Development of masterbatches for poly (ethylene terephthalate) with improved resistance to CO2 permeation

Moloney, S., 2008. Development of masterbatches for poly (ethylene terephthalate) with improved resistance to CO2 permeation. PhD, Nottingham Trent University.

194134_SJM PhD Thesis Feb09 final document.pdf

Download (9MB) | Preview


This research has investigated nanocomposite based masterbatches as routes to improve the CO2 retention properties of PET bottles. Masterbatches of different types of polyamide/clay, PET/clay, PET/nano-silica flakes and PET/divalent layered metal phosphonates (DLMP) were produced by melt compounding and evaluated. In the case of polyamide based nanocomposites PA6 was found to produce the best dispersed nanocomposites followed by PA-MXD6, PA-6I/6T and PA-6-3-T. It was concluded from the results that surfactant/polymer compatibility and thermal stability play some role, but the most significant factor in effecting good dispersion was the polarity of the polymer and its ability to directly interact with the clay surface. The CO2 retention of PET/PA blends showed MXD6 to offer by far the greatest improvement (100% increase) but the use of PA-MXD6 nanocomposite did not result in further improvement. It was concluded that transfer of exfoliated clay platelets from the PA phase to the PET phase had not occurred. In order to address this issue and disperse the filler effectively through both polymer matrices several novel new processes were developed and the use of a catalyst was investigated.

Item Type: Thesis
Creators: Moloney, S.
Date: 2008
Rights: This work is the intellectual property of the author, and may also be owned by the research sponsor(s) and/or Nottingham Trent University. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, of if a more substantial copy is required, should be directed in the first instance to the author.
Divisions: Schools > School of Science and Technology
Depositing User: EPrints Services
Date Added: 09 Oct 2015 09:35
Last Modified: 09 Oct 2015 09:35

Actions (login required)

Edit View Edit View


Views per month over past year


Downloads per month over past year