samples covering this range.7 Overall, the 

findings of these experiments accord with Fechner’s principle of the aesthetic middle and 

Berlyne’s (1971) framework of aesthetic preference for stimuli of medium intensity. 

In a follow-up to their earlier experiment, Aks and Sprott (1996) investigate whether 

the creative ability of participants affects preference for fractal values of the images. They 

suggest that “scientists may tend to see beauty in simplicity whereas artists may be more 

tolerant of complexity” (1996, p.9). Fifteen of the participants from the previous 

experiment were assessed for creative ability with a questionnaire and grouped according to 

whether their creativity was above or below the mean. Apart from a marginal preference 

for detail amongst self-rated ‘divergent thinkers’, the analysis shows no significant 

difference in preference between the groups, possibly due to the small sample size of 

participants. These results suggest that self-reported creativity is a poor indicator of 

aesthetic preference. 

Few empirical studies of fractal aesthetics have utilised artworks as stimuli. The 

reason is likely that fractal measures are of little use for non-fractal images, and that fractal 

artworks are relatively scarce. However, there is one artwork that offers a large collection 

of fractal material for investigation: Scott Draves’ (2009) Electric Sheep project (which is 

discussed further in the section on art practice). Electric Sheep is an interactive online 

screensaver in which users can vote for their preference of animated fractals (called ‘sheep’) 

by pressing the up or down arrow key to indicate like or dislike of the current image. Votes 

are collated in a central server which deletes the least popular sheep and picks out pairs of 

the most popular ones to produce a new animation by combining the parameters of the 

parents using a genetic algorithm. Users can also design their own sheep and upload them 
                                                 
7 Since these experiments examine two-dimensional images, the range of fractal dimension is restricted to 

between 1 and 2. 
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to the server, so a new ‘flock’ consists of a mixture of computer-generated and human-

designed animations, all of which are then subjected to the voting and culling/breeding 

process. In its operation, therefore, Electric Sheep accumulates aesthetic preference into its 

generative processes and provides a large resource for empirical investigation. A study 

conducted by Draves et al. (2008) is based on the aesthetic judgements of 20,000 

participants on 6,400 images. In the study, preference displayed an inverted ‘U’ correlation 

with fractal dimension, with a peak around 1.5. Once again, this reinforces the finding of 

preference for mid-value fractals, though somewhat higher than previous results. 

Taylor, Micolich and Jonas (2002) find that Jackson Pollock’s drip paintings are 

fractal. This may seem surprising when we consider the chaos in the drip technique and the 

resulting appearance of disorder in the paintings, but measurements indicate fractal 

dimensions in the range 1.3–1.9. Images of the drip paintings are used in Taylor et al.’s 

(2003) study to represent the category of human-made fractals. In a study of abstract 

expressionist art, Mureika, Cupchik and Dyer (2004) suggest that the fractal dimension 

measure is unable to distinguish between different styles. They propose a ‘multifractal’ 

measure, which offers a more refined statistical measure of self-similarity that is able to 

make distinctions between styles. The study shows that among expressionist paintings, the 

work of Pollock is unique in its degree of irregularity and ‘roughness’ of edges (2004, p.56). 

The authors suggest that the visual system’s propensity for detecting edges – which are so 

abundant in Pollock’s work – allows for the recognition of order in the chaotic paint drips, 

and that this is a possible source of their aesthetic appeal. 

Data Compression 

Beginning with a research project for the Canadian Ministry of Defence into the 

readability of radar displays and naval charts, Donderi (2000) had the idea of using the 

data-compression of digital image files as a measure of complexity. In short, the idea is that 

simple images make small files when compressed, and more complex images make larger 

compressed files. The argument for this method is that information theory (Shannon & 
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Weaver, 1948) provides a theoretical basis for the justification of using compression 

techniques as a measure of visual complexity. As noted in the previous chapter, data 

compression is a form of the ‘minimum description length’ (MDL) measure of complexity, 

and MDL is equivalent to the (technically incomputable) ‘algorithmic information content’ 

(AIC) or ‘Kolmogorov complexity’ measure. Of the various measures of visual complexity 

discussed thus far, Donderi’s method is the most direct application of an informational 

scale of measurement. Because data compression algorithms are incorporated into many 

common digital image file types, this method involves little more than creating an image 

file with maximum (near-optimum) compression. Therefore data compression offers a 

simple and efficient objective measure of informational complexity, and it follows that the 

size of compressed image files is a measure of visual complexity. 

The experiments of Donderi & McFadden (2005) provide empirical support for the 

measure. They show that the difficulty of chart and radar display tasks increases with the 

size of compressed image files. Since we have understood complexity as being related to 

difficulty, these results support the method as a measure of visual complexity. Further 

evidence for the validity of this relationship comes from a second experiment that involved 

the task of identifying which of two small geometric shapes were present in aerial images of 

the earth. The logarithm of compressed JPEG file size corresponds with the difficulty of 

the task as measured by the success in identifying the correct shape. The idea behind the 

experiment is that a more complex image makes it more difficult to identify the correct 

shape placed within it. To corroborate this idea, Donderi and McFadden (2005) also 

measured the subjective complexity of the images with Stevens’ (1975) magnitude 

estimation method. Eleven participants judged visual complexity by rating 52 images with a 

number which was in proportion to its perceived complexity. The analysis shows a weak 

but significant correlation between file size and task accuracy (r = 0.14, p < 0.005) and a 

strong correlation between file size and MES ratings (r = 0.77, p < 0.0001). The two 
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experiments confirm that JPEG file compression corresponds with task difficulty and 

perceived complexity. 

Despite the encouraging results of these experiments, it appears that there may be a 

problem with the file-compression measure of complexity, which stems from the disparity 

between information-based measures and perceived or intuitive complexity. In Chapter 1, 

we noted that randomness is rated highest by informational measures, and that subjective 

complexity lies somewhere in the middle of an informational scale, between order and 

randomness (see Figure 16). It implies that the correlation between file size and subjective 

perceptions of visual complexity may break down for random or near-random images. This 

problem is summed up as: “Can a display become so ‘complex’ that appears ‘simple’?” 

(Donderi & McFadden, 2005, p.78). Donderi makes reference to Wolfram’s (2002) 

observation that the perceived complexity of cellular automata images depends on the 

identification of patterns. A random image, whilst being rated highly in terms of objective 

complexity (as measured by file compression or AIC), has no patterns (no redundancy) and 

so it may appear to be subjectively simple: 

We do not know whether, if we study displays with even higher levels of JPEG file 

complexity, we will begin to see a reduction of perceived complexity and a 

concomitant change in performance. In short, we do not know where to locate the 

inflection point that is implied by the Wolfram’s observation about the perceptual 

simplicity of even more complex visual displays. (Donderi & McFadden, 2005, p.78) 

The inflection point that Donderi mentions is the peak of the hypothetical inverted 

‘U’ shape correlation between objective and subjective complexity. Before this peak the 

two measures correlate positively, and beyond it perceptions of complexity decrease as 

objective complexity increases. Thus the inflection point represents a perceptual threshold 

of complexity on an informational scale; we are unable to perceive any more complexity. 

The problem was investigated further by one of Donderi’s research students, Christina 

Besner (2007), who studied whether the correlation of objective (file size) and subjective 

(MES) complexity measures would still hold for random images. The stimuli comprised 
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images of nature scenes, camouflage patterns, and images made by combining two 

together. Besner conducted two experiments with ten participants each, one with a set of 

138 images and the other using 16 from that set. The result is a moderate correlation 

between file size and estimated complexity (r = 0.553, p < 0.001) which becomes stronger 

when the larger, more random files are ignored (r = 0.827, p < 0.001). From this result, 

Besner draws the conclusion that Donderi’s measure remains valid for the images used; the 

images were not so objectively complex that they appeared to be simple. The result can be 

interpreted differently, however: As more random images are included, a weaker linear 

correlation is actually what one might expect to find if the relationship between objective 

complexity (based on file compression) and perceived complexity (MES) has an inverted 

‘U’ shape. Besner acknowledges that the images were possibly just not random enough to 

see this effect, which seems a fair assessment given that the stimuli were not generated 

from random processes. 

We have seen that this informational measure of visual complexity does indeed 

correspond with perceived complexity for images such as radar displays and images of 

natural scenes. But on the other hand it appears that there are limitations to this method 

when it comes to images of greater objective complexity, that is, as images approach 

randomness. Given that we understand images from art and design as being amongst the 

most complex type of image in subjective terms, we face the following question: Will this 

objective measure of visual complexity also work for images from art and design? 

Remarkably, Arnheim had identified much earlier this problem of informational 

measurement in the arts: 

From this reasoning follows what must seem an appalling paradox to any friend of the 

arts, namely, that complete disorder or chaos provides a maximum of information 

whereas a completely organized pattern yields no information at all. The friend of the 

arts, of course, takes the opposite for granted. (Arnheim, 1959, p.501) 

With Donderi’s file-compression method, we have identified a potentially useful and 

practicable measure of visual complexity for a study of art and design. We have also 
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identified the following gaps in knowledge: Firstly, is the relationship between compressed 

file size and perceived complexity as suggested by Donderi and Wolfram – that is, can we 

find empirical evidence for a perceptual threshold of visual complexity where the 

correlation between information content and subjective complexity has an inverted ‘U’ 

shape? Secondly, will the file-size measure of complexity and its correlation with subjective 

complexity also work with images from art and design? 

Summary 
In this review of empirical aesthetics, we have encountered a variety of approaches. 

Researchers have variously employed cognitive (Gibson), motivational (Berlyne), Gestalt 

(Arnheim), and computational (Marr) approaches to visual perception and aesthetics. 

Amongst these approaches, opinion is divided on whether aesthetic perception differs 

from everyday perception. Similarly, there are many possible routes to understanding and 

measuring visual complexity – some intuitive and others more abstract and informational. 

Empirical studies of aesthetics can be divided into two categories. What might be 

called the analytic (or holistic) approach employs real artworks as stimuli, whereas the 

synthetic (or elementary) approach creates stimuli for testing, such as geometric diagrams, 

which serve as abstractions of certain features of visual art. Experiments involving genuine 

artworks as stimuli can be traced back to the work of Fechner, who in 1871 attempted an 

experiment to record the responses of an audience to two versions of the younger Hans 

Holbein’s Madonna with Burgomaster Meyer (Berlyne, 1971, p.10). Either alternative has 

problems: The strength of the analytic approach is that it is based on observations of actual 

artefacts, but these stimuli also have features that might unduly influence the properties 

under investigation. The selection of stimuli from extant artefacts is thus fraught with 

difficulties, especially because artworks tend to be held in diverse locations, which may 

hamper the collection of a representative sample. 
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The synthetic approach has the benefit of circumventing these practical difficulties in 

experimentally measuring or controlling the properties of real artworks as stimuli, since the 

properties of the stimuli can be fully controlled and features of interest can be isolated. The 

disadvantage of this approach is that it weakens the validity of generalizations that can be 

made about actual artworks, since the data is based on observations of artificial stimuli in 

test conditions which are often far removed from the typical gallery experience of visual 

art. There is reason to believe that Donderi’s file-compression measure of visual 

complexity is able to cope with both artificial stimuli and images of artworks since there is 

no fundamental difference between the two types of image when reduced to the basic 

properties of digital image files. The difference between artificial stimuli and actual 

artworks is, after all, a matter of context, as discussed in the previous section on the 

aesthetic theories of art. For that reason, the file-compression measure is a strong candidate 

to be used in the following tests. 

Aesthetic Practice 
The aim of this section is to identify and examine creative practices that engage with 

the aesthetics of visual complexity. The scope includes not only practices which manifest 

complex visual material, but also practices that aim for simplicity of expression. This 

material includes examples of digital and generative art which explicitly deal with concepts, 

models and techniques from the sciences of complexity (those which use cellular automata, 

for example) but these criteria do not constrain the scope of the contextual review. 

Although the focus is mainly on two-dimensional visual material, some examples of three-

dimensional art and sound art are also considered. The choice of material in this section 

cannot be expected to represent an accurate picture of the full range of today’s art 

practices; rather, the selection is biased towards artworks and artists I have encountered 

personally and which stimulate my own practice. The examples of art practice are roughly 

grouped by the complexity of the artwork, and are arranged in order from the simple and 

regular to the chaotic and random in the following sections. 
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Simplicity and Minimalism 
It may seem counter-intuitive, but I suggest that minimalism is the art movement 

that focuses most explicitly on the concept of aesthetic complexity. Donald Judd is 

regarded as a key figure in the genre, but minimalism is a term he rejected, preferring to 

describe his work as “the simple expression of a complex thought.” Other artists associated 

with minimalism rejected the term as a description of their work, despite the outward 

appearance of reductive strategies in their artwork. Like other minimalists, Judd’s work 

utilizes simple geometric forms which are often repeated in two- or three-dimensional 

space. The simplest two-dimensional artwork is the monochrome – a format adopted by 

artists in a variety of art movements other than minimalism, including Kasimir Malevich, 

Alexander Rodchenko, Ad Reinhardt, Robert Rauschenberg, Robert Ryman, Yves Klein 

and Gerhard Richter (Figure 31). 

 
Figure 31 Gerhard Richter, Grauer Spiegel (1991), coloured glass, 3000 × 1750 mm. 

These artists did not only produce monochromatic works, however, and they were 

not only interested in what we understand to be the central concerns of minimalism. These 
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concerns include a ‘truth’ to materials and a restriction of focus to the internal structure of 

the artwork without imitation or representation of external reality. In this way, minimalist 

art claims to be more ‘honest’ in its lack of illusion and its use of materials that simply 

speak for themselves and are not subjugated to a role of signification. Reducing illusory 

distraction and pictorial clutter allows the materials to speak and provides space for us to 

reflect on the act of perceiving them. So even though its aim is to reduce formal 

complexity and increase order, minimalism puts the concept of visual complexity at the 

forefront of its theoretical and aesthetic considerations. 

There is an interesting tension between simplicity (as a measure of complexity) and 

minimalism (as an aesthetic approach), which suggests that we should not assume that the 

one necessarily follows from the other. Jürgen Schmidhuber’s ‘low complexity art’ uses 

concepts from algorithmic information theory to create short and simple computer 

programs. Schmidhuber’s stated goal is to create minimally complex programs that 

generate images that “look right” (1997, p.97). Creating low-complexity algorithmic art is 

difficult, he says, because we can never be certain that we have found the shortest 

algorithm for the job. This uncertainty results from the fact that algorithmic complexity 

(the length of the shortest program that will generate a given pattern) is incomputable. The 

resulting images are mainly composed of circle segments which combine to create outlines 

of recognisable shapes, such as butterflies and flowers. Obviously, ‘looking right’ is highly 

subjective, and to my eyes the style of Schmidhuber’s low-complexity images – which are 

far from minimalist – is quite repellent. The differences between these examples of low-

complexity art demonstrate that aesthetic quality is dependent on more than just the 

complexity of the artwork. 

Minimalist construction is not restricted to visual art and architecture; the movement 

also flourished in music. One of the simplest musical scores, John Cage’s 4’33” consists of 

three parts, each with the single instruction ‘tacet’ (‘rest’). Despite the simplicity of the piece, 

the perceived work can be complex since it consists of the ambient sounds present at that 
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time and location. Through the sounds of the environment, Cage directs perception away 

from the distractions of ‘music’ towards the act of perception itself, and in doing so he 

radically reconfigures the possibilities of sound art. Richter’s grey mirrors (Figure 31) 

perform the same function; their colourless space literally reflects the act of perception, like 

a visual analogue of the empty music in Cage’s composition. 4’33” and Grauer Spiegel may 

be perceptually complex, but both are minimal in terms of their composition – we might 

say that they have low algorithmic complexity. With such minimalist artworks, the audience 

is expected to contribute their share towards the aesthetic experience. In this sense, though 

they may be ‘quiet’ (literally or figuratively speaking), minimalist artworks are rarely passive 

experiences. 

Some of the most stimulating work for my own visual art practice discovered during 

the course of this research has come from music and sound art. In particular, this includes 

music from the independent record labels Touch (UK), 12k and LINE (USA), and Raster-

Noton (Germany). With widely differing styles of music, these labels share a concern for 

visual and tactile aesthetic quality evident in their minimalist graphic design and packaging. 

The owners of these labels are active as visual artists – Jon Wozencroft (Touch), Taylor 

Deupree (12k) and Richard Chartier (LINE) in photography and design; Olaf Bender and 

Carsten Nicolai (Raster-Noton) in design and art. Design for music packaging has an 

established history, and these contemporary graphic artists acknowledge the influence of 

earlier designers such as Peter Saville (Figure 32). Saville’s design for the cover of Unknown 

Pleasures makes it one of the few albums of the time not to feature the artist’s name – an 

exercise in minimalism that echoes Joy Division’s bleak sound and Martin Hannett’s crisp, 

sparse production. 
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Figure 32 Peter Saville and Joy Division, Unknown Pleasures (1979). 

 
Figure 33 Alva Noto (Carsten Nicolai), Xerrox Vol.2 (2009). 
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Raster-Noton has a graphic style of minimal digital futurism which represents its 

experiments in the “overlapping border areas of pop, art and science”, such as the design 

of the latest release by Alva Noto (Carsten Nicolai) in Figure 33. As the second volume in a 

series of five called Xerrox, its minimal design represents the letterforms in the 

corresponding part of its title (ER). In contrast, Touch presents an earthy realism in 

Wozencroft’s photographs of the British landscape (Figure 34) used, for example, for the 

environmental recordings of Chris Watson. Both labels share the minimalist concern with 

honesty in materials – Touch with the images and sounds of the natural world and Raster-

Noton with the digital. The 12k aesthetic sits between these two extremes with a 

“minimalist hybrid of electronic and acoustic music”, incorporating techniques such as 

field recording and processing of recorded instruments. Figure 35 illustrates Deupree’s 

album design and the graphic design of its press release. The music by Solo Andata, an 

Australian duo that uses instruments and field recordings, is typical of the 12k style – soft, 

melodic drones built up from looped guitar samples and repeating fragments of sound. 

 
Figure 34 Jon Wozencroft, Willow (2009). 
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Figure 35 Taylor Deupree, press release for Solo Andata, Solo Andata (2009). 

A number of these musicians are also involved in visual art practice and research. For 

example, Jon Wozencroft currently teaches at the Royal College of Art. The University of 

York’s research group New Aesthetics in Computer Music has Mark Fell amongst its staff, and 

resident artists involved in the project have included Russel Haswell, Olaf Bender, Peter 

Rehberg and most recently Taylor Deupree. Together with Mat Steel, Mark Fell creates 

music under the name SND on the Raster-Noton label, although they released their earliest 

work via the now-defunct record label Mille Plateaux, named after the publication by 

Deleuze and Guattari (1980). SND’s minimal electronic music uses a restricted palette of 

sounds to create shifting patterns that occupy a strange place between dance music and 

abstract sound art, popular culture and academicism. 

Like some of their contemporaries, SND are often labelled as minimalist, and 

although it is not always a term with which they are comfortable they do share its concerns. 

For example, Fell says that he is “not interested in simplicity or minimalism […] for me 

this point is more to do with integrity” (Fell, 2009). Deupree does accept the minimalist 

tag, although more in the sense of ‘economy’ than ‘simplicity’ (Deupree, 2009). The 

compositional techniques employed by these contemporary musicians can be traced back 
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to the work of earlier classical minimalists. For example, the tintinnabuli (Latin for ‘little 

bell’) method created by Arvo Pärt, generates permutations of simple triadic chords, often 

with accompanying drones. Pärt used the technique to achieve simplicity in his minimalist 

sacred music, such as Für Alina (1975): “The complex and many-faceted only confuses me, 

and I must search for unity” (Morton and Collins, 1992, p.729). Steve Reich used a similar 

method of combinations of simple repeating rhythms to generate complex musical 

patterns. Another technique frequently used today is based on the granular synthesis 

concept of Iannis Xenakis, which transforms sound into small fragments or ‘grains’ that are 

processed and re-arranged to form new sonic textures. Working with micro-sounds at very 

small time scales, Xenakis used stochastic processes to create new forms of music that 

explore the concepts of order and disorder (Matossian, 1986, p.239). 

The visual element of SND’s performance at the Transmediale festival 2009 involved 

“a very simple system that can be described in a couple of sentences, but [which] generates 

quite complex patterns” (Fell, 2009). As the two musicians operated audio controls for the 

music, the changing parameters were recorded as coloured lines that built up on a screen 

behind them, creating an increasingly complex stratified vision of an element of the musical 

process. Fell said of the project’s computer code that “what we wanted from the system we 

wrote in two lines – it was really that simple” (Rousset 2009). Robert Henke, developer of 

the Ableton Live music software, and a musician under the name Monolake, says that sonic 

complexity does not need lots of distinct elements, but that it can also occur with a 

seemingly simple texture that reveals more detail as the listener pays more attention: 

“Reduction for me is a trick to guide the listener’s focus to the background where the 

exciting things are hidden” (Henke, 2009). Henke explains that his background in film 

music means that he thinks in terms of layers of sound, spatial placement and slight 

variations of seemingly repetitive elements. This hidden detail, he says, is the type of 

complexity he finds beautiful: 
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I would describe it as ‘inherent functional complexity’: It is not the starting point but 

the result of applying simple processes either on a compositional level or, on a smaller 

timescale, to the sound creation. Or both of course. The beauty of such a complexity 

is the amazing discrepancy between the complexity of the result and the […] 

simplicity of the process. (Henke, 2009) 

Carsten Nicolai describes a similar process in his approach to music creation: “At 

first you deal with total regularities. I work with measuring systems, with quite a logical 

background, very simple programs to create distances and really precise sine waves” 

(Borthwick, 2007). As Alva Noto, Nicolai produces music with pure tones, white noise, 

and sampled music. “What I do is based on classical compositions and architectural ideas, 

so for me it is very important to see the sound and to work on it”. The influence of Bense’s 

concept of information-aesthetics is evident in Nicolai’s precision sculpting of sound in 

Mikro Makro (1996), a collaboration between Nicolai and musician Mika Vainio. The 

installation comprised two work tables on which were a few objects – lenses, magnifying 

glasses and electric light bulbs. Nicolai and Vainio composed the music that accompanied 

the piece, which they later released under the names Noto and Ø respectively. One track 

contains extreme low and high frequencies combined with pure sine wave tones and bursts 

of white noise. Despite the obvious digital origin of the music, the auditory experience 

brings to mind the sounds of bats, whales, birds and waterfalls. Another is based on noise 

sourced from recordings of pulsars and magnetic resonance imaging. In accord with 

Bense’s conception of micro-aesthetics as involving elements not directly evident to the 

senses (Walther, 2000), Nicolai (2009a) says that these micro-elements “point to an 

existence beyond our realm of perception”. In the same way that the micro-detail of visual 

randomness or chaos can be perceived as an overall texture, the micro-elements of sound 

put together in Nicolai’s music are perceived as a texture of drones, hisses and hums. These 

musical practices are examples of artistic creation through the generation, transformation 

and combination of simple parts, which demonstrate the minimalist engagement with 

aesthetic complexity. 
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The Grid 
A grid is a visual device associated with regularity – a repetition of simple elements. 

In visual art, the grid is usually presented in two spatial dimensions. A one-dimensional grid 

in time provides the structure of music and moving image, a three-dimensional grid is a 

possibility in sculpture, and mathematical or computer modelling can incorporate grids of 

many more dimensions. In two dimensions, squares, triangles and hexagons appear to be 

the most common visual elements in human artefacts. Natural grids are formed by 

collections of similar objects in proximity and are most commonly hexagonal: examples 

include honeycomb, cells in an onion skin, Rayleigh-Bernard convection cells in heated 

fluids, and the columnar basalt rock in the Giant’s Causeway, Northern Ireland (originally 

molten but now solidified convection cells). A recent publication by Carsten Nicolai is a 

catalogue of grids for graphic design, organised as a spectrum of complexity (Figure 36). 

Grid Index (Nicolai, 2009b) is presented as an 

…indexation system that goes from the most basic regular and uniform geometrical 

tilings to the most complex and irregular ones; a growing array of shapes, vertex 

transitivity, and symmetry axis present us with an index of plane subdivision 

possibilities (Nicolai 2009b, no page numbering). 

 
Figure 36 Carsten Nicolai, selection of pages from Grid Index (2009). 



Mapping Theory and Practice  Aesthetic Practice 

 117  

The content of Grid Index is derived from many sources, with a notable amount from 

Grunbaum and Shephard’s mathematical compendium Tilings and Patterns (1987) which was 

one of the first books to publish non-periodic patterns made of regular shapes. Not only 

does the grid provide a tool for the graphic design of image and text, but also for fine 

artists and craftspeople. The grid has been the subject of aesthetic investigation and 

discussion since at least the first mosaics, up to the present discourse by Rosalind Krauss 

(1985) and James Elkins (2008). Krauss theorizes the grid as a kind of Platonic form 

relative to nature and art: 

Insofar as its order is that of pure relationship, the grid is a way of abrogating the 

claims of natural objects to have an order particular to themselves; the relationships in 

the aesthetic field are shown by the grid to be in a world apart and, with respect to 

natural objects, to be both prior and final. (Krauss, 1985, p.11) 

In this sense the grid is also part of the minimalist aesthetic – a simple, self-contained 

visual structure. Prominent examples of the grid in art include work by the Russian 

constructivists, Piet Mondrian, Sol LeWitt, Agnes Martin, James Hugonin, Gerhard Richter 

(Figure 37), and Chuck Close. 

 
Figure 37 Gerhard Richter, 4900 Colours: Version II (2007), enamel paint on 

Aludibond, 970 × 970 mm. 
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Richter’s output is interesting in terms of visual complexity because his practice 

includes work that covers a wide range of complexity. For example, there are works that 

are simple (the grey series of paintings), regular (colour charts), representational (painted 

photographic images) and chaotic (abstract multi-coloured paintings). The ‘colour chart’ 

series of paintings are the ones that display regular, ordered grid arrangements, but they 

could also be classified as random or chaotic because there is rarely any apparent pattern in 

the arrangement of colours. In a variation on the strictly regular grid, Joseph Albers painted 

the series Homage to the Square. Using a limited geometrical vocabulary, Albers explores 

chromatic and formal relationships to experiment with perceptual effects. Besides the 

square canvas and the flat shapes, there are also perceivable squares in the lines between 

areas of colour, present in the same way that a square lined grid is implied between the 

colours in Richter’s colour chart paintings (Figure 37). With the Homage to the Square series, 

Albers demonstrates how visual complexity can arise from a seemingly simple combination 

of elements. 

 
Figure 38 Joseph Albers, Homage to the Square: Yellow Resonance, (1957), oil on 

hardboard, 40 × 40 inches. 



Mapping Theory and Practice  Aesthetic Practice 

 119  

One of the most complex grids in visual art can be seen in two sculptures by Gabriel 

Orozco. The concept was to suspend a whale skeleton in the space and to draw in graphite 

a three-dimensional grid onto its two-dimensional surface. In 2006, Orozco produced the 

first of these – Mobile Matrix, a commission for the José Vasconcelos Library in Mexico 

City. A second version of the work inverts the pattern of the grid, resulting in the much 

heavier-looking Dark Wave (Figure 39). The third dimension and the complexity of the 

surface make drawing this grid a formidable task. Of its construction, Orozco said, “It’s so 

complex that if you have a bi-dimensional graphic or drawing of a skeleton and then try to 

map out what you intend to do it…it’s impossible.” (Miller, 2008).  

 
Figure 39 Gabriel Orozco, Dark Wave (2006). Whale skeleton and graphite. 

Computer Art 
The first computer art exhibitions happened around the same time in Germany and 

the U.S. In 1965, Bela Julesz and Michael Noll showed Computer-Generated Pictures at the 

Howard Wise Gallery, New York (Dietrich, 1986), and in the same year Frieder Nake, 

George Nees and A. Michael Noll exhibited their work at the Studiengalerie of Stuttgart 

University (Nake, 2005). A difference between the two exhibitions is that whilst the 

German exhibiters were practising artists, the two Americans were undertaking scientific 

research at Bell Laboratories. Julesz’s research for Bell Labs included testing the 
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randomness of computer-generated number sequences, a job for which he used not a 

mathematical procedure, but the natural pattern-detection of the human visual system; 

deviations from randomness (i.e., patches of regular patterns) could be spotted easily when 

the digit sequences were visualized (Siegel, 2004, p.721). 

Frieder Nake describes the computer as a ‘universal picture generator’ (Dietrich, 

1986, p.166). Many of the scenes we are able to perceive visually can be captured on digital 

camera. The image can be stored on computer and shown on screen or printed to give a 

fair representation of a scene. Images can also be generated by the computer, and the 

number of potential images is enormous. The amount of possible different images with a 

standard screen resolution of 1280 × 1024 (1,310,720) pixels, using the RGB colour system 

(16,777,216 colours), is a number with almost ten million digits. To put this number into 

context, the estimated minimum number of atoms in the observable universe is around 

1080, which has only 81 digits. Such a vast space of visual possibilities cannot be explored 

methodically because of time and computing constraints. What is needed is a way of 

navigating this space towards the aesthetic ‘hot-spots’ – in other words, an aesthetic rule or 

algorithm. This is, in effect, the function of algorithmic art like that of the early computer 

artists – to find rules of composition that model those incorporated into our own aesthetic 

sensibilities. Just as Dodgson (2008) recreated Riley’s paintings with a computer, Noll also 

recreated Riley’s artwork. It suggests that Riley was considering these computational 

elements of information, order and randomness, though without the aid of a computer. 

Nake and Nees were taught at Stuttgart by Max Bense, who, together with Abraham 

Moles, influenced the direction of their work and their acceptance of the computer as a 

creative tool (Gianetti, 2004). The ‘three Ns’ of computer art – Nake, Nees and Noll – 

showed their work at Jasia Reichardt’s groundbreaking Cybernetic Serendipity exhibition at the 

Institute of Contemporary Arts, London in 1968. The exhibition and its subsequent 

publication (Cybernetics, Art and Ideas, 1971) dealt with the relationship of the computer and 

the arts. Figure 40 shows a picture of Bela Julesz, published with his obituary in 2003, 
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which was taken at his and Noll’s exhibition, Computer-Generated Pictures. It depicts Julesz in 

front of one of the artworks, which is unmistakably Attneave’s (1959b) stochastic 

composition process (Figure 25). The evidence in the picture suggests that the early 

computer artists were aware of the current scientific research. It seems also that Attneave 

was equally attuned to the arts, since he had foreseen creative potential in the computer for 

manipulating aesthetic rules rather than just aesthetic properties: 

In some respects more appealing than either the imitative or the autonomous 

computer  would  be  one which  allowed  the  rules  of  composition  to  be  varied 

easily and precisely. […] Such a device would offer extraordinary opportunities for 

artistic exploration and experimentation. (Attneave, 1959b, p.510) 

Attneave also noted that the benefits of this tool would “throw a correspondingly 

greater burden upon his evaluative or critical capacities”. Moreover, the connection 

between computer and empirical aesthetics also suggests that we could re-interpret the 

scientific graphics as a pathfinder in the development of visual culture. James Elkins (2008) 

sees this kind of value in certain types of scientific visualization, particularly those that are 

difficult to achieve and which push the boundaries of visualization. To Elkins, this 

difficulty in making and the resulting improbability of the images lend them aesthetic value. 

 
Figure 40 Bela Julesz in 1965, with Attneave’s (1959b) Stochastic Composition Process. 
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Fractal Art 
A fractal artwork is one which has a pattern within a pattern, which is nested or self-

similar, like the examples illustrated in Chapter 1 (Figures 2–4). These types of pattern can 

be constructed in a variety of ways, which generally fall into one of two categories: ‘top-

down’ or ‘bottom-up’. For example, with a cellular automaton a fractal image is built up 

from the bottom. A pattern emerges from small picture elements (cells/pixels), which form 

the base level of detail in the image, as the image is generated row by row – somewhat like 

knitting. Alternatively, a similar image can be formed ‘top-down’ by an iterative process of 

subdivision. Figure 41 shows a fractal image created with these two different methods:  

 
Figure 41 Fractal construction methods. 

The upper image is created ‘bottom-up’ from 64 steps of elementary CA rule 60, 

starting from initial conditions of a single black cell. The lower series of images is made by 

a ‘top-down’ iterative process of copying the image, reducing in size, and pasting the copies 

onto three quarters of the original image. Both the large CA image and the last image in the 
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series below it have the same amount of detail. Each is effectively based on a 64×64 grid 

(the grids represented here differ for clarity), and each contains six levels of nesting. 

Mandelbrot (2004a) cites Hokusai as one of the earliest visual artists to create images of 

fractals, in pictures such as The Great Wave (Figure 4). A contemporary example of natural 

fractals in art is the tree-like sculpture of Jorge Mayet (Figure 42) which was presumably 

made with a ‘top-down’ method, starting with the central trunk and adding successively 

smaller branches and roots. 

 
Figure 42 Jorge Mayet, De Mis Vivos y Mis Muertos (2008). Electrical wire, paper, 

acrylics, fabric; 143 × 84 × 84cm. 
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Taylor, Micolich and Jonas (2002) demonstrate that Jackson Pollock’s drip paintings 

(Figure 43) are fractal, by using a fractal measuring technique known as box-counting. 

Taylor’s research found that the fractal dimension of the drip paintings increase over the 

course of their construction, as one would expect in a top-down fractal construction, which 

becomes more intricate as layers of paint are built up. The research also shows that during 

the years of their execution, the drip paintings became increasingly complex. Over the 

decade from 1943 to 1952, the fractal dimension of the paintings increased from around 

1.1 to 1.7 (Taylor, Micolich and Jonas, 2002, p.206). 

 
Figure 43 Jackson Pollock, Lavender Mist: Number 1 (1950), oil on canvas, 221 x 300cm. 

These findings suggest that the fractal nature of Pollock’s work was no accident, and 

that even though the term ‘fractal’ had yet to be coined and the images reach a wider public 

awareness, the creation of these self-similar forms was a significant component of Pollock’s 

art. It begs the question why this was not recognised before this computational analysis. It 

seems that the irregularity in the dripped paint masks their fractal qualities from our 

perception, and the high fractal dimensions of the later work in particular makes it difficult 
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to perceive their inherent order. A possible explanation for this is the idea of a perceptual 

threshold of visual complexity. The objective or informational complexity of the drip 

paintings is just beyond the threshold, past the peak of the inverted ‘U’ correlation with 

perceived complexity. Their randomness makes it difficult to perceive the inherent order, 

and together they contribute to the perception of visual complexity. There is something 

aesthetically pleasing about the irregular fractals in Pollock’s configuration of order and 

chaos, just as there is in the shapes generated by Scott Draves’ Fractal Flames (Figure 44). 

The generating algorithm is an iterated function system, and Draves’ contribution is to 

have formulated a new colouring method that reveals the fine structure of these forms 

(Draves and Reckase, 2007). By manipulating its parameters over time, it is possible to 

animate the fractals. These animations form the basis of Drave’s Electric Sheep screensaver 

project (Draves 2009), in which users can influence the selection and generation of ‘sheep’ 

or create their own and subject them to the same selection and generation process. 

 
Figure 44 Scott Draves, aka Spot (2007). Two images generated by the Fractal Flames 

algorithm for the Electric Sheep project. 



