Sustr, D, Hlaváček, A, Duschl, C and Volodkin, D ORCID: https://orcid.org/0000-0001-7474-5329, 2018. Multi-fractional analysis of molecular diffusion in polymer multilayers by FRAP: a new simulation-based approach. The Journal of Physical Chemistry B, 122 (3), pp. 1323-1333. ISSN 1520-6106
Preview |
Text
PubSub10317_Volodkin.pdf - Published version Download (1MB) | Preview |
Abstract
Comprehensive analysis of the multifractional molecular diffusion provides a deeper understanding of the diffusion phenomenon in the fields of material science, molecular and cell biology, advanced biomaterials, etc. Fluorescence recovery after photobleaching (FRAP) is commonly employed to probe the molecular diffusion. Despite FRAP being a very popular method, it is not easy to assess multifractional molecular diffusion due to limited possibilities of approaches for analysis. Here we present a novel simulation-optimization-based approach (S-approach) that significantly broadens possibilities of the analysis. In the S-approach, possible fluorescence recovery scenarios are primarily simulated and afterward compared with a real measurement while optimizing parameters of a model until a sufficient match is achieved. This makes it possible to reveal multifractional molecular diffusion. Fluorescent latex particles of different size and fluorescein isothiocyanate in an aqueous medium were utilized as test systems. Finally, the S-approach has been used to evaluate diffusion of cytochrome c loaded into multilayers made of hyaluronan and polylysine. Software for evaluation of multifractional molecular diffusion by S-approach has been developed aiming to offer maximal versatility and user-friendly way for analysis.
Item Type: | Journal article |
---|---|
Publication Title: | The Journal of Physical Chemistry B |
Creators: | Sustr, D., Hlaváček, A., Duschl, C. and Volodkin, D. |
Publisher: | American Chemical Society |
Date: | 2018 |
Volume: | 122 |
Number: | 3 |
ISSN: | 1520-6106 |
Identifiers: | Number Type 10.1021/acs.jpcb.7b11051 DOI |
Divisions: | Schools > School of Science and Technology |
Record created by: | Linda Sullivan |
Date Added: | 26 Feb 2018 12:38 |
Last Modified: | 26 Feb 2018 12:38 |
URI: | https://irep.ntu.ac.uk/id/eprint/32800 |
Actions (login required)
Edit View |
Statistics
Views
Views per month over past year
Downloads
Downloads per month over past year