Identifying interior spatial dimensions according to user preference: an associative concept network analysis

Junaidy, DW, Georgiev, GV, Kaner, J ORCID logoORCID: https://orcid.org/0000-0002-7946-7433 and Alfin, E, 2020. Identifying interior spatial dimensions according to user preference: an associative concept network analysis. Jurnal Sosioteknologi, 19 (3), pp. 309-326. ISSN 1858-3474

[thumbnail of 1398296_Kaner.pdf]
Preview
Text
1398296_Kaner.pdf - Published version

Download (2MB) | Preview

Abstract

English: This study proposed a fundamental technique for evaluating the preferences of interior space users by capturing their verbally expressed preferences and then determining word associations. To accomplish this, the Pajek visualization software for large network analysis was employed in conjunction with the USF Word Association dictionary to visualize the structures and network depths of the derived associative meanings. The generated associative words were then qualitatively categorized into taxonomic word groups to reveal 13 dimensions of perceived interior-environmental quality, as follows: House-related, Territorial, Impression, Activity, Active Element of Nature, Nature, Building Materials, Companion, Household Basics, Color, Location, Composition, and Time Period. A factor analysis was then conducted to sort the generated associative words according to Out-Degree Centrality/ODC score. These were validated into five factors that appeared to influence the comfort levels of interior space users. These five factors and 13 dimensions are useful as objective bases for determining the composition of adjectival pairs through the Semantic Differential (SD) method, which helps designers and architects evaluate interior space preferences.

Indonesian: Penelitian ini menggunakan teknik fundamental untuk melakukan evaluasi terhadap preferensi ekspresi verbal pengguna ruang interior dengan cara menghimpun kata-kata asosiatif kesan mendalam pengguna (user's in-depth impression). Peneliti menggunakan perangkat lunak visualisasi Pajek untuk analisis data jaringan yang sangat besar yang dibantu dengan penggunaan kamus USF Word Association; perangkat lunak dan kamus ini digunakan untuk memvisualisasikan struktur dan kedalaman jaringan makna asosiatif yang terbentuk. Hasil pengumpulan kata-kata asosiatif kemudian dikelompokkan secara kualitatif berdasarkan pengelompokan taksonomi kata menjadi 13 dimensi kualitas lingkungan-interior berdasarkan persepsi: Terkait rumah (Housedengan menggunakan analisis faktor, sejumlah kata terpilih yang memiliki nilai sebaran kata asosiatif yang tinggi (Out-Degree Centrality/ODC score) divalidasi menjadi 5 faktor yang berpengaruh terhadap kenyamanan pengguna ruang interior. Hasilnya, 5 Faktor dan 13 Dimensi ini menjadi dasar yang objektif dalam menentukan komposisi pasangan kata adjektif pada Semantic Differential method (SD) yang dapat membantu desainer/arsitek mengevaluasi preferensi pengguna ruang interior. Kata Kunci: dimensi spasial interior, kenyamanan pengguna, konsep asosiatif, analisis jaringan.

Item Type: Journal article
Alternative Title: Identifikasi dimensi kenyamanan pengguna ruang interior dengan metode associative concept network analysis (ACNA)
Publication Title: Jurnal Sosioteknologi
Creators: Junaidy, D.W., Georgiev, G.V., Kaner, J. and Alfin, E.
Publisher: Institut Teknologi Bandung
Date: 20 December 2020
Volume: 19
Number: 3
ISSN: 1858-3474
Identifiers:
Number
Type
1398296
Other
Rights: Note from publisher: We encourage research librarians to list this journal among their library's electronic journal holdings. As well, it may be worth noting that this journal's open source publishing system is suitable for libraries to host for their faculty members to use with journals they are involved in editing (see Open Journal Systems).
Divisions: Schools > School of Art and Design
Record created by: Linda Sullivan
Date Added: 13 Jan 2021 10:06
Last Modified: 31 May 2021 15:08
Related URLs:
URI: https://irep.ntu.ac.uk/id/eprint/42027

Actions (login required)

Edit View Edit View

Statistics

Views

Views per month over past year

Downloads

Downloads per month over past year