Rahmatabadi, D, Soltanmohammadi, K, Aberoumand, M, Soleyman, E, Ghasemi, I, Baniassadi, M, Abrinia, K, Bodaghi, M ORCID: https://orcid.org/0000-0002-0707-944X and Baghani, M, 2022. Development of pure poly vinyl chloride (PVC) with excellent 3D printability and macro‐ and micro‐structural properties. Macromolecular Materials and Engineering: 2200568. ISSN 1438-7492
Preview |
Text
1639120_Bodaghi.pdf - Published version Download (4MB) | Preview |
Abstract
Unmodified polyvinyl chloride (PVC) has low thermal stability and high hardness. Therefore, using plasticizers as well as thermal stabilizers is inevitable, while it causes serious environmental and health issues. In this work, for the first time, pure food-grade PVC with potential biomedical applications is processed and 3D printed. Samples are successfully 3D printed using different printing parameters, including velocity, raster angle, nozzle diameter, and layer thickness, and their mechanical properties are investigated in compression, bending, and tension modes. Scanning electron microscopy is also used to evaluate the bonding and microstructure of the printed layers. Among the mentioned printing parameters, raster angle and printing velocity influence the mechanical properties significantly, whereas the layer thickness and nozzle diameter has a little effect. Images from scanning electron microscopy also reveal that printing velocity greatly affects the final part's quality regarding defective voids and rasters’ bonding. The maximum tensile strength of 88.55 MPa is achieved, which implies the superiority of 3D-printed PVC mechanical properties compared to other commercial filaments. This study opens an avenue to additively manufacture PVC that is the second most-consumed polymer with cost-effective and high-strength features.
Item Type: | Journal article |
---|---|
Publication Title: | Macromolecular Materials and Engineering |
Creators: | Rahmatabadi, D., Soltanmohammadi, K., Aberoumand, M., Soleyman, E., Ghasemi, I., Baniassadi, M., Abrinia, K., Bodaghi, M. and Baghani, M. |
Publisher: | Wiley |
Date: | 1 December 2022 |
ISSN: | 1438-7492 |
Identifiers: | Number Type 10.1002/mame.202200568 DOI 1639120 Other |
Rights: | © 2022 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Divisions: | Schools > School of Science and Technology |
Record created by: | Jeremy Silvester |
Date Added: | 27 Jan 2023 11:52 |
Last Modified: | 27 Jan 2023 11:52 |
URI: | https://irep.ntu.ac.uk/id/eprint/48083 |
Actions (login required)
Edit View |
Statistics
Views
Views per month over past year
Downloads
Downloads per month over past year