TeKET: a Tree-Based Unsupervised Keyphrase Extraction Technique

Rabby, G., Azad, S., Mahmud, M. ORCID: 0000-0002-2037-8348, Zamli, K.Z. and Rahman, M.M., 2020. TeKET: a Tree-Based Unsupervised Keyphrase Extraction Technique. Cognitive Computation. ISSN 1866-9956

[img]
Preview
Text
1302677_Mahmud.pdf - Published version

Download (2MB) | Preview

Abstract

Automatic keyphrase extraction techniques aim to extract quality keyphrases for higher level summarization of a document. Majority of the existing techniques are mainly domain-specific, which require application domain knowledge and employ higher order statistical methods, and computationally expensive and require large train data, which is rare for many applications. Overcoming these issues, this paper proposes a new unsupervised keyphrase extraction technique. The proposed unsupervised keyphrase extraction technique, named TeKET or Tree-based Keyphrase Extraction Technique, is a domain-independent technique that employs limited statistical knowledge and requires no train data. This technique also introduces a new variant of a binary tree, called KeyPhrase Extraction (KePhEx) tree, to extract final keyphrases from candidate keyphrases. In addition, a measure, called Cohesiveness Index or CI, is derived which denotes a given node’s degree of cohesiveness with respect to the root. The CI is used in flexibly extracting final keyphrases from the KePhEx tree and is co-utilized in the ranking process. The effectiveness of the proposed technique and its domain and language independence are experimentally evaluated using available benchmark corpora, namely SemEval-2010 (a scientific articles dataset), Theses100 (a thesis dataset), and a German Research Article dataset, respectively. The acquired results are compared with other relevant unsupervised techniques belonging to both statistical and graph-based techniques. The obtained results demonstrate the improved performance of the proposed technique over other compared techniques in terms of precision, recall, and F1 scores.

Item Type: Journal article
Publication Title: Cognitive Computation
Creators: Rabby, G., Azad, S., Mahmud, M., Zamli, K.Z. and Rahman, M.M.
Publisher: Springer
Date: 5 March 2020
ISSN: 1866-9956
Identifiers:
NumberType
10.1007/s12559-019-09706-3DOI
1302677Other
Divisions: Schools > School of Science and Technology
Record created by: Jonathan Gallacher
Date Added: 06 Mar 2020 08:55
Last Modified: 06 Mar 2020 08:55
URI: https://irep.ntu.ac.uk/id/eprint/39369

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year