Mapping Theory and Practice  Aesthetic Practice 

 126  

Visualizing Complex Information 
Unlike fine art, graphic design involves the manipulation of visual elements for a 

practical purpose – it is about more than just making pleasing visual forms, and so its 

aesthetic is always secondary to its utilitarian demands. The purpose of such graphics is to 

convey useful information. Edward Tufte formulates principles of design for information 

graphics by analysing previous instances and from his own experience in design. Tufte 

argues for making the most of established print and paper technology in place of poorer-

resolution electronic displays. One of the most cited and celebrated graphic designs in 

Tufte’s book, The Visual Display of Quantitative Information (2001), is a map of Napoleon’s 

Russian campaign by Charles Joseph Minard (Figure 45). In only two dimensions on paper, 

this chart elegantly and efficiently represents at least six dimensions of statistical data, 

including the size of the army, its geographical position, elevation, and the local 

temperature. 

 
Figure 45 Charles Joseph Minard (1869). Chart depicting Napoleon’s 1812 Russian 

campaign. Lithograph, 62 x 30 cm. 

 Tufte argues convincingly that by using low-quality displays (low-resolution, poor 

colour reproduction, bad tone/contrast) and formulaic designs (such as the preset styles in 

Microsoft PowerPoint), we deprive ourselves of a rich visual experience that can be both 

illuminating and aesthetically pleasing at the same time. In fact, Tufte’s guidelines barely 
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make the distinction between good form and good function, so closely are they tied 

together in his principles. Above all, Tufte’s graphics are economical – there is no visual 

redundancy, thus the data represented are about as ‘compressed’ as is possible in graphical 

form. Experiments by Donderi and McFadden (2004) provided empirical evidence that 

more information-dense images can be easier to process: When university students and 

professional mariners were tasked with reading naval radar and chart images, both groups 

showed improved efficiency in answering questions about the displays when the images 

were superimposed instead of presented separately. Donderi agrees that Tufte’s aesthetic 

parallels the computational approach: “…the information-theory context of Tufte’s 

analysis was implicit in the terms he used and the principles he advocated (2006b, p.83). 

Like Tufte, Colin Ware argues for the visualisation of information, but whereas Tufte 

wields authority by his demonstrable graphical skill and aesthetic sensitivity, Ware utilises 

the body of psychological research on visual perception to strengthen his argument. Ware 

et al. (2006) produce novel methods of visualizing marine data, in this case (Figure 46), a 

visualisation of humpback whale movements. 

 
Figure 46 Visualization of whale behaviour by Ware et al. (2006). 
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In his book on information visualization, Ware (2004) not only gives a 

comprehensive account of the visual system and perceptual psychology, but also lists some 

of the psychophysical principles and methods that are used in the work he cites and in this 

research project. It is evident in his writing that Ware advocates a theory of active 

perception – the orthodox view that largely rejects Gibson’s theory of direct perception: 

At higher levels of processing, perception and cognition are closely interrelated, which 

is the reason why the words “understanding” and “seeing” are synonymous. (Ware 

2004, p. xxi) 

Ware employs David Marr’s computational approach to vision to justify a set of 

principles for information graphic design. In particular, Ware uses Marr’s idea of the 2½D 

sketch to implement better graphic design. The perception of the third dimension – 

proximity to the observer – does not conform exactly to the line of sight; we experience 

this dimension in degrees, he argues. Images of occluding shapes, for example, are strictly 

two-dimensional, but are perceived as having some kind of depth. Joseph Alber’s painting 

Homage to the Square (Figure 38) demonstrates this effect; it appears to be composed of 

many squares superimposed on each other, when in fact there is only one square on the 

face of the canvas (the other ‘squares’ are actually shapes like an empty picture frame). The 

perception of depth depends on certain visual cues, and graphic techniques such as 

occlusion and shading can strengthen or lessen the perceptual effect. 

Ben Fry explores ways of visualising large sets of complex data, and like Ware 

acknowledges the perceptual problems this brings. For his PhD thesis, Fry (2004) worked 

with one of the largest and most complex data sets – the human genome. His statement of 

the graphic design problem is that “The ability to collect, store, and manage data is 

increasing quickly, but our ability to understand it remains constant.” (2004). Fry (1997) 

explores methods of navigating data sets. His challenge is to come up with ways of 

visualizing the kind of complex and dynamic data sets that fail to be served by Tufte’s 

guidelines for more traditional graphic data. This kind of data changes over time, and 
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constitutes a new type of complexity to which the visualisations have to adapt. Another 

project that visualizes complex dynamic data is Thinking Machine (Figure 47) by Martin 

Wattenberg. Thinking Machine visualizes the moves considered by a computer chess 

program – ‘lines of thought’ are traced in coloured arcs that reveals the electronic 

opponent’s strategy, the more likely moves being traced more times. The tactical strength 

of each side is visualized in ripples that propagate from the pieces on the squares over 

which they have control. 

 
Figure 47 Martin Wattenberg, Thinking Machine (2002). 

The website Visual Complexity (2009) is a resource for the visualization of complex 

networks, which includes the work of Fry and Wattenberg amongst topics such as art, 

biology, social networks and the World Wide Web. It is run by designer Manuel de Lima, 

whose aim is to provide a resource for the visualization of complex networks and to 

develop a critical understanding of visualization methods between various disciplines. After 

knowledge networks and social networks, art is the third most popular subject for 

visualizations on the site. One example is the work of Lee Byron, who wrote the 

StreamGraph software (Byron and Wattenberg, 2008). The software visualizes information 
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gathered through the LastFM music website which records patterns of music listening 

history (Figure 48). The horizontal axis represents time in weekly snapshots, and each artist 

is represented by a labelled, coloured stripe, the thickness of which is determined by the 

number of tracks played. 

 
Figure 48 Visualization from LastGraph of my listening history (one year and detail). 

What is interesting and valuable about the work of Tufte, Ware and Fry is their 

willingness to exploit our considerable powers of perception rather than pander to ill-

informed principles of simplicity and ease of understanding. That is not to say that these 

researchers promote visual complexity for its own sake, or that they aim to produce 

material difficult to digest, but that in different ways they attempt to enrich our world of 

visual information and reveal its complexity through clarification rather than obfuscation. 

Ware describes information visualization as “external cognition”, a tool for augmenting the 

cognitive powers of the mind (2004, p.xvii). If graphic visualization is externalized 

cognition, then to perceive and understand information graphics is to re-internalize and 

incorporate visual complexity, and the task of the information graphic designer is as Tufte 

describes elegantly: 
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What is to be sought in designs for the display of information is the clear portrayal of 

complexity. Not the complication of the simple; rather, the task of the designer is to 

give visual access to the subtle and the difficult – that is, the revelation of the complex. 

(Tufte 2001, p.191, my emphasis) 

These principles are followed throughout the thesis, since they seem appropriate for 

both the art and design context of the investigation and for the complex quantitative nature 

of the data that is collected and analysed. Benoit Mandelbrot wrote of the illustrations in 

his influential book, The Fractal Geometry of Nature, that they were 

…designed to help make its contents accessible in various degrees to a wide range of 

readers, and to try and convince even the purest among mathematicians that the 

understanding of known concepts and the search for new concepts and conjectures 

are both helped by fine graphics. However, showing pretty pictures is not the main purpose in 

this Essay; they are an essential tool, but only a tool. (Mandelbrot, 1982, pp.21–22) 

The same can be said of my intentions with this thesis; the illustrations are an 

essential tool for the description of the materials, methods and results of this study. In a 

review of the use of graphics in psychological journals, Best, Smith and Stubbs (2001) find 

that graphical presentation of data predominates in the ‘hard’ sciences: On average, 1 out 

of 10 pages contain graphs in journals of the hardest disciplines (e.g. physics, chemistry), 

and only 1 in 100 for the softer sciences (such as psychology), with the number of tables 

used in inverse frequency to graphs. Best et al. conclude that 

If the softer sciences are to participate in the emergence of another golden age of 

graphics, its practitioners will do well to cultivate visual thinking in their research 

circles, take advantage of novel technologies in computing and graphic design, and 

even contribute actively to the evolution of graphical methods. (2001, p.164) 

The cultivation of visual thinking may well increase the respectability of the softer 

disciplines in the scientific domain, but it seems plausible that it might also increase the 

accessibility of this literature to non-scientific areas. This applies particularly for the 

visually-literate cultures of art and design, which often comprise the objects of study for 

the ‘soft’ psychological research of empirical aesthetics. 
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Audio-Visual Art 
In this section, we look at art with potential for great complexity that combines visual 

material with sound and music. The first time I encountered Scott Draves’ fractal 

animations they were projected alongside dance music. The movement of the animations 

seemed to follow the changes in the music, but this was a perceptual illusion because there 

was no physical link between the audio and the visual. The perception of disparate sounds 

and visuals working together aesthetically has been known as the ‘Cage effect’, named after 

John Cage8, and is called synchresis by the film theorist Michel Chion (1994). Chion devised 

the term from a combination of ‘synchronised’ and ‘synthesis’, and he documented the use 

of the effect in film, where the conjunction of sight and sound can be used to direct the 

attention of the viewer. In psychology, this effect is classified as a form of multi-modal 

perception, but Chion’s synchresis is not the same thing as the more well-known 

psychological phenomenon synaesthesia. Whereas synaesthesia involves a confusion or 

translation of sensory modes (such as tasting the colour blue), synchresis takes the form of 

a multi-modal enrichment. We can use these two perceptual phenomena to consider audio-

visual art by identifying to what extent an audio-visual artwork involves synchresis or 

synaesthesia in its construction and its perception. 

In digital art, it is relatively easy to perform a synaesthetic transformation from one 

medium to another, since digital information is essentially of the same kind, whether 

encoded as an image file or as a piece of music. A synaesthetic process forms the basis of 

Ryoji Ikeda’s music and art installation Test Pattern (2008). Ikeda’s artwork involves “a 

system that converts any type of data (text, sounds, photos and movies) into barcode 

patterns and binary patterns of 0s and 1s” (Ikeda, 2009). The result is a dense field of 

inhuman sound (the extreme nature of which may potentially damage listening equipment, 

according to a warning sticker on the CD!) which Ikeda breaks down and weaves into 

                                                 
8 My research has yet to identify a reference to this effect in Cage’s own writing. Usage of the phrase ‘Cage 

effect’ appears to be restricted to the field of amateur computer graphics. 
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detailed rhythms. Ikeda (2009) says the aim is to examine the relationship between the 

“critical points of device performance and the threshold of human perception”. Jack Ox 

employs synaesthetic transformation of image and sound with her Twenty-First Century Color 

Organ (2002). Ox’s system uses MIDI music files to create immersive performances of 

sound and 3D images. Various musical parameters are treated as data and the system 

creates a ‘corresponding data set’ in a visual vocabulary based on Ox’s landscape drawings 

and colour charts. If the system could work with live data from improvising musicians, as 

intended, then the piece may function as a “complex adaptive system” (Ox and Britton, 

2000, p.9). Another approach to visualizing sound is that of Martin Wattenberg (Figure 49), 

whose The Shape of Song (Wattenberg, 2002) also works on MIDI music files. The system is 

quite simple – repeating patterns are joined by coloured arcs – but the design is pleasing 

and informative. The approach is comparable to the computational analysis of music 

complexity by Wilhelm Fucks (Figure 26) which also relies on pattern-recognition. Instead 

of aiming for a more interpretive translation of music in projects such as Ox’s Colour Organ, 

The Shape of Song sits somewhere between analytical and creative approaches to aesthetics. 

 
Figure 49 Martin Wattenberg, The Shape of Song (2001). Visualizations of Koyaanisqatsi 

by Phillip Glass (left) and Moonlight Sonata by Beethoven (right). 
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Evelina Domnitch and Dmitry Gelfand worked with scientists and musicians in the 

project Camera Lucida (2004), which exploits the phenomenon of sonoluminescence: High-

volume ultrasound waves are propagated in a liquid, which induces the formation of 

microscopic vacuums known as cavitation bubbles. As the bubbles rapidly collapse, 

temperatures as high as that of the Sun are reached, and light is emitted. In this case, the 

liquid is 97% sulphuric acid doped with xenon gas, and the apparatus produces ghostly 

blue light that dances and flickers around within the tank. Domnitch and Gelfand 

collaborated with musicians on the record label LINE (a subsidiary of 12k), who used 

hydrophonic recordings to create music for the video. These musicians, including Taylor 

Deupree and Alva Noto (Carsten Nicolai), translated the ordinarily inaudible frequencies of 

the ultrasound and the bubble implosions into perceptible ranges of sound, creating 

synchronised musical soundtracks for the video sequences. The relationship of sound and 

image is one of cause and effect, so it is difficult to say whether its construction could be 

described as a synaesthetic transformation, but the perceived effect is certainly one of 

synchresis in which the two sensory modes appear unrelated but enhance each other. 

 
Figure 50 Domnitch and Gelfand (2004) Camera Lucida. Sulphuric acid and xenon gas 

in glass tank, with ultra-high frequency sound. Four images extracted from video. 
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Under the name Semiconductor, Ruth Jarman and Joe Gerhardt specialise in working 

with digital animation “to transcend the constraints of time, scale and natural forces” 

(Semiconductor, 2009). Magnetic Movie (2007) uses recordings of VLF radio (naturally-

occurring electromagnetic signals from the earth’s ionosphere and magnetosphere) to 

accompany an animated visualisation of magnetic fields. Some of the movements are 

animated by the sounds, producing an enchanting effect of synchresis. For example, the 

white lines in Figure 51 grow in spasmodic bursts in proportion to the loudness of each 

audible event. On Semiconductor’s website, Douglas Kahn describes the film: 

What we hear is underscored with complex and supple orders, in fact, too complex 

and supple to be ordered. We already have experience of them in the tangible 

turbulence of water and the crazy convection of fluids combining, tongues of fire and 

the thermal afterthought of smoke, the ribbons of clouds stiffly blown twisted up a 

hill. (Kahn, 2007) 

What Kahn is describing, in so many words, are chaotic systems. Turbulence in 

fluids, for example, is what was originally represented in the dynamics of the Lorenz 

attractor – now an archetypal image of chaos. The earth’s magnetosphere is also turbulent 

because its molten iron core is in flux and because it is affected by fluctuating radiation 

emitted from the sun. The sound of this magnetic turbulence, recorded by Stephen P. 

McGreevy, provides a naturally chaotic soundtrack for the film. That the animation is not a 

direct synaesthetic visualisation of any particular field pattern is announced with the 

opening words of the film, when the scientist Janet Luhman says, “Magnetic fields, by their 

nature, are invisible.” Nevertheless, the way in which the sounds control the visual 

elements makes for a viewing experience that invites the suspension of disbelief. Without 

knowing the technical details of the animation, it is impossible to know exactly how much 

of the experience is due to the effect of synchresis and how much this audio-visual 

interaction is designed in its making, and this is part of what makes it fascinating. 
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Figure 51 Semiconductor, Magnetic Movie (2007), digital animation. 

We end this discussion of contemporary art practice with two examples of audio-

visual art, whose minimal simplicity brings us full circle back to where we started. Broadway 

One by Ernest Edmonds and Mark Fell generates flat fields of hot colours with occasional 

blips and clicks as the image suddenly changes. Apart from their synchronicity, the 

relationship between image and sound is unclear. The work has a delicate balance and 

intriguing quietness that draws attention and questions what we are actually perceiving. 

Similarly, Colour Projections by Theo Burt is equally spare in its visuals, containing outlines of 

simple geometric forms that rotate slowly accompanied by slowly-changing tones (Figure 

52). Like Broadway One, its synchronisation of image and sound suggests an underlying 

mechanism between the two, although the rules behind this relationship are not readily 

apparent. Nevertheless, I managed to learn more about the mechanism by analysing the 

sound, which revealed that the audio waveforms have a similar shape to the geometric 

graphics. At the point of the animation shown in Figure 52, we can hear a low tone 

corresponding to the large circle and a higher tone which appears as the smaller circle 

begins to cut into the larger one. The sound analysis shows that the waveform has a related 

shape which introduces more harmonic frequencies as the waveform is altered from a pure 
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sine wave. Thus the complexity of the graphics corresponds with the complexity of the 

waveform, resulting in a matching perceived complexity of image and sound. 

 
Figure 52 Top: Theo Burt, Colour Projections (2009), digital animation. Bottom: 

visualization of the audio waveform taken at the corresponding time. 

Rather than translating from one medium to another, Colour Projections and Broadway 

One generate image and sound from internal computations as separate but related 

instrumental expressions. Although Edmonds and Fell describe their artwork as 

“synaesthesic” (2005), it could be argued that the process is more accurately characterised 

as synchresis, with an integration of image and sound in terms of both its production and 

its perception. Fell says of the work, “The emphasis is on correlations that are purely 

aesthetic. There is no innate or mathematical relationship between sound and colour. 

Anything one does is purely invented” (Whitelaw, 2007). The point is that any digital 

synaesthetic translation is ultimately arbitrary, with the implication that the result actually 

reveals more about the system and its creator than it does about the nature of the stuff that 

is translated from one medium to another. This notion is supported by Moles’ (1966) 

description of aesthetic information as being ‘untranslatable’: As opposed to semantic 
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information, which is based on a shared symbolic language, aesthetic information “refers to 

the repertoire of knowledge common to the particular transmitter and particular receptor” 

(Moles, 1966, p.129). The fact that any correspondence between media is ultimately 

arbitrary undermines the idea of synaesthesia as a process capable of meaningful 

translation. 

What we are left with – and what really matters – is the perceptual effect of the 

artwork and the quality of the aesthetic experience. It seems more difficult to create the 

synchresis effect, but it may offer a more rewarding aesthetic experience. The most 

successful of the audio-visual artworks, to my mind, are the ones that achieve aesthetic 

synchresis, whether through an explicit connection or a more arbitrary translation process. 

In either case the quality of the experience appears to be dependent on the synchresis 

effect – the mind has to work a little to make the connection, but the effort pays off in 

aesthetic satisfaction. It is possible that the propensity for images to work with sounds in a 

synchretic experience is sensitive to their levels of complexity. In my own experience, the 

most rewarding aesthetic experiences of synchresis, and thus the most successful synchretic 

artworks, appear to have similar levels of complexity in image and sound, either at a static 

level or via synchronised changes. This is a potential subject for further investigation. 

My Art Practice 
My practice has contributed to this research by generating visual material for use as 

test stimuli and by developing the skills and tools needed to manipulate complex imagery 

using computer-based programs. Figure 53 shows the last large-scale hand-made piece, 

which was produced for a friend and ex-colleague in return for lifts to work. The drawing 

is a representation of the rule number 110 elementary CA on an A1 sheet of 2mm square 

graph paper. The initial conditions (the top row) were produced with the rule 30 random 

number generator in Mathematica and the rest of the CA was calculated and drawn by hand, 

which meant that the resulting pattern was unforeseeable at the start. By forgoing the 

computer I discovered a way of reducing the calculation of rule 110 without having to 
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consider each cell in turn, which speeded up the process considerably (around three or four 

times faster). Nevertheless, I calculated that it took roughly the same amount of time to 

make the drawing as I had spent in my colleague’s car on the journey to work and back 

over a year – around a hundred hours. The top left-hand image in Figure 53 is 

approximately life-size. 

 
Figure 53 Untitled (2006), ink on paper (detail; in progress; finished). 

Artwork produced before the start of this research was mainly based on craft 

techniques combined with computational processes such as cellular automata. In 2005 I 

attended the 5th. Creativity & Cognition conference in which I exhibited two paintings and 

one needlepoint piece, all based on a simple kind of block CA. I had the chance to talk 
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with Frieder Nake, initially about a line from Thomas Pynchon’s novel Vineland, which I 

was reading at the time: 

If patterns of ones and zeroes were “like” patterns of human lives and deaths, if 

everything about an individual could be represented in a computer record by a long 

string of ones and zeroes, then what kind of creature could be represented by a long 

string of lives and deaths? (Pynchon, 1998, p.90) 

In conversation, Frieder said that he had learnt to not get annoyed when artists try to 

use computers to do things like recreating natural scenes and images, which is so difficult 

to achieve digitally that the results are often poor representations of what we usually 

perceive. Computer graphics of natural forms and textures, for example, may seem 

incongruous when juxtaposed with photographic images and they often date rather quickly. 

Frieder saw more aesthetic value in work that makes use of the computer’s digital nature, 

rather than work that fights against its visual characteristics. ‘Use the computer for what it 

gives and what it is good for; work with it, not against it’ was his message. This is exactly 

the point of Frieder’s own work, and with these comments his aesthetic of simple visual 

elements is seen in a new light that makes it seem less ascetic and more open. In one sense, 

it is an approach similar to that of the minimalists – a truth to materials. Using the 

computer to recreate natural scenes is thus more artificial than making use of its own visual 

language. Frieder’s conversation had a profound effect on my own practice, giving a new 

direction to the production of computational artefacts. It did not negate my view that in 

general the hand-made offered a more complex and appealing aesthetic than the digital, but 

it showed a way in which the inherent (and sometimes off-putting) visual character of 

digital art could be turned on itself to produce a more honest kind of artwork. Now, the 

digital could be used without regret or apology for its visual nature. 

A defining feature of digital art is that it is based on fundamental discrete units – 

numerical digits that are represented internally as binary magnetic or electrical charges and 

externally as dots in print or pixels on screen. If an artist is trying to recreate a natural 

visual scene, then these pixels should be imperceptible and their tell-tale characteristics are 
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avoided (such as aliasing – the appearance of discontinuities in what should be smooth 

lines or gradients). But if one accepts this characteristic, as Frieder Nake suggested, then 

the idiomorphism of digits and pixels becomes a creative tool and a visual palette. The 

result on my practice was to explore these features, principally by working with raster 

(pixel-based) images, manipulating and building images a pixel at a time. Figure 54, for 

example, is an unashamedly digital image which explores the perception of three-

dimensional form as represented in two dimensions and the impossible figures that can be 

created between these modes of representation. 

 
Figure 54 Iso C (2006), digital image. 

To exploit the properties of digital media as Frieder Nake had described, I began to 

use the kind of software that has the opposite aim of recreating natural effects and realistic 

images. Ray-tracing is one of the techniques of computer graphics used in this regard, 

based on the modelling of light and its interaction with surfaces and translucent media. The 

path of a light particle is modelled from source to surface to eye, enabling the recreation of 
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realistic three-dimensional illumination in two dimensions. This modelling is fairly 

complicated for a single ray of light, but to generate an entire image requires many such 

rays to be traced, which requires a lot of processing power and time. The default settings 

for many ray-tracing programs is to model the physical behaviour of light, but these rules 

can be manipulated and the resulting images modified to create novel visual effects that 

would be impossible in the real world. For instance, the amount of light reflected and 

absorbed by a surface normally adds up to the amount transmitted to it, but by tweaking 

the rules we can produce effects whereby the amount of light reflected exceeds these limits 

(Figure 55). For me, this was using the computer as Nake described, freeing it from the 

attachment to our normal perceptual world and opening it up to aesthetic exploration. The 

same can be said for Semiconductor’s use of digital animation to escape the limitations of 

the visible physical world. In essence, the process is analogous to the inventive use of 

photographic technology in Man Ray’s ‘rayographs’ and Marco Breuer’s ‘photographs’ 

made without a camera. 

 
Figure 55 P32b inv greens (2007), digital image. 
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In my previous job as a biology technician, one of my responsibilities was preparing 

visual material for teaching. This included tasks such as preparing projections from a video-

equipped microscope as well as creating slide presentations for teachers or printed 

handouts for students. Amongst the visual resources I used was a collection of high-

resolution scanned images from Ernst Haeckel’s Kunstformen der Natur, which was originally 

published between 1899 and 1904 in volumes of ten prints. Haeckel’s illustrations show the 

marvellous diversity and commonality of forms in the natural world, grouping images of 

parts or whole organisms in symmetrical arrangements on the page to illustrate a particular 

morphological theme. I obtained permission to use the images from Prof. Kurt Stüber, 

who had scanned an original copy of Haeckel’s prints and hosted them on his website 

(Stüber, 1999). I used these digital images in combination with cellular automata patterns 

produced in Mathematica, firstly by overlaying the CA patterns on the Haeckel images, and 

later by using the CA pattern to invert areas of the image beneath. Figure 56 shows a detail 

of this process, in which the individual pixels are visible. Elementary CA rule 110 has been 

used as the overlaying pattern, and its triangular shapes are the areas in which the Haeckel 

image has been inverted (white becomes black, red becomes green, etc.). Figure 57 shows 

an entire image made using this process, a copy of which is used in Test 3. These digital 

prints were produced such that the individual pixels remained visible. Ordinarily, this 

would have made the original images quite unpleasant as compression artefacts could be 

revealed, but the added complexity of the CA pattern obscured this. To my mind, this 

process produced some of the most complex images, which were just on the right side of 

the edge of chaos and the threshold of perceivable visual complexity. The overall effect of 

this technique is to reduce the contrast and colour saturation at a distance, whilst a closer 

inspection reveals diverse tones and adjacent complementary colours. Because the colour-

inverted areas occupy just less than half the total area of the eCA rule 110 images, the 

resulting inverted image still retains some of its original hues and tones when seen at a 

distance (conversely, inverting the other area of the pattern produces the appearance of a 

negative). 
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Figure 56 Tafel_008_300 + 110 D3 (2007), digital image (detail). 

 
Figure 57 Tafel_008_300 + 110 D3 (2007), digital image. 

In 2007, I entered a competition for a commission for the Minster School in 

Southwell, Nottinghamshire. The brief was to design and produce translucent sliding doors 

and a skylight for the new school building. The doors were to separate the main hall from a 

small chapel, and the skylight was for the chapel’s ceiling. My entry was based on a block 

cellular automata pattern in a spectrum of colours. The underlying pattern is based on a 

rectangular repeating black and white pattern, but the colouring scheme I developed made 

it difficult to perceive its underlying simplicity. The image used in the final design (Figure 

58) repeats horizontally, such that the left edge would match up with the right if put 

together (if the doors ran past each other and swapped places). I was quite pleased with the 

design, but unfortunately it was not chosen for production. 
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Figure 58 Architectural design of translucent sliding doors for Southwell Minster 

School commission (2007), digital image. 

Shortly after the Southwell competition, I accepted a commission to create wall 

designs for the refurbishment of the Deutsche Bank headquarters in London. A friend and 

former colleague had contacted me as he was leading the team of architects that were doing 

the work. The job had to be done with very short notice, and so I used some of the 

patterns I had been working on for the Southwell commission. In this brief, the colours 

were specified by the client. I produced about twenty design variations within a couple of 

days, and the client selected two of these for production (Figure 59). The designs were for 

decorative tiled walls within four employee shower blocks. A total of twelve prints were 

produced on adhesive vinyl, which were adhesive on the printed side and mounted onto 

glass panels fixed to the walls to protect them from moisture and abrasion (Figure 60). I 

think the low complexity of the images work well with the relatively plain surroundings, 

and the pattern echoes the shape of water dripping down glass and puddles on the floor. 
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Figure 59 Architectural designs for the Deutsche Bank shower blocks. 

 
Figure 60 Photograph of installed wall decorations, Deutsche Bank, London. 
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Summary of Context 
Discussions of aesthetic problems can be traced back to Plato and Aristotle, when 

the ancient Greek word aestheta referred to things perceptible by the senses. When 

Baumgarten coined the word ‘aesthetics’ in the eighteenth century, it meant a science of 

sensory perception; however, the term gained more currency in the art world, as ideas of 

beauty were replaced by theories of taste. The scientific study of aesthetic perception did 

not begin until a hundred years after Baumgarten defined the term, mainly due to the 

difficulty of measuring perceptions. This field is known as psychophysics, so named 

because its aim is to establish relationships between processes of perception and events in 

the physical world. 

What were previously regarded as scientifically unsurpassable divisions between the 

mental and the material are now providing fertile grounds for research. Empirical studies of 

the arts fall into this category, and are currently experiencing a burst of growth. However, 

objections that the complex nature of creative cognition cannot or should not be examined 

empirically are still heard in both the artistic and scientific communities: Art and its 

experience is complex, but scientific study is selective and its results are limited. In 

consequence, much of the scientific study of art has concentrated on solving simple, 

manageable problems, or has been content to make only modest claims.  

Perhaps surprisingly, even studies of visual complexity have mostly concentrated on 

relatively simple geometric images, and studies that use actual works of art in empirical 

research are scarce. It is almost as if real artwork is too complex to be examined empirically. 

The lack of engagement with the complexity of visual art provides the context for the 

current enquiry. The empirical part of this research project aims to counter this trend by 

conducting tests of visual complexity using real artwork, and to answer the question: How 

complex is contemporary visual art, in terms of objective properties and aesthetic 

perception, and how does it relate to aesthetic value? 
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Emergent themes include the various ways of approaching visual complexity in terms 

of understanding, visualizing, or analyzing. Even within the relatively small field of 

empirical aesthetics, the topic of visual complexity has been approached from a number of 

disciplines, including art practice, art theory, perceptual and cognitive psychology, complex 

systems theory, and computer graphics. These studies generally rely on conceptual 

frameworks from either information theory and/or psychology, depending on the extent to 

which the focus is on objective or subjective complexity. Although there is evidence of the 

influence of scientific research in the arts, there is very little flow in the opposite direction, 

which is perhaps explained by the move away from perception of contemporary art theory 

and its rejection of empirical aesthetics (e.g. Dickie, 1961). In one sense, psychology is 

central to any scientific enterprise because everything we know is based in the mind. 

Similarly, the philosophy of the mind stands at the centre of all philosophy. In addition, 

since everything we know comes to us via the senses, we ultimately arrive at perceptual 

psychology in asking questions about aesthetics. The difference between psychology and 

the philosophy of mind is that the former deals with specific scientific questions, and the 

latter with a more general kind of question which cannot be answered empirically. 

Empirical studies of aesthetics can be divided into two categories: What might be 

called the analytic (or elementary) approach employs real artworks as stimuli, whereas 

synthetic (or holistic) approaches use abstractions of artworks such as simple geometric 

diagrams. Each comes with a drawback: The synthetic approach aims to circumvent the 

practical difficulties in experimentally measuring or controlling the properties of real 

artworks as stimuli, but this move simultaneously weakens the validity of generalizations 

that can be made about actual artworks and perceptions of their properties.  

The problem with objective measures of artworks is twofold, and is not a fault of the 

measures themselves: The difficulty lies in the fact that artworks are likely to be more 

visually complex than the geometric figures of psychological tests, and that it requires a 

complex system (whether a method, mechanism or organism) to recognise this visual 
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complexity. In theory, then, the accuracy of an aesthetic measure can be improved by more 

closely imitating the functioning of our visual system (by taking into account the same 

visual properties that we perceive), but the greater intricacy of the measure makes it more 

difficult to apply in practice. Another problem is that the range of visual complexity in 

many experiments has been limited to rather narrow bands, such that it is difficult to 

envision the response across the entire spectrum. 

Berlyne (1971) identified visual complexity as one of the ‘collative variables’, together 

with novelty, ambiguity, uncertainty and surprise. These are the aesthetic properties that 

involve comparison. As such, they cannot be measured as directly as the ‘psychophysical 

variables’ like brightness or loudness that correspond to simple physical phenomena, 

because comparisons require something capable of comparing, whether it is an analytic 

method or a sentient being, and which therefore influences the results of the measurement 

because it must select which features (of those that are perceptible to it) to include in the 

comparison.  As aesthetic properties, therefore, the collative variables are a function of 

perception and/or cognition, and not solely properties of a thing itself. Due to this 

context-dependency, there can be no ‘truly objective’ aesthetic measure in the sense of it 

being more ‘true’ than any other9. However, that is not to say that a particular metric 

cannot be ‘objective’ insofar it can be replicated and verified, nor that one measure may be 

more appropriate or more useful than another. 

Measuring only subjective perceptions of aesthetic properties can tell us much about 

individual perceptions and individual works of art, but it is difficult to compare and infer 

from these studies due to the variability and specificity of their results. An objective 

measure, on the other hand, can be used to construct a scale to which subjective data can 

be compared. If we can determine the (mathematical) relationship between the two scales, 

we can use the objective method to predict perceptions of other measured artworks.  
                                                 
9 A similar context-dependency also appears in many definitions of complexity, a feature that sets complexity 

theory apart from other areas of scientific study. 
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The experiments of Berlyne (1971) and Martindale, Moore and Borkum (1990) fall 

into the category of the synthetic approach when they used geometric stimuli such as 

random polygons. These methods are not applicable to artworks because objective visual 

complexity is measured as a function of the number of turns in a polygon, and it causes 

potential difficulties. Martindale et al. showed this to correlate poorly with subjective ratings 

of complexity, even for these polygons. We could employ a more elaborate definition of 

objective complexity, which would take account of such variables as the number, regularity, 

homogeneity, density, and redundancy of picture elements, but this would make for an 

even more unwieldy tool or measurement, even if it could be automated. Aesthetic 

measures devised by George Birkhoff (1932) and Hans Eysenck (1941b) took just such an 

approach to arrive at conflicting theories. Birkhoff’s (1932) aesthetic measure was a 

product of order and complexity: M = O × C, whereas Eysenck (1971) proposed a 

function of order divided by complexity: M = O / C. Both these measures have been 

shown to be too simplistic, and their methods of enumerating properties, although 

reasonable, are too complicated to use on real artworks (not least because of the ambiguity 

of even the formal – let alone semantic – content of a picture). 

An information-based measure of visual complexity, such as that of Donderi and 

McFadden (2004), provides a more plausible approximation to perceived complexity, but 

with knowledge from complex systems (Gell-Mann, Wolfram, Langton) we now 

understand why this too has its limitations. Measures such as AIC deviate from our 

intuitive notion of complexity, but they are useful in illuminating the relationship between 

objective and subjective aspects of complexity. Further, whereas some measures are too 

elaborate to cope with the variety and complexity of all but simple geometric figures, image 

file compression provides a practicable method of measuring the visual complexity of a 

wide range of visual material including images of contemporary artworks. It constitutes 

perhaps the most practicable objective measure of visual complexity because it requires no 

special computing capabilities or software beyond those of an ordinary PC, and takes 
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almost no time to determine, unlike the fractal measures which involve a more detailed 

computational analysis. Another reason for using this method is that it is more widely 

applicable than fractal measures, such as that of Taylor, Micolich and Jonas (2002), which 

are restricted to fractal images. Donderi’s file-compression measure provides an efficient 

and reproducible measure of image complexity. 

Using file size as an indicator of complexity makes it equivalent to Kolmogorov 

complexity or algorithmic information complexity (AIC), in that both can be considered a 

measure of information. This suggests that a measure of visual complexity based on such a 

scale means that it may diverge from perceived complexity for random images. This 

hypothesis predicts an inverted ‘U’ shape correlation between objective (file-size) and 

subjective (MES) measures of complexity. Here is one area in which we may contribute to 

knowledge: by providing empirical data to test this hypothesis. 

Identifying the Components of Visual Complexity 
We have identified a number of different schemes for classifying and understanding 

visual complexity, based on a variety of aesthetic properties. The informational scale of 

complexity has order and randomness at opposite ends of its scale, but understanding of 

visual complexity may be based on other conceptual pairs, as Berlyne observed: 

The idea that aesthetic value requires a combination of two partly opposite and partly 

complementary factors has cropped up repeatedly over the centuries. They have been 

labelled “uniformity” and “variety” by Hutcheson (1725) and many later writers, 

“order” and “complexity” by Birkhoff (1933), “subjective redundancy” and “statistical 

information” by information-theoretic aestheticians (Gunzenhauser, 1962), 

“concinnity” and “empathy” by Coates (1972), [and] “coherence” and “mystery” by 

Kaplan (1973). (Berlyne, 1971, p.9) 

It should be noted that these complementary pairs are not always conceived as 

diametrically-opposed properties (like hot and cold), but can also be understood as being at 

right angles to each other. In other words, we should imagine that together they form two 

orthogonal axes instead of a single linear scale. (We will leave to one side the question of 
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whether these conceptual pairs actually correspond to hedonic functions of the nervous 

system, as Berlyne suggested, since it is beyond the scope of this investigation.) In this 

project, we have two such orthogonal factors: complexity and order. Perceived complexity 

is the principal object of investigation, understood as a scale of simple–complex, which 

constitutes the first factor. On the other hand, the objective measure of complexity by 

compressed file size gives a scale of order–randomness, and this constitutes the second 

factor. The project’s contribution to knowledge is based on the measurement and 

correlation of these two aesthetic factors: The complexity factor is based on the reported 

perceptions of test participants viewing a series of images. The order factor is based on the 

formal properties of the images’ digital files, quantified through data compression. The 

project aims to contribute to knowledge by extending the range of these factors under 

investigation: Firstly, by sampling the entire scale of order–randomness using computer-

generated images to gain a wider picture of the subjective response to this range; Secondly, 

by testing samples from contemporary art and design practice to see whether we can relate 

these measurements back to the overall view developed in the first tests. 

