A thermosensitive electromechanical model for detecting biological particles

SoltanRezaee, M, Bodaghi, M ORCID logoORCID: https://orcid.org/0000-0002-0707-944X and Farrokhabadi, A, 2019. A thermosensitive electromechanical model for detecting biological particles. Scientific Reports, 9 (1): 11706. ISSN 2045-2322

[thumbnail of 14425_Bodaghi.pdf]
Preview
Text
14425_Bodaghi.pdf - Published version

Download (2MB) | Preview

Abstract

Miniature electromechanical systems form a class of bioMEMS that can provide appropriate sensitivity. In this research, a thermo-electro-mechanical model is presented to detect biological particles in the microscale. Identification in the model is based on analyzing pull-in instability parameters and frequency shifts. Here, governing equations are derived via the extended Hamilton’s principle. The coupled effects of system parameters such as surface layer energy, electric field correction, and material properties are incorporated in this thermosensitive model. Afterward, the accuracy of the present model and obtained results are validated with experimental, analytical, and numerical data for several cases. Performing a parametric study reveals that mechanical properties of biosensors can significantly affect the detection sensitivity of actuated ultra-small detectors and should be taken into account. Furthermore, it is shown that the number or dimension of deposited particles on the sensing zone can be estimated by investigating the changes in the threshold voltage, electrode deflection, and frequency shifts. The present analysis is likely to provide pertinent guidelines to design thermal switches and miniature detectors with the desired performance. The developed biosensor is more appropriate to detect and characterize viruses in samples with different temperatures.

Item Type: Journal article
Publication Title: Scientific Reports
Creators: SoltanRezaee, M., Bodaghi, M. and Farrokhabadi, A.
Publisher: Nature Publishing Group
Date: 12 August 2019
Volume: 9
Number: 1
ISSN: 2045-2322
Identifiers:
Number
Type
10.1038/s41598-019-48177-2
DOI
Divisions: Schools > School of Science and Technology
Record created by: Jonathan Gallacher
Date Added: 14 Aug 2019 10:35
Last Modified: 14 Aug 2019 10:35
URI: https://irep.ntu.ac.uk/id/eprint/37298

Actions (login required)

Edit View Edit View

Statistics

Views

Views per month over past year

Downloads

Downloads per month over past year