Age-related changes in femoral head trabecular microarchitecture

Greenwood, C, Clement, J, Dicken, A ORCID logoORCID: https://orcid.org/0000-0002-0558-3773, Evans, JPO ORCID logoORCID: https://orcid.org/0000-0001-9831-1461, Lyburn, I, Martin, RM, Stone, N, Zioupos, P and Rogers, K, 2018. Age-related changes in femoral head trabecular microarchitecture. Aging and Disease, 9 (6), pp. 1-12. ISSN 2152-5250

[thumbnail of PubSub10163_Evans.pdf]
Preview
Text
PubSub10163_Evans.pdf - Post-print

Download (1MB) | Preview

Abstract

Osteoporosis is a prevalent bone condition, characterised by low bone mineral density and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density using dual energy X-ray absorption. However, many studies have shown that bone strength, and consequently the probability of fracture, is a combination of both bone mass and bone 'quality' (architecture and material chemistry). Although the microarchitecture of both non-fracture and osteoporotic bone has been previously investigated, many of the osteoporotic studies are constrained by factors such as limited sample number, use of ovariectomised animal models, and lack of male and female discrimination. This study reports significant differences in bone quality with respect to the microarchitecture between fractured and non–fractured human femur specimens. Micro-computed tomography was utilised to investigate the microarchitecture of femoral head trabecular bone from a relatively large cohort of non-fracture and fracture human donors. Various microarchitectural parameters have been determined for both groups, providing an understanding of the differences between fracture and non–fracture material. The microarchitecture of non-fracture and fracture bone tissue is shown to be significantly different for many parameters. Differences between sexes also exist, suggesting differences in remodelling between males and females in the fracture group. The results from this study will, in the future, be applied to develop a fracture model which encompasses bone density, architecture and material chemical properties for both female and male tissues.

Item Type: Journal article
Publication Title: Aging and Disease
Creators: Greenwood, C., Clement, J., Dicken, A., Evans, J.P.O., Lyburn, I., Martin, R.M., Stone, N., Zioupos, P. and Rogers, K.
Publisher: Buck Institute for Age Research
Date: 1 April 2018
Volume: 9
Number: 6
ISSN: 2152-5250
Identifiers:
Number
Type
10.14336/AD.2018.01 2 4
DOI
Divisions: Schools > School of Science and Technology
Record created by: Linda Sullivan
Date Added: 11 Apr 2018 14:37
Last Modified: 11 Apr 2018 14:37
URI: https://irep.ntu.ac.uk/id/eprint/33259

Actions (login required)

Edit View Edit View

Statistics

Views

Views per month over past year

Downloads

Downloads per month over past year