Here we present a model of the most pertinent variables that contribute to visual 

complexity, developed from the material reviewed earlier in this chapter. Using the general 

notion of complexity as difficulty-of-description, the images in Figure 61 represent a scale 

of increasing complexity. If we describe each image completely and succinctly, the size of 

the descriptions increases from left to right: 

 
Figure 61 Three principal components of visual complexity. 

Quantity Variety Order 

A B C D 
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The differences between pairs of adjacent images illustrate the main components of 

visual complexity. The difference between images A and B is one of quantity of picture 

elements; the greater quantity in image B makes it more complex than A. Image C increases 

the variety of elements by increasing the number of colours from two to nine, and so C is 

more complex than B. Image D contains the same elements as C, but their order of 

arrangement is different – C is more regular and so D is more complex. In summary, the 

main properties that contribute to visual complexity are the quantity, variety and order of 

picture elements. The three components of visual complexity identified here are more than 

theoretical; they share a correspondence with the most significant perceptual elements and 

also with the principle components of digital image files. For the purpose of the project’s 

empirical tests, we need to constrain the quantity and variety of picture elements, while 

manipulating their order. Each test must use a set of images with identical pixel dimensions 

and the same colour system. In summary, then, visual complexity can be measured in many 

different ways, based on various elemental properties. These elements of visual complexity 

can be represented by digital images, thus they can be reduced to the common elements of 

digital image files, namely: the dimensions of the pixel array (quantity), the colour values of 

the pixels (variety) and the locations of those colour values in the array (order). 

Visual Complexity and Image File Compression 
One problem with trying to compare empirical studies of visual complexity is the 

lack of a standard metric. Forsythe et al. (2003) argue that an objective measure of visual 

primitives (in their case, edges) may provide a valid index of complexity for all 2-D stimuli. 

Their perimeter measure of edges is based on Attneave’s (1954) informational approach, 

but with the benefit of using computer technology to implement the aesthetic measures 

and analyse the results. Donderi’s file-size measure is also reliable and convenient, and also 

has the potential to become a standard metric which may be favourable to edge-detecting 

measures for its simplicity and its direct correspondence with the informational content of 

a digital image. Donderi’s measure is applicable only to images of the same dimensions, 
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however, because the size of a compressed file is less dependent on the randomness of its 

data than on its dimensions. On its own, a file-size value tells us nothing about the 

complexity or dimensions of an image; it only becomes meaningful in comparison with 

other files of the same type. There is a need, then, for a more informative metric. One 

potential measure is the compression ratio, which expresses how much a file’s size changes 

after compression. There are reasons to believe that 1) not only would this give a relative 

measure of randomness but also that 2) it might allow for a comparison across different 

image dimensions. These two points are explained in more detail below: 

1) Using the compression ratio gives a clearer idea of randomness than does the file-

size alone. A totally random image, which cannot be compressed at all, will give the same 

file size as any uncompressed image with equal dimensions. Therefore, the relative size of a 

compressed file tells us how close it is to being purely random, and so the compression 

ratio (compressed size divided by uncompressed) gives a quantitative measure of how 

random an image file is. A compression ratio value near to 1 indicates incompressibility, 

and therefore randomness, whilst a value near to 0 indicates high redundancy and order. 

This relative measure is more useful than the absolute measure of file size because the latter 

measure only becomes meaningful in comparison with other measured values. 

2) It seems intuitively correct to assume that a given pattern will have a compression 

ratio that remains roughly constant across a range of image dimensions, such that a small 

check pattern will have a similar compression ratio to a larger version. To find out, we 

could use a large image from which reduced-size copies are made, and calculate the 

compression ratio for each size. If the ratios stay the same for a pattern or type of image, 

then we can be confident that this measure is unaffected by image dimensions, unlike the 

absolute file-size. We may expect that ratios will be fairly consistent for most image types, 

but also that they will drift as the images become smaller and the distinction between 

randomness and complexity becomes increasingly uncertain. It may be possible to test this 
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technique more thoroughly in future, but in the current project we evaluate its effectiveness 

compared to the method established by Donderi based on the absolute file size. 

Locating Visual Complexity 
With an understanding of informational measures of visual complexity and the 

results of empirical tests of its perception, we may be able to determine more precisely 

where the most complex and interesting images are to be found on the informational scale 

of order–randomness. Since Donderi & McFadden (2005) and Besner (2007) used file-size 

and not compression ratio, we cannot make any quantifiable statements about how 

perception varies with the randomness of those image files, because we cannot determine 

quantitatively how random those images were. We may, however, learn something from 

Dodgson’s findings: 

…humans can easily detect patterns when up to about 25% of the pattern is removed 

or disturbed, that removal of over about 50% of the pattern destroys it, that there is 

an æsthetically interesting region between these two values, and that a good, artistic, 

balance between regularity and randomness is achieved by retaining about two-thirds 

of the pattern, while manipulating the other one-third in some way. (2008, p.112) 

Dodgson’s results shed light on the question of where perceived complexity is to be 

found on an informational scale of order–randomness. If we fail to perceive patterns 

beyond about 50% randomness then this is a threshold of visual complexity, since it is 

effectively the ‘edge of chaos’ in perceptual terms – the point just before randomness. The 

images that we perceive as most complex will be found near this threshold, and a region of 

visual appeal is circumscribed by this threshold and a lower bound of 25% randomness, 

centred roughly at one third. Because the file-compression measure of visual complexity is 

technically a measure of randomness, we can translate Dodgson’s estimates to a scale based 

on the compression ratio of image files: We can expect the most appealing images to be 

found in files with one third randomness, that is, with a compression ratio of 

approximately one third (Figure 62). 
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Figure 62 A scale of order–randomness (top) corresponding with compression ratio 

(bottom). 

We should, however, be careful about extrapolating from Dodgson’s experiment 

because it was limited to images composed of only a few simple elements – black disks of 

various sizes on a white background, and also because it is not a formal empirical 

investigation. We may well find that these estimates of the region of visual appeal are 

somewhat different for image files in colour and with other types of pattern. Nevertheless, 

the framing of complexity in terms of order and randomness is a useful descriptive tool, 

and one that is particularly appropriate for an objective measure of visual complexity which 

is based on image file compression. Despite the fact that this measure actually quantifies 

randomness instead of what we intuitively think of as complexity, it remains a practicable 

method for the investigation of visual complexity in contemporary art and design. In terms 

of the information scale of visual complexity, what we have learned may be summed up 

with Flake’s (1990) statement that “the interesting stuff is in the middle”: 

 ‘Beauty’ i.e., that which makes something interesting, is related to a mixture of 

regularity and irregularity. When things are too regular, we usually find them to be 

uninteresting because they yield no surprises for us. Complementary to this, highly 

irregular things are often uninteresting because they make no sense. In the middle, 

between regularity and irregularity, lies a place where things can be understood, but 

not completely. (Flake 1990, p.411) 

We have identified suggestions that randomness or chaos are perceptually less 

complex and less interesting than a mixture of order and randomness from contributions 

by Attneave (1954), Arnheim (1959), Berlyne (1971), Wolfram (2002), Gell-Mann (2003), 
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and Donderi (2006). However, empirical research into perceptions of highly complex and 

random images began only recently (Besner, 2007), and the validity of these claims is yet to 

be established. Thus there remains a gap in knowledge of the relationship between 

informational measurement and the perception of visual complexity. 
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Chapter 3 

Approaching Visual Complexity in Art & 

Design 

Research Focus 
The principal focus of this project is the aesthetic property of visual complexity. For 

practicality, the study is limited to the complexity of two-dimensional images in 

contemporary art and design practice. The project is largely situated within the discipline of 

fine art, but the scope of artwork under investigation includes two-dimensional visual 

material from a variety of creative fields, namely: photography, architecture, graphic design, 

illustration, decorative arts and textiles. For all these types of artefact, the research scope is 

limited to their aesthetic attributes only; it excludes an appraisal of the utilitarian functions 

of design and the interpretative aspects of art. In terms of Moles’ (1966) distinction 

between semantic and aesthetic information, this project concentrates on aesthetic 

information, but the project also deals to some extent with semantic information via 

interviews with test participants to identify the criteria behind their aesthetic judgements. 

The aim is to explore this subject via an empirical investigation into the aesthetic 

property of visual complexity. Justification for this research focus comes from the 

argument that an empirical study of aesthetics has the potential to complement the non-

perceptual classificatory aesthetic definitions of art (see p.67). It can do this by providing an 

explanatory theory based on the measurement of perceived complexity and the information 

analysis of aesthetic images. Contributions to knowledge are made by extending 

computational aesthetic measures to the field of art and design, and by providing empirical 

evidence for a perceptual threshold in the informational spectrum of visual complexity. 
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The literature reviewed in the previous chapter serves to identify gaps in knowledge 

and to select the research methods appropriate for this investigation. The present chapter 

describes the methods and approach of this research project, beginning with the following 

section which outlines the research methodology that guides the choice of methods. 

Methodology 
Ontology and Epistemology 
In the investigation of visual complexity, this project focuses on the relationship of 

objective properties to the subjective properties of perception. This constitutes a position 

of realist ontology, which can be expressed as follows: The belief in the existence of things 

external to our consciousness, and that the physical properties of those things are 

independent of how we perceive them to be. Those properties are also independent of the 

concepts that we employ in understanding them and the language we use to describe them. 

This project does not subscribe to the view that everything we know is based on socially-

constructed language. Empirical evidence for the perception of visual complexity 

functioning partly at a pre-conscious level of perception (e.g. in the retinal processing of 

visual primitives such as edges, lines and blobs) is enough to reject that view. The social-

constructivist position is a form of anti-realism (or ‘relativism’), which accepts the existence 

of external objects and events, but denies the independence of realist claims to knowledge 

about those objects. This project rejects this position and adopts a realist view. 

The realist ontology of this project comprises artist and audience (subject), artwork 

(object) and artworld (context). These basic ontological categories provide a foundation for 

the project’s working model (Figure 6), in which the aesthetic is identified as the interaction 

of object and subject. Therefore, the objects of study in the current investigation are the 

physical properties that give rise to this interaction and the perceptual phenomena that 

result from it. The working model of aesthetics incorporates the ontology into the context 

of the practice and perception of art and design. Although the model was derived 
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independently of Dickie’s art circle theory, Chapter 2 analysed the structural similarity of 

the two models. Their concurrence supports the validity of the ontological model in terms 

of its connection to contemporary understanding of art practice. 

In the working model, the aesthetic is understood as the interaction between subject 

and object. The subjectivity of perception means that each individual has a unique 

perception of a particular object, and as such it is only indirectly accessible to knowledge. 

To say, “that is beautiful” is to ascribe a subjective value to an object. In this project’s 

conception of aesthetics, such a statement provides a route to understanding the aesthetic 

interaction of subject and object. In other words, aesthetic interactions are phenomena 

which are subjective (i.e. private and individual), and therefore difficult to access, but which 

can be glimpsed through personal statements (that express one’s perceptions) and artistic 

acts (that express artistic aims). Beyond the analysis of art and design objects themselves, it 

is these personal statements about subjective perceptions that form the objects of study in 

this research, since they are the most direct and accessible forms of aesthetic judgement 

available to an observer. Therefore, the epistemology of this project is not strictly 

empiricist in its philosophical position (i.e. it does not accept that knowledge is only derived 

empirically), but it is methodologically empirical because it is based on observation. 

Problems with Empirical Aesthetics 

Philosophical Problems 

When Baumgarten coined the term ‘aesthetics’, it meant ‘a science of aesthetic 

perception’. Wittgenstein said that a science of aesthetics is “almost too ridiculous for 

words” (1966, p.11), because “aesthetic questions have nothing to do with psychological 

experiments, but are answered in an entirely different way” (1966, p.17). Wittgenstein’s 

argument is acceptable only if we admit that aesthetic questions are of a different kind to 

psychological questions. The opposing view is expressed by Daniel Berlyne, founder of the 

International Association for Empirical Aesthetics: 
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Whether a branch of study can be called scientific does not depend on whether it has 

yet answered its questions. It depends on what kind of questions it is asking and what 

methods it adopts in seeking answers to them. (Berlyne, 1971, p.2) 

Berlyne’s position is typical in modern psychology: what defines a field of science is 

not the type of question, but the way in which the question is answered – namely by the 

empirical method of accountable observations. A psychological question, therefore, is one 

that can be answered through the process of scientific method. For example, “does God 

exist?” is not a scientific question because it cannot be answered empirically – that is, we 

cannot reach a satisfactory answer by thoroughly exhausting all possible experimental 

attempts to provide evidence to the contrary. This is Karl Popper’s (2002) concept of 

science, which says that only falsifiable hypotheses belong to the legitimate scientific 

domain. What this means is that science does not work by positive proof, but through lack 

of evidence to the contrary. A single counter-example is enough to rule out an 

experimental hypothesis, but unless and until one is found a hypothesis can become an 

accepted theory. Hypotheses are generated and then pruned away by systematically 

showing them to be wrong, eventually leaving only a few plausible explanations. By these 

criteria, “God exists” is not a scientific hypothesis because it is not falsifiable; we cannot 

provide evidence that God does not exist, and so the question remains beyond the scope 

of scientific method. A successful theory is thus falsifiable in principle, but not in practice. 

The question “how long will I live?” could be answered with methods from 

astrology, religion, medicine, or statistics. The question is not scientific per se, but the 

scientific method is one among many possible approaches to an answer. From the set of all 

possible questions, therefore, scientific questions are the subset than can be answered 

empirically, and some of these may be answered in other ways. Insofar as the classification 

of a question as scientific depends on the nature of scientific method, it could be argued 
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that a science is characterised more by the methods it uses in answering those questions 

than by the type of questions themselves10. 

Traditional aesthetic questions, whose answers remain in contention, include “what is 

art?”, “why do we value art?” and “how does art acquire its value?” These ‘big questions’ of 

aesthetics do not appear to be of the form that can be answered with scientific method, but 

other aesthetic questions are open to more than one form of methodical enquiry. “Which 

of these two paintings is better?” is an aesthetic question that can be answered empirically, 

by asking a number of people to state their opinion and analysing the results. Whether we 

are satisfied with such an answer, though, depends on our epistemological position. This 

project’s epistemology is outlined in the previous section, and does accept this form of 

answer as a route to developing understanding of aesthetic perception. The aim is not to 

reduce the aesthetic to a simple mathematical formula, but to enrich creative practice by 

understanding the causes and effects of visual complexity in art and design. 

Dickie (1961) opposed empirical aesthetics, but I believe that his institutional theory 

of art can be supplemented with perceptual aesthetics. Dickie’s theory (1997) only 

describes the mechanism of the artworld, in an attempt to avoid the pitfalls of essentialist 

definitions of art which became problematic for philosophical aesthetics as art practices 

changed. The problem with the institutional theory is that it does nothing to explain why 

we value art. In an article in Leonardo, the psychologist Rolf Reber (2008) argues 

convincingly that empirical enquiry has the opportunity to add to understanding the 

                                                 
10 It should be noted that there are also scientific questions that cannot be answered by science. For example, 

radioactive decay can be predicted accurately for a large number of atoms because collectively they obey 

statistical laws: For any radioactive material, the length of time it takes for exactly half of the atoms to decay is 

a constant period known as its half-life. But the question “when will a particular radioactive atom decay?” 

cannot be answered with anything other than a statistical probability. Similarly, there appear to be limits to the 

measurement of both the momentum and position of quantum particles, which is embodied in Heisenberg’s 

famous uncertainty principle. These examples reveal interesting limits to our knowledge as well as intriguing 

properties of our world. 
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perception of art, specifically that psychology can help to assess artistic value. Reber says 

that art theory and scientific method are able to integrate by empirically testing the criteria 

specified by art theories (e.g. whether the golden ratio is more beautiful), but warns that 

science is unable to evaluate the theories themselves: “psychology can determine artistic 

value, given a criterion, but not whether the criterion itself is a good or a bad one” (Reber, 

2008 p.371). Ken Friedman also makes the case for an empirical approach to design, based 

on an understanding of aesthetics in the traditional meaning of sensory perception: 

…the scientific approach to design does not contradict the artistic aspect of design. 

Successful design artifacts have aesthetic values and qualities, sensual and engaged. All 

designed objects, tactile, mechanical, visual, auditory, are mediated through the 

physical senses. Sensory quality is a central issue for articulate objects that work in a 

physical world. (Friedman, 1997, p.58) 

Friedman’s argument for design science can also support this project’s empirical 

approach to visual complexity, since visual art is also mediated via the senses. Despite the 

evidence of a move away from perceptual aesthetics in the institutional theory of art and in 

the practice of relational aesthetics, there is no escaping the sensory foundation of aesthetic 

experience. Therefore, an empirical approach to aesthetics has the potential to inform 

understanding of contemporary aesthetic theory and practice and to fill the gaps in 

contemporary knowledge of the visual arts. In this context, the aim of the current project is 

to investigate just one element of perceptual aesthetics – visual complexity. 

Practical Problems 

If we accept the empirical approach to aesthetics in principle, then we face problems 

with the approach in practice. Visual complexity is difficult to measure directly, since it is a 

property based on more fundamental attributes (quantity, variety and order). In addition, 

the subjectivity of perceptions causes difficulties for measurement because they are highly 

variable and inaccessible to direct observation. This is as much a problem for any other 

psychophysical study as it is in the case of visual complexity. For example, the estimation 

of hearing thresholds (equal loudness contours) suffers the same difficulties. The solution 
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to the problem of variability is to repeat tests and to average the results, whilst the problem 

of accessibility is solved using a method in which participants self-report their perceptions, 

namely Stevens’ (1975) magnitude estimation scaling technique. 

As an illustrative example of the current practice of standardisation in empirical 

aesthetics, I take from the literature reviewed earlier the PhD thesis Complexity and Aesthetic 

Preference for Diverse Visual Stimuli by Marcos Roberts (2007), who made the following 

adjustments to a set of images of artwork: 

To avoid the undesired influence of psychophysical variables, all stimuli were adjusted 

to the same resolution of 150 ppi and set to the same size of 9 by 12 cm. Additionally, 

the colour spectrum was adjusted in all images. Values of extreme illumination and 

shadow in each picture were adjusted to reach a global tone range allowing the best 

detail. Stimuli were classified according to their dominant tone (dark, medium, or 

light), and those with a mean distribution of pixels concentrated in both the left (dark) 

and right (light) extremes of the histogram were discarded. Thereafter the luminance 

of the remaining stimuli was adjusted to between 370 and 390 lx. Stimuli that could 

not be reasonably modified in this sense were discarded. Finally, the signature was 

removed from all signed pictures. (Roberts, 2007, p.159) 

Those digital images of artworks have been altered in size, proportion, content, 

colour, brightness and tonal balance. These are all fundamental aesthetic properties, and 

from an artistic point of view their alteration constitutes a mistreatment of the artwork. As 

a consequence, the validity of this approach is undermined. The attraction of ‘ironing-out’ 

these confounding variables is understandable from the empirical point of view because it 

makes the effects easier to detect and makes the analysis simpler. There are two arguments 

for preserving the integrity of stimulus images, however – one scientific (technical) and one 

artistic (moral), as follows. 

The first argument is that in the case of experiments on aesthetic complexity, the 

treatment of artworks is a particularly sensitive issue, because by all accounts visual 

complexity is a function of a number of more basic visual properties, including those 

altered in the example above – namely size, proportion, resolution, colour and tone. The 
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literature review identified the quantity, variety and order of picture elements as the most 

fundamental attributes of visual complexity, and in the case of Roberts’ (2007) experiments 

these have all been altered. In trying to measure visual complexity, it makes sense to 

minimise the alteration of properties to which objective measures and subjective 

perceptions of complexity are sensitive, because these alterations confound the 

experimental variables and weakens the ability to make inferences from the results of the 

test stimuli back to the original artworks. 

 The second argument for preserving the integrity of an artwork as a stimulus image 

is based on the moral principle that an artwork deserves respect in the same way as does its 

creator. The Copyright, Designs and Patent Act 1998 (CDPA) was introduced to enable 

artists and designers to control how their material is used. The fact that these rights are 

retained by the author even when the copyright of the work is transferred illustrates their 

significance. Provided that an experimenter has obtained licence to use the works in 

question, there should be no issue of authorship involving the ‘right of paternity’ (CDPA 

77), but the treatment of an artwork for experimental purposes should respect the ‘right of 

integrity’ (CDPA 80, Appendix A). This is the right to object to derogatory treatment of 

the work, which may include “addition, deletion, alteration or adaptation” (DACS, 2008). 

To neglect this principle is to run the risk of undermining the value of the research, not 

only from the art world’s point of view – for whom such research is potentially rewarding – 

but also in terms of experimental validity.11 In conclusion, this project aims to minimise the 

alteration of artwork images in testing. 

Methodological Approach 
The central aesthetic question of this project is: Does visual complexity contribute to 

the aesthetic value of art and design? The question cannot be answered directly through 

empirical methods, but its component parts can be tackled in this way with techniques 
                                                 
11 I should add that I am not implying that Roberts (2007) has infringed copyright; I only mean to add weight 

to my argument by emphasising the seriousness of these principles for artists and designers. 
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from experimental psychology. The first step is to measure visual complexity and the 

aesthetic judgement of visual stimuli. The objective measure, based on image file 

compression, provides an informational scale of order to randomness that corresponds 

with classification schemes of complexity from systems theory (Wolfram, 2002; Langton 

1990). This suggests research questions that can be answered empirically: How complex are 

examples of contemporary visual art and design? Is there a region of the informational 

spectrum of complexity in which these artworks tend to be found? What is the relationship 

between measures of objective informational complexity and subjective perceived 

complexity? Artworks appear to share a level of complexity with living things – both 

display a balance of order and chaos. Might we find that, like the preference for natural 

fractal values (Taylor, Micolich & Jonas, 2002), there is a preference for levels of visual 

complexity similar to those in nature? 

To answer the research questions, this project employs a methodology with an 

integration of methods, both creative and empirical. The creative work explores methods 

of generating visual complexity, which has applications for both art practice and the 

empirical tests. One aim is to make artwork aiming for a particular level of complexity – 

the perceptual threshold of complexity hypothesized by Wolfram (2002) and Donderi 

(2006) – and then to test this experimentally by including this material in the test stimuli. 

The art practice also helps to guide the creation of visual stimuli for testing by exploring 

the computer as a ‘universal picture generator’ with programs such as cellular automata. 

After generating and collecting visual material, we can then perform empirical tests to 

measure the property of visual complexity and its perception in art. 

The working model of aesthetics provides a structure for this project’s methodology. 

Since the model identifies the aesthetic in the interactions between an artwork and its artist 

or audience, the methodology focuses on these two sites of aesthetic production and 

aesthetic perception, and also on the artworld which forms the context of this research 

project. The plan is to approach these three areas of study – aesthetic production, aesthetic 
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perception and the artworld – by respectively making, measuring and mapping: Firstly, 

mapping aesthetic discourse with a contextual review of theory and practice identifies gaps in 

knowledge and guides the choice of methods. The contextual knowledge informs the 

making of artwork and visual stimuli for use in empirical tests. Finally, measuring the 

perception of visual material provides an empirical route to understanding the aesthetic 

judgement of visual complexity in art and design. The relationship of this methodology to 

the working model of aesthetics is illustrated in Figure 63. 

 
Figure 63 The methodology and the working model of aesthetics. 

Methods 
The principal methods employed in this project are quantitative in nature. Their 

purpose is to quantify visual complexity through the measurement of objective aesthetic 

properties and subjective aesthetic perceptions. The aim is to investigate the correlation 

between these two measures over a range of visual complexity. To support this quantitative 

approach, however, the project also employs qualitative data collection and analysis 

methods. Through interviews with test participants we aim to establish, if possible, the 

criteria employed in making the aesthetic judgements in these tests – to shed light on the 

how that lies behind the how much. The following sections detail each of these methods. 
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Quantitative Methods 

Measuring Objective Complexity 

Donderi’s (2006a) file-compression technique offers a practical solution to the 

problem of measuring visual complexity based on the identification of visual elements and 

the patterns they form: Pixels are the elements and data compression does the pattern-

recognition. Digitisation provides a standard approach that can be applied to all 2D images. 

Making a digital version of an image involves a quantization of its visual information. In 

general, this means that information is transformed from continuous values to discrete 

values. In the case of digitization of images, the quantization process transforms the 

perceivable picture elements (e.g. patches of paint) into an array of pixels. The pixel thus 

provides the basic visual element in digital images, and it is the statistical properties of these 

elements that form the basis of the computational measure of visual complexity. We 

identified the fundamental properties of visual complexity as quantity, variety and order. 

These are also the fundamental attributes of digital image files; the quantity, variety and 

order of pixels are the properties that determine the size of the file after data compression. 

Therefore, in theory Donderi’s file-compression method provides a theoretically-sound 

measure of visual complexity which also has empirical evidence for its success with radar 

and chart images (Donderi & McFadden, 2004) scenes of nature (Donderi & McFadden, 

2005) and camouflage images (Besner, 2007). The current project applies this method to 

the aesthetics of art and design. 

One advantage of the method is that in generating the digital image files to use as the 

basis of physical stimuli, we simultaneously implement part of its analysis. By generating 

compressed image files to start with, we have an initial indication of the objective 

complexity of the images. Once we have a set of compressed images, we can simply sort 

them in order of file size to get an idea of which are the most complex and which are the 

simplest. Most of the source images used in these tests are generated primarily as PNG 

files, whose compression algorithm gives the smallest files without data loss. This near-
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optimum file compression means that the initial file size is close to the intended complexity 

measure, and saves space on the computer system. A problem is that in making digital 

reproductions of visual material, we introduce visual artefacts in the process by creating a 

discrete-valued representation of a perceptually continuous visual array. By using high-

resolution scanning and printing, we can minimise the unwanted effects of this process. 

Measuring Subjective Complexity 

The chosen method for measuring perceived complexity and aesthetic judgements is 

the psychophysical magnitude estimation scaling (MES) technique derived by Stevens 

(1975) and employed by Donderi & McFadden (2005). The method requires the 

participation of volunteers to engage in tasks, who for this project are recruited from staff 

and students at Nottingham Trent University, principally from the schools of psychology 

and art and design. By employing different groups of participants we are able to examine 

the effect of art experience on aesthetic perception and judgement of visual complexity. 

Conducting interviews with participants after the tasks also allows for qualitative data to be 

gathered which can add to the interpretation of the quantitative results. 

The primary subjective aesthetic measure is perceived complexity. The other 

subjective measurements in this project are aesthetic preference (how much an image is 

liked) and aesthetic judgement of artistic quality (an evaluation of the artistic merit of a 

work). In this thesis, we abbreviate these two measures with the terms preference and quality. 

In effect, by investigating aesthetic preference and judgement of quality, we are getting 

close to what has traditionally been called beauty. Philosophical aesthetics classifies 

aesthetic preference as a judgement of agreeableness, and aesthetic quality as a judgement 

of taste. This aesthetic conception places aesthetic quality alongside the concept of beauty, 

whereas for those outside the field of aesthetics beauty would be usually associated with 

aesthetic preference rather than artistic quality. To avoid confusion in the tests, we use the 

terms preference and quality. 
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Since the nature of data to be collected is quantitative, it is appropriate to use 

statistical data analysis methods. Because we are looking for a correlation between objective 

complexity and subjective aesthetic judgements, we need to use statistical tools such as 

regression analysis which will tell us the strength and direction of the correlation. The 

details of these statistical methods are discussed in the following chapters as they are dealt 

with in the description of the test procedures and results. 

Qualitative Methods 

Semi-Structured Interviews 

In order to see whether we can establish which criteria are employed in making the 

aesthetic judgements in the tests, the plan is to conduct semi-structured interviews with 

participants. Because the principal focus of this study is quantitative in nature, and also due 

to constraints in time and resources, these interviews are not to be conducted for every 

test, but only for the first part of the final test (Test 3a). The main objective is to determine 

the criteria in judging aesthetic complexity, preference and quality. The interviews also 

allow us to see how the participants coped with the task and offer them an opportunity to 

ask questions and comment on the experience. This data is recorded as audio files, and 

later transcribed for qualitative analysis, as described in the following section. 

Transcription Coding and Analysis 

A principal difference between the quantitative data gathered in the main tests and 

the qualitative data gathered in interviews is that the former relates to objects seen whilst the 

latter concerns events heard. Another difference is that the quantitative data relates to the 

perception of aesthetic information, whilst the qualitative data deals with semantic 

information. This requires a fundamentally different approach to analysis, because we are 

dealing with semantic information rather than aesthetic. Content analysis is the broad 

heading under which this type of analysis falls, and in this study we focus on transcription 

coding as the principal method. Krippendorf (2004) describes three approaches to content 

analysis, based on three different understandings of how the content (meaning) is identified 
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in the process of analysis. The first of these positions comprises the belief that the content 

is inherent in the transcribed text – the content is simply ‘there’ on the page to be 

discovered. The second regards the content as a property of the source of the text, namely 

the interviewee, and accepts the fact that there is an element of uncertainty in the 

transcription process. The third approach goes yet further by acknowledging the role of the 

researcher in actively constructing the content of the interviewees’ words through the 

process of transcription and analysis. In terms of the diagrammatic representation of 

qualitative analysis in Figure 64, the first approach focuses only on the text and disregards 

the other elements; the second also includes the interviewee as the source of the text; the 

third approach incorporates all three by recognising the role of the researcher in 

transcribing and analysing. This project adopts the third approach to content analysis. 

 
Figure 64 Representation of the qualitative analysis process. 

Amongst the various methods of content analysis, this project focuses on a form of 

transcription coding as the main method of analysing the qualitative data gathered via the 

semi-structured interviews. According to Saldana (2009), the process of coding identifies a 

data set’s primary content by reading and interpreting (de-coding) as well as identifying and 

labelling (en-coding): “coding is the transitional process between data collection and more 

extensive data analysis” (Saldana, 2009, p.4). The main concerns of this analysis are to 

enumerate and categorise the various responses to the interview questions and to 

determine through a basic statistical analysis their frequency and significance. 

Interviewees Text Researcher

Interview, 

 

Transcription 

Coding, 

 

Analysis 
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Plan 
The literature reviewed in the previous chapter reveals that although visual 

complexity has been a subject that dates back to the beginnings of experimental 

psychology, there have been few attempts to study the entire range of visual complexity. 

The reason for this may be that it is difficult to achieve, because it is not easy to create such 

a range of stimuli and also because the analysis required gets more complicated with more 

complex stimuli. Looking at the whole spectrum allows for a useful preliminary overview 

of the phenomenon and provides a frame of reference for further tests. Therefore, this is 

the aim of the initial tests in this project. The proposal for test 1 is to generate a series of 

images that represent equidistant samples along a scale of objective complexity as measured 

by file compression. In this way, we are able to generate a series of images that cover the 

four classes of complexity identified by Wolfram (2002), namely: uniform, repetitive, 

complex and chaotic. 

The plan is to start with limited variables and increase them gradually in successive 

tests. Test 1 begins with low-resolution black and white images (that is, with only 2 varieties 

of picture element) in order to be able to focus on order/arrangement of elements. The 

stimuli are generated from cellular automata and random programs. In terms of the 

quantity, variety and order of picture elements: the quantity is fixed at a fairly low value 

(one million pixels) and the variety is low (just two different types – black and white) while 

we manipulate the order of pixels. Test 2 increases the overall complexity of the stimuli by 

increasing the quantity and variety of the picture elements: The CA and random images 

have up to four colours with a resolution of just over 4 million pixels (with dimensions 

2048 × 2048 pixels). Finally, test 3 uses images of art and design artefacts scanned at high 

resolution (around 35 million pixels) and with full colour (using RGB colour space, up to 

16 million colours). Test 3 takes place in two locations – the psychology laboratory and the 

art gallery – which are presented as tests 3a and 3b respectively. 
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The relationship of the chosen methods to the structure of this project can be 

illustrated by reference to the working model of aesthetics. Figure 65 shows how the 

methods relate to the model. On the side of aesthetic production (between artist and 

artwork), the method is to make and collect visual material for use in the tests. The test 

design is informed by the mapping of current practice (in the artworld) via the contextual 

review. The tests use two methods to measure visual complexity: Objective complexity (of 

the artwork) is measured with the file-compression method, and subjective complexity (the 

perception of the audience) is measured with the MES method. The perceptions of the 

participants are further elaborated through interviews and qualitative analysis. In this way, 

the methodology approaches both sides of the aesthetic in the model – aesthetic 

production and aesthetic perception, whilst the methods investigate both objective and 

subjective aesthetic properties of visual complexity. 

Figure 65 Diagram to show how the methods relate to the working model of aesthetics. 
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Chapter 4 

Investigating the Spectrum of  Visual 

Complexity 

Trial 1: Objective Measure 
Phase one of the method trial examines the objective measure of visual complexity. 

We use Donderi’s (2006a) measure of image complexity on images of Wolfram’s 

‘elementary’ cellular automata (eCA). Using CA images has a few benefits: Firstly, it offers a 

convenient method of generating manipulable stimuli; it is relatively easy to generate these 

images in any colours or dimensions. Secondly, we can be confident that the images 

represent a wide range of complexity (as mapped out by Langton and Wolfram), and the 

relatively small number of eCA rules means that we can produce images of all of the 256 

patterns in this type of CA. Lastly, it makes for an easy comparison of results against the 

findings of Wolfram (1984) and Langton (1990). Using CA as test stimuli also has the 

advantage of providing images that avoid the confounding factor of familiarity (Forsythe, 

2008), since these types of pattern are not widely known to the general public and are 

scarcely seen in contemporary visual art. 

A set of all 256 ‘elementary’ cellular automata is generated by writing a Mathematica 

program. The eCA images have just two colours (black and white) and each has 

dimensions of 100×100 pixels. The compressed PNG image files range in size from 96 to 

1,500 bytes. Figure 66 shows the set of images arranged in order of their rule number, from 

0 at the top left to 255 at bottom right. With this type of CA, there are many more regular 

patterns than random ones, therefore some pattern types are over-represented in this set. 

In subsequent tests, a selection of CA stimuli is made by sampling from equidistant points 

along the range of file sizes, avoiding the duplication of similar images. 
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Figure 66 Images of all 256 elementary cellular automata, sorted by rule number. 

When the set of compressed image files is sorted by size, the result is the 

arrangement shown in Figure 67. It is readily apparent that the clustering of image types 

mirrors Langton’s arrangement of Wolfram’s four complexity classes: The simple, uniform 

images come first, 12 followed by increasingly complex repetitive patterns, and finally the 

most random images are found at the end. Between the regions of order and chaos are a 

few complex images that have elements of order and randomness. 

                                                 
12 It seems that the reason for black images coming before white is a quirk of the sorting system because both 

black and white uniform images are 96 bytes (768 bits) in size. These are all bi-level images, which use only 

one bit per pixel to store colour information, and so it takes no more information to store ‘white’ than ‘black’.  
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Figure 67 Images of all 256 elementary cellular automata, sorted by file size. 

