A methodology to identify consensus classes from clustering algorithms applied to immunohistochemical data from breast cancer patients

Soria, D, Garibaldi, JM, Ambrogi, F, Green, AR, Powe, D, Rakha, E, Macmillan, RD, Blamey, RW, Ball, G ORCID logoORCID: https://orcid.org/0000-0001-5828-7129, Lisboa, PJG, Etchells, TA, Borracch, P, Biganzoli, E and Ellis, IO, 2010. A methodology to identify consensus classes from clustering algorithms applied to immunohistochemical data from breast cancer patients. Computers in Biology and Medicine, 40 (3), pp. 318-330. ISSN 1862-8346

Full text not available from this repository.
Item Type: Journal article
Publication Title: Computers in Biology and Medicine
Creators: Soria, D., Garibaldi, J.M., Ambrogi, F., Green, A.R., Powe, D., Rakha, E., Macmillan, R.D., Blamey, R.W., Ball, G., Lisboa, P.J.G., Etchells, T.A., Borracch, P., Biganzoli, E. and Ellis, I.O.
Publisher: Elsevier
Date: 2010
Volume: 40
Number: 3
ISSN: 1862-8346
Identifiers:
Number
Type
10.1002/prca.200900218
DOI
Divisions: Schools > School of Science and Technology
Record created by: EPrints Services
Date Added: 09 Oct 2015 09:52
Last Modified: 09 Jun 2017 13:13
URI: https://irep.ntu.ac.uk/id/eprint/4091

Actions (login required)

Edit View Edit View

Statistics

Views

Views per month over past year

Downloads

Downloads per month over past year