Transmural remodeling of cardiac microstructure in aged spontaneously hypertensive rats by diffusion tensor MRI

Giannakidis, A ORCID logoORCID: https://orcid.org/0000-0001-7403-923X and Gullberg, GT, 2020. Transmural remodeling of cardiac microstructure in aged spontaneously hypertensive rats by diffusion tensor MRI. Frontiers in Physiology, 11: 265. ISSN 1664-042X

[thumbnail of 1314063_Giannakidis.pdf]
Preview
Text
1314063_Giannakidis.pdf - Published version

Download (1MB) | Preview

Abstract

The long-standing high blood pressure (also known as hypertension) overworks the heart. Microstructural remodeling is a key factor of hypertensive heart disease progression. Diffusion tensor magnetic resonance imaging (DT-MRI) is a powerful tool for the rapid noninvasive nondestructive delineation of the cardiomyocyte organization. The spontaneously hypertensive rat (SHR) is a well-established model of genetic hypertension. The goal of this study was to employ high-resolution DT-MRI and the SHR animal model to assess the transmural layer-specific remodeling of myocardial microstructure associated with hypertension. Ex vivo experiments were performed on excised formalin-fixed hearts of aged SHRs (n = 4) and age-matched controls (n = 4). The DT-MRI-derived fractional anisotropy (FA), longitudinal diffusivity (λL), transversal diffusivity (λT), and mean diffusivity (MD) served as the readout parameters investigated at three transmural zones (i.e., endocardium, mesocardium, and epicardium). The helix angles (HAs) of the aggregated cardiomyocytes and the orientation of laminar sheetlets were also studied. Compared with controls, the SHRs exhibited decreased epicardial FA, while FA changes in the other two transmural regions were insignificant. No substantial differences were observed in the diffusivity parameters and the transmural course of HAs between the two groups. A consistent distribution pattern of laminar sheetlet orientation was not identified for either group. Our findings are in line with the known cellular microstructure from early painstaking histological studies. Biophysical explanations of the study outcomes are provided. In conclusion, our experimental findings indicate that the epicardial microstructure is more vulnerable to high blood pressure leading to more pronounced changes in this region during remodeling. DT-MRI is well-suited for elucidating these alterations. The revealed transmural nonuniformity of myocardial reorganization may shed light on the mechanisms of the microstructure-function relationship in hypertension progression. Our results provide insights into the management of patients with systemic arterial hypertension, thus prevent the progression toward heart failure. The findings of this study should be acknowledged by electromechanical models of the heart that simulate the specific cardiac pathology.

Item Type: Journal article
Publication Title: Frontiers in Physiology
Creators: Giannakidis, A. and Gullberg, G.T.
Publisher: Frontiers Research Foundation
Date: 31 March 2020
Volume: 11
ISSN: 1664-042X
Identifiers:
Number
Type
10.3389/fphys.2020.00265
DOI
1314063
Other
Rights: © 2020 Giannakidis and Gullberg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Divisions: Schools > School of Science and Technology
Record created by: Jonathan Gallacher
Date Added: 09 Apr 2020 13:55
Last Modified: 22 Apr 2020 08:51
URI: https://irep.ntu.ac.uk/id/eprint/39607

Actions (login required)

Edit View Edit View

Statistics

Views

Views per month over past year

Downloads

Downloads per month over past year