Note that the images with the largest size are fairly smooth in texture, whereas the 

more lumpy-looking images are those between the regions of order and chaos. The lumpy 

ones look like that because they have a greater number of different patterns than the other 

images. If we judge the complexity of images by the size of their description, as we said 

earlier, then these lumpy-looking images are the most complex. Because these images 

contain some regularity as well as randomness, they do not produce the largest files, since a 

regular pattern is compressible. The file-size measure is in agreement with Wolfram’s 

classification and Langton’s ordering, but because of this we also see how the measure is 

similarly inconsistent with our intuitive understanding of visual complexity. 
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In one sense this result is trivial, since it could have been predicted by anyone who 

understands image file compression. On the other hand, it is surprising to see such a close 

match between different schemas from experimental psychology and complexity science. 

As far as the literature review reveals, this trial is the first time that data compression has 

been used as a measure of cellular automata complexity, and provides the first direct link 

between the information-theory measure of visual complexity and Wolfram’s (2002) and 

Langton’s (1991) complexity schemas. As such, it may constitute a contribution to 

knowledge, though the potential application of this finding is as yet uncertain. 

What links the complexity schemas with the file-compression measure of complexity, 

and explains the result of this trial, is the concept of order as developed in information 

theory (Shannon, 1948). What this means is that the objective measure of visual complexity 

is actually a measure of randomness (or ‘entropy’ as Shannon called it), and is not 

necessarily a measure of complexity as we perceive it. This might not be a problem for the 

current investigation, though, since it still provides a practicable method which not only 

accords with models from complexity theory but which is also robust and clearly 

understandable. It also supports the idea that complexity can be understood as a mixture of 

order and randomness, since we find the most complex images between these regions. 

Nevertheless, the implication is that the correlation which Donderi found between file size 

and perceived complexity may break down for the most random images. This suggests two 

things: Firstly, that Donderi & McFadden (2004) only looked at relatively simple images, 

for which the correlation is strong because there is agreement between informational and 

intuitive measures of complexity for the lower part of these scales. Secondly it provides a 

reason for investigating a wider spectrum of visual complexity in order to resolve this 

concern and to contribute to the field by extending research into this area. In conclusion, 

we have validated the objective measure of visual complexity and discovered significant 

issues which will bear on the interpretation of subsequent test results. Next, we look at the 

use of cellular automata images in the measurement of perceived complexity. 
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Trial 2: Subjective Measure 
To check that cellular automata images are feasible to use as test stimuli for 

subjectively perceived complexity we performed an informal test. Sixteen black and white 

images of cellular automata patterns, chosen from the set of 256 used in the previous trial, 

are selected to represent a range of complexity. The images are printed on A4 paper and 

laid out randomly on a table top. Five people (three PhD students and two members of 

staff from the School of Art & Design) were tasked with arranging the images in order of 

perceived complexity by physically laying-out the images in sequence. Figure 68 shows the 

averaged results. 

 
Figure 68 Image set used for the trial of the subjective measure, sorted in order of 

increasing perceived complexity from top left to bottom right. 
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The results are encouraging because in general the images were sorted in an order 

that approximately matches the sequence of complexity classes found in the previous trial. 

The biggest disagreement between individuals seems to be with the chaotic images – some 

thought that those were the most complex and others thought they were much simpler – 

but in general the ordering of the images was fairly consistent in terms of the placement of 

various complexity classes and their types of pattern. 

One drawback of measuring perceived complexity by rank order is that the type of 

data it provides only tells us which images are perceived to be more complex than others; it 

cannot tell us whether any two images are perceived to be near or far apart on a scale of 

visual complexity (for example, images ranked in first and second place may actually be 

farther apart on a scale of complexity than their rank order might suggest). To address this 

issue, we need an alternative method which provides a ratio scale in place of an ordinal 

scale of numbers, which allows for a more sophisticated statistical analysis. For example, 

with ordinal scales, certain useful statistical tests are prohibited – such as the mean and 

standard deviation. These tests are required in order to be able to calculate the statistical 

correlation between the objective and subjective measures of complexity, as in Donderi 

and McFadden (2005). Although this methods trial is an informal test procedure and lacks 

a thorough statistical analysis, the results are promising and they provide a basis for 

continuing the investigation towards a more formal analysis. The following test uses the 

same type of CA image with greater resolution, and uses a technique for the subjective 

measure of complexity that provides a more sophisticated ratio scale of measurement. 
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Test 1: Monochrome CA and 
Random Images 

Donderi and McFadden (2005) found that the compressed file size of digital images 

is an indicator of subjective ratings of complexity for certain images. The previous trial of 

measures suggests that the correlation may apply to non-random images only. The present 

test aims to explore whether this correlation holds over a wide range of objective 

complexity, from simple order to random patterns. The contextual review in Chapter 2 

reveals that studies in empirical aesthetics rarely attempt to investigate the full spectrum of 

complexity, but that in fact this might be a useful exercise. Looking at the whole range 

provides a valuable overview, especially for mapping the subjectively perceived complexity 

of CA images in relation to established schemas of objective complexity. It also enables us 

to see whether or not the correlation between objective and subjective complexity breaks 

down for random images, as suggested. If it does break down, then Donderi’s claim must 

be qualified with a statement of the range of visual complexity to which it applies, but it is 

only by investigating the whole spectrum of patterns that we can establish with confidence 

which regions of complexity we are dealing with. If we know where the end-points 

(minima and maxima) of the scale are, then we can measure more precisely the subjective 

perception of visual complexity in relation to the schemas of Wolfram and Langton, which 

are based on the objective properties of CA images. 

Method 
In this test, we use Donderi’s file compression and MES technique to gather 

estimates of objective and subjective complexity. By sampling from the whole spectrum of 

complexity, we are able to build up a picture of the perceptual response to an objective 

range of visual complexity based on an informational scale of measurement. Lastly, we use 

statistical analysis to determine the correlation between the two measures. These 

quantitative results are presented as graphical representations of how perceptions of 

complexity vary across a wide range of image complexity. 
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Participants 

For convenience, the subjects in this test are Master’s students in the College of Art 

& Design and the Built Environment at NTU. It was decided to select half from Fine Art 

and half from Construction Management courses, as those groups represent the most and 

least trained in art at that level of study. The selection is designed to reveal the influence of 

art training upon the aesthetic judgements being measured. Eight subjects are selected by 

canvassing the students and accepting the first four volunteers from each course. One 

student from Construction Management dropped out, and an art-trained member of staff 

performed the eighth test. All but one of the subjects were women. 

Materials 

The test stimuli comprise two sets of 25 black and white images printed at 

265×265mm on A3 cartridge paper. All images are composed of one million (1000×1000) 

black and white pixels and surrounded by a thin mid-grey border to delineate the edges of 

each image against the white paper. At the printed resolution (approximately 96ppi), 

individual pixels are just recognisable seen at close range, being just over a quarter of a 

millimetre square. The image sets were created with Mathematica programs, one set being 

made with cellular automata (Figure 69), and the other from random processes (Figure 70). 
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Figure 69 Set of 25 cellular automata images, sorted in order of increasing file size 

(from top left to bottom right). 

The random images are designed to show a similarly wide range of detail as the CA 

images, but with different shapes. They were made by starting with images in which each 

cell is randomly assigned the colour black or white. Next, the image is blurred by a small 

amount with a Gaussian function, which introduces shades of grey, and then a threshold 

filter applied, which changes each pixel to black or white again based on whether its grey 

level is above or below the midpoint. This has the effect of pooling black and white areas, 

depending on their average tone. Each random image has different amounts of blurring 

applied, with the same threshold filter. The visual effect of increased blurring in this 
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process is similar to that of water condensing on the side of a cold glass – tiny droplets 

form initially which gradually draw together to form increasingly large beads (Figure 70). 

 
Figure 70 Set of 25 random blob images, sorted by increasing file size (top left to 

bottom right). 

A large number of each type of image was generated with programs written in 

Mathematica and then converted to maximally-compressed PNG files using the freeware 

graphics software IrfanView (Skiljan, 2009) together with Ken Silverman’s (2006) 

PNGOUT plug-in, which enable batch-processing of image files and near-optimum 

compression, respectively. PNG was chosen as the file type for measuring objective 

complexity as it produces the smallest files for this type of bi-level image (Salomon, 2004). 
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Pairs of similarly-sized files of cellular automata and random images were selected to range 

from the smallest to the largest, to make two sets of 25 images that covered a similarly wide 

range of objective complexity. 

Procedure 

Participants rated images for preference and complexity using the method of 

magnitude estimation scaling, whereby numbers are assigned to reflect the strength of 

perception. Tests were conducted in a well-lit room with only the investigator present, 

except in one case where two participants were tested concurrently. Verbal and written 

instructions informed the subjects of their task (see appendix A), and a practice run with a 

small set of different images was conducted before the tests began in order to familiarise 

the participants with the procedure. Participants were given the opportunity to ask 

questions and testing began only when they reported they were comfortable. 

Each participant rated each of the two sets of images twice over – once for 

preference and once for complexity, so a test comprised four sets of 25 ratings. The order 

of images presented in each run was randomised. The small number of participants meant 

that not all of the possible 24 sequence permutations could be used, so the order of tasks 

was balanced between subjects, with each task being performed in equal rank frequency. 

Rating types were grouped together, with half the subjects rating complexity first, and the 

other half preference first. The printed images were presented in sets stacked in 

randomised order, and the participants turned over the top sheet to reveal the next image 

once they had recorded their rating by writing on a numbered score sheet. It took on 

average half an hour to rate the four sets of 25 images. After the task, participants were 

invited to comment on the tests. 

Results 
Because this is the first of three empirical studies in this project, the present section 

focuses more on evaluating the viability of methods and determining the subsequent 

direction of later tests. The most important issues are to correctly interpret the results, to 
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validate the suitability of research methods, and to identify how to proceed for the 

following tests. 

The data for all eight participants’ sets of four ratings are shown in Figure 71. This 

figure provides a general illustration of the kinds of differences between individual ratings 

rather than a precise statistical analysis. Nevertheless, the numerical scales upon which the 

data are represented are the same for each plot, so the display accurately reflects the relative 

values collected. Each graph is drawn to the same scale, showing increasing rank order of 

image PNG file size (3 to 123 kilobytes) from left to right on the horizontal axis, and 

subjective ratings (of the range 0 to 35) on the vertical axis. The top 3 rows are responses 

from Construction Management students and the rest from Fine Art, with all except the 

top row being women. The diagram is an attempt to follow Tufte’s (2001) principles of 

information visualisation, with an economical, accurate and elegant presentation of the 

salient features of the data set without clutter and extraneous detail. 
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Figure 71 Complete set of un-adjusted subjective ratings (in labelled columns) for 

participants 1 to 8 (coloured rows, in test sequence from top to bottom) in Test 1. 

Complexity CA Complexity R Preference CA Preference R 
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It is testament to the effectiveness of our visual system that an illustration such as 

Figure 71, which contains a total of 800 data points, provides a more comprehensible 

statistical description than an equivalent table of values. Provided we know what it is the 

diagrams illustrate, this most basic of statistical descriptions, the scatter plot, shows with 

clarity any trends in the patterns of data, such as their dispersion, slope or range. 

From these scatter plots, we can already see that there does appear to be a positive 

correlation between objective and subjective measures of complexity (as one increases, so 

does the other), and that the correlation with preference is more variable (there are some 

upward and some downward slopes). This variability in individual trends means that we 

should be cautious about statistical analyses based on averages of these distributions. For 

example, if half the subjects showed a positive correlation and half negative, the averages 

would produce a result of zero correlation, which is statistically correct but less useful than 

the more detailed overview in Figure 71. 

Data Transformation 

There is more than one type of variance in this data, however, and depending on the 

type of procedure employed, some of them are trivial and some are not. Non-trivial 

variance is expressed in the difference between an individual’s ratings: Larger numbers 

mean greater complexity, and we should not alter the data in a way that affects this 

property. But the difference in the range of numbers between subjects is less important. To 

explain, imagine a situation where ratings by two participants differ only in that in one set 

each value is exactly twice as large as in the other. It might seem appropriate to transform 

the data to make it comparable. In this test, the lowest and highest values used across all 

subjects are 0 and 35, while the smallest and largest ranges used are 3 (1 to 3) and 30 (1 to 

30). What we want is to make the ranges closer together so they can be compared. The 

assumption behind these data transformations is that the range of subjective impressions is 

approximately equal, even if subjects use different ranges of numbers to represent their 

perceptions. However, Stevens’ (1975) method of magnitude estimation also assumes that 
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the subjects’ scale of numbers is a ratio scale (i.e. a scale incorporating a zero point, where 

numbers express ratios, so that ‘3’ means ‘three times larger than 1’). Because of this 

assumption, the only permissible transformations are those that preserve the property of 

rationality. In this test, we use the mean logarithm of the scores, and in subsequent tests we 

use the geometric mean, which is a similar type of transformation. 

Figure 72 is a graphical representation of the effect of various types of 

transformation on the subjective ratings (note the varying scales of the y-axes). If the raw 

data (Figure 72a) were transformed by treating each subject’s lowest and highest values as 

equal – making each maximum 1 and each minimum 0, we would destroy the property of 

rationality, because the zero points are moved: Figure 72b shows that each subject’s graph 

line is stretched vertically to make it touch the top (the value 1) and the bottom (0). In 

experimental psychology, a common way of dealing with this type variance in scales is to 

use the logarithm of the values – a transformation which retains the rationality of the scales 

relative to zero, and does not alter the relative positions of the data. The logarithm 

transformation (Figure 72c) does not make each scale exactly the same, but it transforms 

them to similar ranges and enables averaging of data. Because the logarithm of zero is 

infinity, data containing zeroes must be altered before the log transform by adding a small 

number. Figure 72d shows an alternative – the square root, which seems to offer a viable 

alternative to the logarithm transform. For this test and subsequent tests, the logarithm 

transform is selected, because it fulfils the necessary criteria and is the same technique 

employed by Donderi (2006a). 
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Figure 72 Visualising the effect of various data transformations. All graphs represent 

the data for subjective ratings of complexity (y-axis) for CA images against rank order 

PNG file size (x-axis). (Cf. first column of Figure 71, above, and Table 1, below). 

a. Original data

b. Min-Max → 0-1

d. Square root

c. Logarithm
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Analysis 
After the data has been suitably transformed, we can perform calculations that tell us 

how closely the trends of the subjective data match the trends of the objective measures, 

that is, the correlation between them. According to a standard text on statistics for 

psychologists (Howell, 2007), the most common form of correlation, and the appropriate 

method to use in this case, is Pearson’s product-moment correlation, which is expressed as 

an r value – a measure without units that can range from -1 to +1. A positive value 

indicates a correlation in which one variable increases with the other, a negative value 

indicates a variable that decreases as the other rises, and a value close to zero means that 

there is little correspondence between the two. Table 1 shows how the data 

transformations in Figure 72 affect these r values (the first column corresponds to the 

graphs in Figure 4).  

Mean Complexity Mean Preference Data 
Transformation CA Random CA Random 

None 0.700 0.827 0.571 -0.086 

Min-Max → 0-1 0.717 0.778 0.621 -0.056 

Logarithm 0.680 0.753 0.515 -0.034 

Square root 0.651 0.781 0.468 0.028 

Table 1 Influence of various data transformations of subjective ratings on correlations 

with PNG file size. 

It looks like the ‘worst’ transformation (Min–Max → 0–1) gives the ‘best’ correlation, 

but this should not mislead us into thinking that it is the correct one to use. The most 

important aspect of the r values in Table 1 is not the minor differences between data 

transformations, but their similarity. It tells us that there is a strong correlation between 

subjective and objective complexity for both image sets, and that there is a weak 

correlation between file size and preference for the CA images. There is almost no 

correlation with preference for the random images, but we noted earlier that actually there 
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are almost equal numbers of negative and positive correlations amongst the subjects, which 

therefore cancel each other out in these statistics. 

The most important aspect of the r values in Table 1 is not the minor differences 

between data transformations, but their similarity. It tells us that there is a strong 

correlation between subjective and objective complexity for both image sets, and that there 

is a weak correlation between file size and preference for the CA images. There is almost 

no correlation with preference for the random images, but because there are almost equal 

numbers of negative and positive correlations amongst the subjects, they cancel each other 

out in these statistics. 

File Types 

Image file types differ in the way they handle pictorial data, and use various methods 

of encoding and compression, so the file size of a given image will vary from one type to 

the next. It is likely that nearly-optimal compression is a favourable condition for 

correlation with subjective complexity ratings, but no one has yet undertaken an exhaustive 

trial of the different image file types and compression methods for this purpose, so it 

remains to be seen which is best for this job and why. This matter cannot be fully explored 

in the present study, but the results should be able to give an indication of the relative 

performance of various file types. The correlation of five different image file types with 

subjective ratings is shown in Table 2: 

mean(log) Complexity mean(log) Preference 
File Type 

CA Random CA Random 

PNG 0.608 0.740 0.404 -0.045 

JPEG 0.547 0.813 0.118 -0.155 

TIFF (LZW) 0.607 0.717 0.294 -0.038 

ZIP (PNG) 0.607 0.741 0.404 -0.060 

ZIP (JPEG) 0.644 0.806 0.415 -0.152 

Table 2 Correlation (r values) of subjective ratings and file size for various file types. 
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What is most apparent in Table 2 is the general agreement amongst file types, with 

much stronger correlations for complexity ratings than for preference. Donderi and 

colleagues found the best correlations with lossless JPEG images compressed as ZIP files, 

and that is also the case here (N.B. ZIP is not an image file type, so it cannot be used to 

display graphics – it is used by Donderi to provide a second process of compression.) PNG 

was chosen as the working file type for creating the stimulus images because they gave the 

smallest files, and JPEG and TIFF were selected for the test because they are commonly 

used in graphics applications. ZIP files were made of uncompressed PNG images and 

lossless JPEGs. 

Lossless JPEG had to be used because lossy compression was found to degrade the 

images by producing greyscale artefacts which blurred their crispness, and this would have 

made for an unfair comparison with the other image types. JPEG was expected to perform 

poorly in this study as an indicator of subjective complexity because it is known to give 

poor compression ratios for bi-level (black and white only) images. Actually, it shows the 

weakest correlation with the CA images, but the strongest for the random images. This 

could be explained by the fact that JPEG encodes two-dimensional regions of image data, 

unlike the other file types here, and so the ‘blobby’ nature of the random images is 

captured more effectively than the intricate CA images. This is also reflected in the 

difference between the total sizes of image sets using different file types (Table 3). 

Size of image folder (MB) 
File type 

CA Random 

PNG 1.26 1.36 

JPEG 24.9 14.0 

TIFF (LZW) 2.07 1.72 

ZIP (PNG) 1.18 1.21 

ZIP (JPEG) 16.5 13.6 
Table 3 Total sizes of all 25 images in each set for various file types. 
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The difference between the folder sizes of PNG and ZIP (PNG), together with the 

similarity of their r values in Table 2, indicates that the type of image encoding, rather than 

the compression method, which most affects the rank-ordering of images and their 

subsequent correlation with subjective ratings (these two file types share image-encoding 

methods, but use different methods of compression). 

Preference and Complexity Ratings 

Table 4 shows the relevant correlations between subjective ratings. There are weak 

correlations between preference and ratings of complexity for both the image sets, but they 

differ in direction: For the CA images, preference increases with complexity, but for the 

random images it decreases, meaning that the participants preferred the more complex CA 

images and the simpler random images. There is a strong correlation for ratings of 

complexity between the two sets, which is encouraging because it suggests that there is a 

relatively stable relationship between objective and subjective measures even with visually 

dissimilar types of image. The statistical significance of these correlations has been avoided 

thus far, but will be taken up in the discussion of results. 

Mean (log) Rating Correlation Mean (log) Rating 

Complexity CA 0.34 Preference CA 

Complexity Random -0.27 Preference Random 

Complexity CA 0.80 Complexity Random 

Preference CA -0.26 Preference Random 

Table 4 Correlation between subjective ratings. 

Average Responses 

Figure 73 shows the averages (mean) across all participants for the four subjective 

ratings compared to file size. At this relatively crude stage of analysis, we can see that 

subjective ratings of visual complexity generally correspond with the file size of the images. 

This is true of complexity ratings for both sets of images, whose results are fairly similar, 
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whereas preference ratings of the two sets are quite distinct in shape but indicate a weaker 

correlation. 

 
Figure 73 Mean log ratings plotted against rank order PNG file size. 

Influence of Art Training 

Table 5 shows how the correlations with file size differ between non-art-trained (MA 

Construction Management) and art-trained (MA Fine Art) subjects. Ratings of complexity 

for both image sets do not differ greatly between the two sets of subjects, but their 

preference does. The non-art-trained subjects show a fairly strong preference for the more 

complex CA images and the simpler random images. In contrast, the art-trained subjects 
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have only a slight preference for the more complex of both image sets. Figure 74 illustrates 

these different ratings, in the same layout as Table 5. The greatest visible difference is that 

for preference ratings of random images (right-most column), which slopes downwards for 

the non-art-trained subjects and upwards for the other group. 

mean(log) Complexity mean(log) Preference 
Group 

CA Random CA Random 

Construction 
Management 

0.760 0.699 0.567 -0.790 

Fine Art 0.439 0.705 0.159 0.328 

Table 5 Influence of art training on judgements of complexity and preference. 

 
Figure 74 Visualisation of the different responses between participants from 

Construction Management (top row, red) and Fine Art (bottom, blue). x-axis: mean 

log scores; y-axis: rank order file size. 

The results show a greater consistency between the groups’ ratings of complexity 

than amongst ratings of preference. The trends revealed by these analyses are comparable 

to the findings of Locher, Smith and Smith (2001), who reported a similar tendency for art 

training to affect preference of images more than perception of visual properties such as 

complexity. 

Complexity CA Complexity R Preference CA Preference R
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Inferential Statistics 

The following statistical analyses differ from those of the previous section in that 

they allow us to make inferences from the sample data back to the population at large. 

These statistical methods can also tell us the degree to which the inferences are valid, that 

is, the proportion of the correlation that can be accounted for by the particular factors 

under scrutiny. Regression analysis allows us to find the mathematical relationship between 

variables, so that we may make predictions of one based on the values of the other. We 

find the mathematical relationship by attempting to find the line of best fit for the points of 

data. Figure 75 shows some examples of regression analysis for ratings of complexity of the 

CA images. Each graph uses a different type of equation as its model, and the regression 

analysis provides estimates of their parameters, which are plotted as red lines through the 

data points. The measure of how closely the estimated line fits the data is called the 

coefficient of determination, or the r squared value. The r2 values in these graphs are 

adjusted to compensate for the number of parameters used. Given a measure of the 

objective complexity of an image, these functions can be used to estimate its perceived 

complexity or preference.  
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Figure 75 Examples of curve-fitting data by regression analysis, using successively 

larger-order polynomials. Plots show mean log complexity ratings (y -axis, no units) 

against PNG file size (x-axis, in bytes). 

Figure 75 shows the lines of best fit when the data is arranged by absolute file size, 

but there are alternative ways of arranging this data: It can be sorted into rank order of file 

size (as in Figure 73) or we can use the logarithm of the file sizes. The latter method is the 

one adopted by Donderi as a measure of image information content (in line with 

Shannon’s quantitative definition of information), and the lines of best fit for this method 

are illustrated in Figure 76. 

2nd order 

r2 = 0.45 

3rd order 

r2 = 0.72 

Data points 

(Complexity CA) 
Linear 

r2 = 0.34 

y = 0.70 + 5.7×10-6x – 3.3×10-11x2 

y = 0.75 + 1.6×10-6x 

y = 0.57 + 0.00002x – 3.7×10-10x2 + 3.7×10-15x3
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Figure 76 Lines of best fit for mean log complexity ratings (y-axis, no units) against log 

PNG file size (x-axis, in bytes). R squared values are adjusted. 

The logarithm transform of file sizes produces more consistent results than the un-

transformed data. The third-order polynomial used in the regression analysis produces 

quite different curves for the data depending on whether a transformation is used. The 

logarithm has the effect of squeezing the points towards the right, which irons out the dip 

in the line. Figure 77 shows the lines of best fit for each of the four different subjective 

ratings, and provides a succinct description of the results of this test. 

2nd order 

r2 = 0.69 

3rd order 

r2 = 0.68 

Linear 

r2 = 0.56 

Data points

(Complexity CA) 

y = 0.065 + 0.174x  

y = – 9.94 + 6.02x – 1.09x2 + 0.064x3y = – 4.76 + 2.40x – 0.253x2
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Figure 77 Lines of best fit for the four ratings of test images. Mean log ratings (y-axis, 

no units) vs. log file size (x-axis, in bytes). 

Statistical significance 

Correlation coefficients (r values) are usually given with reference to their statistical 

significance (p value), which tells us the probability that the result could have occurred by 

chance alone. The smaller p is, the more confident we can be that the results are due to the 

factors under study. The necessary degree of certainty varies from study to study, 

depending on their aims and purposes, but in general the more data we can acquire, the 

more we can be certain of the results. In the present study, we have found a quite strong 

correlation between objective and subjective measures of visual complexity, but the small 

2nd order 

r2 = 0.88 

2nd order 

r2 = 0.69 

Linear 

r2 = 0.18 

2nd order 

r2 = 0.35 

Complexity CA Complexity R 

Preference CA Preference R 

y = – 4.76 + 2.40x – 0.253x2 y = – 5.21 + 2.54x – 0.260x2 

y = 0.593 + 0.065x y = 6.23 – 2.49x + 0.278x2 



Investigating the Spectrum of Visual Complexity  Test 1: Monochrome CA and Random Images 

 200  

number of participants means that we cannot be very certain about its significance. One 

way to increase the significance of the results, then, is to repeat the tests with more 

participants. This is the plan for the next set of tests, which introduce colour to the stimuli. 

Summary 
Using the logarithm of both objective and subjective measures of complexity, the 

lines of best fit are consistent with one expected outcome of this pilot test. It was predicted 

that Donderi’s linear correlation between the two measures of complexity would break 

down for the most complex images (i.e. that the line would begin to curve downwards on 

the right), and that this might not be revealed unless a wide range of visual complexity is 

tested. The results of this test cautiously confirm this hypothesis – there is distinct inverted 

U shape to the graphs of perceived complexity vs. measured complexity in Figure 77. 

Perhaps surprisingly, the results are similar for the two different sets of images that vary 

greatly in appearance. Preference, on the other hand, shows much more variation, which is 

not surprising given that the workings of aesthetic taste are dependent on many more 

variables than were accounted for in the present study. Whereas the complexity ratings are 

similar for both image sets, there is a marked difference in preference between the two. 

Also, between the two groups of participants there is greater disparity in preference than 

there is for complexity. A tentative conclusion is that art training does not affect perception 

of complexity, but it does alter preference for levels of complexity.  

The results of Test 1 support this hypothesis: Ratings of perceived complexity form 

an inverted U shape when correlated with the objective measure of complexity based on 

information content. However, the graphs of complexity ratings and file size in Figure 77 

describe mainly the left portion of this inverted U shape. There are two alternative 

explanations for this result; either the perception of random images does not function as 

predicted by Donderi (2006) or the stimulus images are not random enough to see the 

predicted effect. Given that the stimuli are fairly low-resolution black and white images, 

which therefore fall short of the perceived complexity of artworks such as Pollock’s drip 
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paintings, the latter alternative is the more likely. The implication for the following test is 

that the objective complexity of stimuli should be increased and that we should include 

images that are more random. In other words, we should raise the level of overall 

complexity in the image set, and widen the spectrum of complexity that it represents. In 

terms of the fundamental variables of visual complexity identified in Chapter 2, this means 

that we increase the quantity and the variety of picture elements and widen the scale of 

order–randomness. 

Discussion: Visual Resolution 

The results of these tests indicate that the objective and subjective measures of visual 

complexity correlate linearly only for the least complex images (the upward-sloping left 

portion of the curve on the complexity graph). Beyond a certain threshold (the peak of the 

curve), as images become more random they are rated as less complex (the right-hand side 

of the curve). The stimuli in this study had quite a low printed resolution; individual pixels 

were clearly visible. It is thought that by increasing the resolution, the most random images 

will appear even less complex, because as the image resolution approaches the limit of our 

visual acuity, random images appear ‘smoother’ or more uniform, and would appear to be 

more simple. Figure 78 illustrates this phenomenon. Each image is composed of random 

blobs (created using the method in Test 1 described above), but they vary in terms of scale: 

the images increase in resolution towards the right. What is noticeable is that the images 

appear smoother with increased resolution. We can imagine the series progressing towards 

a uniform grey that would appear to be a very simple image, even though we know it is 

actually composed of a complicated arrangement of different elements. 

 
Figure 78 The effect of increasing resolution of random ‘blob’ images. 
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The point at which the increased resolution appears uniform is dependent on the 

eyesight of the participant, principally on the property of visual acuity (the ability to resolve 

detail). Since individual acuity will vary we cannot specify exactly where this threshold lies, 

but given the common standard measure of 20/20 acuity we can calculate the necessary 

printed resolution for creating stimuli that approach this threshold. In effect, the relatively 

low resolution of stimuli in Test 1 limited the approach towards the perception of 

uniformity. This provides another explanation for the result that only the left portion of 

the predicted inverted-U-shape correlation is observed. We propose to use a higher 

resolution in subsequent tests, as this should lead to a more pronounced effect on the 

correlation between the two measures. The smoothing effect means that the most random 

images will be rated less complex than the corresponding objective measure as resolution is 

increased. In theory, then, a random image whose resolution (spatial frequency) is greater 

than our visual acuity should be indistinguishable from the simplest possible uniform 

image. We can infer that subjective complexity forms a continuous spectrum whose end-

points meet, unlike the objective measure of complexity which exhibits the clearly 

opposing poles of order (or uniformity) and randomness. In this sense, we could describe 

the objective scale of visual complexity as linear, and the subjective scale as circular – like a 

colour wheel. This idea is taken up in the concluding chapter. 

Test 2: CA and Random Images in 
Colour 

Test 2 uses random and cellular automata images again, but this time with greater 

resolution and in colour instead of black and white. In addition to increasing the quantity 

of picture elements by increasing the resolution of the stimuli, the introduction of colour 

marks a qualitative difference – it increases the variety of picture elements and raises the 

overall level of complexity of the image set compared to Test 1. The present test has 

images that are more random, but the range of patterns is approximately the same as 

before, representing all four classes of complexity. In this way, we also widen the range of 
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visual complexity present in the stimuli. The benefit of this action is threefold: It allows for 

a corroboration of the initial findings, it further tests the validity of the method to cope 

with more complex images, and it enables a more detailed examination of the hypothesis 

concerning the perception of randomness.  

Method 

Materials 

To create the image set for this test, another program was written in Mathematica. The 

program generated random images and cellular automata images – not the elementary CA 

with two colours or ‘states’ that were used before, but CA with four colours. The number 

of rules in this four-colour CA is vastly larger than the elementary CA, and so it is not 

possible to generate images for each rule. Instead, the rules are chosen at random by 

generating a number between zero and the number of possible rules of this CA 

(approximately 3 ×1038). Normally, different CA rules are represented with the same 

colouring, but for the purpose of this test we want to avoid a bias towards a particular 

colour palette. Therefore, the program that generated the stimulus images also assigned 

colours randomly to each image. The nature of the CA patterns means that they have 

between two and four colours each. 

After generating a few hundred images, a set is created by sorting the compressed 

image files in order of size and then making selections spaced roughly equally across the 

range. The set selected for this test is illustrated in Figure 79. Two sets of the stimulus 

images were printed at a size of 20cm square on medium-weight white card. Each image 

was labelled on the reverse side with a reference number for identifying images in the tests. 

These labels were assigned randomly, and the same labels applied to both image sets. 
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Figure 79 Set of stimulus images in Test 2, arranged in order of increasing file size 

from top left to bottom right 
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Participants 

Volunteers to participate in the tasks were recruited from postgraduate students in 

the College of Art & Design and the Built Environment. 20 people took part in the tests, 

including art-trained and un-trained students. 

Procedure 

The participants’ task is the same as the previous test: Each participant rated a set of 

images for complexity and preference by writing scores on a sheet. The tasks took place at 

desks in the postgraduate research office with plenty of room and illumination. The 

sequence was alternated between successive participants, so half rated complexity first and 

vice versa. Scores were written in a box labelled with a number corresponding to that on 

the back of each printed image. The sets of images were shuffled for each participant to 

obtain a random presentation sequence. 

Results 
The test results are presented graphically in Figure 80. The top two images show the 

complete sets of ratings for complexity and preference, visualized with higher scores as 

hotter colours. The average (geometric mean) ratings are illustrated in the central pair of 

images, and at the bottom are plotted in graphs against rank order file size. The pattern of 

colours and the shape of the graphs indicate a degree of correspondence between 

subjective ratings and image file size, with a stronger correlation for complexity ratings than 

for preference. 



Investigating the Spectrum of Visual Complexity  Test 2: CA and Random Images in Colour 

 206  

 
Figure 80 Test 2 results for complexity (left) and preference (right). Top: Complete 

data – colours represent rating values (blue = low, red = high), participants’ scores are 

in rows and stimulus images are represented in columns in order of file size. Middle: 

Geometric mean ratings. Bottom: Plots of geometric mean ratings against rank order 

JPEG file size (no units). 

Analysis 
The statistical analysis reveals a moderate correlation between average (geometric 

mean) subjective ratings of complexity and preference (r = 0.486). The correlation of 

preference and objective complexity (file size) is slightly weaker, varying with the file type 

(see Table 6). Similarly, the correlation with complexity ratings varies with file type. TIFF 

and JPEG file types show a statistically significant correlation with complexity ratings 

(TIFF: r = 0.547; JPEG: r = 0.542, d.f. = 18, p < 0.05) and only JPEG shows a significant 

correlation with preference ratings (r = 0.494, d.f. = 18, p < 0.05) for this sample size. 

d.f. = 18, p < 0.05 PNG TIFF JPEG 

Complexity 0.267 0.547 0.542 

Preference 0.279 0.389 0.494 

Table 6 Correlations for Test 2. 

Co
m

pl
ex

ity
 

Pr
ef

er
en

ce
 

Rank order, log JPEG file size Rank order, log JPEG file size 



Investigating the Spectrum of Visual Complexity  Test 2: CA and Random Images in Colour 

 207  

If, like Besner (2007), we split the set of images into the smallest and the largest files, 

we find that the correlation with first half of files (smallest files with simpler images) is 

much stronger (r = 0.814) than that with the second half (r = -0.078). This shows a 

dropping-off of the correlation curve for the largest files (most random images). Figure 81 

shows the results of regression analysis for complexity and preference ratings with all three 

file types. As in Test 1, we have evidence of the inverted ‘U’ shape correlation, which is 

stronger between perceived complexity and file size than for preference. 

 
Figure 81 Regression analysis (2nd order polynomial), mean scores (no units) vs. log 

file size (bytes). 

Instead of expressing image file complexity using the logarithm of the file size, as 

Donderi & McFadden (2005), we can use a measure based on file compression. The 

compression ratio of the image files is the ratio of the size of the compressed file to the 

original uncompressed file, giving a relative value between 0 and 1 (with no units of 

measurement, because they cancel out). The value of using the compression ratio is that it 

provides a scale from a maximum of order (maximum compressibility) to a maximum of 

randomness (minimum compressibility). The results are similar to the other plots, again 

showing the same shape correlation (Figure 82). The compression ratio scale reveals more 
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clearly which areas of the informational scale of complexity are represented by the stimuli 

in this test and which are omitted; clearly, we have few representative samples of maximum 

randomness, probably because of the limited number of colours used in the stimuli (a 

maximum of four). The graphs seem to suggest that the threshold of perceived complexity 

(the peak of the curve) is quite low – a compression ratio of approximately 0.15 – but it is 

possible that the images are artificially low on this scale: The limited number of colours 

restricted the file size of even the most random images, which meant that the range of sizes 

did not approach the upper limit of the compression ratio. 

