View synthesis for kinetic depth X-ray imaging

Abusaeeda, OA, 2012. View synthesis for kinetic depth X-ray imaging. PhD, Nottingham Trent University.

[img]
Preview
Text
211401_VIEW SYNTHESIS FOR KINETIC DEPTH X-RAY IMAGING.pdf

Download (11MB) | Preview

Abstract

This thesis reports the development and analysis of feature based synthesis of transmission X-ray images. The synthetic imagery is formed through matching and morphing or warping line-scan format images produced by a novel multi-view X-ray machine. In this way video type sequences, which periodically alternate between synthetic and detector based views, may be formed. The purpose of these sequences is to provide depth from motion or kinetic depth effect (KDE) in a visual display; while the role of the synthesis is to reduce the total number of detector arrays, associated collimators and X-ray flux per inspection. A specific challenge is to explore the bounds for producing synthetic imagery that can be seamlessly introduced into the resultant sequences. This work is distinct from the image collection and display technique, termed KDEX, previously undertaken by the Imaging Science Group at NTU. The ultimate aim of the research programme in collaboration with The UK Home Office and The US Dept. of Homeland Security is to enhance the detection and identification of threats in X-ray scans of luggage. A multi-view „KDEX scanner‟ was employed to collect greyscale and colour coded image sequences of 30 different bags; each sequence comprised of 7 perspective views separated from one another by 10. This imagery was organised and stored in a database to enable a coherent series of experiments to be conducted. Corresponding features in sequential pairs of images, at various different angular separations, were identified by applying a scale invariant feature transform (SIFT).

Item Type: Thesis
Creators: Abusaeeda, O.A.
Date: 2012
Rights: This work is the intellectual property of the author, and may also be owned by the research sponsor and/or Nottingham Trent University. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the first instance to the author.
Divisions: Schools > School of Science and Technology
Depositing User: EPrints Services
Date Added: 09 Oct 2015 09:34
Last Modified: 09 Oct 2015 09:34
URI: http://irep.ntu.ac.uk/id/eprint/134

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year