 
Figure 82 Regression analysis (2 poly) for ratings of complexity and preference (y-axis, 

mean scores, no units) against compression ratio of PNG images (x-axis, no units). 

Effect of Art Experience 

Comparing ratings between art-trained and untrained groups of participants, we find 

no significant difference in complexity ratings, but there is a difference in preference 

(Figure 83). A between-subject T-test (two-tailed) for art-trained and untrained participants 

shows no significant difference in complexity ratings between the two groups (t = 4.21, d.f. 

= 96, p > 0.1). However, there is a significant difference in preference ratings between the 

groups (t = 7.21, d.f. = 96, p < 0.01), with art-trained participants giving higher scores on 

average (M = 36.07, SD = 16.80) than untrained participants (M = 31.86, SD = 10.82). 

Despite there being no significant difference in average scores for perceived complexity, 

Complexity Preference 
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art-trained participants show a stronger correlation between complexity ratings and log 

PNG file size (r = 0.75)  than untrained participants (r = 0.44). 

 
Figure 83 Comparison of geometric mean ratings between art-trained (blue) and 

untrained (red) participants, against rank order file size (x-axis, no units). 

Discussion 
In this study, class 4 CA images are found to be among the highest-rated as 

subjectively complex. We also find an inverted ‘U’ correlation between objective and 

subjective complexity. This finding supports Wolfram’s suggestion (2002, p.559) that there 

is a threshold of visual complexity beyond which we fail to perceive underlying order or 

pattern. The suggestion is also supported by the result that the class 3 chaotic CA images 

(which are actually deterministic but which appear random) are rated lower in subjective 

complexity than the class 4 patterns, even though they are larger in compressed file size. 

These findings constitute empirical evidence for the hypothetical threshold of perceived 

complexity, and thus make a contribution to knowledge in the field of empirical aesthetics. 

The finding that between the two groups of participants there was only a significant 

difference in preference suggests that art-training has a greater effect on preferential 

judgement than on judgements of perceived complexity. If we understand art education 

and practice to involve the cultivation of aesthetic judgement, we might reasonably expect 

art-trained people to be more critical, and to rate artworks lower on average than 

inexperienced viewers. So, why art-training should give rise to higher ratings of preference 
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overall, and why it does not appear to affect perceptions of visual complexity, is unclear. 

We may gain more insight into these questions in the following tests, where we repeat the 

participant grouping for images of art and design. Beside ratings of complexity and 

preference, a further rating task is added in which participants score the perceived artistic 

quality of the images. It is hoped that introducing this task may clarify the issue by 

separating judgements of preference – what Kant called a judgement of agreeableness, 

which is an interested judgement – from judgements of quality, which in Kantian terms is a 

disinterested aesthetic judgement. This is a common distinction in art; we may have high 

regard for an artwork in the canon, but we may at the same time dislike its appearance (for 

example, the work of George Grosz, Philip Guston, and Jake and Dinos Chapman). 

In tests 1 and 2, PNG was chosen as the working file type because it produced the 

smallest files for the type of two-colour image used as stimuli, whereas JPEG files of the 

same quality were 10 to 200 times larger. Given the fact that JPEG does not generally cope 

as well as PNG with bi-level (black and white) images (Salomon, 2004), it is perhaps 

surprising that on average the strongest correlation in Test 1 is given by using ZIP 

compression on lossless JPEG files. Similarly, JPEG compression performed comparably 

with the other file types in Test 2. These results are in agreement with Donderi and 

McFadden (2005) and Besner (2007). It is possible that the reason for the success of JPEG 

results lies in a combination of near-optimum (ZIP) compression together with operations 

that are similar to our own visual processing, namely JPEG encoding, which takes 

advantage of human perception of colour and tone. From these results, we may make the 

tentative suggestion that JPEG encoding may parallel the low-level visual processing of the 

retina, while ZIP compression corresponds to cognition taking place in areas of the visual 

cortex. Obviously, to corroborate this suggestion would require further research beyond 

the scope of the current investigation. 
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Summary 
The results indicate that preference is highly variable, and cannot be reduced to a 

simple function of image complexity. It would appear that preference has something to do 

with the ‘feel’ of the images in Test 1, because the most preferred tended to be those with 

smoother edges, suggesting a possible link to tactile preference. In test 2, with a different 

set of images, it is difficult to see any strong factor that influences preference, but informal 

interviews with participants suggests that colour preference was amongst the main 

influences. In the next tests, the motivations behind individual preferences are elaborated 

with the use of more formal interviews and questions after testing. 

Unlike the conclusion of Besner’s (2007) similar investigation into the correlation 

between objective and subjective measures of visual complexity for fairly complex images, 

some of the results of this study do appear to support Wolfram’s idea of a threshold of 

visual complexity: The statistical correlations and graphical presentations reveal that 

subjective ratings peak in the centre of the scale of objective image complexity, and begin 

to fall as images approach randomness. Even the file-size measure of visual complexity is 

equivalent to Kolmogorov complexity or AIC, which as we know does not quite follow our 

intuitive understanding of complexity, it nevertheless offers a convenient and robust 

method of dealing with the problem of aesthetic measurement. The results of tests 1 and 2 

support the proposal to use the file-compression measure of visual complexity with images 

from art and design. 
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Chapter 5 

Visual Complexity and Aesthetic 

Judgement 

Introduction 
The previous tests showed that the chosen methods are feasible to measure visual 

complexity in general, using ‘artificial’ stimuli. The present test finds out whether these 

methods work with images of artefacts from art and design. Using real work is problematic 

because its complexity and variety demands a sophisticated yet robust method of analysis. 

The method must negotiate the dual constraints of artistic integrity and empirical validity. 

Is it really possible to measure the complexity of art with this technique? This chapter 

documents the design, implementation and analysis of the solutions to these problems. 

Primarily, this test is concerned with visual complexity at the computational level of 

description. It is beyond the present scope to explore how the different stages of visual 

processing contribute to the perception of complexity in biological or psychological terms. 

Rather, the plan is to measure visual complexity and to see how it corresponds with 

aesthetic perceptions of artworks. The central question is: Does the file compression 

measure of complexity correlate with subjective aesthetic judgements of contemporary 

visual art and design? Aesthetic judgements are measured by asking participants to quantify 

their perceptions of a variety of images, and a statistical analysis determines how these 

ratings correlate with each other. Three common image file types and various compression 

algorithms are evaluated as measures of visual complexity, together with subjective 

judgements of complexity, preference and quality. In order to determine the criteria that lie 

behind these aesthetic judgements, we also conduct interviews with participants and 

perform a qualitative analysis of this data. 
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Test 3: Images from Art and Design 
The previous tests used synthetic stimuli based on cellular automata and random 

images, firstly in black and white and later in colour. The black and white image sets have a 

limited variety of elements (only black or white pixels), whereas the later tests have greater 

variety with up to four colours in each image. The present test uses samples from a wide 

range of art and design practices. To allow for a fair reproduction of the artefacts, the 

digital image files use the RGB colour system, which means that the variety of pixels is 

vastly greater than the previous tests (the RGB system has around 16 million colours). 

Together with the increased dimensions of the images in test 3, this increased variety 

means that the number of possible images in the current setup is much greater than before, 

and so our stimuli represent a much smaller sample of the spectrum of complexity. As long 

as we try to sample as wide a range as possible, this should not present a problem. 

These tests are designed to progress towards greater complexity of stimuli by 

gradually increasing the parameters of the variables that contribute to visual complexity. 

Once again, the technique of magnitude estimation scaling (MES) is used to gather 

subjective ratings of complexity and preference for images, which are then compared to an 

objective measure of complexity based on the compression of the image files. Mapping the 

responses to a wide range of complexity in Tests 1 and 2 provides a useful reference for the 

present test. In Test 3, the aim is to find out: 1) how different types of visual art on the 

spectrum of visual complexity; 2) how this complexity relates to aesthetic judgements of 

preference and quality; and 3) whether those judgements can be related to and predicted by 

measures based on image file properties. This test has two parts, which use the same 

stimuli in two different locations, in order to find out whether this has any effect. The first 

test (3a) takes place in a psychology laboratory, and the second (3b) in an art gallery. 

Hypotheses 
Many empirical studies of visual complexity have focused on non-art images. In 

addition, works of visual art tend to be more complex than the sorts of stimulus images 
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used in those studies, for example Snodgrass & Vanderwart (1980). These two 

circumstances guide the design of this test, since they point to gaps in knowledge about the 

aesthetics of high complexity in general (especially when this complexity approaches 

randomness) and about the perception of complexity in art in particular. This test aims to 

fill these gaps in knowledge. The hypotheses are: 

1. Image file compression will correlate with judgements of complexity. 

2. Familiarity with art and design will correspond with lower ratings of complexity. 

3. The test environment will not affect aesthetic judgements. 

Besides these central questions, this test also aims to evaluate measurements of visual 

complexity in art: Will the method that worked for Donderi’s radar charts and the cellular 

automata patterns in the previous tests still be effective for images of contemporary art and 

design? We also evaluate the comparative performance of data compression algorithms in 

three common image file types (and compression algorithms) as follows: TIFF (lossless 

LZW), PNG (lossless Deflate) and JPEG (lossy JPEG). One feature of the test is that once 

the subjective data has been collected it possible to carry out retrospective analysis on the 

image files. We also have the opportunity to apply image transformations, such as edge-

detection algorithms, and to see how this affects file compression and its correlation with 

subjective data. 

Test 3a: Psychology Laboratory 
Method 

Materials 

To gather visual material besides my own artwork, invitations were sent to artists and 

designers which asked if they would lend a piece of work for use in these tests. Fifteen 

people responded positively to the invitations, with a few respondents providing more than 

one piece of work. Because this test uses as stimuli artefacts from art and design, we will 
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have to use scanned digital images for the objective measure, but for the subjective ratings 

we could use either reproductions or the originals. Experiments by Locher, Smith & Smith 

(2001) reported little difference for ratings of complexity across different formats of 

reproduction, and almost no effect of art training either: Locher et al called this effect 

‘facsimile accommodation’, and it suggests that perception of collative aesthetic properties 

such as complexity is less affected by the format and location of an artwork than we might 

have thought. These findings support the decision to use digital reproductions of artworks 

for both the objective and subjective measures in the next tests. Using the same digital files 

as the basis of the objective and subjective tests also makes for a fairer comparison 

between the two measures (as opposed to using the original artefacts for subjective ratings 

and digital reproductions for objective complexity measure). 

There are a few important criteria for the representation of this material as stimuli: 

Firstly, they must represent a wide range of contemporary work, so that the test results are 

relevant to today’s visual practices. This was fulfilled by using painting, drawing, woven and 

printed textiles, photography, and digital prints loaned from contemporary practitioners, 

including university students and staff, professionals, and two children. There are equal 

proportions of images in landscape and portrait (horizontal and vertical) alignment. 

Secondly, the images must show the artefacts without cropping or re-sizing. This 

requirement imposes a constraint on the size of work that may be used, which is 

determined by the size of the scanner – in this case, A2 paper size (420 × 594 mm). 

Thirdly, the resolution of the images is an important factor, because it affects the measure 

of complexity and because it also influences the quality of the visual array perceived. 

300ppi is used for scanning, and 150dpi for printing, since the average human visual acuity 

is also around 150dpi (20:20 vision means the ability to resolve two points separated by one 

minute of arc, which is approximately equal to perceiving one dot at 150dpi when viewed 

at the closest focusable range of about 6 inches). 
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Stimuli 

The stimulus images in this test comprise fifty colour images of art and design work, 

scanned at 300dpi and printed life-size on A2 paper. The decision to use printed images, 

rather than displaying the original works, was made in order to allow for a fair comparison 

with the file-size measure of image complexity. Given that one aim of the test is to 

correlate objective (file-compression) and subjective (MES) measures of complexity, it is 

important that the two measures are based on the same thing – in this case, digital image 

files are the basis of both the file-size measure and the printed stimuli. For some pieces 

such as the resin-based paintings, this could have been a particular difficulty since their 

appearance changed dramatically with the lighting conditions. The decision to use prints as 

opposed to original artefacts is also supported by Marr’s account of the principal physical 

factors in the visual perception of an image: Marr names geometry, reflectance, illumination 

and viewpoint as factors that determine the intensity values of an image (1982, p.41). Using 

prints effectively limits the potential variation in reflectance that would be caused by the 

variations in viewpoint and illumination that naturally occur in the context of viewing. 

Admittedly, this variation cannot be eliminated entirely, but it is constrained to an 

acceptable level – primarily by using prints, and secondarily by printing onto paper with a 

semi-gloss finish. The minimisation of variation in reflectance levels is confirmed by 

viewing the prints from different angles and in different locations relative to the sources of 

illumination. 

There was a problem with scanner used (which was the only one of that size 

available), which introduced a colour cast and produced scan lines caused by variations in 

the scanning heads. To correct this problem, I created a ‘blank’ scan of the white scanner 

lid to produce an image of the imperfections only, and then ‘subtracted’ it from each image 

by processing in Photoshop. This seemed to solve the problem – the printed colours looked 

more like the artefacts and it removed the scan lines. 
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Most of the artefacts have a specific orientation – they have a ‘right way up’, but 

some, such as the textiles, do not. Of the stimulus images with a particular orientation, 

there is an approximately equal number of horizontal and vertical. The remaining images 

were laid out so that the total numbers of ‘landscape’ and ‘portrait’ orientations were equal. 

The scans and prints have fixed dimensions, but the size of the art and design objects 

varies – some of them fill the area and some do not. The images that do not are printed 

with white borders. If we are to measure the image’s objective complexity by file size, then 

we face a decision about whether or not to take account of these borders, and this depends 

on which type of complexity measure is chosen. On the one hand, because the borders are 

composed only of uniformly coloured pixels, these areas are highly compressible, which 

means that they would be expected to add little to the overall file size and so might be 

safely disregarded for the absolute file size measure. But on the other hand, if we are to use 

the compression ratio instead of the absolute file size, then these borders may affect the 

result. This problem and its solutions are discussed in the presentation of results.  

Participants 

Thirty-one people participated in these tests, 19 male and 12 female. Staff and 

students from the schools of Art & Design and from Psychology at NTU were recruited by 

email or by personal invitation, and some personal friends also volunteered to take part. Of 

the 31 participants, 6 were people who had contributed artwork for the tests. From a 

scientific point of view, this situation may appear to be a potential confounding variable. It 

is justified in this case with the argument that it reflects the everyday processes of art and 

design: art practitioners commonly evaluate our own work against that of others. 

Setting 

The setting for Test 3a was a laboratory used for teaching psychology. It contained 

ten large hexagonal tables, which provided plenty of room to lay out five prints on each 

table, and enough space for participants to walk around and view the images. There was a 
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computer on which data was entered, and a desk and seating for administrative work. 

Interviews with participants were held at this desk in the room. 

Because many of the stimulus images are printed with white borders, the tables’ 

darker surface made the borders an intrusive visible feature of the stimuli. The problem is 

that this noticeable white border added to the visual array present in the stimuli. To get 

around the problem we could have cut out the images of the artefacts, but it would have 

resulted in stimuli of different sizes, reducing their consistency and making the analysis 

more difficult. The solution was to cover the tables in white paper to provide a background 

of the same colour as the borders, which made them almost unnoticeable. 

Variables and Units of Measurement 

Of the many variables in this test, some need to be controlled whilst others are 

recorded. The principal dependent variable under measurement is visual complexity, and 

since this property can be affected by more primitive attributes such as image size and 

resolution, these need to be made consistent. Here is a summary of the test variables: 

Dependent: Objective: complexity (measured by image file compression, as file size 

and compression ratio). Subjective: complexity, preference and quality (measured by MES). 

Independent: Image file type/compression algorithm (TIFF/LZW, 

PNG/DEFLATE, JPEG/JPEG); test environment (psychology lab, art gallery); art 

experience (trained, untrained). 

Controlled: Digital image dimensions (7016x4961 pixels) and scan resolution (300 

ppi); colour model (24-bit sRGB); image print size (594 × 420 mm) and print resolution 

(150 dpi). 

The file size measure of complexity is expressed in bytes, but compression ratio has 

no units because they cancel out. The subjective MES data are similarly dimensionless 



Visual Complexity and Aesthetic Judgement  Test 3a: Psychology Laboratory 

 219  

because there are no standard units for magnitude estimation of aesthetic properties (unless 

we convert the data to z-scores, which are units of standard deviation from the mean). 

Procedure 
Participants were given written and verbal instructions before conducting the test. 

Each person was informed that their task was to rate the images for the various aesthetic 

properties by quantifying their perceptions (MES). Usually with magnitude estimation 

scaling, a standard is provided and a score assigned as a reference. In this test, participants 

were instructed that the minimum score of zero corresponds to a complete lack of 

perceived complexity, preference or quality, such that for the complexity measure a score 

of zero would apply to a blank image (i.e. the simplest possible image). Participants 

recorded their ratings for the images by writing numbers on score sheets. Explicit 

definition of the properties was not given, only clarification of the sense in which the word 

was meant.  For example, the most frequent request was for clarification of ‘quality’; it was 

explained that it meant how good work of art it was perceived to be (i.e. quality of the 

artwork, not the print quality). Participants were free to choose a rating scale, and were 

allowed as much time as needed to evaluate each image. Including interviews with 

participants after the task, the procedure took from half an hour to an hour per person. 

Results 
A graphical representation of the average ratings of complexity, preference and 

quality is presented in Figure 84, in which the images are arranged in order of geometric 

mean scores. With this arrangement, it is difficult to see any patterns in the data, but it 

allows us to identify particular artworks. In regard to my creative experiments with images 

approaching the threshold of visual complexity, the majority of these images in this test are 

amongst the highest rated for perceived complexity. As a comparison to these subjective 

ratings, the same images are arranged in order of JPEG file size in Figure 85. 
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Figure 84 Test 3A: Images arranged by average ratings of complexity (top), preference 

(middle) and quality (bottom). 
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Figure 85. Images arranged in order of JPEG file size (from largest at top left to 

smallest at bottom right). 

From this arrangement, it is apparent that the smallest files are those with the largest 

areas of homogeneous colour, and also that these tend to be the ones with large white 

borders. The image in Figure 86 is the fourth-smallest compressed file because of its large 

areas of flat colours – mainly blue and black. The image three places to its left in Figure 85 

is made of multiple smaller versions of the same picture, and even though this one has a 

larger white border, its greater detail makes it a bigger file. It would be useful to find an 

objective measure of image complexity that ignored the white border in the same way that 

the subjective ratings appear to do. A possible solution is to use a measure which is not 

based on the entire image but only on the non-border areas, and for this we need to use the 

compression ratio of the file. This method is examined further in the discussion section 

that follows these results. 

 
Figure 86. P32b inv grey cell green gappy close5 big c (2007), digital print. 
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Table 7 shows the result of Pearsons’ product-moment correlation for pairs of the 

three subjective ratings, using geometric mean scores. There is a stronger correlation with 

image quality ratings than that between ratings of complexity and preference. In other 

words, the results suggest that visual complexity is more closely related to how good an 

artwork is perceived to be than to how much it is liked as an image. 

 
Table 7 Correlations between subjective ratings (geometric mean scores). 

Correlations between subjective ratings and file compression are compiled in Table 8.  

Log file size Compression ratio (virtual)Subjective ratings 
(geometric mean) 

TIFF PNG JPEG TIFF PNG JPEG 

Complexity -0.27 -0.25 -0.19 -0.15 -0.18 0.03 

Preference -0.33 -0.31 -0.42 -0.15 -0.15 -0.15 

Quality -0.32 -0.33 -0.23 -0.05 -0.07 0.07 

Table 8 Correlations between subjective ratings and objective measures of complexity. 

The results show almost no relation, with a tendency for a negative correlation. This 

means that the effectiveness of the file-size technique as a measure of visual complexity 

does not work for the images in Test 3a. An explanation for the poor result compared to 

that in test 1 and 2 might be that the wide variety of artefacts represented in the stimulus 

images confounded judgements of complexity. In other words, there were many other 

factors at work in the style, size, colour and composition of the stimuli which may have 

influenced the reported aesthetic judgements. This interpretation would be in line with 

Birkhoff’s restriction of his aesthetic measure to similar objects and images. Given that 

there are significant correlations between the subjective ratings (Table 7), however, it is 

Complexity

Preference Quality 

0.54 

0.81 

0.81 
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reasonable to assume that the variety of images also causes difficulties for the file-

compression measure, and therefore that the main reason for the poor correlation between 

objective and subjective measures lies with the performance of the file-compression 

measure on these images. 

 
Figure 87 Test 3a: plots of log file size (x-axis, bytes) vs. subjective scores (y-axis), with 

regression analysis (2nd order polynomial). 

Discussion 

Compression Ratio 

Instead of using the absolute file size, another way of measuring the data 

compression of image files (and therefore the complexity of the images) is to use the 

compression ratio. This is a measure calculated by dividing the size of the compressed file 

by the size of the uncompressed file. It is more informative because it indicates not only 

the size of an image file but also how much it has changed through compression. There are 

two conventions of writing compression ratios: One is such that for a compressed file 
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which is a quarter of its original size, we would write ‘4:1’ or ‘4’. The alternative is to write 

‘0.25’, and this is the convention adopted here, since it is the direct result of the calculation. 

One way of deriving the compression ratio of an image is to make two versions of 

the file – one compressed and the other uncompressed – and to read their actual file sizes. 

A problem with this is that the size of the files may vary with different computers and also 

that lossy file types, such as JPEG, cannot be saved without compression. A more reliable 

figure can be obtained by calculating the amount of memory (RAM) required to display the 

image on a computer. The size in memory is very close to the uncompressed size, and it is 

more consistent because it depends only on the image area (number of pixels) and the bit 

depth (amount of memory allocated per pixel) of the chosen colour system (Salomon, 

2004). In this test, all the images share the same number of pixels (4961 × 7016 = 

34,806,376) and the same colour system and bit-depth (sRGB, 24 bits or 3 bytes per pixel), 

and so they all have the same size in memory (34,806,376 × 3 = 104,419,128 bytes or about 

a hundred megabytes). Therefore, calculating the compression ratio (file size divided by 

size in memory) gives us a relative measure rather than an absolute one, which is more 

informative.  

The Problem with Borders 

Because all the test images have the same size in memory, the rank order based on 

compression ratio is no different to that based on the absolute file size, and so this measure 

of image complexity is still affected by the border areas. To take account of the effect of 

borders on the compression ratio, we need to use a value for the size in memory which is 

based only on the number of pixels that make up the main image by subtracting the 

number of border pixels from the total. In practice, this is achieved by image analysis in 

Photoshop of files with transparent border areas, since this clearly distinguished the border 

pixels from the rest of the image (otherwise, white pixels in the image may have been 

counted as white border pixels). So, for images that have a border, we calculate the 

compression ratio based on the size of a virtual image which is equal in area to the whole 
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minus the number of border pixels. Figure 88 illustrates how file size and compression 

ratio vary with different images. The first image is large, the second is the same size 

including a border, and the third is the same size as the central image without the border. 

 
Figure 88 Two types of compression ratio with images of different sizes and borders. 

In this hypothetical example (Figure 88) each image contains the same kind of 

pattern, such that they would be rated subjectively as equally complex. We want the 

compression ratio measure to do the same. The file sizes are represented in the top graphs, 

which show that the second and third images have almost equal sizes because the plain 

border is highly compressible and adds little to the size of the middle image. The second 

row of graphs shows the size in memory required to display the images. The actual size in 

memory is proportional to the total image area, whereas the virtual size in memory is 

proportional only to the non-border area. The compression ratio (bottom row of graphs) is 

 

Size in memory (actual) Size in memory (virtual) 

Compression ratio (actual) Compression ratio (virtual) 

File size File size 
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calculated by dividing the file size (top row) by the size in memory (middle). We can see 

that the compression ratios in the bottom-right graph are almost equal, which reflects the 

compressibility of the pattern that all the images share, without being unduly influenced by 

the dimensions of the images or the presence of borders. This method, which I will call the 

virtual compression ratio, is the proposed solution to the unwanted effect of border areas. 

When we arrange the set of images in order of virtual compression ratio of JPEG files 

(Figure 89) it appears not to be biased by the border areas, unlike the absolute file size 

measure (Figure 85). 

 
Figure 89 Images from test 3 arranged by JPEG virtual compression ratio 

(compressed file size relative to size in memory of image area minus border pixels). 

The blue and black image (Figure 86) now has the highest virtual compression ratio – 

it is the one rated simplest by this measure of visual complexity, probably because it mainly 

comprises large areas of a few flat colours. In contrast, the same image was subjectively 

rated 8th most complex on average, perhaps because it suggests more complex shapes than 

it is composed of, since it depicts a complicated three-dimensional structure in simple tonal 

form. However well the correlation with the subjective measure turns out, we have now 

found a way of taking account of the unwanted influence of the border areas on the 

objective measure of image complexity. 
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In summary, the compression ratio is useful as a measure of visual complexity 

because it tells us how random an image file is, and also because it allows for comparison 

of images with different dimensions. It is affected by the presence of borders, however, but 

by using the virtual size in memory to calculate compression ratio we neutralise this 

unwanted effect by basing the measure on the significant (non-border) area of the image. 

Since the printed stimuli depict the artefacts at actual size, this makes the measure relative 

to the actual size of the original artefact, which may also bring this computational measure 

closer to perceived aesthetic properties. 

Interviews with Participants 
After the rating task described in the previous section, we interviewed the 

participants of Test 3a. The purpose of these interviews is to see whether we can establish 

which criteria are employed in the perception of visual complexity and the judgement of 

preference and quality. The aim is to see whether we can identify the aesthetic properties 

that constitute the perception of visual complexity, and to see what we can find out from 

these results, in order to support the quantitative measurement of objective aesthetic 

properties and their subjective perceptions. A qualitative analysis in the form of 

transcription coding is employed in order to identify and categorise the responses, and a 

basic quantitative analysis establishes their frequency and significance. In performing an 

analysis of qualitative data – in this case, interview transcripts – we are dealing with data 

based on semantic information, which contrasts with the quantitative analysis of data based 

on aesthetic information that forms the principal research methods in this project. This 

qualitative analysis thus provides an opportunity to support the results of the quantitative 

analysis: We may be able to find out which aesthetic properties have an effect on the 

perception of visual complexity. We may also establish the criteria behind judgements of 

preference and quality, and whether there any relationships between these criteria. The 

following sections document the process of interview, transcription, coding, and analysis. 
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Interview Procedure 
In all but one case, interviews were conducted in the test location directly after the 

participants had completed the rating tasks. These were one-to-one interviews with the 

researcher, although on occasion other test participants who were engaged in the task were 

present in the same room. Interviews were recorded as audio files, with written notes taken 

at the same time, and were later transcribed. The 31 participants comprised staff and 

students from two departments within the University – psychology and art & design. Some 

of these were people that I know well, but most were volunteers who I had not met before. 

A semi-structured approach is adopted, in which a series of seven questions were put 

to the participants, with opportunity for the conversations to diverge from this structure 

and to allow lines of questioning to develop. Interviews began by giving the participants an 

opportunity to ask questions and by asking how comfortable they were with the task. The 

main focus of the questions was to identify the criteria employed in the rating task by 

establishing how the participants had made these judgements. Questions generally took the 

form “What made one image appear more complex (or more preferred, or higher quality) 

than another?”, and follow-up questions were frequently employed to elaborate 

participants’ responses. After responses to these questions had been gathered, participants 

were asked about their involvement with art and design and to what extent they were 

trained in this discipline, the purpose of which was to define the grouping for analysis into 

art-trained and untrained participants. Finally, participants were given an opportunity to 

add further comments. In summary, the structure of the interview is as follows (Table 9): 

1 Do you have any questions about the tests? 

2 Were you comfortable with the procedure? 

3 What were the criteria you used to rate complexity? 

4 What factors influenced your most and least preferred images? 

5 What criteria did you use to judge quality? 

6 Would you say that art and design is part of your day-to-day life? 

7 Is there anything else you would like to comment on? 

Table 9 Interview structure. 
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Transcription 
Before we can begin the analysis, the recorded interviews need to be transcribed. 

This was performed by the researcher, since I had also conducted the interviews and taken 

notes. A total of around 6 ½ hours of recording were transcribed to approximately 50,000 

words, it taking on average five or six times the length of each interview to transcribe into 

text. Participant identities are anonymised, and we refer to individuals by their number (P1, 

P2, etc.). When, on occasion, a word or phrase could not be identified, this was marked in 

the transcription with the symbol ‘[?]’, sometimes with the addition of a comment 

explaining whether it was inaudibly quiet, or with an alternative interpretation for a word if 

there was some ambiguity. Where possible, participants were contacted to clarify such 

issues with interpreting the recordings and the transcripts. Punctuation of these 

transcriptions was a matter with some degree of freedom in its interpretation, but an 

attempt was made to apply consistency to the texts, for example, using commas (,) for brief 

pauses and ellipses (…) for longer ones. The interviews were transcribed into a tabular 

format, with each alternate contribution from participant and interviewer being placed in a 

separate box within the table. The timings of these responses were labelled in a column 

every so often throughout the transcribed text, in order to facilitate finding a portion of a 

text in an audio file and to provide a record of the interview process. An example of these 

transcribed texts can be found in Appendix C. 

Coding 
After the transcription process, we may begin the qualitative analysis. In this project, 

we adapt methods detailed by Saldana (2009) – The Coding Manual for Qualitative Researchers, 

which provides a down-to-earth account of qualitative coding methods with an emphasis 

on their practical application. Saldana describes textual coding as an exploratory and 

iterative process, recommending that the coding goes through first-cycle and then second-

cycle coding stages. These methods analyse the transcriptions by identifying and 

enumerating answers to the interview questions, enabling a basic statistical analysis to 

establish the frequency and the significance of these responses. 



Visual Complexity and Aesthetic Judgement  Interviews with Participants 

 230  

Structural Coding 

The first-cycle coding method applied in this project is what Saldana categorises as 

an “elemental method” called structural coding, which is applicable to studies with “multiple 

participants, standardised or semi-structured data gathering protocols, hypothesis testing or 

exploratory investigations to gather topics lists or indexes of major categories or themes” 

(2009, p.66). Structural coding is therefore a suitable method for the interview transcripts in 

this project. We employ this method in order to identify the major themes of the 

participants’ responses as led by the questions in the semi-structured interview. It works by 

applying “a content-based or conceptual phrase representing a topic of enquiry to a 

segment of data that relates to a specific research question used to frame the interview” 

(Saldana, 2009, p.66). The structural coding method breaks down each transcript into 

sections according to these codes by grouping together individual statements. In practice, it 

was applied by colour-coding sections of the transcribed texts (cf. Table 10 and Table 12). 

This process forms structural units of analysis for second-cycle coding. The seven 

structural codes are (Table 10): 

1 Questions about the task  

2 Comfort with the procedure  

3 Complexity criteria  

4 Preference criteria  

5 Quality criteria  

6 Art training  

7 Comments about the task  

Table 10 List of structural codes and their colour codes. 

Pattern / Focused Coding 

The second cycle coding method employed in this project is based on a mix of 

methods which Saldana (2009) identifies as pattern coding and focused coding. Pattern coding 

generates inferential codes that identify emergent themes – it identifies the ‘what’ and the 

‘how’ in order to answer the ‘why’ questions. This is appropriate to our study, in which we 

are looking for the reasons why participants rated images as they did by identifying which 
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aesthetic properties influenced their judgements. Focused coding searches for the most 

frequent or significant initial codes to develop salient categories, and it requires decisions 

about what makes the most analytic sense (Saldana, 2009, p.155). 

The second-cycle coding process begins by generating a tentative list of codes 

focused on answers to the interview questions. The structural codes provide a means of 

identifying the relevant portions of the transcribed texts. For each topic (i.e. each of the 

seven structural codes), a set of initial codes is generated by listing each answer and 

grouping these into pattern codes. Pattern codes are refined by iterating the method 

through a cycle of generating, pruning, grouping, splitting and sorting. The list of codes for 

complexity criteria (i.e. for structural code 3) is reproduced in Table 11, and the full list of 

codes can be found in Appendix D. 

01. Quantity of picture elements 
02. Variety of picture elements 

a. Number of varieties 
b. Amount of variation 

03. Level of detail (“amount of detail”, “busy-ness”, “intricacy”) 
04. Number of colours 
05. Amount of colour (“vibrancy”) 
06. Amount of time 

a. In making the work 
b. Looking at / understanding the work 

07. Redundancy (“if the detail’s repeated, it’s sort of less complex”, “[randomness] would make it, er, more 
visually complex but less informationally complex”, “if you’ve got too many colours they’ll almost become 
like one colour, then… then it negates it”) 

08. Amount of work or difficulty 
a. in making 
b. in perceiving (“cognitive load”, “how much time or how much effort it takes to unpick what’s 

actually going on within the image so that you can understand the image… It’s like a difficulty to 
reading the images.”) 

09. Amount of information 
a. Aesthetic (visual) 
b. Semantic 

10. Depth (“Three-dimensionality”, “layers”) 
11. Ambiguity 
12. Size 
13. Flaws 

Table 11 List of codes for complexity criteria, with examples of responses coded. 
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Some of the codes in Table 11 have explanatory examples of the types of response 

that are encoded. These are the codes that group together different responses, or in which 

there is some variation in the phrases used. Those codes without explanatory examples did 

not have these issues, generally being stated in an unambiguous form using words similar 

to the descriptive codes themselves. Where codes have parts a and b (codes 02, 06, 08 and 

09 in Table 11), these allow for various levels of response. For example, one interviewee 

mentioned “amount of information” as a criterion for rating complexity, and this is coded 

as ‘09’. If an interviewee makes a more specific statement, such as “amount of visual 

information” then this would be coded as ‘09a’. By grouping or splitting these multiple-part 

codes, we can make the analysis more specific or more detailed as required.  

Once a stable set of codes has been established by iterating the code-generating 

process, the next stage is to apply these codes to the texts, so that we may identify the 

presence and frequency of interviewee responses. It is important to note that although the 

pattern codes are generated from each of the individual structural codes, the answers to 

which the codes refer may be found in parts of the text other than its own topic, and so the 

whole of each text must be carefully scanned in order to identify responses and apply codes 

for each of the topics. A topic section may contain more than a single code, depending on 

its content. An example from a coded transcription is shown in Table 12. 

The codes applied to the transcripts are constructed from the name and number of 

the pattern code, for example ‘Complexity01’ or ‘Quality07’, rather than using a more 

descriptive code such as ‘level of detail’. The reason for using this format is that it allows 

for a computer-based quantitative analysis by counting the occurrences of these unique 

numeric codes, which are less problematic to process than descriptive codes because they 

are composed of single ‘words’ as opposed to strings of text. Unfortunately, this format 

also makes it difficult to read the coded transcripts and identify the meaning of the codes 

without referring to the complete list (included in Appendix D), but since a quantitative 

analysis is our goal, we retain this format. 



Visual Complexity and Aesthetic Judgement  Interviews with Participants 

 233  

00:00 GB Have you got any questions for me? 
 P2 No. Questions01 

 GB That’s easy. Were you comfortable with the 
procedure? 

00:28 P2 Yeah, fairly straightforward. 
Comfort01 

 GB 
Good. Right, can I ask what were the criteria you 
used to rate complexity of the images, you know, 
what made one image more complex than another? 

00:36 P2 I think just the level of detail in the image. 
 GB OK 

 P2 Some just have a lot more detail in them than others 
and some are very simplistic. 

 GB Mm-hm. Not the size? 
00:48 P2 No, not the size at all, no. 

Complexity03 

 GB OK, um… What factors influenced your most or least 
preferred images? 

00:56 P2 Umm…  
 GB What made you like something? 
1:02 P2 I don’t know. I think it’s just kind of instinctive really 
 GB OK 

1:06 P2 
I like art but I think I know very much what I like and 
what I don’t like. And quite often it’s, um, quite 
dichotomous. I either very much like it or don’t 

Preference02 

Table 12 A portion of a transcribed and coded text. 

Results 
After collecting the list of codes from the right-most columns of the coded 

transcriptions such as Table 12, we are able to perform a statistical analysis. First the data 

has to be cleaned by removing duplicates in each participant’s data, because we want to 

avoid counting the same answer more than once per person. The reason for this is that we 

are trying to find out how many participants gave each response, and not how many times each 

participant gave a particular response. After data cleaning we perform a count of the 

pattern codes within each structural code and rank them accordingly. The following 

sections include selected results of this statistical analysis and qualitative overviews of the 

coding for each of the interview topics (the complete tables of these results can be found in 

Appendix E). Where applicable, we group the codes and perform another statistical count 

as a second stage of analysis. Following these analyses, we see what patterns we can find in 

the distribution and type of responses by categorising and classifying the grouped codes. 
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Questions about the Task 

Half of the participants (18 out of 31) stated that they had no questions at the 

beginning of the interview. The most popular questions were about the purpose of the 

tests (5 participants) and how many of the images were my artworks (4 participants). Some 

said that until this task, they had not considered visual complexity as an aesthetic property 

of artworks, but that they found the idea quite interesting, and that it either made them re-

appraise artwork they had already seen, or would make them think about visual complexity 

the next time they encountered art. Several people wanted to know what my findings were, 

and a few were particularly interested in seeing their own results. Confidentiality was 

maintained with this data, in accordance with the ethical guidelines of the University, but I 

obliged a few of the participants with graphical representations of their individual results 

(unfortunately, the poor statistical correlation of this data meant that the graphs were not 

very appealing). More than once I was asked ‘What is the most complex artwork you have 

seen?’ I found it hard to answer, so I turned the question around. The most common 

answer was Jackson Pollock’s drip paintings. 

Comfort with the Procedure 

24 of the 31 participants said that they were comfortable with the task. Surprisingly, 

given their experience with test procedures and rating scales, it was the psychology-trained 

individuals who found the rating procedure more difficult than the art-trained individuals. 

A possible interpretation, which was suggested by a few interviewees, is that the 

psychologist’s familiarity with percentage and Likert scales of rating made the less-common 

MES technique seem more unusual than it did to the artists, who were generally unfamiliar 

with any such test procedures. Some of the participants revealed that they had used a 

different rating system to that specified in the instructions (see Appendix A). This meant 

that whereas the MES method specifies only a lower bound (zero) to rating values, some 

participants admitted using a scale ‘out of ten’ or a percentage scale. Since these 

participants said that they had understood that they could have exceeded the limits of these 

scales (because this had been explained verbally beforehand, being the essential principle of 
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the MES rating method), the data sets remain valid and are not discarded from the current 

analysis. 

Complexity Criteria 

Table 13 shows the results of rank-order analysis of the criteria for judging visual 

complexity. It includes a description of each code, its frequency count, percentage (of the 

total number of responses in that structural code group) and rank order. We can see that 

the top three criteria are the level of detail, the number of colours and the redundancy of 

the images. ‘Level of detail’ is the descriptive code for a variety of responses, most of 

which actually contained the word ‘detail’, but also included in this code were such phrases 

as “busy-ness” (P7) and “intricacy” (P30). In contrast, ‘number of colours’ is a relatively 

unambiguous concept that was not expressed in a greatly different kind of wording. 

Criteria for judging Complexity (18) Code Count % (73) Rank 

Level of detail 03 10 13.70 1 

Number of colours 04 9 12.33 2 

Redundancy 07 9 12.33 2 

Amount of work or difficulty: In perceiving 08b 7 9.59 4 

Depth 10 7 9.59 4 

Quantity of picture elements 01 5 6.85 6 

Variety of picture elements: Number of varieties 02a 4 5.48 7 

Amount of work or difficulty: In making 08a 4 5.48 7 

Amount of colour 05 3 4.11 9 

Amount of information: Aesthetic (visual) 09a 3 4.11 9 

Variety of picture elements: Amount of variation 02b 2 2.74 11 

Amount of time: In making the work 06a 2 2.74 11 

Amount of time: Looking at / understanding the work 06b 2 2.74 11 

Size 12 2 2.74 11 

Amount of information 09 1 1.37 15 

Amount of information: Semantic 09b 1 1.37 15 

Ambiguity 11 1 1.37 15 

Flaws 13 1 1.37 15 

Table 13 Results of quantitative analysis of complexity codes. 



Visual Complexity and Aesthetic Judgement  Interviews with Participants 

 236  

The most frequently counted code for complexity criteria is the level of ‘detail’. If we 

understand the meaning of this term as relating to the constituent elements of an image, 

then it refers to the amount of visual elements present and, at the same time, to the size of 

those elements. Thus, the rendering of an image ‘in greater detail’ but at the same size 

means that it is composed of a greater number of smaller elements. Conversely, with a 

greater number of smaller elements at our disposal, we are able to compose an image with 

more detail. So, we can understand this criterion as relating to one of the fundamental 

attributes of visual complexity (identified in Chapter 2, pp.151–153) – namely, the quantity 

of picture elements. Greater detail means more elements and greater visual complexity. 

The second-most frequent responses identified in the results are the number of 

colours and the redundancy of the images. In relation to the fundamental attributes of 

complexity, the criterion ‘number of colours’ corresponds to the variety of picture elements. 

A greater variety of elements contributes to greater complexity in terms of an objective 

measure because it requires a longer and more complicated description. As in the case of 

‘detail’ (quantity of picture elements), this criterion also has a positive correlation with 

complexity; more perceived colours means more perceived complexity. 

In contrast, ‘redundancy’ has a negative correlation with complexity, and it concerns 

the last of the three fundamental attributes of visual complexity – the order of picture 

elements. The descriptive code ‘redundancy’ is identical with the concept from information 

theory which has been discussed throughout this thesis and which forms the basis of the 

file-compression measure. This is the idea that repetitive patterns offer no new information 

and thus do not contribute much to estimates of complexity further than that of the 

repeating unit itself. Participants expressed this concept in various ways, such as P7, who 

initially described their perception of complexity as being proportional to the amount of 

perceived detail, but who later qualified that statement with the concept of redundancy: 
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…at first I was thinking just busy-ness, as, you know, how busy it is, how many 

different things are going on, basically. […] But then if the detail’s repeated, it’s sort of 

less complex somehow. 

Similarly, P16 expressed a comparable idea with reference to the number of colours, rather 

than to the repeating unit of patterns: 

…if it’s black and white, it would be more simplistic than if it had more colours in it. 

But then, that said, if you’ve got too many colours they’ll almost become like one 

colour, then… then it negates it. 

This statement also expresses the idea (discussed in Chapter 4, pp.201–202) of the way in 

which image resolution and its perceived detail relates to complexity. A high-resolution 

image composed of randomly-coloured pixels may be perceived as a uniform hue if its 

resolution exceeds the resolving power (visual acuity) of the viewer. The responses of these 

interview participants confirm that such an effect leads to a reduction in their perception of 

complexity. In addition, this result offers an explanation for the correlation between 

perceived complexity and the file-compression measure. 

The next-most common responses after the top three, with 7 counts each, are ‘depth’ 

and ‘amount of work or difficulty in perceiving’. The idea of depth as an aesthetic property 

of two-dimensional images was expressed in a few different ways by the participants, from 

the straightforward “it’s more to do with depth rather than anything” (P18) to more 

ambiguous phrases such as “amount of layering” (P26) and “whether it was two-

dimensional or three-dimensional” (P29). It is interesting to note that the aesthetic property 

of ‘depth’ in a two-dimensional image is restricted to subjective perceptions, and cannot be 

found in the objective properties of the image (because it has no actual depth). Presumably, 

the perception of three dimensions forms a more complex percept than that of only two 

dimensions, because to perceive visually is, in a sense, to re-construct a visible scene in our 

minds. In Marr’s (1982) computational theory of perception, depth perception is built up in 

stages from a 2D ‘primal sketch’, based on a two-dimensional array of edges and lines, 

through a ‘2 ½D sketch’ to a full ‘3D model representation’, which is based on cues such 
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as occluding edges, perspective and shading. Thus, the perception of three dimensions 

involves a building-up of visual elements and is understandably a more complex 

psychological phenomenon than the perception of two dimensions. This offers an 

explanation why ‘depth’ should be found amongst the most frequently reported criteria for 

judging visual complexity. In addition, we can understand the perception of depth and its 

contribution to the perception of visual complexity in terms of the other criteria that rank 

alongside ‘depth’, namely the ‘amount of work or difficulty in perceiving’ an image: An 

image that looks more three-dimensional than another is likely to require more ‘work’ in 

terms of processing visual elements and constructing a perception.  

Most of the complexity criteria identified in these results are aesthetic properties, but 

some are not: ‘Amount of work or difficulty’ (code 06) and ‘amount of time’ (code 08) are 

not properties of the aesthetic image itself but factors relating to the production and the 

perception of an image. Like the perception of depth, the amount of work or difficulty in 

perceiving an image is a subjective aesthetic property which cannot be measured directly in 

terms of objective aesthetic properties. These criteria appear to be based on the amount of 

physical or mental work required in making or perceiving an artwork. Presumably, they are 

based on the perception of particular aesthetic properties that give rise to the impression of 

‘work’ or ‘effort’ on the part of the maker, but without performing another interview to 

follow up this idea, the current analysis is unable reveal to what extent this may be true. 

Nevertheless, the results indicate that these criteria are in fact related to the objective 

complexity of images in that a greater quantity and variety of picture elements, which make 

an image more objectively complex, requires greater effort in perceiving and thus 

contributes to the perception of greater complexity. 

If we perform a second analysis based on the next level of code grouping – that is, by 

counting together the two-part codes (with parts a and b), the results are as shown in Table 

14. Now, the most frequent coded response is the amount of work or difficulty that goes 

into making and perceiving the work. This result reflects our understanding of measuring 
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visual complexity in terms of the difficulty in describing or reproducing an image, which 

underlies the file-compression measure employed in this study. The criteria previously 

counted as the top three (detail, redundancy and number of colours) are now each shifted 

one place lower in the rankings below this new grouping. 

Criteria for judging Complexity Code Count % (73) Rank 

Amount of work or difficulty (perceiving/making) 08 11 15.07 1 

Level of detail 03 10 13.70 2 

Redundancy 07 9 12.33 3 

Number of colours 04 9 12.33 3 

Depth 10 7 9.59 5 

Variety of picture elements (number/variation) 02 6 8.22 6 

Amount of information (aesthetic/semantic) 09 5 6.85 7 

Quantity of picture elements 01 5 6.85 7 

Amount of time (making/perceiving) 06 4 5.48 9 

Amount of colour 05 3 4.11 10 

Size 12 2 2.74 11 

Table 14 Second-level analysis of complexity criteria (codes with more than 1 count). 

Preference Criteria 

In the coding process, there was often uncertainty about the ‘direction’ of criteria, 

that is, whether a particular criterion was employed positively, such that it increased 

preference, or whether it was employed as a negative trait that reduced preference. This 

issue arose when participants listed criteria without specifying whether it added to or 

detracted from their preference for an image. For example, preference code 12 may include 

statements of preference for and against computer-generated images. A more detailed 

interview process than that of the present study could pursue this issue and resolve the 

ambiguity about negative and positive uses of criteria. In the few cases for which the 

‘direction’ of the criteria were actually specified, we are able to include this in the codes, 

such as preference code 15, which expressed a dislike of pretension. In short, this analysis 

reveals which criteria are employed, but not how they were employed. Despite this limitation, 
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however, the responses generally indicate positive criteria, which do contribute to greater 

preference. 

Another point to be made about the coding process is that in the cases where there is 

clearly an oppositional pair of criteria, such as ‘abstract’ and ‘figurative’, a two-part code is 

created. Parts ‘a’ and ‘b’ represent the two opposing criteria, and a descriptive phrase is 

used to identify both together. For example, codes 05a (‘representational’) and 05b 

(‘abstract’) could be grouped as ‘level of figuration’. As in the case of the two-part criteria 

in the list for complexity, those for preference could be counted together in a further 

analysis (this applies to only two of the preference codes: ‘level of figuration’ and ‘quality of 

line’). Since these potential groupings bring together opposing preferences, and the validity 

of this grouping is questionable, we present only the first level of analysis here (Table 15). 

Criteria for judging Preference (25) Code Count % (50) Rank 

Instinctive judgement 02 6 12.00 1 

Strong colours (bold, saturated) 03 6 12.00 1 

Quality of line: Swirly, curved 08b 6 12.00 1 

How much time would like to spend looking at it 09 4 8.00 4 

Level of figuration: Abstract 05b 3 6.00 5 

Level of figuration: Representational 05a 2 4.00 6 

Computer-generated 12 2 4.00 6 

Complexity 13 2 4.00 6 

Pretension (dislike) 15 2 4.00 6 

Complementary colours 17 2 4.00 6 

Table 15 Top results of quantitative analysis of preference codes (codes with more 

than one count). 

In contrast to the criteria for complexity, these responses are much more varied, and 

produced the longest list of codes (25 in all). Unlike the complexity criteria, which appear 

to form natural groupings, the criteria for preference are much less homogeneous and are 

thus more difficult to make sense of. Some participants said that they liked many of the 

images very much (for example one participant wanted to buy one of the images) whereas 
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others were far more critical, admitting to liking only a handful of the images. The variety 

of responses recorded from interviews is reflected in the poor statistical correlation of the 

participants’ aesthetic judgements. Amongst the top responses we find that preference is an 

instinctive judgement, which lacks objective criteria, and which we are thus unable to 

further analyse. The other two top criteria, also with 6 counts each, reveal preferences for 

strong colours and curvilinear images. The amount of time spent looking at an image came 

as the fourth most popular criteria, but it is difficult to read much into this because we 

cannot be sure what motivates this response; saying that we like to spend time looking at 

an image does not explain why we like to look at it. Complexity appears twice amongst the 

total of 50 counted codes, but we suspect that if the tests had not focused on this property, 

these responses may not have appeared as frequently. 

There is little overlap between the criteria employed for judging complexity and 

preference. This supports the findings of the quantitative analysis, which indicates that 

there is little correlation between these two judgements. A possible explanation for this 

result is that a judgement of preference is not an aesthetic judgement, as defined by Kant, 

but a judgement of agreeableness (see Chapter 1, p.19). Preference is subjective, as are the 

aesthetic judgements of the beautiful and the sublime, but unlike those a judgement of 

preference is not normative (or ‘universal’, in Kant’s terminology). Therefore, judgements 

of preference are not of the same class as aesthetic judgements proper, which appeal to 

objective criteria and make a claim to truthfulness that can be argued against. 

The contextual review of material in Chapter 2 identified empirical research on the 

perception of visual complexity, and noted that a number of these focused on preference 

for images in relation to the judgement of perceived complexity. Evidence for an inverted 

‘U’ correlation between preference and complexity (i.e. a preference for mid-range values 

of complexity), as proposed by Berlyne (1971), has been supplied by some of this material, 

whilst others offer evidence to the contrary. Roberts (2007) suggests that the use of 

different kinds of visual stimuli and different definitions of complexity in such tests are 
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likely causes for their divergent results, and also that individual differences in personality 

and cognitive style of participants may have a greater influence upon results than has been 

assumed. The results of the present study offer little clarification of the issue, other than to 

support the idea that visual complexity and preference are of two different classes of 

aesthetic judgement, which provides a hint as to why there may be so much uncertainty 

and disagreement about their relationship. 

Quality Criteria 

There is more agreement amongst the criteria for judging artistic quality than those 

for preference, and there are fewer codes altogether. Only five of the thirteen criteria have 

more than one count amongst the total of 40 coded responses (Table 16). The top criterion 

is the level of skill perceived to have been required in making the work. ‘Skill’ is not an 

objective aesthetic property; it is a subjective impression which results from the perception 

of aesthetic properties, but at this stage it is difficult to say which and why. 

Criteria for judging Quality (13) Code Count % (40) Rank 

Skill 03 8 20.00 1 

Amount of work: In making 01a 6 15.00 2 

Suitability for exhibition 05 6 15.00 2 

Technical accomplishment (level of finish) 07 6 15.00 2 

Difficulty in making the work 04 4 10.00 5 

Same as for preference 10 3 7.50 6 

Table 16 Top results of quantitative analysis of quality codes (codes with more than 

one count). 

Three participants said that their rating of quality was the same as their preference. 

We can understand why participants might have a preference for artworks as a result of 

their perceived quality, but not why some should reverse this relationship and rate as high 

quality the things that are most preferred. More interestingly, six participants rated quality 

in terms of the suitability of the artefacts for exhibition. Some of these participants 

reported that this type of rating consisted of judging whether an image would hang in an 
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international exhibition, or a local gallery, or on the fridge door at home. This constitutes a 

different category of response to those criteria based on skill and effort; it is a criterion 

with reference to the context of the artworld – an a-perceptual aesthetic criterion, yet based 

on aesthetic perception. With the current form of data and the present analytical method, 

we are unable to say which aesthetic properties might be relevant to this form of 

judgement, other than to note that, like the criterion ‘skill’, it is a high-level concept which 

depends on a contextual knowledge of the artworld and its artworks. 

Some of the most frequent responses are related to the difficulty of making a work in 

terms of the level of skill required and the amount of time or effort that it requires. Thus, 

we could group together the codes 01a (‘amount of work in making’) and 04 (‘difficulty in 

making’) because of their correspondence in meaning. The result is that ‘amount/difficulty 

of making the work’ is the second-most frequent of the grouped responses, with 10 counts 

in total (25%). Similarly, we could group the codes 03 (‘skill’) and 07 (‘technical 

accomplishment’), because these are similar concepts that differ mainly in being expressed 

in relation to either the artwork itself or to the maker of the work. This places the group 

‘skill/technical accomplishment’ at the top of the frequency counts with a total of 14 

(35%). 

Criteria for judging Quality Code Count % (40) Rank 

Skill/Technical accomplishment 03/07 14 35.00 1 

Amount/Difficulty of making the work 01a/04 10 25.00 2 

Suitability for exhibition 05 6 15.00 3 

Same as for preference 10 3 7.50 4 

Table 17 Second-level analysis of quality criteria (codes with more than 1 count). 

Art Training 

There is little to be said about the qualitative analysis of responses to the question of 

art training and experience, because its purpose is to divide the participants into those with 

and without art training and experience. This division serves to group the participants in 

order to perform a quantitative analysis and find out whether this has any effect on the 



Visual Complexity and Aesthetic Judgement  Interviews with Participants 

 244  

pattern of aesthetic judgements. Of the 31 participants in Test 3a, 11 are found to have 

formal art training and are actively engaged in art and design. In comparison, 18 of the 27 

participants in Test 3b have art training. This means that in Test 3 overall there are 29 art-

trained participants out of a total of 58, which is exactly half. The results of the quantitative 

analysis of differences between the two groups in Test 3 are presented in the section on 

pages 261–262. 

Comments about the Task 

The top results (those with more than a single count) for the coding of participant 

comments are shown in Table 18. Almost half the participants had no comments to make. 

The majority of the remainder said that they found the task to be an interesting experience, 

and a few of these reported that they had enjoyed it as well. The two other comments in 

the table are significant criticisms of the task procedure, with two counts each. The first of 

these concerns the fact that the interviews were conducted in the same room as the rating 

task, which two participants objected to because they could overhear the conversations, 

which may have affected the results of their rating. The interviews were held in the same 

room to allow for the management of both interview and rating task by the researcher, 

who was working alone, and to allow the participants to complete the required tasks in the 

shortest possible time. We accept that these conditions were not ideal, and would make 

provisions for a better system if the tests are repeated. 

Comments (12) Code Count % (35) Rank 

No comments 01 16 45.71 1 

Interesting experience 02e 5 14.29 2 

Enjoyed the experience 02a 3 8.57 3 

Shouldn’t be using the same room for interviews and task 02c 2 5.71 4 

Too many images 02h 2 5.71 4 

Table 18 Top results of participant comments (codes with more than one count). 

The other significant comment is that there were too many images to rate. 50 images 

had to be rated 3 times (for complexity, preference and quality), but a consequence of 
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reducing this number is that it weakens the statistical significance of the quantitative 

analysis. A more even balance could perhaps be achieved with a slight reduction in the 

number of stimuli, but since most of the participants were happy with the procedure, we 

do not consider this issue to be a major concern for the validity of the results. Amongst the 

remaining comments (detailed in Appendix E), we find a query about whether the artefacts 

represented in the image set are actually comparable. This is a legitimate concern, and may 

explain the poor correlation in the quantitative analysis. 

Analysis: Categorizing the Codes 
In the previous analysis of complexity criteria, we grouped similar codes together and 

re-counted the codes for these new groups, which offers a broader analytical view of the 

results. We can go further than this, as suggested by Saldana (2009), by categorizing the 

codes in order to reveal further patterns in the data. In this stage of analysis, we define a 

category as a group of criteria, and a class as a group of categories. We do not take this 

stage very far, nor apply it to all of the coding results, because the analysis undertaken thus 

far is sufficient to answer the principal research question of identifying the most significant 

criteria. Therefore, we restrict the categorisation of criteria to focus on the judgements of 

complexity and quality in order to further explore the relationship between the two. 

The majority of criteria for judging complexity are aesthetic properties, the top three 

including ‘detail’, ‘number of colours’ and ‘redundancy’. In relation to the objective 

properties of visual complexity identified in Chapter 2 (pp.151–153), we may infer that 

‘detail’ in this context can be understood as relating to the quantity of picture elements. 

Similarly, the number of colours can be seen to correspond to the variety of picture 

elements, and the third criterion – redundancy – equates to the order of these elements. 

Thus, in the top three responses to the question of which subjective properties constitute 

perceived complexity, we find a reflection of the most fundamental objective properties of 

visual complexity. This finding is further supported by the presence of other criteria that 

also relate to the properties of quantity, variety and order. Some of these are explicit in the 
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participants’ responses and the descriptive codes (such as ‘quantity of picture elements’), 

whilst others are implied or deduced from the coded responses (Table 19). 

Criteria for judging Complexity Category Class 

Level of detail 

Quantity of picture elements 

Size 

Amount of information 

Quantity 

Variety of picture elements: Number of varieties 

Variety of picture elements: Amount of variation 

Number of colours 

Amount of colour 

Variety 

Redundancy 

Depth 
Order 

Aesthetic 
properties 

Amount of time: In making the work 

Amount of work or difficulty: In making 

Flaws 

Production 

Amount of time: Looking at/understanding the work 

Amount of work or difficulty: In perceiving 

Ambiguity 

Perception 

Difficulty 

Table 19 Categorisation of criteria for judging complexity. 

By identifying the codes with these three principal components of visual complexity, 

we can see that the remaining criteria are of a different kind. In general, these other criteria 

relate to practical matters of making and perceiving and artwork, usually in terms of either 

the difficulty or amount of work involved. This finding also supports our previous 

discussion on the measurement of complexity (Chapter 2) in terms of the difficulty of 

description or reproduction. One category of criteria (‘production’) is based on the 

practical difficulty of making an artwork. A second category (‘perception’) relates to 

perceptual difficulties in making sense of a work. Greater difficulty in production or 

perception leads to higher ratings in complexity. As a result, we group these two categories 

into a class which signifies ‘difficulty’ in both aesthetic production and aesthetic perception. 
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The same analysis can be performed with the criteria for judging quality (Table 20). 

The majority of the top criteria can be categorised under the same label as is used for the 

complexity criteria, namely ‘production’. It makes sense to include this category in the same 

class as before (‘difficulty’), because the criteria also reflect the difficulty of producing a 

work: Skill, for example, is a measure of the capacity to perform tasks, and a more difficult 

task requires greater skill. For the remaining criteria, it makes less sense to classify the 

categories that have only a single code in each because no grouping can be undertaken (we 

define a class as a group of categories). ‘Suitability for exhibition’ is categorised as relating to 

contextual knowledge, whilst ‘same as for preference’ is a matter of personal inclination. 

Criteria for judging Quality Category Class 

Skill 

Technical accomplishment (level of finish) 

Amount of work: In making 

Difficulty in making the work 

Production Difficulty 

Suitability for exhibition Context N/A 

Same as for preference Personal N/A 

Table 20 Categorisation of criteria for judging quality. 

From this analysis of complexity and quality results, there are two main findings. 

Firstly, we find some similarities between their criteria. Whilst the majority of complexity 

criteria are classified as aesthetic properties, some of the remainder share the same 

categorisation as quality criteria insofar as they relate to the difficulty of production 

involved in making a work of art. This finding corroborates our understanding of visual 

complexity in terms of difficulty in description or reproduction. Perception can be 

understood as a description or a reproduction of the perceptible world. The perception of 

complexity depends largely on aesthetic properties that can be categorised in terms of the 

quantity, variety and order or picture elements. This second finding supports our 

description of visual complexity’s principal attributes. It also provides a link between 

objective and subjective aesthetic properties which may explain why we find a correlation 

between the file-compression measure and the perception of complexity. 
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Summary 
The analysis of participant transcriptions reveals that the most frequent criteria 

employed in judgements of visual complexity are related to its principle objective aesthetic 

properties. Perceptions of the amount of detail, the number of colours, and the redundancy 

of the images correspond, respectively, to the quantity, variety and order of picture 

elements. The next-most significant criterion relates to the difficulty in perceiving an image. 

When grouped with the difficulty of making, it gains significance and is the most frequent 

criterion. 

Judgements based on preference are found to be much more variable and depend to 

a greater extent on subjective criteria than on aesthetic properties. Some said it was an 

instinctive judgement made without reference to objective criteria, and equal numbers 

show a preference for strong colours and for curvilinear images. There is little 

correspondence between preference criteria and those for the other two judgements. 

The criteria for quality are related largely to the amount of skill or the amount of 

work involved in making, the suitability of a work for exhibition, and the level of technical 

accomplishment of the work. None of these are purely aesthetic properties; they relate to a 

contextual knowledge of the work’s production and presentation, although they must be 

derived from such properties as are perceived in an image. 

In the later stages of analysis, we find similarities and differences in criteria for 

complexity and quality. The ranking of individual criteria differ between these two 

judgements, and whilst the complexity criteria are mainly based on aesthetic properties, 

those for quality generally correspond to factors involved in the making of a work. Yet 

both are understood as relating to the difficulty of making and/or perceiving an aesthetic 

artefact, which relates to our objective measurement of complexity based on image file 

compression. We may infer that the properties that constitute the perception of visual 

complexity also contribute to the perception of difficulty in the production of an artefact. 

The aesthetic properties that are considered relevant to the perception of complexity are 
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interpreted as skill and effort when it comes to judging quality. A greater degree of those 

properties of complexity leads to a perception of greater skill or effort on the part of the 

maker. In other words, the things that contribute to the perception of skill or effort in the 

making of an image make it more difficult to perceive, and are thus also the things that 

make an image look complex. The findings of this qualitative analysis support the evidence 

of a link between visual complexity and aesthetic quality which is found in the correlation 

of the quantitative analysis. 

Test 3b: Art Gallery 
The aim of this study is to replicate the previous test in an alternative environment. 

The present test measures aesthetic judgements of the same art and design images, but in 

the context of an art gallery instead of a psychology lab. The advantage of this experiment 

design is that it allows us to see what effect there is upon aesthetic judgements between the 

two environments – one more controlled and the other more traditional. Notwithstanding 

these differences, the repeat test also allows for a pooling of results. The test compares 

objective measures of image complexity with subjective perceptions of complexity, 

preference and quality, to find out how these aesthetic judgements correspond to each 

other, and how they vary with art training and in different environments. 

Method 

Participants 

University staff helped to recruit participants for the tests by inviting their students 

to take part. Unfortunately, there was a high drop-out rate amongst those who responded, 

meaning that only 27 people out of a target figure of 30 actually participated in the tests. 

There were 16 female and 11 male participants, and the proportion of art/design-trained to 

non-art-trained individuals was also 16 to 11. Eight of the participants had also taken part 

in the previous test. This was originally thought to present a problem, but actually it allows 
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for an enquiry into the perceived effect of the different settings by those who have 

experienced both tests. 

Setting 

To conduct the test, it was necessary to find a gallery that could display the 50 

printed images.  Since it is located in the centre of town as part of the university campus, 

the 1851 Gallery was chosen as a suitable site (Figure 90). Being part of the university’s 

Waverley building, the gallery is frequently used by staff and students as an informal 

teaching and working space, but this did not significantly affect the tests and in fact it 

allowed for the participation of passers-by. The exhibition space was booked a few months 

before the test took place, and a small social event was scheduled for the opening. The 

gallery room has a high ceiling and plenty of natural illumination from five large windows. 

 
Figure 90 Composite view of Test 3b setting in the 1851 Gallery. 

The gallery walls are painted a neutral cream colour in the places where the work was 

to hang. The colour of the background to the stimulus images is a significant concern, 

because many of them have a white border. Whatever is chosen as a background will form 

part of the visual array presented to the test participants, and therefore it has the potential 

to affect aesthetic judgements. In the previous test, a white background was prepared by 

covering the tables on which the images were displayed in white paper. Neither re-painting 

the gallery white nor re-colouring the image borders to match the gallery walls were 

practicable options, however (the latter option being incompatible with the requirement of 

using the same stimuli as the previous test). As a result, this is one potential confounding 
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factor that may have to be accounted for in the analysis of results, although in practice it 

appeared to have little effect according to the participants who were interviewed. 

Procedure 
For this test, the procedure was the same as before, except for the layout of the score 

sheets, which were re-designed to reflect the arrangement of the images in the gallery by 

depicting thumbnail images of the stimuli in the same layout. This design meant that 

participants no longer had to write each score by a numerical index, making the rating task 

slightly simpler than the previous test, and also allowing for easier comparisons between 

images and their scores. On average, it took around half an hour to complete the task. 

Results 

Ranked Average Scores 

To illustrate the ranked averages, thumbnail images of the test stimuli arranged by 

geometric mean score are shown in Figure 91 for each of the three ratings – complexity, 

preference and quality. These figures tell us that photographs seem to have been rated 

medium in complexity but fairly high in preference and quality. Almost ironically, the image 

rated highest for artistic quality was a photocopy of a crumpled coloured-pencil scribble, 

which doesn’t sound very impressive on paper, but which is actually a piece by the 

experienced artist Jonathan Willett. Textiles are generally rated in the bottom half of the 

ranks, except for two silk prints that came 15th and 18th for preference. Two woven 

flooring fabrics were rated lower for preference, and two cellular automata pattern 

furnishing fabrics came out lowest. The images at the bottom of all three rating categories 

are the two paintings done by my 3 year old twin nephews, of a zebra and a dinosaur. They 

are noticeably higher in preference ratings; a few participants commented that they were 

charming pictures, whilst one or two participants thought that they were imitations of 

children’s drawings done by more competent artists. 



Visual Complexity and Aesthetic Judgement  Test 3b: Art Gallery 

 252  

 
Figure 91. Images arranged by geometric mean scores of complexity (top), preference 

(middle) and quality (bottom) for Test 3b. 
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Correlations 

The correlations between objective measures of complexity and subjective aesthetic 

judgments are shown in Table 21. The table includes data for the two different complexity 

measures – one based on actual file size and the other on the virtual compression ratio. 

Absolute file size measure appears to perform slightly better than the virtual compression 

ratio, which goes against our expectations. Overall, however, there is practically no linear 

correlation between these scores, and this too counters what we might have expected from 

Donderi’s results. The correlations with compression ratio are also illustrated in Figure 92. 

File size (actual) Compression ratio (virtual)Subjective ratings 
(geometric mean) 

TIFF PNG JPEG TIFF PNG JPEG 

Complexity -0.21 -0.20 -0.09 -0.15 -0.18 0.03 

Preference -0.27 -0.26 -0.30 -0.15 -0.15 -0.15 

Quality -0.20 -0.19 -0.19 -0.05 -0.07 0.07 

Table 21 Correlations between subjective ratings and objective image complexity. 

 
Figure 92 Test 3b: plots of log file size (x-axis, bytes) vs. subjective scores (y-axis). 
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Figure 93 illustrates regression analysis for subjective ratings plotted against 

compression ratio. From these graphs, we can see that JPEG file compression gives a 

narrower range of compression ratios than the other two file types, most likely because it is 

a lossy algorithm. JPEG converts RGB colour channels into luminance (Y) and 

chrominance (Cb and Cr) channels, and then discards more of the colour data to which we 

are less visually sensitive than luminance (Salomon 2004, p.329–334). Even though the 

JPEG algorithm was designed to take advantage of the peculiarities of the human visual 

system, it remains to be seen how this should affect its correlation with subjective 

judgements of complexity since its performance is not significantly better or worse than the 

other two file-types thus far. 

 
Figure 93 Test 3b: plots of compression ratio (x-axis, no units) vs. subjective scores (y-

axis). 

The weak negative correlations are what we might expect to find if we knew that the 

stimulus images were generally approaching randomness, such that the images were rated 
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high in objective complexity, and lower in subjective judgements. If we were correct in 

assuming a threshold of perceptual complexity at a compression ratio of around 0.5, the 

fact that many of the image files are above this value might go some way to explaining the 

result. This is certainly the case for the TIFF and PNG files, but not for JPEG, whose files 

have compression ratios no larger than 0.4. This effect is more noticeable for the virtual 

compression ratio than it is for the file-size measure. 

The virtual compression ratio did not perform as hoped. Against our expectation, 

this supposed solution to the problem of borders actually gives a weaker correlation than 

the absolute file-size measure. There is still reason to believe that the principle is sound, but 

in practice, with the weak correlation in the present results, it offers no benefit for the set 

of images used in this test. 

Test 3 Findings 
Comparing Results between Tests 3a and 3b 
We can compare the subjective results from tests A and B by plotting the data 

together. There are a couple of ways to do this, illustrated in Figure 94. The upper graphs 

show the geometric mean scores for the two tests. We can see that the scores follow each 

other quite closely and also that the complexity scores are slightly higher for test A. The 

lower set of graphs shows the correlation between the two tests, and the red lines show the 

best fit. If two ratings are of equal ranges, then the line will fit a 45 degree slope, whereas if 

the scores differ significantly the line will deviate from this angle. The slope of the graphs 

shows that only complexity ratings differ appreciably between the two groups of 

participants. 
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Figure 94 Top row: Comparison of test 3a (blue) and 3b (red) results for complexity, 

preference and quality (x-axis: rank order file size, no units; y-axis: GM scores, no 

units). Bottom row: Correlations of geometric mean scores between tests A and B. 

The two tests correspond with each other insofar as they tend to agree on the relative 

complexity of images (i.e. participants agree which are the most and least complex images), 

but the scales of numbers used to represent perceived complexity are higher in test 3a. In 

other words, participants perceived more complexity in test 3a. One reason for this 

difference may be that the images were viewed more closely in test 3a where images were 

presented on tables than in 3b where the images hung on walls. This result discounts the 

hypothesis that the test setting would not affect aesthetic judgements. It also suggests that 

perceived complexity is more sensitive to environmental variables, such as setting and 

viewing conditions, than the judgement of preference and quality which is likely to be more 

dependent on subjective variables amongst the participants. 

Table 22 compares correlations of subjective ratings for the two tests. It reveals a 

similar pattern of results for each, with the strongest correlation between complexity and 

quality and the weakest between complexity and preference. The consistency between these 

B 
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results from tests in different locations implies that we can be confident in the collected 

data, whilst the strength of the correlations indicates that there are shared criteria being 

employed in these aesthetic judgements. Interviews with test participants elaborate these 

findings by examining the criteria employed in the tests, which is presented in next section. 

 
Table 22 Correlation between subjective ratings for tests 3A (left) and 3B (right). 

To find out whether there is a significant difference between the two tests, we 

perform a t-test. The results of this and other statistical tests are included in Table 23.  

Correlation T-test statistics Subjective ratings 
(geometric mean) 

r 

Mean 
difference 

t p 

Complexity 0.94 4.54 3.95 0.0001 

Preference 0.66 -0.49 -0.78 0.44 

Quality 0.80 -0.84 -1.12 0.26 

Table 23 Statistics for data of tests 3A and 3B. T-test is two-sided, p = 0.01. 

Considering that these two tests took place at different times and locations with 

many different participants, there is a surprising consistency in the subjective responses. 

The strongest correlation between the two tests is found in the complexity ratings. 

Nevertheless, there is a significant difference in complexity ratings between the tests (r = 

0.94, d.f. = 56, p < 0.01), but not for the other two ratings. The r value describes the 

consistency in the pattern of the rating, whereas the t value describes the difference 

between the ranges of numbers between the two groups. This means that both groups see 

the same images as being about the same relative complexity, but the scales used are quite 

different (t = 3.95, d.f. = 56, p < 0.01). Irrespective of the location, the two groups are 
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rating in a consistent way. It seems that there is a reduction in perceived complexity in the 

gallery context, where the viewing distance was on average greater than in the psychology 

laboratory. The relative differences in complexity perceived between the set of images in 

each location was about the same, but the results suggest that the overall level of detail – or 

high spatial frequency information – is higher when viewing nearer. Preference remains 

constant because moving further away reduces the complexity consistently for all the 

images. The inference is that visual complexity is a function of the amount of visual 

information available. 

Combined Results from Tests 3a and 3b 

Visualizing Data 

Plotting the graphs in a grid (Figure 92) allows us to see the difference between file 

types and between ratings, but because it is based on averages it fails to reveal any detailed 

patterns within the data. More detailed patterns can be found by representing the full data 

set in another way, using colour. Figure 95 represents the entire data set for Tests 3a and 

3b combined. There is one coloured square plotted for each image (50 columns) and each 

participant (58 rows) for each of the three rating scales. This makes a total of 8,700 data 

points, in a data set with 5 dimensions (participant, image, rating type, file compression, 

and rating score). In each plot the image columns have been arranged in order of increasing 

file size from left to right. The colours represent the magnitude of the scores – red for high 

and blue for low.  

The value of this basic form of data presentation is that it allows us to use our 

powers of visual perception to look for patterns in the data (order in the chaos). If 

participants’ scores corresponded with file size, we would see the colours arranged in a 

spectrum from cool on the left to warm on the right. Here, there is only a slight tendency 

in the opposite direction noticeable for complexity, which reflects its weak negative 

correlation, and there is no obvious pattern in either of the other images. The visible 

structures in Figure 95 reflect quantitative patterns in the data. Horizontal regions of colour 
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indicate similarly-rated images for a single participant. Vertical regions of similar colours 

indicate agreement between participants’ ratings, and these patterns are the more important 

for the present study, since differences between individuals are later averaged out in 

statistical analysis. However, there is actually very little structure in these images, which is a 

direct reflection of the lack of order in the data; compared with the more obvious patterns 

of data from test 2 (Figure 80) these images are quite disordered. 

 
Figure 95 Representation of combined data from test 3A and 3B. 

Even though the lack of patterns in the data means that unfortunately we can tell 

very little from the statistical results, we can visualize the rank order of the stimulus images 

as arranged by the average subjective ratings of complexity, preference and quality (Figure 

95). This allows us to see what the quantitative data cannot tell us – namely, the type of 

image as well as its placing in the rankings. The paintings of a dinosaur and a zebra by my 

three-year old nephews, Oliver and Isaac Avison, are placed low in ratings of complexity 

and quality, but Oliver’s dinosaur image is notably higher in preference – a detail supported 

by a few of the test participants who commented in interviews that they had rated it highly 

because it was charming. Two other notably childish or amateurish-looking pieces (an 

image of Spiderman and an abstract painting) are also scored low for all three ratings. 

Complexity Preference Quality 
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Figure 96 Images arranged by geometric mean scores of complexity (top), preference 

(middle) and quality (bottom) for combined results of tests A and B. 
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The most complex rated image is a drawing by Bommsoon Lee, and the majority of 

the images in the top twenty rated as most complex are my own which aimed for the 

threshold of visual complexity. The image rated highest for both preference and quality is 

one I created with Draves’ Fractal Flames algorithm, which did rather resemble a flame with 

its curling red and orange irregular fractal forms. It is interesting to note that the repetitive 

patterned textiles were not rated amongst the most simple. A blue and white ‘non-repeating 

pattern’ textile is rated as medium complexity, whereas a similar orange textile with less 

contrast is rated far lower, suggesting the perception of an overall texture in the latter case 

which lowers its perceived complexity. 

When the data from test3a and 3b are combined, the strongest correlation between 

subjective ratings is found between complexity and quality (Table 24). The correlation 

between quality and preference is very similar, which is what we have come to expect, 

because people tend to like the things that they perceive to be good. That between 

preference and complexity is around half as strong, in line with the results of previous tests.  

 
Table 24 Correlations between subjective ratings (geometric mean scores) for tests 3a 

and 3b combined. 

Regression analysis for the combined results of Tests 3a and 3b are illustrated in 

Figure 97. The coefficient of determination (R2) is a value between 0 and 1 that expresses 

how well the predicted values match the actual data. Given that there is almost no 

correlation between objective and subjective measures of complexity in our data, we are 

unlikely to find a good fit to the data. Although graphs in Figure 97 appear to show an 

inverted U shape, the poor correlation and weak R squared value means that there is 
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practically no relationship between the file compression measure of complexity and these 

aesthetic judgements. This is also clearly seen in the distribution of data points. 

 
Figure 97 Plots of compression ratio vs. geometric mean scores (no units). 

The analysis in Table 25 shows what we expected: Each pair of objective and 

subjective scores has an R2 value less than 0.1, which means that the best-fitting equations 

fail to estimate our data, probably because it is so poorly correlated. Similar results are 

found for first, second and third-order polynomials. This means that the file compression 

measure of visual complexity has failed to work with these images from art and design, 

unlike its success with the sets of cellular automata and random images in the previous 

tests. The likely reason for the poor correlation with this sample of images is due to their 

great variety. Whilst this variety was one of the test objectives, with the aim of representing 

a wide range of visual complexity, the difference between types of media and styles of 

artwork appears to have provided extra variables that have masked the relationship 

between file size and aesthetic judgements that we found in the earlier tests on more 

homogeneous visual material. 
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File size Compression ratio (virtual) Subjective ratings 
(geometric mean) 

TIFF PNG JPEG TIFF PNG JPEG 

Complexity 0.051 0.053 0.012 0.072 0.075 0.080 

Preference 0.084 0.083 0.096 0.023 0.023 0.021 

Quality 0.061 0.065 0.045 0.024 0.027 0.051 

Table 25 Coefficients of determination for subjective ratings and objective measures 

of image complexity. 

Artists vs. Non-Artists 

Comparative graphs of the combined Test 3 data for art-trained and untrained 

groups of participants are presented in Figure 98. The slopes indicate a significant 

difference for all three ratings, with art-trained participants rating consistently higher. 

 
Figure 98 Art-trained (blue / A-T) and untrained (red / U-T) ratings for tests 3A and 

3B combined. Top: rank order file size (x-axis, bytes) vs GM scores (y-axis, no units). 

Bottom: Correlations between art-trained and untrained participants. 

The results of statistical tests are presented in Table 23, which confirms that all three 

ratings are positively correlated between art-trained and untrained participants, with a 

A-T 

U-T 
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strong correlation for complexity ratings (r = 0.90) and a weaker correlation for preference 

(r = 0.59). There is a significant difference between the groups: art-trained participants gave 

consistently higher scores for all three ratings (e.g. for complexity t = 5.66, d.f. = 56, p < 

0.01). This finding is unexpected. We found in Test 2 that artists rated higher for 

preference alone, and we find it hard to explain this result when it might seem reasonable 

to think that the artists’ greater exposure to visual material and familiarity with aesthetic 

judgement would result in more critical, lower ratings overall. Test 2 findings also 

suggested that perceived complexity is less variable than judgements of preference, but this 

is cast into doubt with the results of Test 3. We are thus unable to account for the finding 

that art-training appears to correspond with higher ratings for all three aesthetic 

judgements – complexity, preference and quality. It is possible that art training equips an 

art audience with more criteria with which to find virtue in images, or that it relates to a 

greater capacity to perceive aesthetic information and a greater aesthetic sensitivity. 

Correlation T-test statistics Subjective ratings 
(geometric mean) 

r 

Mean 
difference 

t p 

Complexity 0.90 6.65 5.66 2 × 10 -7 

Preference 0.59 5.05 7.81 8 × 10 -12 

Quality 0.72 6.15 7.91 6 × 10 -12 

Table 26 Statistics for data from the art-trained and untrained participants. T-test is 

two-sided, p = 0.01. 

Hypothesis Evaluation 
We return to the test hypotheses to see how they fared in light of the test 3 results: 

1. Image file compression will correlate with judgements of complexity. 

We failed to find any notable correlation between file compression and judgements 

of complexity. It seems that the sample of visual material in this test was so varied that it 

masked the correlation with file compression that was found in earlier test results. 
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2. Familiarity with art and design will correspond with lower ratings of complexity. 

We found the reverse in Test 3, in which ratings by art-trained participants were 

consistently higher on average than untrained participants, not just for complexity but for 

judgements of preference and quality also. 

3. The test environment will not affect aesthetic judgements. 

The results show that the test location significantly affected only perceived 

complexity, and not judgements of preference and quality. 

Summary 
Overall, the results of Test 3 are quite negative: they failed to support any of the 

three hypotheses or show a significant correlation of compressed file size with aesthetic 

judgements of complexity, preference and quality. The poor correlation is not what we 

expected, given the results of the earlier tests, but it does make some sense if we take into 

account the variety of the visual material used for the test stimuli which appears to have 

masked the previously found correlation. We cannot say at this time whether this means 

that the file compression measure is unsuitable for art and design images in general or 

whether it failed only for the sample used in the current project. The relative success of the 

methods with CA and random images in Tests 1 and 2 suggests that the problem lies with 

the choice of stimuli in Test 3, and that we should not rule out the file compression 

method for further testing in future. 

Art-experience appears to have increased the overall ratings of aesthetic judgements, 

a finding we are unable to explain at present, especially as it conflicts with the results of 

tests 1 and 2 for which art-experience only influenced judgements of preference. The test 

location significantly affected judgements of complexity, probably due to the difference in 

viewing conditions: Ratings in the art gallery, where the participants could more easily 

determine their own viewing distance from the gallery walls, were lower than those of the 
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closer and less-variable viewing range in the psychology lab. The difference in rating scales 

is perhaps due to the increased detail that becomes perceivable at closer ranges. 

The use of compression ratio as an alternative to the file-size measure of image 

complexity is demonstrated to be potentially viable, although its effectiveness could be 

more reliably established with further tests. The advantage of the compression ratio is that 

it is more informative (it indicates the amount of randomness) and more comparable 

between tests. In regard to the proposed virtual compression ratio as a potential solution to 

the problems with image borders, it appears to be sound in theory and it did re-arrange the 

files as intended, but made surprisingly little difference to results in practice. This is 

probably due to the variation in stimuli and the low statistical correlation in the present 

data which likely obscured its potential value in this application. 

Despite the poor correlation with file compression, there is a stronger correlation 

between subjective ratings, particularly between complexity and quality. This pattern is 

fairly consistent between different test locations and between groups of subjects. The 

statistical relationship is supported by the interviews with participants who reported the use 

of similar criteria in evaluating these two aesthetic properties. Both visual complexity and 

artistic quality are judged in relation to the difficulty of making and understanding an 

artwork in terms of the time and effort required. This is a significant finding because it 

constitutes empirical support for the central thesis of this research project, namely that 

visual complexity is a significant factor in the aesthetic value of visual art and design. The 

finding therefore makes a contribution to knowledge. 
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Chapter 6 

Conclusions 

Summary of Findings 
At the beginning of this thesis, we considered the variety of patterns in our local 

environment. It seems that the size of the area occupied by a particular type of pattern is 

inversely proportional to its visual complexity. The largest areas, such as sky and walls, have 

the simplest patterns. Next-most common are likely to be repetitive patterns – either 

regular (clothing and furnishings), or irregular and chaotic (grass, rock, foliage). The most 

visually complex artefacts are likely to occupy the smallest areas. This relates to the 

information theory conception of complexity in terms of probability and predictability. 

Information is quantified in terms of its predictability, and complexity is less predictable 

than order. By this conception, however, randomness is less predictable and so it has 

greater statistical information than complexity. Therefore an information-based measure 

fails to describe our intuitive understanding of complexity, which to us has greater 

meaningful information than randomness. This problem has been central to the current 

project, and forms the basis of its contribution to knowledge. The following sections 

provide an account of the ways in which it has dealt with this issue. Firstly, we summarize 

the findings by answering the research questions, and identify the contribution to 

knowledge. Then we discuss particular implications of the contribution in further depth, 

and outline the impact of the research on my art practice. Finally, we identify potential 

opportunities for future research in development from the current project. 

Answers to Research Questions 
In this section, we collate the findings of this project by answering the research 

questions which were formulated at the end of the first chapter (discussed pp.10–13 and 
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listed p.46). The following sections are grouped as were the research questions, by the 

research stages adapted from the model of Phillips and Pugh (2000). 

Focal Theory 

Visual complexity appears to be interesting because the perception of complexity is a 

demanding perceptual task. Faced with a complex visual array, we engage in perceptual 

processes such as edge-detection and pattern-detection, and since visual complexity is 

related to the quantity, variety and order of perceived edges and patterns, a more complex 

image may provide a more satisfying aesthetic experience. The reason for the high 

complexity amongst artworks may be that artists made this discovery intuitively and 

worked to take advantage of successful experiments in visual complexity. Certainly, the 

evidence of Pollock’s gradually-increasing fractal complexity in his drip paintings would 

support this idea. Another reason for complexity in art may stem from the representation 

of the natural world, which contains complex patterns of many varieties. On the other 

hand, non-representational art tends to be less visually complex, and is none the less 

aesthetically valuable for it. We identified minimalism as the movement that most closely 

associates its theory and practice with the concept of aesthetic complexity, albeit with the 

result of a reduction towards the simpler end of the spectrum. 

The study of contemporary art practice indicates that minimalism is manifest at 

various stages of the creative process, and also that simple processes can produce complex 

aesthetic perceptions. These finding appears to have been made almost concurrently in 

empirical aesthetics and in the arts shortly after the introduction of information theory, as 

evidenced in the work of Attneave, Moles, Bense and Nake. From information aesthetics 

also came the complementary realization that detailed randomness or chaos can produce 

perceptual effects of simple textures, an idea which is incorporated in Bense’s micro-

aesthetics and is currently employed by contemporary musicians and visual artists such as 

Carsten Nicolai and Mark Fell. The concept of aesthetic information thus provides as 

useful a framework for creative approaches to the production and perception of visual 
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complexity as it does for the scientific approach, for which it offers a scale of measurement 

than can be applied to aesthetic properties and perceptions. 

Contextual Theory 

Complex systems theory generally understands complexity as the difficulty of making 

or describing something, and it measures this difficulty in terms of time, effort or cost. A 

more complex object takes more time or effort to describe, and so the size of a description 

is an indication of complexity. Donderi’s (2000) file compression of digital image files 

constitutes a basic measure of complexity which equates to the shortest description of an 

image based on an array of coloured pixels. We identified the fundamental components of 

visual complexity as being the quantity, variety and order of visual elements, and these are 

exactly the properties encoded by digital image files, which describe the number, colour 

and arrangement of pixels. Quantity and variety of elements have a simple proportional 

relationship to complexity, whereas order is a more subtle matter. Because the file-

compression measure is based on the information theory concept of redundancy, the scale 

of order it furnishes is a measure of randomness (entropy, redundancy, and 

incompressibility). This means that the file compression measure does not accord with our 

intuitive notion of complexity, because we perceive randomness as a simple texture, for 

example. The hypothesized relationship between the compression of image files and the 

perception of visual complexity, made by Wolfram (2002) and Donderi (2006a), suggests 

that we should find an inverted U correlation. Donderi and McFadden’s (2004) and 

Besner’s (2007) experiments failed to provide evidence for this hypothesis and left a gap in 

knowledge. 

Whereas empirical aesthetics is a small but flourishing area of current research in 

perception, contemporary aesthetic discourse has disengaged with perception in its theory 

and to some extent in its practice, such as in Bourriaud’s relational aesthetics (2002). The 

model with currency in today’s artworld is the institutional theory, which successfully defies 

the neo-Wittgensteinian challenge of defining art posed by Weitz (1956). Dickie’s art circle 
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(1997) does this by describing the mechanism of the artworld rather than the properties of 

artworks, but it does so at the expense of providing a satisfying explanation to the 

significant aesthetic questions of why we value art and what counts as aesthetic value. Part 

of the justification for the focus of the current project is to re-assess perceptual aesthetics, 

concentrating on the aesthetic property of visual complexity. The justification for 

investigating complexity is that it captures much of the essential information in pictures 

because it is based on the fundamental attributes of quantity, variety and order of picture 

elements. 

Research in vision shows that the perception of complexity largely depends on pre-

conscious processing in the retina, where the edge-detection mechanism of receptive fields 

of photoreceptors ultimately gives rise to the perception of recognizable shapes. Marr 

(1982) formulated an understanding of vision in terms of the information-processing of 

edge-detection and the formation of visual percepts, which allows for a computational 

approach to aesthetic perception. Marr’s perceptual theory provides a framework that 

justifies the computational approach of Donderi and McFadden (2004), and thus supports 

this project’s methodology which employs the file-compression method pioneered by 

Donderi. 

Data Theory 

The methodology aims to approach both sides of the aesthetic identified in the 

working model – the sites of aesthetic production and perception. Aesthetic production is 

approached through creative experimentation in art practice and by collecting samples of 

contemporary work from artists and designers. Aesthetic perception is approached 

empirically by using the visual material created and collected as the basis of stimuli in 

aesthetic tests. With this material, we can measure both objective and subjective 

complexity, and test the hypothesis of the inverted U correlation between information-

based and perceived complexity. We aim to identify whether there is a perceptual threshold 

to visual complexity by mapping the perception to a wide spectrum of complexity using 
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cellular automata and random images. Later tests use images of the collected artwork to 

establish whether the measure would work for the aesthetics of art and design. The design 

and execution of the tests gain validity from the success of trials with the aesthetic 

measures. Although the ability to transfer conclusions back to the larger population is 

restricted by the small sample sizes in these tests, they are sufficient enough to be confident 

in the results obtained, as evidenced in the statistical analyses, and are comparable to a 

number of the professional empirical studies cited in this thesis. 

The results of the first two tests with CA and random images show strong evidence 

for the hypothetical inverted U correlation between image file compression and perceived 

complexity. In Tests 1 and 2 there is little sign of a unified response to preference for levels 

of complexity, with only a slight preference for higher complexity amongst art-trained 

participants. There is a significant difference in ratings between art-trained and untrained 

participants, with artists rating higher for preference in Test 2. In Test 3 artists rated higher 

for all three ratings. 

The two locations of Test 3 appear to make a significant difference to complexity 

ratings but not to preference or quality. Complexity ratings are highly correlated in the 

ranking of images between tests 3a and 3b, but the scales used by participants are 

significantly lower in the context of the art gallery (Test 3b), which implies that more visual 

complexity is perceived at the closer viewing distance in the psychology lab (Test 3a). 

Overall, the file-compression measure fails to reveal a significant correlation with any of 

the three aesthetic ratings in Test 3. Nevertheless, the correlation between subjective 

ratings indicates a positive connection between visual complexity and aesthetic value, 

whether or not it involves conscious perception. This finding is supported by the 

qualitative analysis, which identifies the criteria behind the aesthetic judgements of 

complexity and quality. The interview analysis also supports the idea that complex images 

engage us because we have to work at understanding them and because we find pleasure in 

this task – we are rewarded aesthetically for the perceptual effort. The results of the 
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qualitative analysis suggest that we find complex images rewarding because it is related to 

the understanding that visual complexity is evidence of skill and effort on the part of the 

maker. 

Contribution to Knowledge 
The material critically reviewed in this study constitutes a mapping of contemporary 

aesthetic practice relating specifically to the area of visual complexity. The review presents 

an organised account of theory and practice across the boundaries of three fields: 

philosophical aesthetics and art discourse, empirical aesthetics, and art practice. A 

contribution to knowledge is made with this up-to-date mapping of visual complexity 

which integrates knowledge from separate disciplines and applies it to current 

understanding of art and design practice. An argument is made for the re-assessment of 

perceptual aesthetics, with the view that it has the potential to supplement the weak 

explanatory power of contemporary aesthetic theories of art. The argument is supported 

with empirical evidence, which takes the form of the following contributions: 

The results of the first experimental trial with the file-compression measure of 

complexity on images of cellular automata reveal a direct connection between this 

information-based measure and schemas of complexity from systems theory. The reasons 

for the correspondence lie in the equivalence of the underlying scales in terms of measuring 

complexity by difficulty of description. Although this finding seems almost trivial given the 

wide understanding of these principles, it nevertheless makes a small but original 

contribution to knowledge by providing clear empirical evidence for the relationship 

between these two specific concepts of complexity, and possibly constitutes the first 

measurement of cellular automata programs by the file-compression method. 

Test 1 and Test 2 provide empirical evidence for the hypothetical inverted U 

correlation between file compression and perceived complexity. Against the findings of 

Besner (2007), which were interpreted as inconclusive, these results constitute an original 
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contribution to knowledge, as being the first hard evidence for this correlation. We found 

no strong evidence for a similar correlation between visual complexity and aesthetic 

preference with the images in these tests. 

It was assumed that Test 3 would similarly prove the effectiveness of the file-

compression measure for images from art and design, as it had in the case of CA and 

random images, but the results fail to support this idea. There was no evidence of the 

correlation of objective visual complexity and subjective aesthetic judgements, which 

indicates that either the measure may not work for art and design, or simply that it failed to 

work with the sample in this test. Given the success in earlier tests, the latter is deemed to 

be the more likely explanation. Nevertheless, we did find evidence of a relationship 

between visual complexity and aesthetic value, based primarily on the correlation of 

subjective aesthetic ratings. This is supported by evidence of shared evaluative criteria 

being employed for judgements of both complexity and quality, based on the analysis of 

participant interviews. Against the failure to find meaningful results from the file-

compression measure, the findings of this relationship between visual complexity and 

aesthetic value constitute another contribution to knowledge. 

Through the quantitative analysis, we find a positive correlation between the 

objective measure of visual complexity (based on the data compression of image files) and 

the subjective perception of complexity (measured with MES). We also find a correlation 

between subjective ratings of visual complexity and aesthetic value (‘quality’). Although we 

can determine fairly precisely the strength and direction of these correlations, the statistics 

tell us nothing about the reasons why. The qualitative analysis sheds light on the matter by 

indicating that there are shared criteria between complexity and quality. It suggests that the 

aesthetic properties that constitute the perception of complexity are interpreted as signs of 

skill, effort or difficulty in the production of an artwork and, further, that visual complexity 

also involves skill, effort or difficulty in its perception. The understanding of visual 

complexity in terms of the difficulty of its production and perception also relates to the 
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file-compression measure, which we can understand as a measure of the difficulty of 

description. This is because it is a measure based on the size of the shortest possible 

description which is in turn based on the quantity, variety and order of pixels (how many, 

which colours, and where). The qualitative analysis reveals that a majority of the criteria 

involved in the perception of complexity can be classified in the same terms, namely the 

quantity, variety and order of picture elements. 

In summary, the knowledge we have gained about visual complexity in this project 

can be characterised as a theory which is both descriptive and explanatory. The theory 

allows us to organise our understanding of visual complexity and to use this knowledge in 

predicting how a given image will be perceived, which has applications for both empirical 

and creative approaches to complexity. In this way, the study’s contribution to knowledge 

serves as the basis for action in both the scientific analysis and the creative exploration of 

the aesthetics of visual complexity. 

Implications 
Measures of Complexity 
With our current understanding of visual complexity, we can try to integrate some of 

the key theoretical models cited in this thesis, in particular the various measures of 

complexity and their relation to aesthetic perception. From the combination of Dodgson’s 

(2008) and Attneave’s (1959b) findings, we have the suggestion that in terms of the 

spectrum of complexity measured by file compression ratio, there is a region of visual 

appeal between the values of 0.2–0.5, or around one fifth to one half randomness. In 

addition, this region appears to include a perceptual threshold beyond which we cannot 

identify structural regularity. The region of visual appeal is illustrated in Figure 99, in 

conjunction with Langton’s (1990) lambda parameter graph with Wolfram’s (2002) four 

complexity classes mapped out. The figure also shows black and white images of 

elementary cellular automata arranged in order of increasing file size from left to right. The 
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leftmost image is a uniform black, the images in the centre are cellular automata patterns, 

and the image on the right is random. Arrows from these images indicate their approximate 

distribution on the scale of complexity measured by compression ratio and also their 

position relative to Langton and Wolfram’s mapping of complexity classes. 

 
Figure 99 An informational scale of order–randomness and compression ratio (top), 

Langton’s lambda parameter with Wolfram’s complexity classes (middle), and 

corresponding examples of elementary CA images (bottom). 
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One of the findings of this project is that by simply sorting these images by file size, 

we end up with an arrangement identical to Langton’s and Wolfram’s maps of complexity. 

Figure 99 shows that the positions of the images correspond to the levels of complexity in 

Langton’s graph and to the compression ratio scale above it. This is especially evident 

when using the same cellular automata that Wolfram used – the relatively simple 

elementary CA. The results of the trial with the file-compression measure provide empirical 

evidence of the fundamental equivalence of this information-based scale of visual 

complexity with measures established in the field of complex systems theory. 

If we compare the complexity spectra represented in Figure 99 with the results of 

this project, there is no such peak in preference for complexity in any of the three tests, but 

we do find a similar peaked correlation between objective (file compression) and subjective 

(MES) complexity for the sets of cellular automata and random images. Using the 

compression ratio rather than the file size allows us to map the results back onto these 

models. Comparison with the test 2 results (Figure 100, red), which gave one of the best 

correlations between file compression and perceived complexity, shows a grouping of data 

points near the lower end of the compression scale and the correlation curve is pushed to 

the left. The reason for this is probably that these four-colour images produced much 

smaller files than the uncompressed file size which is used in the calculation of 

compression ratio. Therefore the range is artificially compressed because in fact the set did 

include completely random images but they were relatively small (in contrast, many-

coloured random images do approach this theoretical maximum file size). The range of file 

compression in test 3 is much greater (Figure 100, green), but the result is a negligible 

correlation with perceived complexity, and the illustrated curve fits the data so poorly that 

it should be disregarded. Nevertheless, the results of tests 1 and 2 still provide empirical 

evidence for the U-shaped correlation between perceived and information-based visual 

complexity. 
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Figure 100 Test 2 (red) and test 3 (green) results – complexity ratings vs. TIFF 

compression ratio, compared to Langton and Wolfram’s mapping. 

Visual Information 
There is a close connection between our understanding of complexity, beauty and 

consciousness. All three have been described in terms of unity and diversity of visual 

information: Complexity is a structural unity of many different parts; consciousness – the 

basis of perception – is a state of unification amongst the diverse areas of the brain 

(Massimi et al., 2005); and beauty is found in the unified perception of visual elements in a 

complex image. 

In visual complexity, there is also a connection between its perception and its 

measurement, since both involve pattern recognition. Data compression, which provides 

the basis of our objective measure of complexity, also involves a form of pattern 

recognition; repeating patterns of data are redundancies that can be compressed. Not only 

does this explain why digital image file compression can be used as a measure of visual 

complexity, but it also suggests that some form of data compression is involved in visual 

perception. Both Attneave’s “perception as economical description” (1954, p.189) and 

Wolfram’s account of visual complexity as failure of perception to extract a short 

Compression Ratio
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description (2003, p.559) support this idea. An explanation along these lines is required to 

account for the biology of the visual system: The retina processes visual information from 

130 million photoreceptors and sends it to the brain along only 1.2 million ganglion cells in 

the optic nerve. Somehow, this visual information undergoes a hundred-fold reduction in 

the process of perception. David Marr’s computational model of receptive fields explains 

how information from groups of sensory elements is processed to higher-order perceptual 

constructs such as edges and blobs. So it seems likely that this hundred-fold decrease in 

visual information somehow undergoes a data-compression operation. Whether these 

processes actually occur in perception, or whether that is merely our best hope of 

understanding the phenomenon, is a question that may soon be answered as the science of 

perception advances. 

We have seen how information theory offers a crude but effective measurement of 

complexity. The information-theoretical approach to aesthetics treats visual complexity as 

an aspect of communication in which the complexity of a message is related to the 

difficulty of encoding, transmitting and receiving it. This ‘difficulty’ is quantified in terms of 

the probability of producing or guessing the message. A statistically unlikely or unknown 

message has high information content, whereas a probable or predictable message has low 

information content. ‘Message’ is an abstract term that can stand for any transmitted 

information, whether a spoken language or visual material. In this sense, what information is 

is unspecified, yet we are still able to say how much information is present in a message: 

Information theory measures the amount of information in an observation as the 

negative logarithm of its probability. Information itself is never rigorously defined; it is 

only quantified. (Crutchfield, 1990) 

The nearest thing to a definition of information is perhaps the one offered by 

Gregory Bateson: Information is “a difference which makes a difference” (2002, p.459). 

Only things that make a meaningful difference contribute new information, and this is 

always relative to the receiver of the information. Bateson considers this understanding of 
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information to bridge the gap between map and territory, or between representation and 

reality. Bateson says that perceived differences are “the sort of “thing” that gets onto the 

map from the territory” (2002, p. 458). We might also say that these mapped features are 

also affordances (Gibson, 1986) because they are the perceived differences which can be 

acted upon. In terms of visual complexity, the features that are mapped in empirical 

investigation are those perceivable features of artworks that make a meaningful difference 

and which can be acted upon in terms of aesthetic judgement. Attneave (1971) understood 

visual complexity as a property involving comparison (a ‘collative variable’), which 

therefore depends on the perception of differences: “How complex a pattern is judged to 

be depends on the existence, extent and direction of differences along its simultaneously 

presented elements” (1971, pp.106–107). Through the computational approach, we have 

identified quantity, variety and order of elements as the essential variables in the perception 

and measurement of visual complexity. These are the critical properties that constitute 

digital image files, but they are also the most pertinent perceptual features. The relationship 

between a work of visual art (the territory) and a digital representation of the artwork (the 

map) is bridged by Bateson’s understanding of information and Gibson’s concept of 

affordances. The features common to both map and territory are those that are most 

significant to the map-maker and map-reader. 

The Spectrum of Complexity and the Window of 
Visibility 

The computational model of visual complexity developed in this thesis allows for 

predictions to be generated and tested. It was predicted that with the objective measure of 

visual complexity (based on image file compression), images at opposite ends of the scale 

would be perceptually similar, i.e. that the objectively simplest and the most complex 

images would be perceived subjectively to be equally complex (both perceived as simple 

images). The relationship between the objective measure and the subjective perception of 

visual complexity is expressed in graphical form as a curve – an inverted U shape. Findings 
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in perception research offer an explanation for the U-shape correlation between objective 

aesthetic properties and subjectively perceived visual complexity: 

Campbell & Robson (1968) plotted the contrast sensitivity function (CSF), which is a 

perceptual threshold based on contrast and spatial frequency (detail). The CSF describes 

the limits of perception – the point at which details become too small and/or have too 

little contrast to be perceived. Campbell & Robson used sinusoidal grating images, which 

vary from black to white in smooth gradations of contrast and spatial frequency. Figure 

101 illustrates such an image, with contrast increasing from top to bottom, and spatial 

frequency increasing from left to right. We perceive contrast only above a certain 

threshold, and we are more sensitive to middle values of spatial frequency (peaking at 

around 4 cycles per degree), with the result that the CSF produces a curve which describes 

an inverted U shape. This curve is not illustrated explicitly in Figure 101 because it varies 

for each individual, but it can be perceived as the border between the visibly stripy areas 

and the plain grey areas. We can notice this border changing as we alter the viewing 

distance; it appears lower at a greater distance. Other animals have greater sensitivity to 

contrast (for example, cats can see faint shadows that we cannot, so their CSF curve is 

higher than ours) or have greater resolving power (an eagle’s eyes perceive greater detail, 

which extends the CSF curve to the right), but somewhat surprisingly humans have the 

best overall CSF with the largest area under the curve. The area under the CSF curve 

describes the ranges of contrast and detail that we are able to perceive, and it is known as 

the ‘window of visibility’. 

In this project’s tests, the correlation of objective and subjective visual complexity 

measures also has an inverted U shape. This result is explained partly by the aspects of 

information theory and data compression discussed earlier, and partly by the CSF curve. 

The test stimuli sampled the objective spectrum of complexity from uniform to random. 

We find that images in the middle of this objective scale are perceived as the most 

complex. The simplest (uniform) and most complex (random) images, as measured by file-
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compression, correlate with the lowest values of perceived complexity. We can now 

consider these images in terms of the contrast sensitivity function. The simplest possible 

greyscale image (e.g. made of identical mid-grey pixels), has minimum spatial frequency and 

minimum contrast, and so it would be located at the top-left corner of the CSF diagram in 

Figure 101. Conversely, the most objectively complex greyscale image (composed of many 

different pixels, each of which is a random shade of grey from black to white) has high 

spatial frequency and high contrast, and so it would be located at the bottom-right corner 

of the CSF diagram. Therefore, both images lie just outside our window of visibility, which 

leads to a somewhat surprising conclusion: The simplest image and the most complex 

image (as defined by an informational measure of complexity such as file-compression) are 

perceptually indistinguishable from each other. 

 
Figure 101 Image showing variation in spatial frequency (increasing from left to right) 

and contrast (increasing from top to bottom). The areas that appear plain grey are 

patterns beyond the range of our perception in terms of these two attributes. 

Generally, the visibly stripy parts appear to form an inverted U shape (the CSF curve), 

the area beneath which equates to the ‘window of visibility’. 
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In this thesis, visual complexity is described as ‘a variety of patterns at different 

levels’. If we understand each possible pattern as having a particular spatial frequency and 

contrast (that is, as occupying a point under the CSF curve), then the window of visibility 

describes the range of patterns that are detectable by the visual system and hence 

potentially available to perception. In the results of our correlation between objective and 

subjective visual complexity, the inverted U-shape curve of the spectrum of complexity 

reflects the biological limitations of what is detectable and hence perceivable. 

The Spectrum of Complexity and Colour Spectra 
With the knowledge that the opposite ends of the informational scale of visual 

complexity are perceptually identical, we can understand visual complexity in a similar way 

to the understanding of colour. Like colour, visual complexity is an aesthetic property that 

has both objective and subjective aspects. Light is really ‘out there’ in an objective sense, 

and at the same time its phenomenal reality is tied to subjective perception. What we 

perceive in vision is a range of colours which can be grouped perceptually into ‘reds’, 

‘yellows’ and ‘blues’ etc., but visible light is just one part of a much larger spectrum of 

electromagnetic radiation. Similarly, we perceive a spectrum of visual complexity that has 

qualitatively distinct phases – order, repetition, complexity and chaos. In both cases, it is 

possible to measure the spectrum quantitatively – from infra-red to ultra-violet and from 

simple order to chaotic randomness. The objective colour spectrum can be observed in 

rainbows and in white light refracted by a prism. The analogous spectrum of complexity is 

represented by the schemas of Wolfram and Langton, and also by arranging image files in 

order of their data compression (p.176, Figure 67), all of which have at their core a concept 

of information. Data compression is actually quite a crude measure, but it is nevertheless 

particularly useful in organising visual material and in understanding visual complexity. 

In both colour and complexity, their objective scales of measurement form 

continuous ranges with distinct end-points, and yet in perceptual terms these end-points 

meet: The simplest image is a single block of colour, for example a uniform grey. The most 
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complex image would be composed of a great number of elements, each of a different 

colour, ordered randomly. As we discussed above, such an image is perceived as a uniform 

grey – identical to the simplest possible image. With this kind of perceptual scale, it makes 

sense to map it out as we perceive it. This is why we have colour-wheels for use in art and 

design; the circular format of the colour spectrum corresponds to our perception, and it 

makes more sense to present it this way than in the format of the objective colour 

spectrum, which is laid out linearly. The implication of this understanding of complexity is 

that the relationship of objective and subjective complexity is analogous to the relationship 

of objective and subjective properties of colour. Therefore, colour models are potentially 

useful in the understanding of complexity, and may perhaps be utilised in creative art 

practice and in the graphical representation of empirical complexity data. 

Maps, Measures and Models of Complexity 
To return to measures of complexity, we have found a distinction between 

information-based measures – such as AIC, MDL, and data compression – and intuitive 

concepts of complexity – such Gell-Mann’s effective complexity (EC). This distinction is 

most clearly expressed with the example of randomness, which is rated high by AIC and 

low by EC. The results of this project offer empirical evidence for the idea that the 

perception of visual complexity is more closely related to EC than to AIC: The file-

compression measure has been shown to be related to AIC, and performs as we expected, 

showing a correlation with perceived complexity of ordered images which diverges as 

images approach randomness. The images with the largest file size and lowest compression 

ratio appear to be almost random. Although they are rated highest by the objective 

measure, they are perceived to be fairly simple. 

We can understand this situation in terms of Bateson’s definition of information as 

“a difference that makes a difference” (2002 p.459). A random pattern provides an overall 

texture to an image that varies greatly from one element to the next, but which is generally 

quite consistent overall. This relates back to the description in Chapter 1 of randomness as 
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‘smooth’ variation and chaos as ‘lumpy’. If we were presented with two or three different 

random images made of black and white pixels, we would probably find it fairly difficult to 

distinguish between them. From the results we can also conclude that the perceived 

consistency of random images is dependent on their resolution; greater visible resolution 

makes a more consistent texture overall. Bateson’s definition offers an explanation for this: 

The ‘smooth’ differences in random patterns may be perceptually indistinguishable because 

these consistent differences (between adjacent picture elements) make little difference 

(overall) to us perceptually. In contrast, what we perceive as a complex image has lots of 

differences that do make a difference. Therefore, a complex image has lots of differentiable 

patterns at various scales, which are perceived as many interconnected levels of pictorial 

organisation. 

In constructing models of complexity, we must not forget that ‘the map is not the 

territory’. Bateson’s definition of information acts as a bridging statement between map 

and territory, between the model and that which is modelled. The things that we map are 

the perceivable features that make a difference to us. What makes it onto a map is not 

arbitrary – it is the stuff that actually matters. This is why medical artists are sometimes 

employed to draw instead of photograph features of illness and disease, because they are 

able to filter the available visual information and record what is most pertinent and useful 

for identification and treatment. The significance of Bateson’s bridging statement for this 

thesis is that the file-compression measure of visual complexity is based on an image file 

which is in effect a ‘map’ of a visual ‘territory’. The features encoded in this map are the 

number, colour and location of pixels, which are also the fundamental attributes of visual 

complexity as identified in this thesis (quantity, variety and order of picture elements), but 

more importantly they are precisely those features that make a difference to us. The 

implication is that the current projects’ methods are supported with this understanding of 

visual complexity and information by providing a theoretical bridge between the modelling 

or measuring of perception and its action in the real world. 



Conclusions  Impact on My Art Practice 

 285  

Impact on My Art Practice 
This research project has had a mutually beneficial relationship with my art practice. 

While the practice supports the empirical research by providing visual material for testing, 

the research findings have also informed the practice and influenced its direction. In terms 

of disciplinary areas, my work has grown beyond fine art and towards design for products 

and decorative arts, while retaining mix of computational designs and craft techniques. My 

experience with the commissions for the Minster School and the Deutsche Bank, together 

with the findings of Taylor (2006) that certain fractal values can reduce physiological stress, 

are stimulating explorations of decorative pattern using cellular automata programs for 

potential application in workplace environments or even hospitals. The CA images would 

make a good basis for textile design, since the patterns can be made to repeat, or not, as the 

case requires. For 3D products, I have plans for a lampshade design based on a CA pattern 

to be made in translucent coloured acrylic, and a prototype is under construction in Lego 

bricks which is starting to look more interesting than the original design for laser-cut acrylic 

(Figure 102). 

 
Figure 102 Design sketch for lampshade based on Lego block cellular automata. 



Conclusions  Impact on My Art Practice 

 286  

Even though I have been an amateur musician for some time, until recently music 

had never entered my art practice, except indirectly as a soundtrack to its making. In 2008 I 

showed around twelve artworks in the Gold Soundz exhibition curated by Geoff Diego 

Litherland which was themed around artwork “inspired by music, especially music played 

with guitars often quite loudly” (Figure 103). In addition to paintings, drawings and prints, 

which were mostly based on CA programs, my work included a digital animation. The 

video was based on the Electric Sheep fractals made with Draves’ Fractal Flames 

algorithm, and the soundtrack was commissioned from Dr. Torben Smith, a chemistry 

teacher and amateur electronic musician with experience in music for film. Since the 

animation formed a visual loop composed of three shorter cycles, the requirement for the 

music was that it should also loop around in time with the visuals. Torben’s music was 

based on the experience of a cycle of waking and sleeping when hitting the ‘snooze’ button 

on an alarm clock and the accompanying perceptual distortion of time. The aim of the 

animation was to explore the perceptual effect of Chion’s (1994) concept of synchresis, 

which had come to my attention through the contextual mapping in this project. The 

individual pieces were fine, but in combination the result lacked the synchresis effect. 

 
Figure 103 Gold Soundz exhibition (September, 2008), Southwell Artspace. 

Before working on these animations, my practice had not involved time-based media. 

The cellular automaton programs employed in the practice do involve an element of time 

in their computation, but in the artwork up until now this temporal dimension had been 

transformed into a spatial dimension. This sounds quite abstract, but actually all the images 
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of cellular automata in this thesis have this property – the vertical spatial dimension 

represents the temporal sequence of the pattern evolution. In the same way that the 

evolution of 1D CA is represented in two dimensions, some of my artwork involved 

representations of 2D CA in three dimensions. In contrast, this latest artwork explores the 

three dimensions of moving image, which involves 2D space plus time. 

 
Figure 104 S[4]n, (2009), digital animation, frame 278/9600. 

Some of the animations are created with the Fractal Flames algorithm have led to the 

conclusion that these forms may be fractal in time as well as fractal in space. As part of the 

Electric Sheep project, these animations are normally restricted to 128 frames and last just a 

few seconds. For my creative experiments I stretched out the animations by generating 

more frames, up to almost ten thousand in one case (Figure 104). As fractals, the shapes 

generated by this algorithm have a potentially infinite ‘depth’; one can zoom into an area to 

find more detail, and so on ad infinitum. I extended the duration of these animated images, 

which in effect is a magnification in time analogous to the magnification of spatial detail. 

The magnification in time of this fractal reveals greater detail that is otherwise un-
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perceivable; as the animation’s duration is extended, previously fuzzy areas are resolved 

into fast-moving particles or vibrating strings. The implication of this observation is that 

the animated forms produced by Drave’s algorithm are fractal in time as well as in space. 

This is not just a fractal distribution of events in time, as in the random pattern of noise 

bursts in audio circuits, but a kind of fractal motion. It means that whatever frame rate we 

choose to use with this algorithm, there will always be visible some parts moving quickly 

and some moving slowly – in fact, there will always be parts moving at all speeds, but we 

can only ever perceive part of this range. I intend to explore this further, to research the 

concept of time-fractals and to understand the algorithm in order to determine whether 

this is indeed the case and, if so, how it works. 

 
Figure 105 P32 t+r sb3, (2009), animation frame 17/2400. 

The current work is exploring techniques of sound design to generate audio for the 

animations. The idea is to control audio parameters with measurements of image properties 

derived from the analytical methods of this project. By measuring the file size of each 

frame of animation (such as Figure 104 and Figure 105), we have a value that can be used 

to modulate the pitch or tone of a sound at a time corresponding to that frame in the 

animation sequence. The result is a synchronisation of visual and musical elements. 

Similarly, the number of unique colours could be used, or any other aspect of digital image 

files that is able to be quantified can be mapped to any audio control parameter. In light of 

the discussion in Chapter 2 about synchresis and synaesthesia, we understand that any 

transformation between auditory and visual stimuli is ultimately arbitrary, but in this case 

the connection is grounded on a relation between objective properties, and the point is that 

we can use these processes to experiment with the subjective effects of synchresis. This 
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work is evidence of the ways in which the empirical research techniques and findings of 

this project contribute to the development of aesthetic practice. 

Future Directions 
Since the results of this project were inconclusive about the potential for the file-

compression measure with images of art and design, we cannot rule out the potential value 

of further investigations along these lines. In fact, the success of the measure up to the 

introduction of art and design images suggests that we should refine the tests to establish 

what led to the masking of the correlation in this case. Future refinements for tests 1 and 2 

would include the inclusion of greater randomness and finer detail in test stimuli in the 

perception of CA and random images, as well as the introduction of more numbers of 

colours. A repeat of test 3 would reduce the variety of styles and types of visual artefact 

whilst maintaining a wide spectrum of complexity. The lack of a wide objective spectrum 

of complexity in this sample is evidenced in the almost-vertical clustering of data points in 

the results of test 3, so we should address the issue in future. 

It would be interesting to explore more about the aesthetic production of complexity 

than could be accommodated in the current project. For instance, one idea for my own art 

practice is for a series of paintings to begin with a blank canvas and then to make each 

successive painting more complex than the last. This idea could be used to explore 

aesthetic production by setting it as a task to art students, perhaps creating one drawing per 

day in a sketchbook. The collected sketchbooks would offer a fascinating insight into ways 

of understanding aesthetic complexity. As a basic visual analysis, we could lay out the pages 

in sequence from beginning to end, that is, from the simple to the complex, with each 

student’s work in rows. Would we see the appearance of randomness anywhere in these 

complexity spectra, and might we find anything like the complexity classes of cellular 

automata? These appear to be potentially rewarding areas for future research. 
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It seems that the same methods and approach employed in the current project could 

be extended from visual art to music and be applied to an investigation of the aesthetic 

complexity of sound. Precisely the same psychophysical techniques would be applicable to 

the perception and measurement of audio stimuli as they were applied to visual stimuli. 

Similarly, the same technique of data compression could be used as the basis of a measure 

of audio file complexity. There are analogies between types of digital file for audio and 

visual applications: both come in lossy and non-lossy formats. Lossy compression discards 

perceptually insignificant information, and so there is a fundamental similarity between 

lossy JPEG image file compression and lossy MP3 audio file compression. A significant 

difference between audio complexity and visual complexity is that the former is time-based. 

In this project, we disregarded the temporal dimension in our study of visual aesthetics, 

though it was noted that complexity is related to difficulty of description in terms of the 

time it takes to create or understand it. In one sense, musical analysis might be simpler 

because it is oriented mainly along this single temporal dimension, which simply encodes a 

series of positive and negative values which express the amplitude of a waveform (and the 

movement of a speaker cone). This might make it seem less complex than encoding two-

dimensional images, but the variety of perceived pitches, timbres and rhythms make sound 

a highly complex perceptual phenomenon. Whether a simple file-compression measure 

could effectively capture this audio complexity, and whether it might correlate with 

perceptions of musical complexity, are identified as potential areas for further investigation. 

With the experience and techniques developed in the current project, it would be a natural 

progression and a relatively small step to change focus from the aesthetics of visual 

complexity to the complexity of music and sound. 

With a refinement of the current findings on visual complexity, and potential work 

on audio complexity, we would have a platform to investigate more fully the perception of 

aesthetic complexity in audio-visual media. It is possible that the effect of synchresis is 

sensitive to complexity. My hypothesis is that the perceptual effect is strongest when the 
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levels of complexity in the image and sound are approximately the same, whether at a static 

level or varying synchronously. This hypothesis is based on my experience and on the 

analysis and evaluation of the examples of art practice evidenced in this thesis. If we could 

establish the measurement of audio-visual complexity with file-compression and measure 

the aesthetic perception of synchresis with MES, we would be able to investigate the 

relationship between the two. 

As a final word to this thesis, we can say that the visual complexity of artwork 

affords the opportunity of aesthetic exploration, but too little can be dull, and too much 

can be confusing. Like life on earth, the practice of art is an endlessly creative and 

increasingly complex activity. Art offers an opportunity for both artists and audiences to 

reflect on the process of perception itself. We now understand visual complexity as a 

demanding and rewarding perceptual task. Through its difficulty in making and 

understanding, visual complexity provides both a rich aesthetic experience and an 

opportunity for reflection and insight. Perception involves making sense of the world, in 

terms of both ‘understanding’ and ‘forming sensory percepts’. Seeing is understanding. 

Therefore, understanding how we see – that is, understanding the perception and aesthetics 

of visual art – allows for insights into ourselves and the world around us. 

To see clearly is poetry, prophecy, and religion, – all in one. 

John Ruskin (1856) Modern Painters, vol. III, part IV, chapter XVI. 
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Appendices 

Appendix A: Test 1 Instructions 
The following text comprises the written instructions for test participants: 

You will be presented with a series of images in a random order. Your task is to rate 

the complexity of the images by assigning a number to each one to show how 

complex you think it is. There will be a practice run to begin with. 

Call the first image any number that seems appropriate to you. Then assign successive 

numbers in such a way that they reflect your subjective impression. There is no limit 

to the range of numbers that you may use. You may use whole numbers, decimals, or 

fractions. Try to make each number match the property as you perceive it. 

Appendix B: Copyright Law 
Following are extracts from the Copyright, Designs and Patents Act 1988 (c. 48) 

Chapter II Rights of Copyright Owner 

16 The acts restricted by copyright in a work  

(1) The owner of the copyright in a work has, in accordance with the following provisions of this 

Chapter, the exclusive right to do the following acts in the United Kingdom—  

(a) to copy the work;  

(b) to issue copies of the work to the public;  

(c) to perform, show or play the work in public;  

(d) to broadcast the work or include it in a cable programme service;  

(e) to make an adaptation of the work or do any of the above in relation to an adaptation;  

and those acts are referred to in this Part as the “acts restricted by the copyright”. 

 

Chapter IV Moral Rights 

77 Right to be identified as author or director (‘right of paternity’) 

(1) The author of a copyright literary, dramatic, musical or artistic work, and the director of a 

copyright film, has the right to be identified as the author or director of the work in the 

circumstances mentioned in this section; but the right is not infringed unless it has been asserted in 

accordance with section 78.  
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80 Right to object to derogatory treatment of work (‘right to integrity’) 

(1) The author of a copyright literary, dramatic, musical or artistic work, and the director of a 

copyright film, has the right in the circumstances mentioned in this section not to have his work 

subjected to derogatory treatment.  

(2) For the purposes of this section—  

(a) “treatment” of a work means any addition to, deletion from or alteration to or adaptation 

of the work, other than—  

(i) a translation of a literary or dramatic work, or  

(ii) an arrangement or transcription of a musical work involving no more than a 

change of key or register; and  

(b) the treatment of a work is derogatory if it amounts to distortion or mutilation of the 

work or is otherwise prejudicial to the honour or reputation of the author or director;  

and in the following provisions of this section references to a derogatory treatment of a work shall 

be construed accordingly. 

 

(4) In the case of an artistic work the right is infringed by a person who—  

(a) publishes commercially or exhibits in public a derogatory treatment of the work, or 

broadcasts or includes in a cable programme service a visual image of a derogatory treatment 

of the work,  

(b) shows in public a film including a visual image of a derogatory treatment of the work or 

issues to the public copies of such a film, or  

(c) in the case of—  

(i) a work of architecture in the form of a model for a building,  

(ii) a sculpture, or  

(iii) a work of artistic craftsmanship,  

issues to the public copies of a graphic work representing, or of a photograph of, a 

derogatory treatment of the work. 

Appendix C: Interview Transcript 
Test 3a Interviews: Participant 25 

Time Speaker Transcription Code 
 GB Have you got any questions? 

 P25 
Um… only that one that I had about complexity 
with words if you’re looking at the complexity of 
the image, how does that correlate? 

 GB I’ve no idea. 

Questions 2h 
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 P25 Fair enough. 

 GB Were you comfortable with the thing in general and 
with the rating system? 

1:00 P25 

Yeah, um. It was nice actually not having an upper 
limit, although I found in sometimes I was limiting 
myself and getting quite similar numbers, but… 
yeah, no I was comfortable going round and doing 
it. 

Comfort 1 

 GB But you only got some numbers because those 

 P25 
Yep. The only thing – would it be good to say 
now? – about seeing the numbers above the 
paintings. 

 GB Yeah 

 P25 

Above each picture. Yeah, seeing the numbers 
there, sometimes I would come to a picture and the 
number that instinctively came into my head was 
then the number I saw above the picture, so that 
made me think am I being truthful to what I 
actually think or have I been influenced by catching 
sight of the numbers beforehand? 

Comments 10

 GB 
Mm, yeah. Let me ask about the criteria that you 
used to rate things. What made one image more 
complex than another? 

 P25 

Um… I suppose it was the amount of information 
that I was having to decipher from an image, er… 
Like, colour… I found colour did definitely make a 
difference as well. When you’re looking at the 
geometric… the pattern ones, the sort of… those 
ones I definitely felt were more complex due to the 
colours that were in them. If the colours were more 
similar they seemed less complex. If the colours 
contrasted more, they seemed more complex. 
Although I was aware that they probably weren’t 
both as complex really, but the colours seemed to 
change it for me. 

 GB Well, there is no… ‘really’ 
 P25 OK, yep, um… 

Complexity 9 
Complexity 4 

Complexity 2b

3:00 GB That’s why I’m doing this test. There is no, er… 
‘really’ how complex they are at all, honestly.  

3:07 P25 

I suppose another way that I rated the complexity 
was how long… how long I wanted to stand there 
and really look at it to try and get information out 
of it, um… The ones… the sketchy ones that you 
can very quickly identify what’s going on, it can be 
pretty to look at and look at the… the way that it 
has been sketched, but the ones where you had to 
really stand and, um, be taken in by the picture I 
would probably have rated as a lot more complex. 

 GB Mm-hm. So how did you cope with the text, the 

Complexity 8a 
Complexity 9a
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ones that had words in it? 

 P25 

Um… well, ‘cause… it was different as well ‘cause 
some of text was actually telling you bits and other 
bits of the text was just sort of like story time, if 
you know what I mean. It wasn’t… so much giving 
off, er, so much information. 

 GB So did what the words say add complexity or is 
it…? 

4:09 P25 
In some ways I sort of tried to ignore the words, 
and look more like a picture, um… what was being 
shown. 

 GB 
Yeah, right. What about the images that you 
preferred the most, did they have anything in 
common, or perhaps did you… were you aware… 

 P25 

Um, the ones I preferred the most were abstract. 
By far, they were definitely the ones that I preferred 
the most. And probably the computer-generated 
ones as well. 

 GB What kind of qualities did they have in common? 

 P25 

Um… well, colour was definitely one thing that 
drew me in, but I couldn’t say definite type of 
colour, but I do know the colours, er, influencing 
my preference. And shape. The shapes that were in 
them Colour and shape. But they… I know that the 
highest marks I gave were to very… some of them 
were very different in their colour and their shape, 
but it was just what grabbed me and took me. Tried 
to be as instinctive as possible. 

 GB I was going to ask about that. It was an instinctive 
decision? 

5:30 P25 

Yep. It was definitely instinctive. One thing that I 
did think about when I was going round, though, is 
because I had seen some of your artwork before, 
therefore it was more familiar to me than some of 
the other ones, and I did wonder of that would be 
playing a part. 

Preference 5b 
Preference 2 

 GB 
Oh, I’m sure. But then again, this is similar to what 
would happen in the real world and you’re going 
round a gallery, some of those are more familiar. 

 

 P25 

Yeah, I know, I did think about it and I did think, 
well, still instinctively out of the ones I’m familiar 
with I still know which ones I prefer. So it didn’t 
worry me too much. 

 

 GB OK. What about quality, did you find that easy to 
do? 

 P25 Quality is… 
 GB And how did you make those decisions? 

 P25 How did I judge quality? Actually, I did find that 
the hardest, ‘cause I was very aware of it, how your 
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personal preference of what you think is good 
affects how you rate the quality. 

 GB 

Yeah. I’m assuming that for most people the ease 
of judging the quality of these things is related to 
their general experience and familiarity with doing 
this kind of thing, so you know, if you’re in art, if 
you’re formally trained in art, it’s probably an easier 
job to rate quality. Would you agree with that? 

 P25 I would agree with that. 

 GB So, how much is art and design part of your day-to-
day activities? 

 P25 Um… 
 GB Any formal training? 

 P25 

Er… not, well, in certain aspects of it such as, er, 
set design and looking at colour and I’ve done 
some art history at university, so… but never to full 
degree level. I would say I have a basic person’s 
knowledge of, well, probably slightly higher than 
the average layman’s knowledge of art, but… 

 GB But you don’t make stuff yourself? 
8:10 P25 Not really, no. 

Training 2a 

 GB So how did you go about judging it then? 
 P25 From my experience throughout life 

 GB What factors… what aspects of the images did you 
try and base it on? 

 P25 

Different images… I suppose how… how trained I 
thought the artist would have to have been to have 
produced that piece of work. Use of colours, I 
suppose complexity in some ways did come into it 
as well, if you’re looking at it that way. Do you 
need more? 

Quality 4a 
Quality 11 

 GB We can wrap it up. Is there any other comments 
you want to make? 

 P25 Um, not… 

 GB Was it easy or difficult overall, then? Enjoyable? 
Interesting? 

 P25 

I found it very interesting, I really did. Thinking… 
having to think of… Actually one thing I really 
liked was that you had to round the three times and 
look at them all individually. On… I know that 
some of my thoughts changed the third time I was 
going round, so what I’d done the first time, but… 
sort of… thinking of oh no, would I have changed 
that. I didn’t go back and change anything, but I 
was constantly thinking about how I look at these 
pictures in three different ways. 

 GB OK. That’s it then. Thank you. 

Comments 6 
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Appendix D: List of Codes 
Questions about the Task 

01. No 
02. Yes 

a. What is the purpose of the test? 
b. How many of the images are yours? 
c. Are some images drawings of other images? 
d. Where can I buy this image? 
e. How are you going to level off the different ratings? 
f. Are you an artist? 
g. Is there supposed to be any pattern to how the pictures are laid out? 
h. How does the complexity of words correlate with the complexity of the images? 
i. Do you have a way of determining differences in preference between genders? 
j. What would you say complexity is? 
k. Where do the child-like images come from? 

Comfort with the Procedure 

01. Yes 
02. No, it was difficult 
03. Complexity was most difficult 
04. Quality was most difficult 

Complexity Criteria 

01. Quantity of picture elements 
02. Variety of picture elements 

a. Number of varieties 
b. Amount of variation 

03. Level of detail 
04. Number of colours 
05. Amount of colour 
06. Amount of time 

a. In making the work 
b. Looking at / understanding the work 

07. Redundancy 
08. Amount of work or difficulty 

a. in making 
b. in perceiving 

09. Amount of information 
a. Aesthetic 
b. Semantic 

10. Depth 
11. Ambiguity 
12. Size 
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13. Flaws 

Preference Criteria 

01. Harmony of picture elements 
02. Instinctive judgement 
03. Strong colours 
04. Warm colours 
05. Level of figuration 

a. Representational 
b. Abstract 

06. Detail 
07. Repetition / pattern 
08. Quality of line 

a. Geometric, straight 
b. Swirly, curved 

09. How much time would like to spend looking at it 
10. Clean and tidy 
11. Would I have it at home? 
12. Computer-generated 
13. Complexity 
14. Emotional response 
15. Pretension 
16. Images covering the entire surface 
17. Complementary colours 
18. Relation to physical context 
19. Relates to quality 
20. Mundane 
21. Schematic images 
22. Textiles 
23. Interest 

Quality Criteria 

01. Amount of work 
a. In making 
b. In perceiving and understanding 

02. Amount of time to make the work 
03. Skill 
04. Difficulty in making the work 
05. Suitability for exhibition 
06. Coherence 
07. Technical accomplishment 
08. Creativity 
09. Concept 
10. Same as for preference 
11. Complexity 
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12. Varied depending on medium 

Training in Art & Design 

01. Formal training, actively engaged 
02. Some formal training, not engaged 
03. No formal training 

Comments about the Task 

01. None 
02. Yes 

a. Enjoyed the experience 
b. Unusual rating procedure, being allowed to define own scale 
c. Shouldn’t be using the same room for interviews as for people doing the task 
d. Different to an exhibition because of the viewing angle – looking down at images 

on tables. 
e. Interesting experience 
f. Question whether objects represented are comparable 
g. Would be good to hang the images 
h. Too many images 
i. Rating scores may have been influenced by the sight of images’ index numbers 
j. Art and design training helps make judgements of complexity 
k. Images of artefacts are harder to rate than actual artefacts 

Appendix E: Coding Results 
The tables below show the complete set of results for the analysis of participant 

interviews conducted in Test 3a (see pp.227–249). 

Questions (12) Code Count %(37) Rank
No questions 01 18 48.65 1 
What is the purpose of the test? 02a 5 13.51 2 
How many of the images are yours? 02b 4 10.81 3 
Are some images drawings of other images? 02c 2 5.41 4 
Where can I buy this image? 02d 1 2.70 5 
How are you going to level off the different ratings? 02e 1 2.70 5 
Are you an artist? 02f 1 2.70 5 
Is there a pattern to how the pictures are laid out? 02g 1 2.70 5 
How does the complexity of words correlate with the 
complexity of the images? 02h 1 2.70 5 

Do you have a way of determining differences in preference 
between genders? 02i 1 2.70 5 

What would you say complexity is? 02j 1 2.70 5 
Where do the child-like images come from? 02k 1 2.70 5 
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Comfort with the procedure (4) Code Count %(39) Rank
Comfortable 01 24 61.54 1 
Uncomfortable 02 7 17.95 2 
Quality was the most difficult 04 6 15.38 4 
Complexity was the most difficult 03 2 5.12 4 

 

Art training / experience (3) Code Count %(31) Rank
No formal training 03 16 51.61 1 
Formal training, actively engaged 01 11 35.48 2 
Some formal training, not engaged 02 4 12.90 3 

 

Criteria for judging Complexity (18) Code Count %(73) Rank
Level of detail 03 10 13.70 1 
Number of colours 04 9 12.33 2 
Redundancy 07 9 12.33 2 
Amount of work or difficulty: In perceiving 08b 7 9.59 4 
Depth 10 7 9.59 4 
Quantity of picture elements 01 5 6.85 6 
Variety of picture elements: Number of varieties 02a 4 5.48 7 
Amount of work or difficulty: In making 08a 4 5.48 7 
Amount of colour 05 3 4.11 9 
Amount of information: Aesthetic (visual) 09a 3 4.11 9 
Variety of picture elements: Amount of variation 02b 2 2.74 11 
Amount of time: In making the work 06a 2 2.74 11 
Amount of time: Looking at / understanding the work 06b 2 2.74 11 
Size 12 2 2.74 11 
Amount of information 09 1 1.37 15 
Amount of information: Semantic 09b 1 1.37 15 
Ambiguity 11 1 1.37 15 
Flaws 13 1 1.37 15 

 

Criteria for judging Preference (25) Code Count %(50) Rank
Instinctive judgement 02 6 12.00 1 
Strong colours (bold, saturated) 03 6 12.00 1 
Quality of line: Swirly, curved 08b 6 12.00 1 
How much time would like to spend looking at it 09 4 8.00 4 
Level of figuration: Abstract 05b 3 6.00 5 
Level of figuration: Representational 05a 2 4.00 6 
Computer-generated 12 2 4.00 6 
Complexity 13 2 4.00 6 
Pretension (dislike) 15 2 4.00 6 
Complementary colours 17 2 4.00 6 
Harmony of picture elements 01 1 2.00 11 
Warm colours 04 1 2.00 11 
Detail 06 1 2.00 11 
Repetition / pattern 07 1 2.00 11 
Quality of line: Geometric, straight 08a 1 2.00 11 
Clean and tidy 10 1 2.00 11 
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Would I have it at home? 11 1 2.00 11 
Emotional response 14 1 2.00 11 
Images covering the entire surface 16 1 2.00 11 
Relation to physical context (how the image worked in the 
space) 18 1 2.00 11 

Relates to quality 19 1 2.00 11 
Mundane (dislike) 20 1 2.00 11 
Schematic images 21 1 2.00 11 
Textiles (dislike) 22 1 2.00 11 
Interest 23 1 2.00 11 

 

Criteria for judging Quality (13) Code Count %(40) Rank
Skill 03 8 20.00 1 
Amount of work: In making 01a 6 15.00 2 
Suitability for exhibition 05 6 15.00 2 
Technical accomplishment (level of finish) 07 6 15.00 2 
Difficulty in making the work 04 4 10.00 5 
Same as for preference 10 3 7.50 6 
Amount of work: In perceiving and understanding 01b 1 2.50 7 
Amount of time to make the work 02 1 2.50 7 
Coherence (meaningful arrangement of parts) 06 1 2.50 7 
Creativity 08 1 2.50 7 
Concept (the idea behind the work) 09 1 2.50 7 
Complexity 11 1 2.50 7 
Varied depending on medium 12 1 2.50 7 

 

Comments (12) Code Count %(35) Rank
No comments 01 16 45.71 1 
Interesting experience 02e 5 14.29 2 
Enjoyed the experience 02a 3 8.57 3 
Shouldn’t be using the same room for interviews as for 
people doing the task 02c 2 5.71 4 

Too many images 02h 2 5.71 4 
Unusual rating procedure, being allowed to define own scale 02b 1 2.86 6 
Different to an exhibition because of the viewing angle 02d 1 2.86 6 
Question whether objects represented are comparable 02f 1 2.86 6 
Would be good to hang the images 02g 1 2.86 6 
Rating scores may have been influenced by index numbers 02i 1 2.86 6 
Art and design training helps make judgements of 
complexity 02j 1 2.86 6 

Images of artefacts are harder to rate than actual artefacts 02k 1 2.86 6 
 


	Copyright Notice
	Acknowledgements
	Abstract
	Contents
	Chapter 1
	Aesthetics & Complexity
	Introduction
	Visual Complexity
	Background: Art Practice and Research
	Research Focus

	Aesthetics
	Perception
	Beauty
	Art and Design
	Taste
	The Aesthetic
	Working Model of the Aesthetic

	Complexity
	Identifying Complexity
	Computational Complexity
	Cellular Automata

	Mapping Complexity
	Uniformity
	Order and Information
	Fractals
	Chaos and Randomness
	Complexity

	Measuring Complexity
	Measuring Visual Complexity


	Project Outline
	Planned Contribution to Knowledge



	Chapter 2
	Mapping Theory and Practice
	Introduction
	Aesthetic Theory
	Perceptual Aesthetics
	Environmental Aesthetics and Affordances

	Aesthetic Theories of Art
	The Open Concept of Art
	The Decline of Perception in Aesthetic Theory
	The Institutional Theory of Art
	Visual Models of Art
	Relational Aesthetics

	Summary

	Empirical Aesthetics
	Establishment of the Field
	The Measurement of Perceptions
	The Measurement of Perceived Complexity

	The Influence of Information Theory
	Concepts from Information Theory
	Visual Order and Randomness
	The Influence of the Computer
	The Computational Approach to Visual Perception

	Aesthetic Measures
	Eye-Tracking
	Aesthetic Preference
	Edge Detection
	Fractal Measures
	Data Compression

	Summary

	Aesthetic Practice
	Simplicity and Minimalism
	The Grid
	Computer Art
	Fractal Art
	Visualizing Complex Information
	Audio-Visual Art
	My Art Practice

	Summary of Context
	Identifying the Components of Visual Complexity
	Visual Complexity and Image File Compression
	Locating Visual Complexity



	Chapter 3
	Approaching Visual Complexity in Art & Design
	Research Focus
	Methodology
	Ontology and Epistemology
	Problems with Empirical Aesthetics
	Philosophical Problems
	Practical Problems

	Methodological Approach

	Methods
	Quantitative Methods
	Measuring Objective Complexity
	Measuring Subjective Complexity

	Qualitative Methods
	Semi-Structured Interviews
	Transcription Coding and Analysis

	Plan



	Chapter 4
	Investigating the Spectrum of Visual Complexity
	Trial 1: Objective Measure
	Trial 2: Subjective Measure
	Test 1: Monochrome CA and Random Images
	Method
	Participants
	Materials
	Procedure

	Results
	Data Transformation

	Analysis
	File Types
	Preference and Complexity Ratings
	Average Responses
	Influence of Art Training
	Inferential Statistics
	Statistical significance

	Summary
	Discussion: Visual Resolution


	Test 2: CA and Random Images in Colour
	Method
	Materials
	Participants
	Procedure

	Results
	Analysis
	Effect of Art Experience

	Discussion
	Summary



	Chapter 5
	Visual Complexity and Aesthetic Judgement
	Introduction
	Test 3: Images from Art and Design
	Hypotheses

	Test 3a: Psychology Laboratory
	Method
	Materials
	Stimuli
	Participants
	Setting
	Variables and Units of Measurement

	Procedure
	Results
	Discussion
	Compression Ratio
	The Problem with Borders


	Interviews with Participants
	Interview Procedure
	Transcription
	Coding
	Structural Coding
	Pattern / Focused Coding

	Results
	Questions about the Task
	Comfort with the Procedure
	Complexity Criteria
	Preference Criteria
	Quality Criteria
	Art Training
	Comments about the Task

	Analysis: Categorizing the Codes
	Summary

	Test 3b: Art Gallery
	Method
	Participants
	Setting

	Procedure
	Results
	Ranked Average Scores
	Correlations


	Test 3 Findings
	Comparing Results between Tests 3a and 3b
	Combined Results from Tests 3a and 3b
	Visualizing Data
	Artists vs. Non-Artists

	Hypothesis Evaluation
	Summary



	Chapter 6
	Conclusions
	Summary of Findings
	Answers to Research Questions
	Focal Theory
	Contextual Theory
	Data Theory

	Contribution to Knowledge

	Implications
	Measures of Complexity
	Visual Information
	The Spectrum of Complexity and the Window of Visibility
	The Spectrum of Complexity and Colour Spectra
	Maps, Measures and Models of Complexity

	Impact on My Art Practice
	Future Directions

	References
	Appendices
	Appendix A: Test 1 Instructions
	Appendix B: Copyright Law
	Appendix C: Interview Transcript
	Appendix D: List of Codes
	Appendix E: Coding Results





